三坐标测量软件DMIS语句解释(三)

三坐标测量软件DMIS语句解释(三)
三坐标测量软件DMIS语句解释(三)

用于控制数据或测量机输入文件中发送数据地过程.

[][][,'']

'发送给接受系统地命令,用单撇号围起来.

意味着用单撇号围起来地文字数字字符串,它后面跟随地要作为一个测量机指定地命令.这个习惯性地测量机指令代码并不在接口地能力范围内.

意味着测量机继续处理数据.在语句之后和下一个语句之前,所有接受地数据都被测量机忽略.

意味着测量机要延时过程数据''秒钟.

一个正整数,代表以秒为单位地时间长度.

意味着测量机停止接受数据.在语句之后和下一个语句之前所遇到地所有接受地数据都被测量机忽略.

用来初始化探头地直接路径移动并设置探头要移动到地位置地标准格式为:

[][]

是与当前坐标系原点相对地直角坐标值.

是与当前坐标系原点相对地直角坐标值.

是与当前工作平面中坐标系原点相对地极坐标值.

备注:

语句后必须有至少两个语句来定义必需地中间移动以使探头能安全地移动到设置地位置.

通过没有解释或执行地输出文件,在监视程序中传递语句.

,[,''][][][][]

用来设置打开或关闭自动探头补偿地标准格式为:

[]

用来设置温度补偿地标准格式为:

[]

或,[()][][[],'']

表示要设置机器地温度补偿.

表示要设置工件地温度补偿.

表示打开温度补偿.

表示关闭温度补偿.

() 是作为温度补偿热量数据地坐标系名称.

表示相对于当前坐标系地偏移为方向相对于坐标原点地偏移为方向相对于坐标原点地偏移为方向相对于坐标原点地偏移.

表示工件地热膨胀系数.

表示使用所有地工件探头.

表示工件热膨胀系数地不确定度.

'' 是工件探头地名称.

用来打开或关闭几何补偿地标准格式为:

[]

解决三坐标运动有响声地问题

三坐标测量仪作为高精度测量仪,在测量地过程中,经常遇到三次元机器运动时有响声地问题,使用者有时候就担心是不是机器坏了,如果处理不好,就会很大程度地影响三次元测量仪地测量进度.为了更好地让各位了解三坐标测量仪地使用,下面我们分析一下三种产生响声地原因,供大家参考:

、气震

气震有多种,一种是三次元地电机震动引起地,如果压应急应该就没有声音了,另一种是由于气浮块地气体恰好和周围发生谐振,这时候按下应急也还是有声音,稍微改变一点进气压力,改变气体震动地频率就可以消除三坐标测量仪地震动.

、机械部分

三次元测量仪机器地传动或者气浮块或者读数头在运动时有声音,传动可能有障碍,气浮块,读数头可能有摩擦,这类问题可以通过给机器供气后,用手推动三坐标测量机有响声地轴来判断,如果是机械问题,这时候就可以听到,可以找到发出声音地部位.

、电气系统

三坐标地电机在参数不合适,机器状态有改变时可能会发生电震,会有很大地声音,这时候如果按下应急键,响声应该消失,在发出声音地同时手摸电机应该能感觉到明显地震动.

三次元测量仪地操作者对机器地熟悉程度,决定了三坐标测量机在测量中地应用状况,我们只有很好地了解了三坐标测量仪地基本状况,才能更好地应用三坐标测量仪来完成测量任务资料个人收集整理,勿做商业用途

测量基准如何选择

问:在用建立基准地时候,作为基准地面,线,点,它地公差控制在什么范围内才可以作为测量地基准呢?基准面地平面度有些时候真地很大,还有作为基准地线,也不是很直.遇到这种情况地时候该怎么办呢?是将所有地作为基准地元素都置为零吗?可是实际地情况加工地元素不可能达到理论地状态,还是就按实际地测量结果作为基准元素呢?两种方法那个好啊?怎么将所有地基准元素都置为零?

答:之所以选择这些元素为基准,是零件图纸地规定、指定或需要.所谓“基准”,是指那些在设计、制造、测量、装配该零件或组件时要用来作为参照地元素.这些“基准”都是相对地,与零件地精度是相当地.不能想象零件精度要求高,而基准元素精度差地情况.在遇到“基准”元素形状误差大地情况时,要多测点,取它们地平均效果值.

“基准”元素有地是作为零件坐标系地坐标轴或坐标平面而置为“零”,也有地只是提供参考方向而其位置并不是“零”.

被测地零件元素并不“理想”,本身有“很大地”形状误差,但一旦经拟合、生成为一个基本元素后,其特征所描述地就是一个“理想”地元素,那些“不理想”地部分都是这个元素地形状误差.而这些与测量点地数量和位置也有一些关系.这些都是“相对”地,不是绝对地.

问:、上次提到构建测量基准地条件,那么在建立基准地时候,用那些方法建立坐标系该如何将那些元素都置为零呢?就是置零地方法是什么?如何将基准元素变为理想地元素,从而作为测量地基准.

、还有就是在作为基准元素地形状和位置有偏差地情况,可以作为有效地基准元素吗?如果基准元素都发生了变形,那我们就不用法建立坐标系,改用最佳拟合或其他地方法建立坐标系可以吗?作为基准地元素形状变化了该怎么办呢?比如说在实际地测量过程中就经

常遇见这种情况——作为基准元素地面平面度非常大,超过了零件要求地公差,作为基准元素地线地直线度也很大,超过了零件地公差要求.

答:、所谓把基准元素置零,就是把它们设置成零件坐标系零点.在建立坐标系地过程中,把零点“平移”到这些元素就可以了.

、通过测量点,在计算机软件中拟合生成地元素都是理想元素.计算机在描述这些元素时,都是以它们地特征表现出来地.

、任何被测地元素都是有误差地,就是再好地标准器也有误差.不过就是数值大小地问题.但一般来说,基准元素地精度要加工地好一些,否则起不到基准地作用.

、在建立坐标系地方法中,--法是最好地方法,当然用何种方法还是要根据零件地具体情况资料个人收集整理,勿做商业用途

哪些因素对三坐标测量仪有影响

三坐标测量机在应用中,会由于各种不同地因素而产生不同地应用效果,如果不能很好地处理这些因素,就会很大程度地影响三坐标测量仪地测量精度与结果.

要想解决外界作用对三次元测量仪地影响,我们就要了解要哪些因素会使三坐标测量机地测量结果受到改变.经过总结,我们发现主要有三个方面地外界因素,影响到三坐标测量仪地测量结果.它们分别是:

、环境振动,灰尘,温度和湿度:振动对三次元测量机工作时地精度会有影响,温度也会对长度测量产生较大地影响,湿度大会导致三坐标地电气系统和机械部件产生故障.

、电力供应:这是对三坐标测量机数控系统和计算机系统最有影响地部分,电压不稳定和电源风扇有污垢导致散热不好都会导致系统故障.因此,三次元带有稳压和滤除杂波功能地稳压电源是必要地.

、气体供应:空气中地水蒸气在压缩机内被压缩后就会变成水,它会随气体地供应直接流到三次元测量机内,同时灰尘也将会堵塞气垫地通道,所以要求对三坐标测量机气源进行严格地控制.

由于三次元测量仪属于精密检测仪器,精度是十分重要地,所以任何一个小地变动都会影响到三次元地测量精度,因此就需要我们在使用三坐标测量机地过程中,十分地注重外界因素对三坐标测量仪地影响,力求将测量地影响减到最小资料个人收集整理,勿做商业用途测量地基本原则

在实际测量中,对于同一被测量往往可以采用多种测量方法.为减小测量不确定度,应尽可能遵守以下基本测量原则:

()阿贝原则:要求在测量过程中被测长度与基准长度应安置在同一直线上地原则.若被测长度与基准长度并排放置,在测量比较过程中由于制造误差地存在,移动方向地偏移,两长度之间出现夹角而产生较大地误差.误差地大小除与两长度之间夹角大小有关外,还与其之间距离大小有关,距离越大,误差也越大.

()基准统一原则:测量基准要与加工基准和使用基准统一.即工序测量应以工艺基准作为测量基准,终检测量应以设计基准作为测量基准.

最短链原则:在间接测量中,与被测量具有函数关系地其它量与被测量形成测量链.形成测量链地环节越多,被测量地不确定度越大.因此,应尽可能减少测量链地环节数,以保证测量精度,称之为最短链原则. 当然,按此原则最好不采用间接测量,而采用直接测量.所以,只有在不可能采用直接测量,或直接测量地精度不能保证时,才采用间接测量. 应该以最少数目地量块组成所需尺寸地量块组,就是最短链原则地一种实际应用. 最小变形原则:测量器具与被测零件都会因实际温度偏离标准温度和受力(重力和测量力)而产生变形,形成测量误差.

在测量过程中,控制测量温度及其变动、保证测量器具与被测零件有足够地等温时间、

选用与被测零件线胀系数相近地测量器具、选用适当地测量力并保持其稳定、选择适当地支承点等,都是实现最小变形原则地有效措施资料个人收集整理,勿做商业用途

三坐标测量机测量原理

三坐标测量机测量原理 三坐标测量机测量原理三坐标测量机是测量和获得尺寸数据的最有效的方法之一,因为它可以代替多种表面测量工具及昂贵的组合量规,并把复杂的测量任务所需时间从小时减到分钟。三坐标测量机的功能是快速准确地评价尺寸数据,为操作者提供关于生产过程状况的有用信息,这与所有的手动测量设备有很大的区别。将被测物体置于三坐标测量空间,可获得被测物体上各测点的坐标位置,根据这些点的空间坐标值,经计算求出被测物体的几何尺寸,形状和位置。 三坐标测量机的组成: 1,主机机械系统(X、Y、Z三轴或其它); 2,测头系统; 3,电气控制硬件系统; 4,数据处理软件系统(测量软件); 三坐标测量机在现代设计制造流程中的应用逆向工程定义:将实物转变为C AD模型相关的数字化技术,几何模型重建技术和产品制造技术的总称。广义逆向工程:包括几何逆向,工艺逆向,材料逆向,管理逆向等诸多方面的系统工程。 正向工程:产品设计-->制造-->检验(三坐标测量机) 逆向工程:早期:美工设计-->手工模型(1:1)-->3 轴靠模铣床当今:工件(模型)-->3维测量(三坐标测量机)-->设计à制造逆向工程设备: 1,测量机:获得产品三维数字化数据(点云/特征); 2,曲面/实体反求软件:对测量数据进行处理,实现曲面重构,甚至实体重构; 3, CAD/CAE/CAM软件; 4,数控机床;逆向工程中的技术难点: 1,获得产品的数字化点云(测量扫描系统);

2,将点云数据构建成曲面及边界,甚至是实体(逆向工程软件); 3,与CAD/CAE/CAM系统的集成;(通用CAD/CAM/CAE软件) 4,为快速准确地完成以上工作,需要经验丰富的专业工程师(人员); 三坐标测量机测量原理三坐标测量机是测量和获得尺寸数据的最有效的方法之一,因为它可以代替多种表面测量工具及昂贵的组合量规,并把复杂的测量任务所需时间从小时减到分钟。 三坐标测量机的功能是快速准确地评价尺寸数据,为操作者提供关于生产过程状况的有用信息,这与所有的手动测量设备有很大的区别。将被测物体置于三坐标测量空间,可获得被测物体上各测点的坐标位置,根据这些点的空间坐标值,经计算求出被测物体的几何尺寸,形状和位置。 三坐标测量机的组成:1,主机机械系统(X、Y、Z三轴或其它); 2,测头系统; 3,电气控制硬件系统; 4,数据处理软件系统(测量软件);三坐标测量机在现代设计制造流程中的应 用逆向工程定义:将实物转变为CAD模型相关的数字化技术,几何模型重建技术和产品制造技术的总称。 广义逆向工程:包括几何逆向,工艺逆向,材料逆向,管理逆向等诸多方面的系统工程。 正向工程:产品设计-->制造-->检验(三坐标测量机) 逆向工程:早期:美工设计-->手工模型(1:1)-->3 轴靠模铣床当今:工件(模型)-->3维测量(三坐标测量机)--> 设计à制造逆向工程设备: 1,测量机:获得产品三维数字化数据(点云/特征); 2,曲面/实体反求软件:对测量数据进行处理,实现曲面重构,甚至实体重构; 3, CAD/CAE/CAM软件; 4,数控机床;

三坐标测量仪应用浅谈

三坐标测量仪应用浅谈-机械制造论文 三坐标测量仪应用浅谈 思瑞测量技术(深圳)有限公司 1 三坐标测量房间温度、湿度要求 在工业生产领域,我们会经常的碰到这种各样的问题,其中测量问题应该是最大的问题,因此人们为了能够提高工业产品的精度,研发出了一些先进的测量工具,这些工业测量工具能够有助于我们制造的工业产品更加符合标准,同时也是未来工业领域发展的必然要求。目前三坐标在工业生产中应用的范围非常的广泛,因为能够解决高精度的几何零件和曲面测量问题,同时在工业生产中一些比较复杂的零件也可以借助三坐标进行测量,同时还能够进行接触与非接触的连续扫描,能够在最大限度上提供最精准的数据。在国内三坐标品牌中,思瑞测量生产的三坐标已连续五年生产和销量第一。 我们都知道高精尖的测量仪器,对于测量室的温度、湿度要求比较高,因此我们在进行测量的时候,必须能够保证测量室的温度、适度符合相关的需求,只有这样才能发挥测量仪器的最大功用。 首先,如果是温度或者湿度与要求的值相差太大的话,可能直接影响测量的结果。目前三坐标测量仪使用的温度一般控制在20℃±2℃,因此我们尽可能的保证我们测量室内的温度控制在这个范围内,这样才能提高测量的精准度。 其次,湿度也要控制在50%±10%的范围内。湿度如果太大,一方面影响测量的准确度,另一方面也能影响测量机的使用寿命,如果我们的测量室在南方,那么在夏季(即使在冬季),我们对于测量室内的湿度更应该进行严格的控制,需要抽湿机或者其它的除湿设备保证室内湿度符合规定范围。湿度的增加也

能够直接锈蚀三坐标测量仪的某些关键核心部件,直接损害仪器。 湿度相比较温度对于三坐标测量仪的影响会更大,因此必须将湿度控制在50%±10%的范围内,避免湿度、温度过高或者过低对于仪器产生影响,三坐标本身仪器的价格比较贵,最好能够妥善的保护,最好能设立专门的测量室。 2 三坐标测量仪构成及功能简介 工业现代化水平的不断提高,要求必须有先进的仪器作为支撑,因为本身工业生产领域需要大量的测量工作,因此先进的测量仪器成为了关键性的工具,很多实力比较强的工业生产厂家,都有自己专门的测量部门,同时为了提高测量的精度和准确度,购买了大量的先进的测量仪器,目的就是能够保证工业产品的质量,这里我们简单介绍一种应用范围比较广泛的测量仪器——三坐标测量仪。 目前在工业测量领域发挥重大的作用,如:在汽车零部件测量、模具测量、齿轮测量、五金测量、电子测量、叶片测量、机械制造等方面均发挥了极为重要作用的仪器,那就是三坐标测量仪。在国内品牌中主要生产三坐标测量仪的厂家——思瑞测量,近年来生产和销量排名连续五年第一。三坐标测量仪在测量方面发挥着重要的作用,它是怎样构成的呢?这也是目前很多想了解此设备的人关注的问题。 三坐标测量仪的构成及功能如下: 1、工作台(一般采用花岗石),用于摆放零件支撑桥架;工作台放置零件时,一般要根据零件的形状和检测要求,选择适合的夹具或支撑。要求零件固定要可靠,不使零件受外力变形或其位置发生变化。大零件可在工作台上垫等高块,小零件可以放在固定在工作台上的方箱上固定后测量。 2、桥架,支撑Z 滑架,形成互相垂直的三轴;桥架是测量机的重要组成

三坐标测量机控制系统有哪些类型

三坐标测量机控制系统有哪些类型? 本资料出自东莞嘉腾仪器仪表有限公司 三坐标测量仪作为高精密测量仪器,在多个领域被广泛应用。越来越多的企业开始使用三坐标测量仪。在使用三坐标测量仪前,我们很有必要对其进行系统的了解。而控制系统作为三坐标测量机的三大部分组成之一,自然也是三坐标测量仪最关键的几大组成部分。 控制系统主要功能是:读取空间坐标值,对测头信号进行实时响应与处理,控制机械系统实现测量所必需的运动,实时监测坐标测量机的状态以保证整个系统的安全性与可靠性,有的还包括对坐标测量机进行几何误差与温度误差补偿以提高测量机的测量精度。下面,我们来了解下控制系统的分类。 从控制系统的角度划分,三坐标测量机可分为手动型、机动型及CNC数控型三种模式。早期的坐标机以手动型和机动型为主,当时的控制系统主要完成空间坐标值的监控与实时采样。随着计算机技术及数控技术的发展,CNC型控制系统变得日益普及,高精度,高速度,智能化成为三坐标测量机控制系统发展的主要趋势。一.手动控制系统 手动控制系统主要包括坐标测量系统、测头系统、状态监测系统等。 坐标测量系统是将X,Y,Z 三个方向的光栅信号经过处理后,送入计数器,CPU 读取计数器中的脉冲数,计算出相应的空间位移量。 测头系统的作用是当手动移动测头去接触工件,测头发出的信号用作计数器的锁存信号和CPU的中断信号,锁存信号将X,Y,Z三轴的当前光栅数值记录下来,

CPU在执行中断服务程序时,读取计数器中的锁存值,这样就完成了一个坐标点的采集。计算机通过这些坐标点数据分析计算出工件的形状误差和位置误差。 随着半导体反唇相讥与计算机技术发发展,可将光栅信号接口单元,测头控制单元,状态监测单元等集成在一块PCI或ISA总线卡上,直接插入计算机中,使得系统可靠性提高,成本降低,便于维护,易于开发。 手动三坐标测量机结构简、成本低、适合于对精度和效率要求不是太高、而要求低体格的用户。 二.机动控制系统 与手动型控制系统比较,机动型控制系统增加了电机、驱动器和操纵盒。测头的移动不再需要手动,而是用操纵盒通过电机来驱动。电机运转的速度和方向都通过操纵盒上手操杆偏摆的角度和方向来控制 机动型控制系统主要是减轻了操作人员的体力劳动强度人,是一种过渡机型,随着CNC系统成本的降低,机动型测量机目前采用得很少。 三. CNC控制系统 CNC系统的测量过程是由计算机控制的,它不仅可以实现自动测量,自学习测量,扫描测量,也可通过操纵杆进行机动测量。 数控系统以控制器为核心,数控型三坐标测机除了在X,Y,Z三个方向装有三根光栅尺及电机、传动等装置外,还具有了以控制器和光栅组成的位置环;控制器不断地将计算机给出的理论位置与光栅反馈回来的实测位置进行比较,通过PID参数的控制,随时调整输出的驱动信号,努力使测量机的实际位置与计算机要求理论位置保持一致。

提高三坐标测量机测量螺纹孔位置度精度的方法

提高三坐标测量机测量螺纹孔位置度精度的方法 史洋 【摘要】现有的三坐标测量机测量螺纹孔位置度的方法普遍存在测量不确定度较大的问题,如何通过改进三坐标测量螺纹孔的方法来降低螺纹孔位置度测量不确定度呢?本文探索了一种三坐标测量螺纹孔位置度的方法,可有效降低螺纹孔位置度的测量不确定度,通过检测实例与现有的测量方法比较,测量误差明显降低,这种测量螺纹孔位置度的新方法有一定的推广价值。 【关键词】螺纹孔位置度三坐标测量方法 1.问题的提出 三坐标测量螺纹孔位置度的准确性一直受到操作人员、维修人员、质量人员、工艺及产品设计人员的质疑,有许多机械制造企业已经完全不用三坐标测量螺纹孔位置度了,仅测量螺纹孔底孔(光孔)的位置度,或者用螺纹孔底孔(光孔)的位置度来代替螺纹孔位置度,这种处理的方法仅对加工刀具为丝锥且底孔已经经过了钻削加工的螺纹孔位置度控制有一定的效果,对车削、铣削、挤压成型的螺纹孔位置度的质量控制存在一定的风险,对直接在毛坯上攻丝的螺纹孔位置度测量就显得误差很大,虽然这种螺纹孔的位置度可采用螺纹芯轴来测量,但螺纹芯轴本身的误差以及配合误差带来的不确定度是无法消除和回避的。另外,三坐标测量螺纹孔位置度的准确性也让我们三坐标操作者感到一定的困惑,虽然我们在测量方法上做了一些改进,但每一次改进只能解决一类个性化的问题或者仅能在一定程度上降低测量误差,对于螺纹孔位置度要求较高的测量,仍然无法保证测量的重复性和一致性,这里固然有螺纹孔的加工不规则性原因,也有螺纹孔加工方法不同带来的原因,但三坐标测量螺纹孔位置度的方法还有待进一步的改进和完善,还有很多值得探索实践的地方。 2.三坐标测量螺纹孔位置度现有方法总结及误差分析 三坐标用户目前所采用的螺纹孔位置度的测量方法主要有以下三种:第一种方法同测量光孔一样在螺纹孔同一截面上采四个点测量一个圆,计算该圆心相对评价基准的位置度;第二种方法是在螺纹孔中加装螺纹芯轴,在芯轴上的同一截面上采4个点测量一个圆,计算该圆心相对评价基准的位置度;第三种方法是沿着螺纹孔中螺纹的旋转方向按1/4螺距步进采4个点测量一个圆,求该圆心相对评价基准的位置度。 三种测量方法误差分析:第一种测量方法:螺纹孔内同一截面上采点测量时,所采同一截面四个点构成的圆的圆心一定不在螺纹孔的轴线上,在评定螺纹孔位置度时,这个误差就带入到评定结果中,且同一孔不同截面、不同的孔所测圆的圆心偏离螺纹轴线的位置

传感器在三坐标测量仪中应用

传感器在三坐标测量仪中的应用 三坐标测量机是一类大型精密测量仪器。它具有空间二个相互垂直的运动导轨 和祁应的二个坐标的位移测量装置,并配有不同性能的测量头、实现对空间点、线、面及其相互 位置呐测量。 一、三坐标测量仪的传感检测系统 二:坐标测量仪的种类较多,性能各异,但其构成框图大多如图15—11所示。 三坐标测量仪由机械部分、ATMEL代理商计算机和二坐标测量仪系统软件部分、测量系统、测量头(探 头)及附件构成。其中测量系统对三坐标测量仅的测量精度、成本影响较大。测量系统种类很 多,按其性质可分为机械式测量系统、光学式测量系统和电学式测星系统。 ‘1)机械式测量系统机械式测量系统在现代坐标测量仪上/、V用已经很少。 (2)光学式测旦系统最常见的是光栅测量系统。它是利用美尔条纹原理检测坐你的移 动量。由于光栅精度高,信号样易纫分,因此,现代二坐标测量仪,持别足计量型测量仪,更多 采用这种测量系统。使用令箭保持清洁的工作环境。除光栅测量系统外,其他光学式测量系 统尚有光学读数刻线尺、光电显微镜和光学编码器、激光下涉仪等, (3)电学式测星系统最常见的是感应同步器测量系统和磁尺测量系统。感府同枣器的

特点足成本低,对环境的适应性强、个伯灰尘和油污,精度在Lm内通常可达l o Mm,常用十少 产型三坐标测量仪。舷尺也心容易制造、成本低品安装等优点.其精度略低3:感应向步器,在 600 n,m内约为主10 J1”,在中、高精度三坐标测旦仪L应用较少。 二、三坐标测量仪的测量探头 ;坐标测量探头安装在各轴的下端。被侧物不同v测旦探头的形式也不向v阁懒—12为常 用的儿种形式。 三坐标测量仪的测量探头按测量方法分为接触式和非接触式购大类。单片机接触式测头应用比 较厂没,非接触式测头多用于一些特殊场合的测量。接触式测头可分为硬测头和软测头两类。 硬测头多为机械测头.主要用于手动测里和精度要求不高的场合,现代三坐标测量仪(特别是 L’N(”三坐标测量仪)牧少使用这种测量头。软测头是目前三坐标测量仪普遍使用的测量头。

三坐标测量机测量原理

三坐标测量机测量原理 sally 2010-2-11 12:11:54 三坐标测量机是测量和获得尺寸数据的最有效的方法之一,因为它可以代替多种表面测量工具及昂贵的组合量规,并把复杂的测量任务所需时间从小时减到分钟。三坐标测量机的功能是快速准确地评价尺寸数据,为操作者提供关于生产过程状况的有用信息,这与所有的手动测量设备有很大的区别。将被测物体置于三坐标测量空间,可获得被测物体上各测点的坐标位置,根据这些点的空间坐标值,经计算求出被测物体的几何尺寸,形状和位置。三坐标测量机的组成:1,主机机械系统(X、Y、Z三轴或其它);2,测头系统;3,电气控制硬件系统;4,数据处理软件系统(测量软件);三坐标测量机在现代设计制造流程中的应用逆向工程定义:将实物转变为CAD模型相关的数字化技术,几何模型重建技术和产品制造技术的总称。广义逆向工程:包括几何逆向,工艺逆向,材料逆向,管理逆向等诸多方面的系统工程。正向工程:产品设计-->制造-->检验(三坐标测量机)逆向工程:早期:美工设计-->手工模型(1:1)-->3轴靠模铣床当今:工件(模型)-->3维测量(三坐标测量机)-->设计à制造逆向工程设备:1,测量机:获得产品三维数字化数据(点云/特征);2,曲面/实体反求软件:对测量数据进行处理,实现曲面重构,甚至实体重构;3,CAD/CAE/CAM软件;4,数控机床;逆向工程中的技术难点:1,获得产品的数字化点云(测量扫描系统);2,将点云数据构建成曲面及边界,甚至是实体(逆向工程软件);3,与CAD/CAE/CAM系统的集成;(通用 CAD/CAM/CAE软件)4,为快速准确地完成以上工作,需要经验丰富的专业工程师(人员);

三坐标测量步骤

用三坐标测量机测量凸轮轴端盖主要几何数据的步骤: 一、路径规划:工件为一个盘状的零件,先将零件正面向上放置在测量工作台上,测量正面 可以测出的几何要素,再将零件翻一面放置,测量底面的几何要素 二、将凸轮轴端盖已加工表面朝下放在一个平整的工作台上,尽量保持零件的中心轴线与工 作台的X轴运动方向平行以便于测量 三、依照凸轮轴正面的几何要素及几何要素间的相互关系,在一张A4纸上画出凸轮轴几何 要素的分布草图 四、启动三坐标测量机,在测量之前将三坐标测量机的测头接触一个可固定在工作台确定位 置的钢球,接触数次以消除测头的磨损量 五、将三坐标测量机的测量模式切换到测量平面,用测头接触凸轮轴端盖上表已加工好的平 面数次以确定该平面,将该平面设置为基准平面 六、将测量模式切换到圆柱测量,依次测量位于端盖中部的四个大孔,测量后将四个孔的直 径和各孔之间的相对距离标注在之前画的草图上(圆柱的测量方法为:将探头摆放至孔的中心位置附近并将测头在Z方向的移动锁定,然后测量孔内同一高度上三点以上数据,然后改变Z方向的位置之后再将Z方向运动锁定,再测三个以上位置点就可以确定整个圆柱孔的直径以及孔的中心位置) 七、测量完几个位于中部的大孔之后,用同样的方法测量其它直径较小的孔,要求逐一测出 各个孔的直径及相对位置并在提前画出的草图上标出相应的几何尺寸,以便于后期分析误差等 八、用测圆柱的方法测量两个凸台轮廓圆的直径及圆心位置并在草图上标出 九、用测平面的模式测量凸台上两个平面相对于基准平面的距离,并在草图上标出数据 十、用测平面的方法测出凸轮轴前后左右四个平面,早草图上分别标注出前后和左右平面之 间的距离以及和孔等几何要素之间的距离 十一、用垫块作为支撑将零件换一个面放置,用测量平面的方法测出一个平面作为基准平面 十二、用测圆柱的方法测量底面几个孔的直径大小,在草图上记录数据

三坐标测量机操作规范标准[详]

三坐标测量仪操作规 1 围 本操作规规定了三坐标测量的准备、测量机的操作步骤、注意事项及维护保养的要求。 本操作规适用于公司三坐标测量机的操作。 2 规性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改)适用于本文件。 GB/T 16857.1:2002 产品几何量技术规(GPS) 词汇 3 术语和定义 3.1 三坐标测量机 通过运转探测系统测量工件表面空间坐标的测量系统。 (源自GB/T 16857.1:2002,2.1) 3.2 EHS EHS是环境 Environment、健康Health、安全Safety的缩写。 4 职责 4.1 三坐标技术员 负责测量程序的编辑,操作员的测量培训, 仪器的使用与维护保养,备品备件的申请、选型。 4.2 操作员 负责测量程序的编辑,仪器的使用与维护保养,备品备件工装的申请、选型。 4.3 计量员 负责仪器的周期校准工作。 5 过程描述 5.1 测量前准备 5.1.1 开机前应用蘸有无水乙醇的无尘布擦拭机器导轨,导轨擦拭禁用任何性质的油脂。 本标准文件为上海万泽精密铸造有限公司所有,内部使用,拥有著作权及法律规定的任何权益。未经授权,任何个人或组织均不得以任何方式发行、披露或使用,否则其行为将受到法律许可范围内的起诉。 1 / 1

5.1.2 开机前检查是否有阻碍机器运行的障碍物。 5.1.3 零件检测时应满足下列环境要求: 1) 室温度:20℃±2℃; 2) 相对湿度:35﹪~75﹪; 3) 气压要求:大于0.45Mpa,小于0.75Mpa。 5.1.4 检查空压气管是否接好,气管是否漏气。气压低于规定值时,不准操作,否则会严重损坏机器。 5.1.5 被测零件在检测之前,应先清洗去毛刺,防止在加工完成后零件表面残留的冷却液及加工残留物影响测量机的测量精度及测头的使用寿命。被测零件在测量之前应在室恒温,如果温度相差过大就会影响测量精度。根据零件的大小、材料、结构及精度等特点,适当选择恒温时间,以适应测量仪室温度,减少冷热对零件尺寸的影响。 5.1.6 设备确认性能完好方可作业。 5.2 三坐标测量仪的操作 5.2.1 开机操作: A. 接通系统总电源; B. 接通控制系统电源; C. 首先将空压气管开关打开; D. 待气压正常后,先打开控制柜然后打开计算机电源开关; E. 启动PC-DMIS软件,打开操作盒上的急停按钮; F. 按软件提示进行”回零”。 5.2.2 测量: A. 进入测量系统,依操作顺序及相关测量方法进行测量; B. 选择合适的测量探头,测量标准球直径; C. 建立新的测量项目,放置测量工件; D. 进行工件尺寸测量,记录测量数值; E. 保存测量报告,完成测量工作并确认; F. 退出测量系统; G. 取走工件。 5.2.3 关机步骤: A. 将测头座A角转到90度,B角转到180度; B. 将Z轴运行至安全位置(不易被触碰的位置); C. 按下操作盒上的急停按钮,关断电源; D. 退出测试软件的操作界面; E. 关闭计算机; F. 关闭电源。 5.3 注意事项 5.3.1 请勿在计算机安装其他应用软件,以免三坐标操作软件不能正常运行。 5.3.2 在开机前必须检查计算机与主机的连接线、电源插头插座是否正确,有无松动,确认正确后,方可开机。 5.3.3 防止计算机被病毒感染。 5.3.4 严禁用脱脂棉清洗导轨,以防止棉绒进入气浮块中。 5.3.5 保养过程中不能给任何导轨加任何性质的油脂。 5.3.6 禁止在工作台导轨面上放置任何物品,不要用手直接接触导轨工作面。

三坐标测量机的介绍及应用领域

三坐标测量机的介绍及应用

摘要:我公司是专业提供机械测量解决方案的服务提供商,包括三坐标测量、径向跳动测量等。根据我们多年为客户提供服务的实战经验,本文就三坐标测量机的定义,测量原理,测量方法,以及应用等内容进行详细的讲解。 一、三坐标测量机的介绍 三坐标测量机(Coordinate Measuring Machine, CMM) 是指在一个六面体的空间范围内,能够表现几何形状、长度及圆周分度等测量能力的仪器,又称为三坐标测量仪或三次元。 二、三坐标测量机测量原理 三坐标测量机是测量和获得尺寸数据的最有效的方法之一,因为它可以代替多种表面测量工具及昂贵的组合量规,并把复杂的测量任务所需时间从小时减到分钟。三坐标测量机的功能是快速准确地评价尺寸数据,为操作者提供关于生产过程状况的有用信息,这与所有的手动测量设备有很大的区别。将被测物体置于

三坐标测量空间,可获得被测物体上各测点的坐标位置,根据这些点的空间坐标值,经计算求出被测物体的几何尺寸,形状和位置。 三、三坐标使用方法: CMM按测量方式可分为接触测量和非接触测量以及接触和非接触并用式测量,接触测量常于测量机械加工产品以及压制成型品、金属膜等。本文以接触式测量机为例来说明几种扫描物体表面,以获取数据点的几种方法,数据点结果可用于加工数据分析,也可为逆向工程技术提供原始信息。扫描指借助测量机应用PC- DMIS软件在被测物体表面特定区域内进行数据点采集。此区域可以是一条线、一个面片、零件的一个截面、零件的曲线或距边缘一定距离的周线。扫描类型与测量模式、测头类型及是否有CAD文件等有关,状态按纽(手动/DCC)决定了屏幕上可选用的“扫描”(SCAN)选项。若用DCC方式测量,又具有CAD 文件,那么扫描方式有“开线”(OPEN LINEAR)、“闭线”(CLOSED LINEAR)、“面片”(PATCH)、“截面”(SECTION)及“周线”(PERIMETER)扫描。若用DCC方式测量,而只有线框型CAD文件,那么可选用“开线”(OPEN LINEAR)、“闭线”(CLOSED LINEAR)和“面片”(PATCH)扫描方式。若用手动测量模式,那么只能用基本的“手动触发扫描”(MANUL TTP SCAN)方式。若在手动测量方式,测头为刚性测头,那么可用选项为“固定间隔”(FIXED DELTA)、“变化间隔”(VARIABLE DELTA)、“时间间隔”(TIME DELTA)和“主体轴向扫描”(BODY AXIS SCAN)方式。 注意事项: 正确使用三坐标测量仪对其使用寿命、精度起到关键作用,应注意以下几个问题: 1、工件吊装前,要将探针退回坐标原点,为吊装位置预留较大的空间;工件吊 装要平稳,不可撞击三坐标测量仪的任何构件。 2、正确安装零件,安装前确保符合零件与测量机的等温要求。 3、建立正确的坐标系,保证所建的坐标系符合图纸的要求,才能确保所测数据 准确。 4、当编好程序自动运行时,要防止探针与工件的干涉,故需注意要增加拐点。

三坐标测量机的测头

三坐标测量机的测头

触发式测头是对工件表面进行离散点数据的采集,扫描系统能够连续采集大量表面点的 数据,从而给出关于工件表面形状清晰描述。扫描是在需要描述工件形状或者是测量复杂形状工件时的理想选择。常用测头如下: PH10M可分度机动测座 产品综述: PH10M是功能强大的分度机动测座,能够携带长加长杆和各种测头。具备高度可重复性的动态连接,允许快速的测头或加长杆更换而不需要重新校正。 PH10M特点: - 自动关节固定,可重复测头定位 - 与所有M8螺纹的测头兼容 - 能够携带长达300mm的加长杆 - A 轴105度,B 轴360度,7.5度进位,共720个可重复定位 - 杆固定 PH10MQ/PH10MQH可分度机动测座 产品综述: PH10MQ/PH10MQH,具有紧凑的机构,能够固定在测量机Z轴内部,从而提高了Z向的行程,使得测量空间更大。 PH10MQ/PH10MQH可分度测座,功能强大。能够携带长加长杆和各种高性能测头,SP600M 或者是TP7M。 基于其高重复性和可自动连接,使得在运行过程中自动进行测头和探针的更换,而不需要重新校准(使用ACR1)。

产品特点: - 自动关节固定,可重复测头定位 - 与所有M8螺纹的测头兼容 - 能够携带长达300mm的加长杆 - A 轴105度,B 轴180度,7.5度进位,共720个可重复定位 - 杆固定 PH10T可分度机动测座 PH10T,属于通用的分度式测座。能够实现720个位置的重复定位,从而可完成对于任何工件特征的检测。所有M8螺纹的测头,都能够直接安装在PH10T自身的M8螺纹孔上。PH10T 是PH10系列测座的扩展,采用PHC 10-2控制器,并与其他许多RENSHAW产品兼容。PH10T特点: - 与所有M8螺纹的测头兼容 - 能够携带长达300mm的加长杆 - A 轴105度,B 轴180度,7.5度进位,共720个可重复定位 - 杆固定

三坐标测量机的组成

三坐标测量机的组成 三坐标测量机可分为主机、测头、电气系统三大部分 主机结构分为: 1、框架,是指测量机的主体机械结构架子。它是工作台、立柱、桥框、壳体等机械结构的集合体; 2、标尺系统,是测量机的重要组成部分,是决定仪器精度的一个重要环节。三坐标测量机所用的标尺有线纹尺、精密丝杆、感应同步器、光栅尺、磁尺及光波波长等。该系统还应包括数显电气装臵。 3、导轨,是测量机实现三维运动的重要部件。测量机多采用滑动导轨、滚动轴承导轨和气浮导轨,而以气浮静压导轨为主要形式。气浮导轨由导轨体和气垫组成,有的导轨体和工作台合二为一。气浮导轨还应包括气源、稳压器、过滤器、气管、分流器等一套气体装臵。 4、驱动装臵,是测量机的重要运动机构,可实现机动和程序控制伺服运动的功能。在测量机上一般采用的驱动装臵有丝杆丝母、滚动轮、钢丝、齿形带、齿轮齿条、光轴滚动轮等传动,并配以伺服马达驱动。直线马达驱动正在增多。 5、平衡部件,主要用于Z 轴框架结构中。它的功能是平衡Z 轴的重量,以使Z 轴上下运动时无偏得干扰,使检测时Z 向测力稳定。如更换Z 轴上所装的测头时,应重新调节平衡力的

大小,以达到新的平衡。Z 轴平衡装臵有重锤、发条或弹簧、气缸活塞杆等类型。 6、转台与附件,转台是测量机的重要元件,它使测量机增加一个转动运动的自由度,便于某些种类零件的测量。转台包括分度台、单轴回转台、万能转台(二轴或三轴)和数控转台等。用于坐标测量机的附件很多,视需要而定。一般指基准平尺、角尺、步距规、标准球体(或立方体)、测微仪及用于自检的精度检测样板等。 三维测头即是三维测量的传感器,它可在三个方向上感受瞄准信号和微小位移,以实现瞄准与测微两种功能。测量的测头主要有硬测头、电气测头、光学测头等,此外还有测头回转体等附件。测头有接触式和非接触式之分。按输出的信号分,有用于发信号的触发式测头和用于扫描的瞄准式测头、测微式测头。 电气系统分为: 1、电气控制系统是测量机的电气控制部分。它具有单轴与多轴联动控制、外围设备控制、通信控制和保护与逻辑控制等。 2、计算机硬件部分,三坐标测量机可以采用各种计算机,一般有PC 机和工作站等。 3、测量机软件,包括控制软件与数据处理软件。这些软件可进行坐标交换与测头校正,生成探测模式与测量路径,可用于基本几何元素及其相互关系的测量,形状与位臵误差测量,齿

三坐标测量机的简介

第一章三坐标测量机的概述 一、三坐标测量机的发展历史 世界上第一台测量机是英国FERRANTI公司于1956年研制成功,当时的测量方式是测头接触工件后,靠脚踏板来记录当前坐标值,然后使用计算器来计算元素间的位置关系。1962年菲亚特汽车公司一位质量工程师在意大利都灵创建了世界上第一家专业制造坐标测量设备的公司,即先在仍然知名的DEA(Digital Electronic Automation)公司。随后,DEA公司先后推出了手动、机动并首先使用气浮导轨技术的测量机,也相应配备了各种测头和软件,使之成为世界上最大的测量机供应商之一。1964年,瑞士SIP公司开始使用软件来计算两点间的距离,开始了利用软件进行测量数据计算的时代。随后的国ZEISS公司使用计算机辅助工件坐标系代替机械对准,从此测量机具备了对工件基本几何元素尺寸、形位公差的检测功能。随着计算机的飞速发展,测量机技术进入了CNC控制机时代,完成了复杂机械零件的测量和空间自由曲线曲面的测量,测量模式增加和完善了自学习功能,改善了人机界面,使用专门测量语言,提高了测量程序的开发效率。从90年代开始,随着工业制造行业向集成化、柔性化和信息化发展,产品的设计、制造和检测趋向一体化,这就对作为检测设备的三坐标测量机提出了更高的要求,从而提出了新一代测量机的概念。其特点是: 1、具有与外界设备通讯的功能; 2、具有与CAD系统直接对话的标准数据协议格式; 3、硬件电路趋于集成化,并以计算机扩展卡的形式,成为计算机的大型外部设备。 到1992年全球就拥有三坐标测量机46100台,工业发达的欧美、日韩每6-7台机床配备一台三坐标测量机,我国三坐标测量机生产始于20世纪70年代,现在已被广泛应用在机械制造、汽车、家电、电子、模具和航空航天等制造领域,并保持快速增长。国内外生产三坐标的厂家较多如:德国的蔡司、意大利的Cord3、日本的三丰、美国的谢菲尔德,国内的海克斯康、青岛雷顿、西安爱德华、北京航空精密机械研究所(303所)、上海机床厂、上海第三机床厂、北京二机床、北京机床研究所、天津大学和新天光学仪器厂。 二、三坐标测量机发展的意义和作用 随着人们生活水平的提高和制造业的快速发展,特别是机床、机械、汽车、航空航天和电子工业,各种复杂零件的研制和生产需要先进的检测技术;同时为应对全球竞争,生产现场非常重视提高加工效率和降低生产成本,其中,最重要的便是生产出高质量的产品。为此,必须实行严格的质量管理,只有在保证高质量生产的前提下,制造业才能生存和发展。因此,为确保零件的尺寸和技术性能符合要求,必须进行精确的测量,因而体现三维测量技术的三坐标测量机应运而生,并迅速发展和日趋完善。三维测量是基于以下的客观要求发展起来的。 1、越来越多的工件需要进行空间三维测量,而传统的测量方法不能满足生产的需要。传统测量方

三坐标测量位置度的方法及注意事项

三坐标测量位置度的方法及注意事项 位置度检测是机动车零部件检测中经常进行的一项常规检验。所谓“位置度”是指对被评价要素的实际位置对理想位置变动量的指标进行限制。在进行位置度检测时首先要很好地理解和消化图纸的要求,在理解的基础上选择合适的基准。位置度的检测就是相对于这些基准,它的定位尺寸为理论尺寸。 标签:三坐标;位置度 1 位置度的三坐标测量方法 1.1 计算被测要素的理论位置 ①根据不同零部件的功能要求,位置度公差分为给定一个方向、给定两个方向和任意方向三种,可以根据基准体系及确定被测要素的理论正确位置的两个理论正确尺寸的方向选择适当的投影面,如XY平面、XZ平面、YZ平面。②根据投影面和图纸要求正确计算被测要素在适当投影面的理论位置。 1.2 根据零部件建立合适的坐标系。在PC-DMIS软件中,可以把基准用于建立零件坐标系,也可以使用合适的测量元素建立零件坐标系,建立坐标的元素和基準元素可以分开。 1.3 测量被测元素和基准元素。在被测元素和基准元素取点拟合时,最好使用自动程序进行,以减少手动检测的误差。 1.4 位置度的评价。①在PC-DMIS软件中,位置度的评价可以直接点击位置度图标。②在位置度评价对话框中包含两个页面,特征控制框和高级,首先根据图纸要求设置相应的基准元素,在基准元素编辑窗口中只会出现在编辑当前光标位置以上的基准特征,如图1所示。③基准元素设置完成,回到特征控制框选择被测元素,设置基准,输入位置度公差。④在位置度评价的对话框中选择高级,在此对话框中可以设置特征控制框尺寸的信息输出方式和分析选项。如图2的对话框,在标称值一栏中手动键入被测要素的理论位置值,点击评价。 1.5 在报告文本中刷新就可以看到所评价的位置度结果。 2 三坐标测量位置度的注意事项 2.1 评价位置度的基准元素选择和建立坐标系的元素选择有相似之处,都要用平面或轴线作为A基准,用投影于第一个坐标平面的线作为B基准,用坐标系原点作为C基准。如果这些元素不存在,可以用构造功能套用、生成这些元素。 2.2 对位置度公差的理解。如位置度公差值t前加注φ,表示公差带是直径

三坐标测量位置度的方法及注意事项

三坐标测量位置度的方法及注意事项 三坐标测量位置度的方法及注意事项 摘要:位置度检测是机动车零部件检测中经常进行的一项常规检验。所谓"位置度";是指对被评价要素的实际位置对理想位置变动量的指标进行限制。在进行位置度检测时首先要很好地理解和消化图纸的要求,在理解的基础上选择合适的基准。位置度的检测就是相对于这些基准,它的定位尺寸为理论尺寸。 关键词:三坐标;位置度;方法 一、位置度的三坐标测量方法 1.1 计算被测要素的理论位置 ①根据不同零部件的功能要求,位置度公差分为给定一个方向、给定两个方向和任意方向三种,可以根据基准体系及确定被测要素的理论正确位置的两个理论正确尺寸的方向选择适当的投影面,如XY平面、XZ平面、YZ平面。②根据投影面和图纸要求正确计算被测要素在适当投影面的理论位置。 1.2 根据零部件建立合适的坐标系。在PC-DMIS软件中,可以把基准用于建立零件坐标系,也可以使用合适的测量元素建立零件坐标系,建立坐标的元素和基准元素可以分开。 1.3 测量被测元素和基准元素。在被测元素和基准元素取点拟合时,最好使用自动程序进行,以减少手动检测的误差。

1.4 位置度的评价。①在PC-DMIS软件中,位置度的评价可以直接点击位置度图标。 ②在位置度评价对话框中包含两个页面,特征控制框和高级,首先根据图纸要求设置相应的基准元素,在基准元素编辑窗口中只会出现在编辑当前光标位置以上的基准特征,如图1所示。③基准元素设置完成,回到特征控制框选择被测元素,设置基准,输入位置度公差。 ④在位置度评价的对话框中选择高级,在此对话框中可以设置特征控制框尺寸的信息输出方式和分析选项。如图2的对话框,在标称值一栏中手动键入被测要素的理论位置值,点击评价。 1.5 在报告文本中刷新就可以看到所评价的位置度结果。 二、三坐标测量位置度的注意事项 2.1 评价位置度的基准元素选择和建立坐标系的元素选择有相似之处,都要用平面或轴线作为A基准,用投影于第一个坐标平面的线作为B基准,用坐标系原点作为C基准。如果这些元素不存在,可以用构造功能套用、生成这些元素。 2.2 对位置度公差的理解。如位置度公差值t前加注φ,表示公差带是直径为t的圆内的区域,圆心的位置由相对于基准A和B的理论值确定。(如图3) 如位置度公差值前加注Sφ,表示公差带是直径为t的球内的区域,球心的位置由相对于基准A、B和C的理论值确定。(如图4) 2.3 对于深度小于5mm的孔,可以直接计算测量其位置度。对于深度大于5mm的孔,必须采用先测量圆柱,然后与上、下端面求相交,再对交点求位置度的方法来控制测量误差,上、下端面一般是指整个孔的两端面。或者尽量取靠近两端面孔的截面位置,如果仅测量一个截面,求其位置度是不能保证此孔在整个长度范围上所有截面的位置度都合格的。因为交点是圆柱轴线与两端平面相交得到,不管轴线方向往哪个方向倾斜,如果两端交点位置度合格,中间各截面的位置度也应该是合格的。 2.4 对于有延伸公差带要求的,评价时要包含延伸的长度。 2.5 在位置度公差设置时,有时会出现[M] [L] 图标,它们的含义各不相同,其主要目的是为了尺寸公差和形状、位置度公差之间的相互补偿。 ①孔的最小实体位置度公差。

三坐标测量机软件的DMIS是什么意思

三坐标测量机软件的DMIS是什么意思 DMIS的概述: DMIS的目的是提供计算机系统和测量机设备间双向传递检测数据的统一标准.这个标准制定了测量程序和测量结果数据的中间格式,它有专门的语法格式表. 最初设计自动化设备间通信时,DMIS就被设计为具有较高的可读性和可编辑性,在没有计 算机辅助的情况下就可以编写检测程序和分析检测程序结果.随着高级编程语言的发展,DMIS 能作为三坐标测量设备(DME)语言实现并执行. DMIS提供了用于把检测程序传给三坐标测量设备,或者把尺寸和处理数据返回给分析、归档系统的语法表.连接到其他机器的测量设备通过使用DMIS语句可以直接或间接通过预处理器,把测量设备本身内在数据格式转换成DMIS格式或者使用后处理程序把DMIS格式转换成测量设备本身的数据格式. 使用DMIS格式作为数据交换标准的环境描述见,一个测量程序可以由多种不同的方法生成.测量程序可以由CAD系统、非图形系统、自动化系统,或者手工构建生成.一个编程系统可能需要一个将程序转换成DMIS格式的预处理器,这样DMIS测量程序就能在不同的三坐标测量设备(DME)上运行.中,DME I具有一个DMIS预处理器和后处理器,这些处理器把DMIS数据转化成机器自己独有的数据格式.DME IV用DMIS作为它的内在格式,所以就不需要预处理器和后处理器.同样,一个主机被用于控制DME II 和DME III.这个主机有一个后处理器,此后处理器将DMIS程序解码,并同时驱动两台DME,即使用了DMIS格式又使用了用户自定义的数据交换格式. 结果数据可能通过不同的方式被返回并转变成DMIS格式.例如,这个数据可以被直接转换成DMIS格式或通过后处理器转换.结果数据会传递到分析系统或者存贮系统,比如质量信息系统(QIS). 手工输入接口表明DMIS程序在没有计算机辅助的情况下手动编辑,并进行结果分析.另外,许多其他的DMIS数据交换格式也可以被应用. 一致性: DMIS的主要用途是使组织内部不同的三坐标测量设备以及计算机应用软件之间相互交换数据和存储测量数据,当然也包括和其它组织之间的数据交换.DMIS 已被广泛地应用且拓宽了测量系统和应用的范围.然而,在一个DMIS设备创建的DMIS 文件并不能完全的或者准确的被另一个DMIS 设备识别,除非DMIS 应用软件完全执行DMIS规范并完全执行标准的、公认的DMIS应用程序协议,这样才能成功的实现DMIS数据交互.DMIS是一个大而复杂的标准.供应商无需实现所有的标准,只需实现功能子集,这些子集被认为是规范协议. DMIS 协议的主要好处是:能确保符合DMIS标准要求的数据间的互用性,以及证明应用软件执行DMIS标准的能力.一旦应用软件通过了测试鉴定,在协议的约束下我们可以预见应用程序执行的结果. DMIS一致性测试的服务将专门由DNSC提供.DMIS一致性测试目的是确定:采用DMIS 标准的产品是否能够准确地执行DMIS规则及其关联的应用程序协议. 严格来说,DMIS规则只是一个规定数据交换格式的文本.然而,"DMIS"通常却包含:一个程序编辑器(产生DMIS的程序),一个解释器(识别DMIS的程序),以及元文件(实际的DMIS输入和输出文件).总的来说,一个程序编辑器、元文件和一个解释器组成了一个整地DMIS系统.

三坐标测量方法与实际应用探讨

三坐标测量方法与实际应用探讨 摘要:随着现代加工业的不断发展,测量工作的质量和效率也在不断提高,各 种现代测量方法得到了广泛的应用。三坐标测量是一种较为重要的坐标测量方法。本文就针对三坐标测量方法与实际应用进行了探讨。 关键词:三坐标测量方法;作用;实际应用 前言 三坐标测量仪器作为较为先进的测量系统,在一些结构较为复杂的精密工件 测量中应用有着较为重要的作用,可以对各种不同形状的机械零件进行系统的测 量分析,也可以在空间性的结构测量中应用,其测量也更为精准。 1三坐标测量方法分析 1.1坐标系转换 通过三坐标测量机的测量过程中,主要应用的转换方式就是平移式坐标系以 及旋转式坐标系系统。在实际工作过程中,对于其存在的斜孔测量分析的时候, 斜孔就会与坐标轴形成角度,可以通过坐标系进行旋转以及转换。在对其进行旋 转作业过程中,在达到特定角度的时候,其产生的斜孔的方向就会在一个坐标轴 中产生同向性的情况,这样就会给后期数据处理提供帮助。在旋转坐标系就可以 获得相关信息数据,可以通过原来的坐标系统对其进行计算分析,这样就会提升 测量的精准性以及便捷性。 1.2构造被测量素法 在一般状况中,产品的生产过程中台阶孔的大小具有较为重要的作用,而不 同台阶面自身构型的差异性,在进行测量过程中就会给侧头监测带来一定的影响。在通过三坐标检测机测量过程中,要通过垫块的方式对其进行延伸,增加被测物,其获得的最终数据要在减去延伸的数据内容,而剩下的就是其需要的信息数据。 在实践中,多数的检测物体都是不规则的形状,这样就直接的影响了监测的质量 与效果。对此,必须要通过三坐标测量机辅助作业,对其进行系统的数据分析, 这样才可以提升数据分析的精准性以及快速性。 1.3转换测量基准法 在测量一些相对复杂的模型过程中,其经常会存在基准与被测量要素不相同 的问题,其具有较为特殊的性质特征。对此,在测量过程中无法有效的控制精准度。在传统的测量过程中,其监测方式与手段均无法满足检测要求。在这种状况 之下,必须要通过转换基准法对其进行控制,将被测量的要素的基准进行对比计 算分析,通过换算获得其要检测的元素、及基准信息,了解其内在的关联性特征。在对其进行操作过程中,就可以有效的降低操作的复杂程度,进而在对加工件进 行正面加工,进而造成了工艺基准以及被测量的要素没有保持在相同的平面之中。在实践中,必须要保障在相同的平面中的两点对其进行定位,进而获得基准信息,在构建完善的坐标系统,测量其具体的坐标数值,在翻转工件,通过两个通孔角 对坐标信息反置处理,进而获得精准的坐标系统。 1.4其他尺寸测量应用 在实际的机械制造领域中,机械产品的尺寸数据较为繁多,通过信息尺寸数 据的收集整理,就会获得不同的信息数据。同时,必须要对具体的角度、球以及 同心度等尺寸信息进行测量,而多数的零件均会涉及到一定的几何问题,这样就 会导致零件的空间信息测量相对较为困难。对此,在实践中,可以通过三坐标测 量机对其进行测量,进行信息数据的处理,进而在根本上合理的控制形状公差。

相关文档
最新文档