数学建模课程大纲

数学建模课程大纲
数学建模课程大纲

数学建模与数学实验

Mathematical modeling and mathematical experiments

课程代码:(Times New Roman、小四)学时/学分:54/3

要求具备知识和能力:数学分析312/18 高等代数204/12

适应专业:数学与应用数学统计学

课程目的:“数学建模与数学实验”是近十几年来开设的一门新兴课程,它以实际问题为载体,把数学知识、数学软件和计算机应用有机结合,容知识性、启发性、实用性和实践性于一体,特别强调学生的主体地位,在教师的引导下,用学到的数学知识和计算机技术,借助适当的数学软件,建立数学模型,分析、解决一些经过简化的实际问题。该课程的引入,是数学教学体系、内容和方法改革的一项有益的尝试。

该课程的基本任务是教师讲授数学建模的基本原理和方法,讲授一些最常用的解决实际问题的方法及软件实现,包括数值计算、优化方法等。以实际问题为线索,从建立数学模型到借助数学软件求解。开设数学建模与数学实验课程的目的是使学生掌握数学建模的基本思想和方法。从实际问题出发,建立数学模型,借助计算机,通过学生亲自设计和动手,体验解决问题的全过程,从数学建模中去探索、学习和发现数学规律,充分调动学生学习的主动性。培养学生的创新意识,运用所学知识,建立数学模型,使用计算机并利用数学软件解决实际问题的能力,最终达到提高学生数学素质和综合能力的目的。

主要内容:(1)数学模型概述,主要包括数学模型分类、特点;建模实例;原则、步骤、方法;(2)数学规划模型,主要包括线性规划模型、非线性规划模型、多目标规划模型等;(3)微分方程模型与一阶常微分方程初值问题数值解,主要包括猪的最佳销售与天然气储量问题、最优捕鱼策略等模型;(4)概率统计模型,主要包括多元线性回归分析、决策模型、最佳订票问题等;(5)图与网络模型,主要包括图的发展史、最短路问题等;(6)数值分析模型,主要包括插值法、非线性方程求根等。

教材和重要参考书:

教材:《数学模型》(第三版),姜启源、谢金星、叶俊著,北京:高等教育出版社,2003.

参考书:

(1)Frank R. Giordano, Maurice D.Weir, William P. Fox著,叶其孝,姜启源译,

A First Course in Mathematical Modeling(Third Edition),数学建模(第三版),

北京,机械工业出版社,2005。

(2)赵静,但奇,数学建模与数学实验(第二版),北京,高等教育出版社,2003。(3)姜启源,邢文训,谢金星,杨顶辉编著,大学数学实验,北京,清华大学出版社,2005。

(4)韩中庚编著数学建模方法及其应用北京高等教育出版社

(5)谢金星薛毅编著优化建模与lindo/lingo软件北京清华大学出版社

考核方式:考查,开卷

授课手段和教学方法:多媒体教学,启发式教学,实验教学

课程负责人:赵娟,研究生,副教授,从事本课程教学4年。

授课教师:赵娟,研究生,副教授,从事本课程教学4年。

晋守博,研究生,讲师,从事本课程教学3年。

宋杨,研究生,讲师,从事本课程教学2年。

《数学建模与数学实验》教学大纲

课程编号:

课程名称:数学建模与数学实验

总学时数:54

实验或上机学时:18

一、说明

(一)《数学建模与数学实验》的课程性质:“数学建模”是近十几年来开设的一门新兴课程,它以实际问题为载体,把数学知识、数学软件和计算机应用有机结合,容知识性、启发性、实用性和实践性于一体,特别强调学生的主体地位,在教师的引导下,用学到的数学知识和计算机技术,借助适当的数学软件,建立数学模型,分析、解决一些经过简化的实际问题。该课程的引入,是数学教学体系、内容和方法改革的一项有益的尝试。该课程的基本任务是教师讲授数学建模的基本原理和方法,讲授一些最常用的解决实际问题的方法及软件实现,包括数值计算、优化方法等。以实际问题为线索,从建立数学模型到借助数学软件求解。(二)教材及授课对象:《数学模型》(第三版),姜启源、谢金星、叶俊著,北京:高等教育出版社,2003。授课对象为数学与应用数学、统计学专业大三学生。(三)《数学建模与数学实验》的课程目标(教学目标):该课程的目的是使学生掌握数学建模的基本思想和方法。从实际问题出发,建立数学模型,借助计算机,通过学生亲自设计和动手,体验解决问题的全过程,从数学建模中去探索、学习和发现数学规律,充分调动学生学习的主动性。培养学生的创新意识,运用所学知识,建立数学模型,使用计算机并利用数学软件解决实际问题的能力,最终达到提高学生数学素质和综合能力的目的。通过本课程的教学,应使学生了解建模的意义、特点以及利用数学理论和方法分析和解决实际问题的全过程,掌握建立数学模型的一般方法和步骤,培养学生应用数学和现代工具解决实际问题的能力,为今后步入工作岗位尽快适应工作奠定良好的基础。

(四)《复变函数》课程授课计划(包括学时分配)

(五)教学建议:本课程教学应注重基础理论知识的应用,注重实际问题的数学模型建立方法。

(六)考核要求:开卷考查

二、教学内容

第一章数学模型概述

主要教学目标:

1.理解数学建模的概念

2.掌握数学建模的方法和步骤

3.了解数学建模的几个简单实例

教学方法及教学手段:讲授、讨论、多媒体

教学重点及难点:复数学建模的方法

第一节数学模型概述

第二节数学模型的概念

第三节建立数学模型的方法和步骤

第四节数学建模实例

一、动物数量预测二、在越野赛中取胜的办法

第二章数学规划模型

主要教学目标:

1.掌握线性规划模型的建模方法

2.熟练应用Lingo软件和MATLAB软件

3.掌握非线性规划模型的建模方法

4.掌握动态规划模型的建模方法

5.掌握多目标规划模型的建模方法

教学方法及教学手段:讲授法、数学实验、多媒体教学。

教学重点及难点:线性与非线性规划模型的特点,多目标规划模型的建模方法,动态规划模型的建模方法。

第一节线性规划模型

一、线性规划模型的一般形式二、软件求解命令三、建模实例

第二节非线性规划模型

一、非线性规划的一般(标准)形式二、模型示范

第三节多目标规划模型

第四节动态规划模型

一、最短路问题及其解法二、动态规划的基本概念

第三章微分方程模型与一阶常微分方程初值问题数值解

主要教学目标:

1.理解微分方程数值解的概念

2.了解微分方程数值解的常见算法

3.掌握微分方程模型的建模方法

教学方法及教学手段:讲授法、多媒体教学、数学实验。

教学重点及难点:微分方程数值解的求法,微分方程数学模型的特点。

第一节一阶微分方程初值问题数值解

第二节猪的最佳销售问题

一、猪的最佳销售时机问题二、猪的最佳销售时机问题的计算程序

第三节天然气储量问题

第四节最优捕鱼策略

第四章概率统计模型

主要教学目标:

1.掌握多元线性回归分析的建模方法

2.理解决策模型的特点

3.掌握存储模型的建模方法

教学方法及教学手段:讲授、讨论、多媒体、上机实验

教学重点及难点:多元线性回归模型、决策模型以及存储模型的特点与建模方法。第一节多元线性回归分析

第二节决策模型

第三节最佳订票问题

第四节存储模型

第五章图与网络模型

主要教学目标:

1.理解图与网络的基本概念

2.理解树的概念

3.掌握最短路问题的建模方法

4.理解最大流问题

教学方法及教学手段:讲授、讨论、多媒体、上机实验

教学重点及难点:最短路问题的建模方法,最大流问题。

第一节图论的发展史

第二节图与网络的基本概念

一、图与网络的基本概念二、连通图三、图的矩阵表示四、中国邮政问题

第三节树

一、树的概念和性质二、图的生成树三、最小生成树问题

第四节最短路问题

第五节最大流问题

第六节最小费用问题

第七节灾情巡视路线

第六章数值分析模型

主要教学目标:

1.掌握插值法的特点。

2.理解牛顿法的建模方法

教学方法及教学手段:讲授、讨论、多媒体。

教学重点及难点:插值法,牛顿法,牛顿法

第一节插值法

第二节非线性方程求根

第三节牛顿法及其收敛

第四节弦截法与抛物线法

第五节孩子成长和学生考试成绩问题

第六节估计水塔的水流量

三、参考文献

1、Frank R. Giordano, Maurice D.Weir, William P. Fox著,叶其孝,姜启源译,

A First Course in Mathematical Modeling(Third Edition),数学建模(第三版),

北京,机械工业出版社,2005。

2、赵静,但奇,数学建模与数学实验(第二版),北京,高等教育出版社,2003。

3、姜启源,邢文训,谢金星,杨顶辉编著,大学数学实验,北京,清华大学

出版社,2005。

4、韩中庚编著数学建模方法及其应用北京高等教育出版社

5、谢金星薛毅编著优化建模与lindo/lingo软件北京清华大学出版社

四、教研室:应用数学课程主讲负责人:赵娟晋守博宋杨院长审核签名:

广东工业大学应用数学学院数学建模教学大纲Word版

《数学模型》课程教学大纲 Mathematics Modeling 课程编号:课程性质:专业基础理论课/ 选修 适用专业:信息安全、统计开课学期:4 学时数:56 学分数:3.5 编写年月:2006年6月修订年月:2007年1月 执笔者:陈学松 一、课程的性质、目的及任务 随着科学技术和计算机的迅速发展,数学向各个领域的广泛渗透已日趋明显,数学不仅在传统的物理学、电子学和工程技术领域继续发挥着重要的作用,而且在经济、人文、体育等社会科学领域也成为必不可少的解决问题工具。“数学建模”课是培养学生在实际问题中的数学应用意识、训练学生把科技、社会等领域中的实际问题按照既定的目标归结为数学形式,以便于用数学方法求解得出更深刻的规律和属性,提高学生数学建模素质的一门数学应用类课程。因此,设立数学建模课程的意义在于:提高学生的数学素质和应用数学知识解决实际问题的能力,大力培养应用型人才。本课程是沟通实际问题与数学工具之间联系的必不可少的桥梁。是一门充分应用其它各数学分支的应用类课程,其主要任务不是“学数学”,而是学着“用数学”,是为培养善于运用数学知识建立实际问题的数学模型,从而善于解决实际问题的应用型数学人材服务的。通过本课程的学习,使学生较为系统的获得利用数学工具建立数学模型的基本知识、基本技能与常用技巧,培养学生的抽象概括问题的能力,用数学方法和思想进行综合应用与分析问题的能力,并着力导引实践—理论—实践的认识过程,培养学生辩证唯物主义的世界观。 二.课程教学基本要求 通过本课程的学习,使学生了解数学建模是利用数学知识构造刻划客观事物原型的数学模型,利用计算机解决实际问题的一种科学方法。掌握数学建模的基本步骤,即从实际问题出发,遵循“实践——认识——实践”的辨证唯物主义认识规律,紧紧围绕建模的目的,运用观察力、想象力和逻辑思维,对实际问题进行抽象、简化、反复探索、逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。会利用数学知识和计算机解决问题,并能够撰写符合要求的数学建模论文。 三.课程教学基本内容、重点和难点 本课程的目的不是向学生传授系统的数学知识,而是将已学过的知识灵活运用到实际问题当中。其教学要求是逐步培养学生能够将实际问题“翻译”为数学语言,并予以求解,然后再解释实际现象,继而应用于实际的思想方法,最终提高学生的数学素质和应用数学知识

数学建模之减肥问题的数学模型

数学建模之减肥问题的 数学模型 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

东北大学秦皇岛分校 数学模型课程设计报告 减肥问题的数学建模 学院数学与统计学院 专业信息与计算科学 学号5133117 姓名楚文玉 指导教师张尚国刘超 成绩 教师评语: 指导教师签字: 2016年01月09日

摘要 肥胖已成为公众日益关注的卫生健康问题. 肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一. 但是实际情况却是人们不会理性的对待自己的身体状况,经常使用一些不健康的方式减肥,到最后适得其反,给自己的身体造成很大的伤害. 本文特别的从数学模型的角度来考虑和认识问题,通过该模型的建立,科学的解释了肥胖的机理,引导群众合理科学的减肥. 本文建立了减肥的数学模型,从数学的角度对有关身体肥胖的规律做进一步的探讨和分析. 在研究此问题时,体重的实时变化数据是我们研究的核心数据,这就会使我们联系到变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型. 微分方程模型反映的是变量之间的间接关系,因此,在研究体重,能量与运动之间的关系时,得到直接关系就得求解微分方程. 本文利用了微分方程模型求解减肥的实际问题,根据基本规律写出了平衡关系式 [()()][()()]t t t D A B R t t ωωω+?-=-+? 再利用一定的转换条件进行转化为简单明了的式子,求解出模型关系式 然后根据建立的模型表达式来解决一些实际的减肥问题,给出数学模型所能解答的一些实际建议. 关键字: 微分方程模型 能量守恒 能量转换系数 1 问题重述 课题的背景 随着社会的进步和发展,人们的生活水平在不断提高,饮食营养摄入量的改善和变化、生活方式的改变,使得肥胖成了社会关注的一个问题. 为此,联合国世界卫生组织曾颁布人体体重指数(简记BMI ):体重(单位:kg )除以身高(单位:m )的平方,规定BMI 在至25为正常,大于25为超重,超过30则为肥胖.据悉我国有关机构针对东方人的特点,拟将上述规定中的25改为24,30改为29.无论从健康的角度,是从审美的角度,人们越来越重视减肥,大量的减肥机构和商品出现,不少自感肥胖的

数学建模答题模板

例:某公司有6个仓库,库存货物总数分别为60,55,51,43,41,52,现有8个客户各要一批货,数量分别为35,37,22,32,41,32,43,38.各仓库到8个客户处得单位货物运价见下表。 问题分析:本问题中,各仓库的供应总量为302个单位,需求量为280个单位,为一个供需不平衡问题。目标函数为运输费用,约束条件有两个:分别是供应方和需求方的约束。 解: 引入决策变量ij x ,代表着从第i 个仓库到第j 个客户的货物运量,用符号ij c 表示从第i 个仓库到第j 个客户的单位货物运价,i a 表示第i 个仓库的最大供货量,j d 表示第j 个客户的订货量。 则本问题的数学模型为: 68 11 min ij ij i j z c x ===∑∑ s.t 8 1 61,1,2,6,1,2,,80,1,2,6,1,2,,8ij i j ij j i ij x a i x d j x i j ==? ≤=???? ? ? ≤=????? ?≥=???=?????∑∑ 模型求解:用LINGO 语言编写程序(程序见题后附录),运行得到以下求解结果:

以下省略了其他变量的具体数值。 计算结果表明:目标函数值为664.00,最优运输方案见下表 【参考文献】 [1]李大潜,中国大学生数学建模竞赛(第三版)[M],北京:高等教育出版社,2009 [2]叶其孝,大学生数学建模竞赛辅导教材(五)[M],长沙:湖南教育出版社,2008 [3]袁新生,邵大宏,郁时炼.LINGO和EXCEL在数学建模中的应用[M],北京:科学出版社,2007 附录:LINGO程序 model: sets: wh/w1..w6/:ai;vd/v1..v8/:dj; links(wh,vd):c,x; endsets data: ai=60,55,51,43,41,52; dj=35,37,22,32,41,32,43,38; c=6,2,6,7,4,2,5,9 4,9,5,3,8,5,8,2 5,2,1,9,7,4,3,3 7,6,7,3,9,2,7,1 2,3,9,5,7,2,6,5 5,5,2,2,8,1,4,3; enddata min=@sum(links(i,j):c(i,j)*x(i,j));

数学建模竞赛简介

数学建模竞赛简介 数学建模就是建立、求解数学模型的过程和方法,首先要通过分析主要矛盾,对各种实际问题进行抽象简化,并按照有关规律建立起变量,参数间的明确关系,即明确的数学模型,然后求出该数学问题的解,并通过一定的手段来验证解的正确性。 数学建模竞赛于1985年起源于美国,起初竞赛题目通常由工业部门、军事部门提出,然后由数学工作者简化或修正。1989年我国大学生开始参加美国大学生数学建模竞赛,1990年我国开始创办我国自己的大学生数学建模竞赛。1993年国家教委(现教育部)高教司正式发文,要求在全国普通高等学校中开展数学建模竞赛。从1994年开始,大学生数学建模竞赛成为教育部高教司和中国工业的应用数学学会共同主办,每年一届的,面向全国高等院校全体大学生的一项课外科技竞赛活动。2010年全国共有30省(市、自治区)九百多所院校一万多个队三万多名大学生参赛,成为目前全国高等学校中规模最大的课外科技活动。数学建模竞赛是教育主管部门主办的大学生三大竞赛之一。 现在的竞赛题目来源于更广泛的领域,都是各行各业的实际问题经过适当简化,提炼出来的极富挑战性的问题,每次两道题,学生任选一题,可以使用计算机、软件包,可以参阅任何资料(含上网参阅任何资料)。竞赛以三人组成的队为单位,三人之间通力合作,在三天三夜内完成一篇论文。不给论文评分,而是按论文的水平为四档:全国一等奖、全国二等奖、赛区一等奖,赛区二等奖,成功参赛奖。我校于2001年开始参加这项竞赛活动。多次获全国一等奖、二等奖、湖北赛区一等奖、二等奖。 数学建模竞赛活动培养了学生的创造力、应变能力、团队精神和拼搏精神,适应了21世纪经济发展和人才培养的挑战。不少参加过全国大学生数学建模竞赛的同学都深有感触,他们说:“参加这次活动是我们大学四年中最值得庆幸的一件事,我们真正体会这几年内学到了什么,自己能干什么。”“那不寻常的三天在我们记忆中留下了永恒的一瞬,真是一次参赛,终身受益。”团队精神贯穿在数学建模竞赛的全过程,它往往是成败的关键。有些参赛队员说:“竞赛使我们三个人认识到协作的重要性,也学会了如何协作,在建模的三天中,我们真正做到了心往一处想,劲往一处使,每个人心中想的就是如何充分发挥自己的才华,在短暂的时间内做出一份尽量完善的答卷。三天中计算机没停过,我们轮流睡觉、轮流工作、轮流吃饭,可以说是抓住了每一滴可以抓住的时间。”“在这不眠的三天中,我们真正明白了团结就是力量这个人生真谛,而这些收获,将会伴随我们一生,对我们今后的学习,工作产生巨大的影响。”

数学建模 教学大纲

《数学建模》教学大纲 一、课程的基本信息 课程编码:课程性质:专业必修课 总学时:64学时学分:4 开课单位:信息管理学院适用专业:信息与计算科学 先修课程:高等数学、线性代数、概率论与数理统计 二、课程目的与任务 数学建模(实验)课程是信息与计算科学专业的必修课,是利用数学和计算机基础平台进行实践应用课程之一。是基础数学科学联系实际的主要途径之一。通过该课程的学习,要使学生系统地获得数学建模的基本知识、基本理论和方法,培养和训练学生的数学建模素质。要求学生具有熟练的计算推导能力;通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生双向翻译能力,数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。熟练掌握一至两种数学软件(matlab,lingo等),为学生适应日后在社会中实际应用奠定必要的基础。 三、课程教学基本要求 数学建模是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,数学建模是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。要求掌握的初等模型、简单优化模型、微分方程模型、差分方程模型、概率统计模型等模型及求解方法。由于课时的关系,可以适当删减某些比较难的内容,但是务必要使学生在学习过程有所得,要求至少掌握基本建模方法思想,会使用操作数学软件工具解决基本数值分析问题。 五、课程教学基本内容 导引建立数学模型 教学内容:

1、什么是数学建模 2、为什么学习数学建模 3、怎样学习数学建模 MATLAB软件初步(1) MATLAB软件初步(2) 重点: 1、数学建模基本方法; 2、数学建模能力的培养; 难点:MATLAB软件应用; 第1章数据分析模型 教学内容: 薪金到底是多少 评选举重总冠军 估计出租车的总数 解读CPI MATLAB 矩阵 NBA赛程的分析与评价——全国大学生数学建模竞赛2008年D题MATLAB 多项式 重点: 1、薪金到底是多少; 2、评选举重总冠军; 3、NBA赛程的分析与评价; 难点: MATLAB 矩阵; 第2章简单优化模型 教学内容: 倾倒的啤酒杯 铅球掷远 不买贵的只买对的 MATLAB符号计算 影院里的视角和仰角 MATLAB 绘图 易拉罐形状和尺寸的最优设计——全国大学生数学建模竞赛2006年C题重点: 1、倾倒的啤酒杯; 2、不买贵的只买对的; 3、易拉罐形状和尺寸的最优设计; 难点:MATLAB 绘图; 第3章差分方程模型 教学内容: 贷款购房 管住嘴迈开腿 MATLAB m文件与m函数 物价的波动

减肥问题的数学模型

减肥问题的数学模型 一、 问题的提出 现今社会,随着物质生活水平的提高,肥胖已成为困扰人们身体健康的一大疾病,减肥已日趋大众化。如何有效地,健康地减肥成为一个亟待解决的问题。下面本文从减肥机理的角度出发建立合理的数学模型来解决这个问题。 二、 问题的分析 肥胖困扰着很大一部分人群。如何耗去多余的脂肪,提高身体健康质量,成为人们的共识。本题要求我们从减肥的机理角度出发说明怎样有效地减肥。 根据生物知识,减肥就是要消耗体内多余的脂肪,也即把多余的脂肪转化为能量释放出来。实际上,我们吃的食物都是以能量的形式被人体吸收,当摄入能量为λE 时,减肥效果取决于能量的消耗E 。若E λE ?,他的能量消耗大于摄入,将达到减肥的目的;若E λE =,他的体重将维持原状;若E λE ?,则他不但不能减肥,反而会增胖。 每日摄入能量的来源有:碳水化合物、蛋白质和脂肪,设它们被消化后产生的热量为Q i =i i m λ(i=1,2,3)(其中i i m ,λ分别为上述三种物质的燃烧值和摄入质量)。则摄入的总能量为E λ=∑=3 1i i i m λ 每日消耗的能量E=1.1×(Q 0+Q P ),而Q 0=W Q ω,Q P =Q 0k ,k =∑=4 1 j j j k ω 故E=1.1×WQ ω(1+∑=4 1 j j j k ω) 从而,我们比较λE 与E 的大小,可以得出体重的变化。 三、 问题的假设: (1) 燃烧相同质量的人体各部位脂肪产生的热量相同。 (2) 同一人在一段时间内每天各种强度活动所占比例一定。

(3) 人体健康状况良好,体内的生理活动稳定。 四、 符号说明: E ——— 每天消耗的能量 E λ———正常人体每天摄入的能量 m i ————每天摄入的碳水化合物、蛋白质、脂肪的质量 i λ(I=1,2,3)——单位质量的碳水化合物、蛋白质、脂肪燃烧放出的热量。 W ——减肥前的体重(单位:斤) Q 0——人体基础代谢需要的基本热量 Q p ——体力活动所需要的热量 Q ω——人体单位体重基础代谢需要的基本热量 k j (j=1,2,3,4)——各类型活动的活动强度系数(极轻、轻、中、重) j ω(j=1,2,3,4)——每天各强度活动所占比例(∑=4 1 j j w =1) m ? ——自身脂肪变化的质量 五、 模型的建立与求解 在问题的分析中我们已得出: E λ= ∑=3 1i i i m λ (i=1,2,3) E=1.1×Q ωW (1+∑=4 1j j j k ω) (j=1,2,3,4) 因而我们有 m ? = 3 λλE E -= 3 4 1 3 1 ) 1(1.1λλ∑∑==+-j j j w i i i w k Q m 下面我们分三种情形: (1) 0??m 即E E ?λ时,结果是人体增胖 (2) 0=?m 即E=E λ时,维持原状不变。

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。 关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法 蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。 一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。本文给出算例, 并用MA TA LA B 实现。 1蒙特卡罗计算重积分的最简算法-------均匀随机数法 二重积分的蒙特卡罗方法(均匀随机数) 实际计算中常常要遇到如()dxdy y x f D ??,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。 定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()??D dxdy y x f ,的方法: (l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ; ()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j i y x ,, j=1,…k 为落在D 中的k 个随机数, 则n 充分大时, 有

大学生数学建模竞赛的由来与发展

大学生数学建模竞赛的由来和发展 自古以来,各种竞赛方式历来是各行各业培养、锻炼和选拔人才的重要手段。凡竞赛实际上都有准备阶段、临场发挥和赛后总结、提高三个阶段。参赛者通过这三个阶段来接受挑战并锻炼提高自己。当然,也不是参加竞赛的人都能成为人才,获得优胜的选手参赛者如果不善于总结自己的长处和缺点,不断提高的话,也未必能发展成为优秀人才。诚然,如果太强调竞赛的功利性,也可能产生各种各样的弊病,副作用会大过正作用,使竞赛变了味,也就可能失去了培养、锻炼和选拔人才的功能。 就培养选拔科技人才而言,各种学科的竞赛也起到了很大的作用。就数学科学来说,很多国家都有面向中学生或大学生的数学竞赛,甚至还有国际或地区性的数学竞赛。例如,就后者而言,有从1959年开始举办的中学生国际奥林匹克数学竞赛(The International Mathematical Olympiad (IMO), 有兴趣的读者可以访问网址http://www.imo.math.ca/), 有从1994年开始举办的国际大学生数学竞赛(International Mathematics Competition for Universtiy Students, IMC, 有兴趣的读者可以访问网址https://www.360docs.net/doc/d0937201.html,/ ), 北美(美国和加拿大)普特南大学生数学竞赛(The William Lowell Putnam Mathematical Competition, 有兴趣的读者可以访问网址https://www.360docs.net/doc/d0937201.html,/或https://www.360docs.net/doc/d0937201.html,/ )。 因为大学生数学建模竞赛诞生于美国,而且其源起与普特南数学竞赛有关,加之这个竞赛是培养出许多优秀数学家和科学家的竞赛,所以在本章,我们从普特南数学竞赛谈起。 本章包括普特南(Putnam)数学竞赛、大学生数学建模竞赛、为什么要参加大学生数学建模竞赛和怎样参加大学生数学建模竞赛四节。 1 普特南(Putnam)数学竞赛 普特南和他的想法 W. L. 普特南(William Lowell Putnam, 1861 ~ 1924, 美国律师和银行家), 1882年毕业于哈佛大学。他深信在正规大学的学习中组队竞赛的价值. 他在哈佛毕业生杂志1921年12月那期上写了一篇文章中阐述了大学间智力竞赛的价值和优点。在他去世后,他的遗霜Elizabeth Lowell Putnam (1862-1935)于1927年建立了“普特南大学间对抗纪念基金(William Lowell Putnam Intercollegiate Memorial Fund)”。第一个由该基金资助的是校际英语竞赛。由该基金资助的第二次试验性竞赛是于1933年举行的10名哈佛大学的学生和10名西点军校的学生间一次数学竞赛。由于那次竞赛十分成功,于是就产生了举行所有感兴趣的大学和学院都可以参加的类似的年度竞赛的想法。但是直到1935年Elizabeth去世都没有举行过这样的竞赛。到了1938年才决定由美国数学协会来管理这个基金和组织了第一次正式的竞赛。 普特南数学竞赛 现在普特南数学竞赛的时间是每年12 月第一周的星期六,共进行两试,每试3 小时、6道题,每题10分。该竞赛是彻底闭卷的考试, 在限定的时间内主要测试参赛者思维敏捷、推理和计算的能力。竞赛分个人和团体(组队),一个学校可以组织一个由三名学生组成队,名列前茅者有奖金奖励。竞赛前几年,团体前三名的奖金分别为$500、$300 和$200,个人前五名每人可获奖金$50,并成为Putnam 会员(Putnam fellow)。近年来,奖励团体前五名的大学的数学系的奖金分别为$25000(每个队员可得到$1000奖金)、$20000(每个队员可得到$800奖金)、$15000(每个队员可得到$600奖金)、$10000(每个队员可得到$400奖金) 和$5000(每个队员可得到$200奖金)。个人前五名每人可获奖金$2500,并成为Putnam 会员。5-15名每人可获奖金$1000,16-26名每人可获奖金$250。当然更重要的不是金钱奖励,而是

《数学建模》课程教学大纲

《数学建模》课程教学大纲 课程编号: 总学时数:32 总学分数:2 课程性质:专业必修课 适用专业:数学与应用数学、信息与计算科学 一、课程的任务和基本要求: 课程的性质和任务: 数学建模是数学与应用数学专业、信息与计算数学专业的一门必修课程,是大学数学课程的重要组成部分,它是在数学分析、高等代数、概率论与数理统计等课程基础上开设的重要教学环节,它将数学知识、实际问题与计算机应用有机地结合起来,旨在培养学生运用所学知识解决实际问题的意识和创新思维,激发学生学习数学的兴趣,了解数学广泛的应用领域,提高学生的综合素质和分析问题、解决问题的能力。 课程的基本要求: 1、在大学数学基础课的教学内容基础上进一步突出培养学生解决实际问题的能力; 2、学会运用数学知识建立实际问题的数学模型并求解,对较复杂的问题能够使用数学软件或编程求解; 二、基本内容和要求: (一)建立数学模型 内容: (1)初等建模示例:椅子能在不平地面上放稳吗,预报人口增长等; (2)有关数学建模的基本知识。 目的和要求: 理解数学模型的意义、内容和方法,掌握建立数学模型的一般步骤。 (二)初等模型 内容: (1)建模示例:公平席位分配,双层玻璃窗的功效等; (2)讨论与交流:录音机计数器,商品的包装。 目的和要求: 由建模实例进一步了解和熟悉建模的方法和步骤,了解对实际问题的分析、抽象过程,基本掌握用初等方法建立数学模型。 (三)简单的优化模型 内容: (1)建模示例:存储模型,森林救火,最优价格等; (2)讨论与交流:冰山运输 目的和要求: 基本掌握建立静态优化模型的一般方法,会利用微分法解决优化问题。 (四)数学规划模型 内容: (1)建模示例:奶制品的生产与销售,汽车生产与原油采购,钢管和易拉罐下料等; (2)讨论与交流:自来水的输送,接力队员的选拔 目的和要求: 理解规划优化模型的思想与意义,掌握建立规划模型的一般方法,能够利用优化软件求解规划模型的解。

数学建模(教案)第一章--线性规划

数学建模 第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足 (目标函数) 2134m ax x x z += (1) s.t. ( 约 束 条 件 ) ?????? ?≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。

上述即为一规划问题数学模型的三个要素。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选取适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min 其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ?矩阵。 例如线性规划 b Ax x c x T ≥ that such max 的Matlab 标准型为 b Ax x c x T -≤-- that such min 1.3 线性规划问题的解的概念 一般线性规划问题的标准型为 ∑==n j j j x c z 1min (3) ∑==≤n j i j ij m i b x a 1,,2,1 s.t.Λ (4) 可行解 满足约束条件(4)的解),,,(21n x x x x Λ=,称为线性规划问题的可行解,而使目标函数(3)达到最小值的可行解叫最优解。

数学建模比赛的选拔问题

数学建模比赛的选拔问题 卢艳阳 王伟 朱亮亮 (黄河科技学院通信系,) 摘要 本文是关于全国大学生数学建模竞赛选拔的问题,依据数学建模组队的要求,每队应具备较好的数学基础和必要的数学建模知识、良好的编程能力和熟练使用数学软件等的综合实力,在此前提下合理的分配队员,利用层次分析法,建立合理分配队员的数学模型,利用MATLAB ,LONGO 工具求出最优解。、 问题一:依据建模组队的要求,合理分配每个队员是关键,主要由团队精神、建模能力、编程能力、论文写作能力、思维敏捷以及数学知识等等,经过讨论分析,确定良好的数学基础、建模能力,编程能力为主要参考因素。 问题二:根据表中所给15人的可参考信息,我们对每个队员的每一项素质进行加权,利用层次分析法选出综合素质好的前9名同学,然后利用0-1规划的相关知识对这9人进行合理分组,利用MATLAB 、LINGO 得到其中一个如下的分 组:'1s 、10s 、4s ;2s 、11s 、14s ;6s 、13s 、8s 问题三:我们将所选出的这9名同学和这个计算机编程高手的素质进行量化加权,然后根据层次分析法,利用MATLAB 工具进行求解,得出了最佳解。由于我们选取队员参考的是这个人的综合素质,而不是这个人的某项素质,并由解出的数据可以看出这个计算机编程高手不能被直接录用。所以说只考虑某项素质,而不考虑其他的素质的同学是不能被直接录用的。 问题四:根据前面三问中的分组的思路,我们通过层次分析法先从所有人中依据一种量化标准选出符合要求的高质量的同学,然后利用0-1变量进行规划,在根据实际问题的约束,对问题进行分析,然后可以得出高效率的分组。

数学建模优秀论文范文

数学建模优秀论文范文 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须

依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的 发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题审题题设条件代入数学模型求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对 应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需 进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干 个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模 型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过 程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解 题质量,同时也体现一个学生的综合能力。 3(1提高分析、理解、阅读能力。

关于减肥计划的数学模型

2011第一学期数学建模选修课期末作业 名称:减肥计划 学号:1008054311 系别:计算机系 姓名:宛笛 上课时间:周四晚上 是否下学期上课:是

减肥计划 摘要:近年来,随着人们生活水平的提高,肥胖现象也日趋普遍,越来越多的人开始关注和解决肥胖问题,与此同时,各类减肥食品充斥市场,却达不到好的效果,或者不能维持,有的还会对消费者的身体带来一定损害. 本文中,我们建立了节食与运动的模型,通过控制饮食和适当的运动,在不伤害身体的前提下,达到减轻体重并维持下去的目标. 关键字:肥胖节食运动不伤害减轻体重 1问题重述 当今社会,人们对于健康越来越重视,而肥胖也成为困扰很多人的健康问题,肥胖者通过各种方式减肥,但很多人收效甚微,本文通过制定合理的节食和运动计划科学的直到肥胖者减肥. 2 问题分析 (1) 体重变化由体内能量守恒破坏引起; (2)人体通过饮食(吸收热量)引起体重增加; (3)代谢和运动(消耗热量)引起体重减少 3符号说明 1)K: 表示第几周; 2)ω(k):表示第k周的体重; 3)C(k):表示第k周吸收的热量; 4)α:表示热量转换系数[α =1/8000(kg/kcal)]; 5)β:表示代谢消耗系数(因人而异); 6) β’:表示通过运动代谢消耗系数在原有的基础上增加,即可表为β’=β+β1, β1有运动形式和时间决定. 4模型假设 1)体重增加正比于吸收的热量——每8000千卡增加体重1千克; 2)代谢引起的体重减少正比于体重——每周每公斤体重消耗200千卡 ~ 320千卡(因人而异),相当于70千克的人每天消耗2000千卡 ~ 3200千卡; 3)运动引起的体重减少正比于体重,且与运动形式有关; 4)为了安全与健康,每周体重减少不宜超过1.5千克,每周吸收热量不要小于10000千卡。 5 减肥计划 事例:某甲体重100千克,目前每周吸收20000千卡热量,体重维持不变。现欲减肥至75千克。 1)在不运动的情况下安排一个两阶段计划。 第一阶段:每周减肥1千克,每周吸收热量逐渐减少,直至达到下限(10000千卡); 第二阶段:每周吸收热量保持下限,减肥达到目标 2)若要加快进程,第二阶段增加运动,试安排计划。 3)给出达到目标后维持体重的方案。

全国大学生数学建模竞赛模版(完整版)

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

2010高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

论文标题 摘要 内容要点: 关键词:结合问题、方法、理论、概念等

一、问题重述 内容要点: 1、问题背景:结合时代、社会、民生等 2、需要解决的问题 问题一: 问题二: 问题三: 二、问题分析 内容要点:什么问题、需要建立什么样的模型、用什么方法来求解 三、模型假设与约定 内容要点: 1、根据题目中条件作出假设 2、根据题目中要求作出假设 写作要求: 细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。将一些问题理想化、简单化。 1、论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解 2、所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考 3、假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发作出合乎常识的假设,或者由观察所给数据的图象,得到变量的函数形式,也可以参考其他资料由类推得到。对于后者应指出参考文献的相关内容 四、符号说明及名词定义 内容要点:包括建立方程符号、及编程中用到的符号等

数学建模线性规划

线性规划 1.简介: 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源. 线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.规划问题。一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。 (x)都是线性函数,则该模型称为在优化模型中,如果目标函数f(x)和约束条件中的g i 线性规划。 2.线性规划的3个基本要素 (1)决策变量 (2)目标函数f(x) (x)≤0称为约束条件) (3)约束条件(g i 3.建立线性规划的模型 (1)找出待定的未知变量(决策变量),并用袋鼠符号表示他们。 (2)找出问题中所有的限制或者约束,写出未知变量的线性方程或线性不等式。

(3)找到模型的目标或判据,写成决策变量的线性函数,以便求出其最大值或最小值。以下题为例,来了解一下如何将线性规划用与实际的解题与生活中。 生产计划问题 某工厂生产甲乙两种产品,每单位产品消耗和获得的利润如表 试拟订生产计划,使该厂获得利润最大 解答:根据解题的三个基本步骤 (1)找出未知变量,用符号表示: 设甲乙两种产品的生产量分别为x 1与x 2 吨,利润为z万元。 (2)确定约束条件: 在这道题目当中约束条件都分别为:钢材,电力,工作日以及生产量不能为负的限制 钢材:9x 1+5 x 2 ≤360, 电力:4x 1+5 x 2 ≤200, 工作日:3x 1+10 x 2 ≤300, x 1≥0 ,x 2 ≥0, (3)确定目标函数: Z=7x 1+12 x 2

数学建模教学大纲

数学建模教学大纲 适合非数学专业理工科课程(60学时) 一、课程内容简介 数学建模是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,数学建模是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。主要介绍数学建模的概述、初等模型、简单优化模型、微分方程模型、差分方程模型、概率统计模型、图论模型、线性规划模型等模型的基本建模方法及求解方法。 二、教学目的及任务 数学建模是继本科生高等数学、工程数学之后进一步提高运用数学知识解决实际问题、基本技能,培育和训练综合能力所开设的一门新学科。通过具体实例引入使学生掌握数学建模基本思想、基本方法、基本类型。学会进行科学研究的一般过程,并能进入一个实际操作的状态。通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生双向翻译能力,数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。 三、本课程与其它课程的关系 在学习本课程前需要基本掌握下列课程内容:高等数学、线性代数、概率论与数理统计。由于本课程的学习,只要是使学生掌握数学知识,解决实际问题能力,这种能力提高有助其它专业课的学习。 四、本课程基本内容要求 1、绪论 1)、基本要求使学生正确地了解数学描写和数学建模的不同于数学理论的思维特征,了解数学模型的意义及分类,理解建立数学模型的方法及步骤。 2)、课程内容建模概论、数学模型概念、建立数学模方法、步骤和模型分类、数学模型实例: (1)稳定的椅子问题(2)商人过河问题(3)人口增长问题(4)公平的席位问题 2、初等模型 1)、基本要求掌握比例方法、类比方法、图解法、定性分析方法及量纲分析方法建模的基本特点。能运用所学知识建立数学模型,并对模型进行综合分析。 2)、课程内容(1)双层玻璃窗的功效问题(2)划艇比赛的成绩(3)动物身长和体重(4)核军备竞赛(5)量纲分析与无量纲化 3、简单优化模型 1)、基本要求了解优化模型的建模建立思想,理解优化模型的一般意义,掌握优化模型求解方法。 2)、课程内容(1)存贮模型(2)森林救火(3)血管分支(4)冰山运输 4、线性规划模型 1)、基本要求熟练掌握单纯形方法,深刻理解线性规划模型的基本特点,理解优化模型的一般意义,能结合计算机软件解决线性规划模型。 2)、课程内容(1)线性规划预备知识(2)奶制品的生产与销售(3)自来水输送与货机装运 (4)汽车生产与原油采购(5)接力队的选拔与选课策略 5、离散模型 1)、基本要求了解层次分析法,深刻理解层次分析法建模的基本特点,熟练掌握层次分析法建模 方法。 2)、课程内容(1)层次分析法模(2)循环比赛的名次(3)效益的合理分配 6、微分方程模型

数学建模减肥计划

减肥计划——节食与运动 摘要:肥胖已成为公众日益关注的卫生健康问题。肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一。但是实际情况确是违禁广告屡禁不止。之所以造成这种情况的原因很多,但是有一个重要原因就是科学素质低,不知道应该从生理机理,特别是从数学模型的角度来考虑和认识问题。数学模型的优点是科学的解释了肥胖的机理,引导群众合理科学的减肥。 关键词:减肥饮食合理运动 一、问题重述 联合国世界卫生组织颁布的体重指数(简记BMI)定义为体重(单位:kg)除以身高(单位:m)的平方,规定BMI在18.5至25为正常,大于25为超重,超过30则为肥胖。据悉,我国有关机构对东方人的特点,拟将上述规定中的25改为24,30改为29。 在国人初步过上小康生活以后,不少自感肥胖的人纷纷奔向减肥食品的柜台。可是大量事实说明,多数减肥食品达不到减肥的目标,或者即使能减肥一时,也难以维持下去。许多医生和专家的意见是,只有通过控制饮食和适当的运动,才能在不伤害身体的条件下,达到减轻体重并维持下去的目的。 肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一。肥胖也是身体健康的晴雨表,反映着体内多方面的变化。很多人在心理上害怕自己变得肥胖,追求苗条,因而减肥不仅是人们经常听到的话题,更有人花很多的时间和金钱去付诸实践的活动,从而也就造成了各种减肥药、器械和治疗方法的巨大的市场。各种假药或对身体有害的药品和治疗方法、夸大疗效的虚假广告等等就应运而生了,对老百姓造成了不应有的伤害。 情况的严重使得国家广电总局、新闻出版总署等不得不发出通知,命令所有电视台自2006年8月1日起停止播出丰胸、减肥等产品的电视购物节目。但是实际情况确是违禁广告屡禁不止。之所以造成这种情况的原因很多,但是有一个重要原因就是科学素质低,不知道应该从生理机理,特别是从数学模型的角度来考虑和认识问题。 二、模型分析

对中国大学生数学建模竞赛历年成绩的分析与预测

2012年北京师范大学珠海分校数学建模竞赛 题目:对中国大学生数学建模竞赛历年成绩的分析与预测 摘要 本文研究的是对自数学建模竞赛开展以来各高校建模水平的评价比较和预测问题。我们将针对题目要求,建立适当的评价模型和预测模型,主要解决对中国大学生数学建模竞赛历年成绩的评价、排序和预测问题。 首先我们用层次分析法来评价广东赛区各校2008年至2011年及全国各大高校1994至2011年数学建模成绩,从而给出广东赛区各校及全国各大高校建模成绩的科学、合理的评价及排序;其次运用灰色预测模型解决广东赛区各院校2012年建模成绩的预测。 针对问题一,首先我们对比了2008到2011年参加建模比赛的学校,通过分析我们选择了四年都参加了比赛的学校进行合理的排序(具体分析过程见表13),同时对本科甲组和专科乙组我们分别进行排序比较。在具体解决问题的过程中,我们先分析得出影响评价结果的主要因素:获奖情况和获奖比例,其中获奖情况主要考虑国家一等奖、国家二等奖、省一等奖、省二等奖、省三等奖,我们采用层次分析法,并依据判断尺度构造出各个层次的判断矩阵,对它们逐个做出一致性检验,在一致性符合要求的情况下,通过公式与matlab求得各大学的权重,总结得分并进行排序(结果见表11);在对广东赛区各高校2012建模成绩预测问题中,我们采用灰色预测模型,我们以华南农业大学为例,得到该校2012年建模比赛获奖情况为:省一等奖、省二等奖、省三等奖及成功参赛奖分别为5、9、8、8(其它各高校预测结果见表10)。 针对问题二,我们对全国各院校的自建模竞赛活动开展以来建模成绩排序采用与问题一相同的数学模型,在获奖情况考虑的是全国一等奖、全国二等奖。运用matlab求解,结果见表12。 针对问题三,我们通过对一、二问排序的解答及数据的分析,得出在对院校进评价和预测时还应考虑到各院的师资力量、学校受重视程度、学生情况、参赛经验等因素,考虑到这些因素,为以后评价高校建模水平提供更可靠的依据。 关键词:层次分析法权向量灰色预测模型模型检验 matlab

相关文档
最新文档