实验 烟煤粘结指数的测定

实验  烟煤粘结指数的测定
实验  烟煤粘结指数的测定

实验三烟煤粘结指数的测定

粘结指数是评价烟煤粘结力的主要指标。粘结力的强弱,直接影响炼焦的工艺过程及焦炭的机械强度。通过测定烟煤的粘结指数,可以大致判断煤的加工利用途径,指导配煤炼焦,确定煤的工业牌号。

一、实验目的

掌握烟煤粘结指数测定的基本原理,学会操作方法步骤。

二、方法要点

将一定量煤样与无烟煤混合均匀并压实,在850±10℃的温度下焦化。所得焦块在特定转鼓内转磨,根据焦块的耐磨强度来表示烟煤的粘结性。

三、实验设备仪器

1 瓷制专用坩埚和坩埚盖;

2 搅拌丝:由直径1~1.5mm的金属丝支撑。

3 压块:质量为110~115g。

4 压平器:用铁制成,重锤质量6kg。如图1所示。

图1 压平器

5 马弗炉:具有均匀加热带,其850±10℃恒温带须在120mm以上,并附有恒温控制器。

的粒级占全部煤样20~35%。煤样制好后应妥善保存,严防氧化。制样后至实验的时间不得超过7d 。否则,在报告中应注明制样和实验的时间。

2 粘结指数专用无烟煤应符合下列要求: A .宁夏汝箕沟矿的专用无烟煤;

B .粒度为0.1~0.2mm ,0.1mm 筛下率不大于7%;

C .A d < 4%, V daf < 7.5% 五、实验步骤

1 试验煤样与标准无烟煤的混合

(1) 称5.000g 标准无烟煤。再称1.000g 试验煤样放入坩埚。

(2) 用搅拌丝的圆环一端将坩埚内的混合物搅拌2min 。其方法是:一手持坩埚作45°

左右倾斜,逆时针方向转动,转速为15r/min ;另一手持搅拌丝按同样倾角作顺时针方向转动,转速约为150r/min 。搅拌时,搅拌丝的圆环应与坩埚壁和底相连的圆弧部分接触。经1min45s 后,一边继续搅拌,一边将坩埚和搅拌丝逐渐转到垂直位置,2min 时停止搅拌。

(3) 搅拌结束后将坩埚壁上的煤粉轻轻扫下,用搅拌丝的矩形端将煤样拨平,并使沿 坩埚壁的层面较中央低1~2mm 。

(4) 用镊子将压块放置在煤样表面中央,然后用压平器压平30s 。加压时要轻放重锤,以防冲击煤样。

(5) 加压完毕,压块仍保留在坩埚中,加上坩埚盖。

6 转鼓试验装置;包括两个转鼓,一个变速器和一台电动机。转鼓转速为50±2r/min 。转鼓内径为200mm ,深70mm ,如图2所示。

7 圆孔筛:筛孔直径1mm 。 8 坩埚架:由直径为3~4mm 的镍铬丝制成。

9 带手柄平铲:手柄长600~700mm ,铲宽约20mm ,铲长180~220mm ,厚1.5mm 。作送取盛样坩埚架出入箱形电炉之用。

10 玻璃表面皿或铝箔制称样皿。

11 搪瓷盘:两只,长300mm ,宽220mm ,高约25mm 。

12 秒表。 13 干燥器。 14 小镊子。 15 小刷子。 16 小铲刀。

四、煤样要求

1 实验煤样为粒度<0.2mm 的空气干燥煤样,其中0.1~0.2mm

图2 转鼓

2 混合物的焦化

将带盖的坩埚轻轻放在坩埚架上,坩埚架与坩埚一起移入已升温至850℃ 的马弗炉的恒温带上。开启秒表计时并立即关闭炉门。要求在6min 内炉温温度应恢复到850 ℃(若恢复不到此温度,可适当提高入炉预热温度),并保持在850±10。15min 后取出坩埚冷却到室温。若不立即进行转鼓试验,将坩埚存入干燥器,

3 转鼓试验

(1) 从坩埚中取出压块,用牙刷或小刀将附着在压块上的焦屑刷入(或刮入)表面皿,称量焦渣总质量。

(2) 将焦渣放入转鼓进行第一次转鼓试验。转磨后的焦渣用1mm 圆孔筛进行筛分,称量筛上焦渣质量。经称量后的焦渣移入转鼓进行第二次转鼓试验,重复上述筛分和称量操作。 每次转鼓试验需进行5min ,各次称的焦渣质量都应准至0.01g 。

六、实验纪录和结果计算

1 记录表格(供参考)

m 1 m 2(g)

粘结指数的测定 年 月 日

测定人__________审定人__________

2)结果计算

12

307010m m G m

+=+

式中 m —焦化处理后焦渣总质量,g ;

m 1—第一次转鼓试验后,筛上焦渣质量,g ; m 2—第二次转鼓试验后,筛上焦渣质量,g ; G —粘结指数。

七、补充实验

按上述步骤测定,若G<18,需改变配比作补充试验。改变后的配比应为3.000g 试样与3.000g 标准无烟煤混合,其实验操作同前。

补充试验粘结指数按下式计算:

12

30705m m G m

+=

式中符号意义同前。

八、注意事项

1 试样混合后严禁撞击或振动,焦化后所得焦块也不得受到撞击,以免造成人为破碎而影响转鼓试验结果。

2 试样必须严格防止氧化,从制样到测定不得超过7d 。

烟煤粘结指数测定的方法要点

问:烟煤粘结指数测定的方法要点、实质和意义是什么? 答:烟煤粘结指数测定方法是将一定质量的试验煤样和标准专用无烟煤(简称专用无烟煤),在规定的条件下混合,快速加热成焦,所得焦块在一定规格的转鼓内进行强度检验,以焦块的而磨强度,即抗破坏力的大小来表示试验煤样的粘结能力。因此,烟煤粘结指数实质是试验烟煤样在受热后,煤颗粒之间或煤粒与惰性组分颗粒间结合牢固程度的一种度量,它是各种物理和化学变化过程的最终结果。 粘结指数是判别煤的粘结性、结焦性的一个关键性指标。煤的结焦过程是由很多环节构成的一个极其复杂的工艺过程。炼焦工艺的主要目的是制取焦炭。要想得到高强度的焦炭,煤在室式焦炉内受热后,其软化、膨胀(析气)、熔融和固化(收缩),必须进行到“恰到好处”,这样,煤的粘结能力就是结焦过程中的一个很关键性因素,它在以下方面有着重要作用:1、评价烟煤粘结能力:因为任何一个煤,如果没有粘结力,就不可能结焦,因此,测定煤的粘结性的首要意义是用它来评价烟煤在热加工过程中的粘结能力;2、进行煤炭分类:在GB5751-1986《中国煤炭分类》中,粘结指数作为表征烟煤粘结性的主要参数,即烟煤分类的主要工艺指标。测定烟煤的粘结指数后,就能确定它的工艺类别(简称牌号);3、合理利用煤炭资源:根据煤样粘结指数的高低可以大致确定该煤样的主要用途,是适宜于炼焦,还是造气或其他加工工艺;4、根据Vdaf——G图,知道粘结指数和挥发分V,可以知道该煤样在炼焦配煤中的地位,并以此来指导炼焦配煤或确定最经济的配煤比。粘结指数也是GB/T16772-1997《中国煤炭编码系统》中的主要工艺参数。由于它的科学性和实用性,粘结指数测定方法于2006年被国际标准化组织采用为国际标准ISO15585:2006《硬煤——粘结指数测定方法》。 问:试验气氛对灰熔融性有何影响,为什么?煤灰熔融性测定的试验气氛有几种,常用的气氛是什么,为什么? 答:试验气氛是影响煤灰熔融温度的主要因素。这是因为煤灰中含有的铁在不同的气氛中将以不同的价态出现:在氧化性介质中它转变成三价铁(Fe2O3);在弱还原性介质中,它将转变成二价铁(FeO);在强还原性介质中则将转变成金属铁(Fe)。三者的熔点以FeO最低(1420oC),Fe2O3最高(1560oC),Fe居中(1535oC),且FeO能与煤灰中的SiO2生成熔点更低的硅酸盐及其低(共)熔混合物,所以煤灰在弱还原性气氛中熔融温度最低。煤灰中含铁量越高,气氛的影响越大。当灰中Fe2O3含量达到15%以上时,氧化性气氛下的软化温度(ST)和流动温度(FT)可能将比弱还原性气氛下的ST和FT高100-300oC。 煤灰熔融性测定的试验气氛有两种——弱还原性气氛和氧化性气氛。常用的测定气氛是弱还原性气氛。这是因为在工业锅炉的燃烧或气化室中,一般都形成由CO、H2、CH4、CO2和O2为主要成分的弱还原性气氛。所以煤灰熔融性测定一般也在与之相似的弱还原性气氛中进行。 问:对胶质层指数测定用煤样有什么要求? 答:胶质层指数测定应使用粒度小于1.5mm的空气干燥煤样。煤样应用对辊式破碎机逐步破碎到全部通过筛孔为1.5mm的圆孔筛,以免产生过多的细粉。供分类用的煤样,灰分大于10%时,必须进行浮选(减灰)。此外,由于煤样氧化后会影响Y值的大小,所以胶质层测定用煤样,从制样到试验的时间不应超过半个月。如超过半个月,应在报告中注明。 问:影响胶质层测定准确度的主要因素有哪些? 答:胶质层测定方法是一个规范性很强的试验,对仪器设备、测定方法都做了严格的规定,必须严格执行,否则会影响测定结果。 1、升温速度是本方法中第一位重要的影响因素,尤其是在350-600oC期间的升温速度。因为这是煤样热分解的阶段,若升温速度快,Y值偏高,反之则偏低。

实验一 材料的氧指数测定实验

实验一材料的氧指数测定实验 一.实验目的 1.明确氧指数的定义及其用于评价高聚物材料相对燃烧性的原理; 2.了解HC-2型氧指数测定仪的结构和工作原理; 3.掌握运用HC-2型氧指数测定仪测定常见材料氧指数的基本方法; 4.评价常见材料的燃烧性能。 二.实验原理 物质燃烧时,需要消耗大量的氧气,不同的可燃物,燃烧时需要消耗的氧气量不同,通过对物质燃烧过程中消耗最低氧气量的测定,计算出物质的氧指数值,可以评价物质的燃烧性能。所谓氧指数(Oxygen index),是指在规定的试验条件下,试样在氧氮混合气流中,维持平稳燃烧(即进行有焰燃烧)所需的最低氧气浓度,以氧所占的体积百分数的数值表示(即在该物质引燃后,能保持燃烧50mm 长或燃烧时间3min时所需要的氧、氮混合气体中最低氧的体积百分比浓度)。作为判断材料在空气中与火焰接触时燃烧的难易程度非常有效。一般认为,OI<27的属易燃材料,27≤OI<32的属可燃材料,OI≥32的属难燃材料。HC-2型氧指数测定仪,就是用来测定物质燃烧过程中所需氧的体积百分比。该仪器适用于塑料、橡胶、纤维、泡沫塑料及各种固体的燃烧性能的测试,准确性、重复性好,因此普遍被世界各国所采用。 氧指数的测试方法,就是把一定尺寸的试样用试样夹垂直夹持于透明燃烧筒内,其中有按一定比例混合的向上流动的氧氮气流。点着试样的上端,观察随后的燃烧现象,记录持续燃烧时间或燃烧过的距离,试样的燃烧时间超过3min或火焰前沿超过50mm标线时,就降低氧浓度,试样的燃烧时间不足3min或火焰前沿不到标线时,就增加氧浓度,如此反复操作,从上下两侧逐渐接近规定值,至两者的浓度差小于0.5%。氧指数法是在实验室条件下评价材料燃烧性能的一种方法,它可以对窗帘幕布、木材等许多新型装饰材料的燃烧性能作出准确、快捷的检测评价。需要说明的是氧指数法并不是唯一的判定条件和检测方法,但它的应用非常广泛,已成为评价燃烧性能级别的一种有效方法。 三.实验装置 HC-2型氧指数测定仪由燃烧筒、试样夹、流量控制系统及点火器组成(见

磁化率的测定实验报告

磁化率的测定 1.实验目的 1.1测定物质的摩尔磁化率,推算分子磁矩,估计分子内未成对电子数,判断分子配键的类型。 1.2掌握古埃(Gouy)磁天平测定磁化率的原理和方法。 2.实验原理 2.1摩尔磁化率和分子磁矩 物质在外磁场H作用下,由于电子等带电体的运动,会被磁化而感应出一个附加磁场H'。物质0被磁化的程度用磁化率χ表示,它与附加磁场强度和外磁场强度的比值有关: χ为无因次量,称为物质的体积磁化率,简称磁化率,表示单位体积内磁场强度的变化,反映了物质被磁化的难易程度。化学上常用摩尔磁化率χ表示磁化程度,它与χ的关系为m 。·mol -13 M、ρ分别为物质的摩尔质量与密度。χ的单位为m式中m物质在外磁场作用下的磁化现象有三种:。当它受到=0第一种,物质的原子、离子或分子中没有自旋未成对的电子,即它的分子磁矩,μm,相应产生一种与外磁场方向相反的感应磁矩。如同线”外磁场作用时,内部会产生感应的“分子电流圈在磁场中产生感生电流,这一电流的附加磁场方向与外磁场相反。这种物质称为反磁性物质,如表示,且χ<0。χCuHg,,Bi等。它的χ称为反磁磁化率,用m反反第二种,物质的原子、离子或分子中存在自旋未成对的电子,它的电子角动量总和不等于零,分。这些杂乱取向的分子磁矩μ≠0子磁矩m Cr,其方向总是趋向于与外磁场同方向,在受到外磁场作用时,这种物质称为顺磁性物质,如Mn, 表示。Pt等,表现出的顺磁磁化率用χ顺χχ但它在外磁场作用下也会产生反向的感应磁矩,因此它的是顺磁磁化率χ。与反磁磁化率m顺之和。因|χ|?|χ|,所以对于顺磁性物质,可以认为χ=χ,其值大于零,即χ>0。mm顺顺反反第三种,物质被磁化的强度随着外磁场强度的增加而剧烈增强,而且在外磁场消失后其磁性并不消失。这种物质称为铁磁性物质。 对于顺磁性物质而言,摩尔顺磁磁化率与分子磁矩μ关系可由居里-郎之万公式表示:m 为真空,J·Kμ×10)mol10),、k为玻尔兹曼常数(1.3806×式中L为阿伏加德罗常数(6.022 --1231-23 0--27可作为由实验测定磁化率来研究物质内部结构,T为热力学温度。式磁导率(4π× 10((2-136)N·A 的依据。分子磁矩由分子内未配对电子数n决定,其关系如下:

烟煤的粘结指数怎样测定

烟煤的粘结指数怎样测定 一、测定方法 1、先称取5g专用无烟煤,再称取1g试验煤样放入坩埚,质量应称准到0.001g。 2、用搅拌丝将坩埚内的混合物搅拌2min。搅拌方法是:坩埚作45°左右倾斜,逆时针方向转动,每分钟约15转,搅拌丝按同样倾角作顺时针方向转动,每分钟约150转,搅拌时,搅拌丝的圆环接触坩埚壁与底相连接的圆弧部分。约经1min45s后,一边继续搅拌,一边将坩埚与搅拌丝逐渐转到垂直位置,约2min时,搅拌结束,亦可用达到同样搅拌效果的机械装置进行搅拌。在搅拌时,应防止煤样外溅。 3、搅拌后,将坩埚壁上煤粉用刷子轻轻扫下,用搅拌丝将混合物小心地拨平,并使沿坩埚壁的层面略低1mm~2mm,以便压块将混合物压紧后,使煤样表面处于同一平面。 4、用镊子夹压块于坩埚中央,然后将其置于压力器下,将压杆轻轻放下,静压30s。 5、加压结束后,压块仍留在混合物上,加上坩埚盖。注意从搅拌时开始,带有混合物的坩埚,应轻拿轻放,避免受到撞击与振动。 6、将带盖的坩埚放置于坩埚架中,用带手柄的平铲或夹子托起坩埚架,放入预先升温到850℃的马弗炉内的恒温区,要求6min内,炉温应恢复到850℃,以后炉温应保持在(850±10)℃。从放入坩埚开始计时,焦化15min之后,将坩埚从马弗炉中取出,放置冷却到室温。若不立即进行转鼓试验,则将坩埚放入干燥器中。马弗炉温度测量点,应在两行坩埚中央,炉温应定期校正。 7、从冷却后的坩埚中取出压块。当压块上附有焦屑时,应刷入坩埚内。称量焦渣总质量,然后将其放入转鼓内,进行第一次转鼓试验,转鼓试验后的焦块用1mm圆孔筛进行筛分,再称量筛上物质量,然后,将其放入转鼓进行第二次转鼓试验,重复筛分、称量操作。每次转鼓试验5min即250转。质量均称准到0.01g。 二、G值计算 粘结指数(G)按式(1)计算: 式中m——焦化处理后焦渣总重,g; m1——第一次转鼓试验后,筛上部分的重量,g; m2——第二次转鼓试验后,筛上部分的重量,g。 计算结果取到小数第一位。 三、结果判断 当测得的G<18时,需重做试验。此时,试验煤样和无烟煤的比例改为3∶3。即3g试验煤样与3g专用无烟煤。其余试验步骤均和第3章相同,结果按式(2)计算: 式中符号意义均与式(1)相同。 烟煤粘结指数测定仪选鹤壁三杰,我们将是您更好的合作伙伴!

磁化率的测定

华南师范大学实验报告学生姓名学号 专业化学(师范)年级班级 课程名称结构化学实验实验项目磁化率的测定 实验类型□验证□设计√综合实验时间2013年10月29日 实验指导老师彭彬实验评分 【实验目的】 1.掌握古埃(Gouy)磁天平测定物质磁化率的实验原理和技术。 2.通过对一些配位化合物磁化率的测定,计算中心离子的不成对电子数.并判断d电子的排布情况和配位体场的强弱。 【实验原理】 (1)物质的磁性 物质在磁场中被磁化,在外磁场强度H(A·m-1)的作用下,产生附加磁场。这时该物质内部的磁感应强度B为: B=H+4πI= H+4πκH(1) 式中,I称为体积磁化强度,物理意义是单位体积的磁矩。式中κ=I/H称为物质的体积磁化率。I和κ分别除以物质的密度ρ可以得到σ和χ,σ=I/ρ称为克磁化强度;χ=κ/ρ称为克磁化率或比磁化率。χm=ΚM/ρ称为摩尔磁化率(M是物质的摩尔质量)。这些数据可以从实验中测得。在顺磁、反磁性研究中常用到χ和χm,铁磁性研究中常用到I、σ。 不少文献中按宏观磁性质,把物质分成反磁性物质、顺磁性物质和铁磁性物质以及亚铁磁性物质、反铁磁性物质几类。其中,χm<o,这类物质称为反磁性物质。χm>o,这类物质称为顺磁性物质。 (2)古埃法测定磁化率 古埃法是一种简便的测量方法,主要用在顺磁测量。简单的装置包括磁场和测力装置两部分。调节电流大小,磁头间距离大小,可以控制磁场强度大小。测力装置可以用分析天平。 样品放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,另一端则

在磁场为零处。 样品在磁场中受到一个作用力。 df=κHAdH 式中,A 表示圆柱玻璃管的截面积。 样品在空气中称重,必须考虑空气修正,即 dF=(κ-κ0)HAdH κ 0表示空气的体积磁化率,整个样品的受力是积分问题: F= )()(2 1d )(202000 H H A H HA H H --= -? κκκκ (2) 因H 0<<H,且可忽略κ0,则 F= 22 1 AH κ (3) 式中,F 可以通过样品在有磁场和无磁场的两次称量的质量差来求出。 F=g )m -m (空样? (4) 式中,样m ?为样品管加样品在有磁场和无磁场时的质量差;空m ?为空样品管在有磁场和无磁场时的质量差;g 为重力加速度。 则有,2 2AH F = κ 而 ρκχM = m ,h m A 样品 =ρ,h 为样品高度,A 为样品管截面积,m 样品为样品质量。 ()2 2m m gh m -m 2m 2H M M AH F M 样品空 样样品??= ==ρκχ (5) 只要测量样品重量的变化。磁场强度H 以及样品高度h ,即可根据式(5)计算样品的摩尔磁化率。 其中,莫氏盐的磁化率符合公式: 4-10*1 T 1938 .1m ∧+=χ (6) (3)简单络合物的磁性与未成对电子

烟煤粘结指数测定方法GB5447—85

烟煤粘结指数测定方法GB5447—85 ∶53∶620.1 GB5447—85 Determination of caking index of bituminous coal 国家标准局1985-10-04 发布1986-07-01 实施 本标准规定了烟煤粘结指数(GR.1.指数,简记G 指数)的测定方法,适用于评价烟煤的粘结能力。 本标准参照采用国际标准ISO335—1974《硬煤——粘结力的测定——罗加试验法》。 方法要点:将一定重量的试验煤样和专用无烟煤,在规定的条件下混合,快速加热成焦,所得焦块在一定规格的转鼓内进行强度检验,以焦块的耐磨强度,即对破坏抗力的大小表示试验煤样的粘结能力。 1 仪器设备 1.1 本方法需用下列仪器设备: a.天平:精确度不低于0.001g; b.瓷质专用坩埚和坩埚盖:见图1; c.搅拌丝:由直径1~1.5mm 的金属丝制成,见图2; d.镍铬钢压块:重110~115g,见图3;

图1坩埚和盖 图2搅拌丝 图3压块

e.压力器:专用设备,以6kg 重量压紧试验煤样与无烟煤混合物,见图4; 图4压力器 1—底板;2—沉头螺钉;3—圆座;4—钢管;5—联板;6—堵板;7—支承轴;8—小轴;9—垫圈; 10—开口销;11—支承架;12—手柄;13—压重;14—升降立轴;15—丝堵 f.马弗炉:该炉具有均匀加热带,其恒温区(±10℃)长度不小于120mm,并附有调压器或定温控制器; g.转鼓试验装置:包括两个转鼓、一台变速器和一台电动机,转鼓转速必须保证50±2r/min。转鼓内径200mm、深70mm,壁上铆有相距180o厚3mm 的挡板两块,见图5;

氧指数检测法新旧标准的比较

氧指数检测法新旧标准的比较 氧指数法检测的方法标准是《塑料燃烧性能试验方法氧指数法》GB/T2406-93(以下称为旧标准),该标准在2008年进行了更新,被《塑料用氧指数法测定燃烧行为第1部分:导则》GB/T 2406.1-2008 代替。GB/T2406.1-2008 是试验导则,仪器设备的要求、检测方法具体内容则转移到了《塑料用氧指数法测定燃烧行为第2部分:室温试验》GB/T 2406.2-2009 (以下称为新标准)。 1.设备要求的改变 在设备要求方面,新标准燃烧装置与旧标准有不同的要求,表1列出了新、旧标准对试验的要求区别。从新旧标准对设备的要求变化可知,新标准对燃烧装置的尺寸要求放宽了,但强调了出口处的气流速度。旧标准所使用的燃烧设备,只需要进行一些小改动,并对燃烧筒出口处的气流速度进行校准,仪器即可重新投入使用。 2.试验环境要求的变更 旧标准对试验环境要求比较宽松,试验条件为10~35℃,相对湿度为 45%~75%。 新标准则对试验环境要求则比较严格,标准第7.4 节对状态调节作了如下要求: “除非另有规定,否则每个试样试验前应在温度23℃±2℃和湿度50%±5%条件下至少调节 88h。” 另外,新标准在试验步骤中反复对试验环境进行要求,新标准对试验环境有要求的章节分别 摘录如下: “8.1.1 试验装置应放置在23℃±2℃的环境中。必须时将试样放置在23℃±2℃和湿度50%±5%的密闭容器中,当需要时从容器中取出。 8.1.5 调整气体混合器和流量计,使氧/氮气体在23℃±2℃下混合……

8.3.3 移出试样,清洁燃烧筒及点火器。使燃烧筒温度回到23℃±2℃,或用另一个燃烧筒代替。” 新旧标准对比可知,新标准对试验环境要求比较严格。根据作者的试验经验,环境温度、湿度对氧指数检测存在一定的影响,新标准提高了试验环境的要求,排除了环境因素对试验结果的影响。因此,氧指数检测实验应该根据新标准的要求进行调整,以提高试验的精度。 3.试验方法的变更 3.1增加了试样状态调节要求 新标准增加了试样状态调节要求,每个试验前应在温度23℃±2℃和湿度50%±5%条件下至少 调节 88h。对于含有易挥发可燃物的泡沫材料试样,在温度23℃±2℃和湿度50%±5%状态调节前,应在鼓风烘箱内处理 168h,以除去这些物质。 3.2点燃方法的变更 新标准对顶面点燃法 (方法 A) 进行了修改,增加了连续施加火焰 30s,每隔 5s 移开火焰,检查试样的燃烧情况的要求。新标准的这项变更,使方法 A 与方法 B (扩散点燃法) 的操作方法得到了统一,可操作性更强。 3.3与规定的最小氧指数值比较法 (方法 C)新标准为氧指数检测增加了方法C——与规定的最小氧指数值比较法(简捷方法。此法比较适合建筑绝缘材料检测的需要,能大大提高检测的效率。 表 1 新、旧标准对试验装置要求的比较

氧指数的测定实验报告

氧指数的测定实验报告 This model paper was revised by the Standardization Office on December 10, 2020

中南大学 消防工程教学实验 实验报告 实验一:氧指数的测定实验报告 一、实验目的 1.明确氧指数的定义及其用于评价高聚物材料相对燃烧性的原理; 2.了解HC-2型氧指数测定仪的结构和工作原理; 3.掌握运用HC-2型氧指数测定仪测定常见材料氧指数的基本方法; 4.评价常见材料的燃烧性能。 二、实验原理(可加附页) 物质燃烧时,需要消耗大量的氧气,不同的可燃物,燃烧时需要消耗的氧气量不同,通过对物质燃烧过程中消耗最低氧气量的测定,计算出物质的氧指数值,可以评价物质的燃烧性能。所谓氧指数(Oxygen index),是指在规定的试验条件下,试样在氧氮混合气流中,维持平稳燃烧(即进行有焰燃烧)所需的最低氧气浓度,以氧所占的体积百分数的数值表示(即在该物质引燃后,能保持燃烧50mm长或燃烧时间3min时所需要的氧、氮混合气体中最低氧

的体积百分比浓度)。作为判断材料在空气中与火焰接触时燃烧的难易程度非常有效。一般认为,OI<27的属易燃材料,27≤OI<32的属可燃材料,OI≥32的属难燃材料。HC-2型氧指数测定仪,就是用来测定物质燃烧过程中所需氧的体积百分比。 氧指数的测试方法,就是把一定尺寸的试样用试样夹垂直夹持于透明燃烧筒内,其中有按一定比例混合的向上流动的氧氮气流。点着试样的上端,观察随后的燃烧现象,记录持续燃烧时间或燃烧过的距离,试样的燃烧时间超过3min或火焰前沿超过50mm标线时,就降低氧浓度,试样的燃烧时间不足3min或火焰前沿不到标线时,就增加氧浓度,如此反复操作,从上下两侧逐渐接近规定值,至两者的浓度差小于%。 三、实验仪器、设备 1.基本组成 型氧指数测定仪由燃烧筒、试样夹、流量控制系统及点火器组成。 燃烧筒为一耐热玻璃管,筒的下端插在基座上,基座内填充一定高度的玻璃珠,玻璃珠上放 置一金属网,用于遮挡燃烧滴落物。试样夹为金属弹簧片,对于薄膜材料,应使用U型试样夹。流量控制系统由压力表、稳压阀、调节阀、转子流量计及管路组成。点火器火焰长度可调,试验时火焰长度为10mm 2.仪器正常工作条件 环境温度:室温~40℃ 气源:工业用氮气、氧气,纯度为>99%

磁化率实验报告1

磁化率的测定 08材化2 叶辉青200830750230 1 实验目的 1.1 掌握古埃(Gouy)法测定磁化率的原理和方法。 1.2 测定三种络合物的磁化率,求算未成对电子数,判断其配键类型。 1.3 了解磁天平的原理与测定方法。 1.4 熟悉特斯拉计的使用。 2 实验原理 2.1 磁化率 物质在外磁场中,会被磁化并感生一附加磁场,其磁场强度H′与外磁场强度H 之和称为该物质的磁感应强度B,即 B=H+H′(1) H′与H方向相同的叫顺磁性物质,相反的叫反磁性物质。还有一类物质如铁、钴、镍及其合金,H′比H大得多(H′/H)高达104,而且附加磁场在外磁场消失后并不立即消失,这类物质称为铁磁性物质。物质的磁化可用磁化强度I来描述,H′=4πI。对于非铁磁性物质,I与外磁场强度H成正比 I=KH (2) 式中,K为物质的单位体积磁化率(简称磁化率),是物质的一种宏观磁性质。在化学中常用单位质量磁化率χm或摩尔磁化率χM表示物质的磁性质,它的定义是 χm=K/ρ(3) χM=MK/ρ(4) 式中,ρ和M分别是物质的密度和摩尔质量。由于K是无量纲的量,所以χm 和χM的单位分别是cm3/g和cm3/mol,磁感应强度SI单位是特[斯拉](T),而过去习惯使用的单位是高斯(G),1T=104G。 2.2 分子磁矩与磁化率 物质的磁性与组成它的原子、离子或分子的微观结构有关,在反磁性物质中,由于电子自旋已配对,故无永久磁矩。但是内部电子的轨道运动,在外磁场作用下产生的拉摩进动,会感生出一个与外磁场方向相反的诱导磁矩,所以表示出反磁性。其χM就等于反磁化率χ反,且χM<0。在顺磁性物质中,存在自旋未配对电子,所以具有永久磁矩。在外磁场中,永久磁矩顺着外磁场方向排列,产生顺磁性。顺磁性物质的摩尔磁化率χM是摩尔顺磁化率与摩尔反磁化率之和,即 χM=χ顺+χ反(5) 通常χ顺比χ反大约1~3个数量级,所以这类物质总表现出顺磁性,其χM>0。顺磁化率与分子 永久磁矩的关系服从居里定律

纺织品 燃烧性能试验 氧指数法

纺织品燃烧性能试验氧指数法 前言 本标准是非等效采用国际标准ISO 4589:1984《塑料燃烧性测定:氧指数法》,结合纺织品的特点,对国标GB 5454-85进行修改,其主要技术内容、试验方法程序与国际标准一致。 本标准继承了前版的主要技术内容,并对标准的名称、章节的编排及技术内容进行了补充和编辑性修改,增加了"前言",取消了附加说明,并将其内容并人前言中。 本标准名称修改为《纺织品燃烧性能试验氧指数法》。 第1章范围中增加本标准规定试样置于在什么条件下的试验方法内容,测定范围增加"包括单组分和多 组分"。 本标准增加第2章"引用标准",第3章增加3个名词和4个名词的对应外文词,增加第5章"试验人员 的健康与安全"。 第6章将"仪器"修改为"设备和材料",其内容作了编辑性的修改,增加一节"气体减压计"。 第7章将"试样"修改为"试样及调温",裁样数修改为"对于一般织物经、纬向至少各取15块",删掉"试验熔融性纤维制成的织物时,要缝上三根8~11Nm玻璃纤维……"制样试验方法。"试样平衡24h以上" 修改为"视试样薄厚调湿8~24h,待吸湿平衡"。 第8章增加"初始氧浓度的确定"、"升一降法","极限氧指数的测定"代替原标准6.7条。 本标准第9章,氧指数计算增加"K值系数确定表"、"氧浓度间隔的校验"、"精密度"三节。 本标准增加"附录A 氧浓度的计算",将"附录A参考件"名称改为"附录B",增加"附录C设备的校正" 和"附录D典型试验结果示例"。 本标准于1985年首次发布,1995年修订。 本标准的附录A是标准的附录。 本标准的附录B、附录C、附录D都是提示的附录。 本标准自生效之日起,同时代替GB 5454-85。 本标准由中国纺织总会提出。 本标准由中国纺织总会标准化研究所归口。 本标准起草单位:中国纺织总会标准化研究所。 本标准主要起草人:金纯秀、赵淑清。 中华人民共和国国家标准 纺织品燃烧性能试验氧指数法 Textiles-Burning behaviour-Oxygen index method GB/T 5454--1997 eqvISO 4589:1984 代替GB 5454-85 1、范围 本标准规定试样置于垂直的试验条件下,在氧、氮混合气流中,测定试样刚好维持燃烧所需最低氧浓 度(亦称极限氧指数)的试验方法。 本标准适用于测定各种类型的纺织品(包括单组分或多组分),如机织物、针织物、非织造布、涂层织物、层压织物、复合织物、地毯类等(包括阻燃处理和未经处理)的燃烧性能。

磁化率的测定实验报告

华 南 师 范 大 学 实 验 报 告 课程名称 结构化学实验 实验项目 磁化率的测定 一、【目的要求】 1.掌握古埃(Gouy )磁天平测定物质磁化率的实验原理和技术。 2.通过对一些配位化合物磁化率的测定,计算中心离子的不成对电子数.并判断d 电子的排布情况和配位体场的强弱。 二、【实验原理】 (1)物质的磁性 物质在磁场中被磁化,在外磁场强度H(A ·m-1)的作用下,产生附加磁场。这时该物质内部的磁感应强度B 为: B =H +4πI = H +4πκH (1) 式中,I 称为体积磁化强度,物理意义是单位体积的磁矩。式中κ=I/H 称为物质的体积磁化率。I 和κ分别除以物质的密度ρ可以得到σ和χ,σ=I/ρ称为克磁化强度;χ=κ/ρ称为克磁化率或比磁化率。χm=Κm/ρ称为摩尔磁化率。这些数据是宏观磁化率。在顺磁、反磁性研究中常用到χ和χm ,帖磁性研究中常用到I 、σ。 物质在外磁场作用下的磁化有三种情况 1.χm <o ,这类物质称为逆磁性物质。 2.χm >o ,这类物质称为顺磁性物质。 (2)古埃法测定磁化率 古埃法是一种简便的测量方法,主要用在顺磁测量。简单的装置包括磁场和测力装置两部分。调节电流大小,磁头间距离大小,可以控制磁场强度大小。测力装置可以用分析天平。 样品放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,另一端则在磁场为零处。 样品在磁场中受到一个作用力。 df=κHAdH 式中,A 表示圆柱玻璃管的截面积。 样品在空气中称重,必须考虑空气修正,即 dF=(κ-κ0)HAdH κ0表示空气的体积磁化率,整个样品的受力是积分问题: F= )()(2 1d )(202000 H H A H HA H H --= -? κκκκ (2) 因H 0<<H,且可忽略κ0,则 F= 22 1 AH κ (3) 式中,F 可以通过样品在有磁场和无磁场的两次称量的质量差来求出。 F= g )m -m (空样?

影响炼焦煤粘结指数测定准确性的因素

影响炼焦煤粘结指数测定准确性的因素分析 张楠 (山东石横特钢集团有限公司,山东肥城 271612) 摘要 炼焦煤的粘结指数,反映炼焦煤热加工的特性,粘结指数是炼焦煤最重要的工艺性能指标之一,本文对影响煤粘结指数的测定准确性的注意事项做了分析研究。 关键词 炼焦煤;粘结指数;测定:准确性 1.前言 粘结性是指烟煤在受热后,煤粒间互相粘结牢固程度的量度。也是煤在各种热加工工艺过程(焦化、气化、液化与燃烧)中最重要的特性。特别在炼焦工艺中,粘结性主要反映了煤在受热过程中,处于塑性阶段的化学物理现象,要想得到强度高的焦炭,煤料的软化、塑化、膨胀、析气、熔融和固化收缩,必须进行得恰到好处;即能产生足够数量和质量(主要是粘度,对煤表面的浸润性等)的塑性体;有足够宽的塑性温程,使煤粒有充分时间互相熔融与胶结;适当的膨胀压力;固化前后的收缩与析气量要小,减少焦炭裂纹的生成。[1]为了客观、真实反映煤的粘结性,准确检测炼焦煤粘结指数,我们对粘结指数样品的不同粒级、温度等易造成对G值影响的各个因素分别进行试验分析,有关测试结果讨论如下。 2.实验部分 2.1仪器与设备

2.1.1 FT-200密封式制样机:浙江福特机械制造有限公司 2.1.2 标准筛(80目0.2mm) 2.1.3 YJB-Ⅱ型粘结指数搅拌仪:煤炭科学研究院。 2.1.4 GK-3D型粘结指数测定仪:中钢集团鞍山热能研究院 2.1.5 智能马弗炉湖南明鹏有限公司 2.1.6 电子天平感量万分之一 2.1.7 粘结指数专用钳锅 2.2试验方法 准确称取1g制备至0.2mm以下粒级煤样和5g专用无烟煤,在规定条件下混合,快速加热成焦,所得焦块在粘结指数测定仪内进行强度检验,以焦块的耐磨性表示煤样的粘结能力[2]。 3.结果分析讨论 3.1 样品制样温度对粘结指数的影响 依照国家标准GB/T5447-1997试验煤样应为空气干燥后煤样,在实际操作中,制备空气干燥煤样需要很长的时间,将煤样分别在50℃和80℃的烘箱内,在鼓风状态下制备的样品与空气干燥后制备的样品粘结指数进行比较,结果见表1,在50℃干燥的样品与空气干燥的样品一致,80℃下干燥的样品测定的粘结指数偏低。可见,样品干燥温度不应高于50℃,温度太高,会降低煤的粘结指数。 表1 样品50℃烘制温度对粘结指数的影响 样品名称 测定结果平均值(n=2) 室温干燥50℃下干燥80℃下干燥 灵石焦煤83.0 83.0 81.6 淮北肥煤91.6 91.8 90.1 白庄气煤73.5 73.6 71.6

测定烟煤粘结指数专用无烟煤技术条件(标准状态:现行)

I C S73.040 D21 中华人民共和国国家标准 G B/T14181 2010 代替G B14181 1997 测定烟煤粘结指数专用无烟煤技术条件S p e c i f i c a t i o n s o f a n t h r a c i t e f o r d e t e r m i n a t i o n o f c a k i n g i n d e x o f b i t u m i n o u s c o a l (I S O15585:2006,H a r d c o a l D e t e r m i n a t i o no f c a k i n g i n d e x,N E Q) 2010-09-26发布2011-02-01实施中华人民共和国国家质量监督检验检疫总局

G B/T14181 2010 目次 …………………………………………………………………………………………………………前言Ⅰ1范围1………………………………………………………………………………………………………2规范性引用文件1…………………………………………………………………………………………3技术要求1…………………………………………………………………………………………………4原料煤的采取和制备2 ……………………………………………………………………………………5试验方法2…………………………………………………………………………………………………6检验规则2…………………………………………………………………………………………………7标志二包装二运输和贮存3 ………………………………………………………………………………… ………………………………………………附录A(规范性附录)测定粘结指数专用无烟煤基准样4附录B(规范性附录)测定烟煤粘结指数专用无烟煤采取二制备方法6 …………………………………

磁化率-实验报告

一、实验目的与要求 1、测定物质的摩尔磁化率,估计待测金属配合物中心离子的未成对电子数,判断分子配键的类型。 2、掌握磁天平测定磁化率的原理和方法。 二、实验原理 1、摩尔磁化率和分子磁化率 在外磁场作用下,由于电子等带电粒子的运动,物质会被磁化而感应出一个附加磁场。这个附加磁场H’的强度由物质的磁化率χ决定:H’=4χχ为物质的体积磁化率,反映物质被磁化的难易程度,化学上常用摩尔磁化率χ m 表示磁化程度:,单位为。 对于顺磁性物质,摩尔顺磁磁化率与分子磁矩关系有: 顺 (为真 空磁导率,由于反磁化率较小,所以χ 反 忽略作近似处理) 顺磁性物质与为成对电子数n的关系:(为玻尔磁子,=9.273×10-21erg·G-1 =9.273×10-28J·G-1 =9.273×10-24 J·T-1) 2、摩尔磁化率的测定 样品在非均匀磁场中受到的作用力F可近似为: 在非均匀磁场中,顺磁性物质受力向下所以增重;而反磁性物质受力向上所以减重。测定时在天平右臂加减砝码使之平衡。设△m为施加磁场前后的称量,则: 所以: Δy样品管加样品后在施加磁场前后的称量差(g);Δ 为空样品管在施加磁场前后的称量差(g);g为重力加速度(9.8m·s-2);h为样品高度(cm);y样品的摩尔质量(g·mol-1);y样品的质量(g);y磁极中心磁场强度(G)。 磁场强度H可由特斯拉计或CT5高斯计测量。应该注意,高斯计测量的实际 上是磁感应强度B,单位为T(特斯拉),1T=104高斯。磁场强度H可由 B =μ H 关系式计算得到,H的单位为A·m-1。也可用已知磁化率的硫酸亚铁铵标定。 在精确的测量中,通常用莫尔氏盐来标定磁场强度,它的摩尔磁化率与温度的关系为 三、实验用品 1、仪器 分析天平、高斯计、玻璃样品管、研钵、角匙、玻璃棒 2、试剂 莫氏盐(NH 4) 2 SO 4 ·FeSO 4 ·6H 2 O、亚铁氰化钾 K 4 [Fe(CN) 6 ]·3H 2 O、硫酸亚铁FeSO 4 ·7H 2 O。 四、实验步骤

氧指数测试仪_极限氧指数测定仪的常见问题

氧指数测试仪_极限氧指数测定仪的常见问题 1、氧指数测试仪或极限氧指数测定仪是用来测试什么的? 用来测试材料的极限氧指数,以评价材料的燃烧性能,适用的材料范围包括均质固体材料、层压材料、泡沫材料、软片和薄膜等。 2、氧指数测试仪适用的标准是什么? ISO 4589-2,ASTM D2863,GB/T 2406,GB/T 5454 3、氧指数和极限氧指数分别是什么意思,有什么意义? 极限氧指数是指在规定的试验条件下,氧氮混合物中材料刚好保持燃烧状态所需要的最低氧浓度,也称为限氧指数、氧指数。值得注意的是,氧指数并不是指氧气占氧气氮气混合气体的体积分数,此为氧浓度值。 氧指数高表示材料不易燃烧,氧指数低表示材料容易燃烧,一般认为氧指数<22属于易燃材料,氧指数在22---27之间属可燃材料,氧指数>27属难燃材料。 4、氧指数测试仪的原理? 试样垂直固定在向上流动的氧、氮混合气体的透明燃烧筒里,点燃试样顶端,观察试样的燃烧特性,把试样连续燃烧时间或试样燃烧长度与给定的极限值相比较,通过在不同氧浓度下的一系列试验,测得维持燃烧时以氧气百分含量表示的最低氧深度值。 5、极限氧指数怎么计算? 以体积百分数表示极限氧指数LO I,按以下式子计算: LO I = cF十K d

式中:LO I— 极限氧指数,%; CF一测试时的最后一个氧浓度,取小数一位,%; d一测试时两个氧浓度之差,取小数一位,%; K 一系数,查表得到。 报告LO I时,取小数一位,计算标准差e时,LO I应计算到小数二位。 6、极限氧指数测试时K值如何确定? 如果进行试验测得的最后五个氧指数值,第一个反应符号是“X”,在下表第一栏中找出所对应的最后五个测定的反应符号,从(a)项中再找出“ O ” 数目相应的K 值数。 如果进行试验测得的最后五个氧指数值,第一个反应符号是“ O ,在表中第6 栏中找出所对应的最后五个测定的反应符号,从(b)项中再找出“X” 数目相应的K 值系数,但K 值数的符号与表中正负数的符号相反。

材料的氧指数测定实验指导书

材料的氧指数测定 一.实验目的 1.明确氧指数的定义及其用于评价材料相对燃烧性的原理; 2.了解HC-2型氧指数测定仪的结构和工作原理; 3.掌握运用HC-2型氧指数测定仪测定常见材料氧指数的基本方法; 4.评价常见材料的燃烧性能。 二.实验内容 测量回转绳、地板革的燃烧氧指数,对应不同氧气浓度、氮气浓度下,测量材料的燃烧时间(或燃烧长度),最后总结燃烧结果。 三.实验仪器 HC-2型氧指数测定仪,秒表。氧指数测定仪由燃烧筒、试样夹、流量控制系统及点火器组成(示意图见下)。 1—点火器;2—玻璃燃烧筒;3—燃烧着的试样;4 —试样夹;5—燃烧筒支架;6—金属网;7—测温装 置;8—装有玻璃珠的支座;9—基座架;10—气体预 混合结点;11—截止阀;12—接头;13—压力表;14 —精密压力控制器;15—过滤器;16—针阀;17—气 体流量计。 图1 氧指数测定仪示意图 燃烧筒为一耐热玻璃管,高450mm,内径75~80mm,筒的下端插在基座上,基座内填充直径为3~5mm的玻璃珠,填充高度100mm,玻璃珠上放置一金属网,用于遮挡燃烧滴落物。试样夹为金属弹簧片,对于薄膜材料,应使用140 mm×38mm的U型试样夹。流量控制系统由压力表、稳压阀、调节阀、转子流量计及管路组成。流量计最小刻度为0.1l/min。点火器是一内径为1~3mm的喷嘴,火焰长度可调,试验时火焰长度为10mm。 四.试样 1.材料:回转绳、地板革 2.试样数量:每组应制备4个标准试样 3.外观要求:试样表面清洁、平整光滑,无影响燃烧行为的缺陷。 4.试样的标线:距离点燃端50mm处划一条刻线。

五.实验原理、方法 物质燃烧时,需要消耗大量的氧气,不同的可燃物,燃烧时需要消耗的氧气量不同,通过对物质燃烧过程中消耗最低氧气量的测定,计算出物质的氧指数值,可以评价物质的燃烧性能。所谓氧指数(Oxygen index),是指在规定的试验条件下,试样在氧氮混合气流中,维持平稳燃烧(即进行有焰燃烧)所需的最低氧气浓度,以氧所占的体积百分数的数值表示(即在该物质引燃后,能保持燃烧50mm长或燃烧时间3min 时所需要的氧、氮混合气体中最低氧的体积百分比浓度)。作为判断材料在空气中与火焰接触时燃烧的难易程度非常有效。一般认为,OI<27的属易燃材料,27≤OI<32的属可燃材料,OI≥32的属难燃材料。HC-2型氧指数测定仪,就是用来测定物质燃烧过程中所需氧的体积百分比。该仪器适用于塑料、橡胶、纤维、泡沫塑料及各种固体的燃烧性能的测试。 氧指数的测试方法,就是把一定尺寸的试样用试样夹垂直夹持于透明燃烧筒内,其中有按一定比例混合的向上流动的氧氮气流。点着试样的上端,观察随后的燃烧现象,记录持续燃烧时间或燃烧过的距离,试样的燃烧时间超过3min或火焰前沿超过50mm标线时,就降低氧浓度,试样的燃烧时间不足3min或火焰前沿不到标线时,就增加氧浓度,如此反复操作,从上下两侧逐渐接近规定值,至两者的浓度差小于0.5%。氧指数法是在实验室条件下评价材料燃烧性能的一种方法,它可以对窗帘幕布、木材等许多新型装饰材料的燃烧性能作出准确、快捷的检测评价。需要说明的是氧指数法并不是唯一的判定条件和检测方法,但它的应用非常广泛,已成为评价燃烧性能级别的一种有效方法。 六.实验步骤 1.检查气路,确定各部分连接无误,无漏气现象。 2.确定实验开始时的氧浓度:根据经验或试样在空气中点燃的情况,估计开始实验时的氧浓度。如试样在空气中迅速燃烧,则开始实验时的氧浓度为18%左右;如在空气中缓慢燃烧或时断时续,则为21%左右;在空气中离开点火源即马上熄灭,则至少为25%。根据经验,确定片材氧指数测定实验初始氧浓度为26%。氧浓度确定后,在混合气体的总流量为10l/min的条件下,便可确定氧气、氮气的流量。例如,若氧浓度为26%,则氧气、氮气的流量分别为2.5l/min和7.5l/min。 3.安装试样:将试样夹在夹具上,垂直地安装在燃烧筒的中心位置上(注意要划50mm标线),保证试样顶端低于燃烧筒顶端至少100mm,罩上燃烧筒(注意燃烧筒要轻拿轻放)。 4.通气并调节流量:开启氧、氮气钢瓶阀门,调节减压阀压力为0.2~0.3MPa,然后开启氮气和氧气管道阀门(绿色瓶为为氧气,黑色瓶为氮气,应注意:先开氮气,后开氧气,且阀门不宜开得过大),然后调节稳压阀,仪器压力表指示压力为0.1±0.01MPa,并保持该压力(禁止使用过高气压)。调节流量调节阀,通过转子流量计读取数据(应读取浮子上沿所对应的刻度),得到稳定流速的氧、氮气流。检查仪器压力表指针是否在0.1Mpa,否则应调节到规定压力,O2+N2压力表不大于0.03Mpa或不显示压力为正常,若不正常,应检查燃烧柱内是否有结炭、气路堵塞现象;若有此现象应及时排除使其恢复到符合要求为止。应注意:在调节氧气、氮气浓度后,必须用调节好流量的氧氮混合气流冲洗燃烧筒至少30s(排出燃烧筒内的空气)。 5.点燃试样:用点火器从试样的顶部中间点燃(点火器火焰长度为1-2cm),勿使火焰碰到试样的棱边和侧表面。在确认试样顶端全部着火后,立即移去点火器,开始计时或观察试样烧掉的长度。点燃试样时,火焰作用的时间最长为30s,若在30s内不能点燃,则应增大氧浓度,继续点燃,直至30s内点燃为止。 6.确定临界氧浓度的大致范围:点燃试样后,立即开始记时,观察试样的燃烧长度及燃烧行为。若燃烧终止,但在1s内又自发再燃,则继续观察和记时。如果试样的燃烧时间超过3min,或燃烧长度超过50mm (满足其中之一),说明氧的浓度太高,必须降低,此时记录实验现象记“×”,如试样燃烧在3min和50mm 之前熄灭,说明氧的浓度太低,需提高氧浓度,此时记录实验现象记“Ο”。如此在氧的体积百分浓度的整数位上寻找这样相邻的四个点,要求这四个点处的燃烧现象为“ΟΟ××”。例如若氧浓度为26%时,烧过50mm的刻度线,则氧过量,记为“×”,下一步调低氧浓度,在25%做第二次,判断是否为氧过量,直到找

磁化率的测定

磁化率的测定 一、实验目的 1.掌握古埃(Gouy)法测定磁化率的原理和方法。 2.测定三种络合物的磁化率,求算未成对电子数,判断其配键类型。 二、预习要求 1.了解磁天平的原理与测定方法。 2.熟悉特斯拉计的使用。 三、实验原理 1.磁化率 物质在外磁场中,会被磁化并感生一附加磁场,其磁场强度 H′与外磁场强度 H 之和称为该物质的磁感应强度 B,即 B = H + H′(1) H′与H方向相同的叫顺磁性物质,相反的叫反磁性物质。还有一类物质如铁、钴、镍及其合金,H′比H大得多(H′/H)高达 104,而且附加磁场在外磁场消失后并不立即消失,这类物质称为铁磁性物质。 物质的磁化可用磁化强度 I 来描述,H′=4πI。对于非铁磁性物质,I 与外磁场强度 H成正比 I = KH (2) 式中,K为物质的单位体积磁化率(简称磁化率),是物质的一种宏观磁性质。在化学中常用单位质量磁化率χm或摩尔磁化率χM表示物

质的磁性质,它的定义是 χm = K/ρ(3) χM = MK/ρ(4) 式中,ρ和M分别是物质的密度和摩尔质量。由于K是无量纲的量,所以χm和χM的单位分别是cm3?g-1和cm3?mol-1。 磁感应强度 SI 单位是特[斯拉](T),而过去习惯使用的单位是高斯(G),1T=104G。 2.分子磁矩与磁化率 物质的磁性与组成它的原子、离子或分子的微观结构有关,在反磁性物质中,由于电子自旋已配对,故无永久磁矩。但是内部电子的轨道运动,在外磁场作用下产生的拉摩进动,会感生出一个与外磁场方向相反的诱导磁矩,所以表示出反磁性。其χM就等于反磁化率χ反,且χM<0。在顺磁性物质中,存在自旋未配对电子,所以具有永久磁矩。在外磁场中,永久磁矩顺着外磁场方向排列,产生顺磁性。顺磁性物质的摩尔磁化率χM是摩尔顺磁化率与摩尔反磁化率之和,即 χM =χ顺 + χ反(5) 通常χ顺比χ反大约1~3个数量级,所以这类物质总表现出顺磁性,其χM>0。顺磁化率与分子永久磁矩的关系服从居里定律 (6) 式中,NA为Avogadro常数;K为Boltzmann常数(1.38×10-16erg?K-1);T为热力学温度;μm为分子永久磁矩(erg?G-1)。由此可得

相关文档
最新文档