初等数学与高等数学教学衔接问题的研究

初等数学与高等数学教学衔接问题的研究
初等数学与高等数学教学衔接问题的研究

初等数学与高等数学教学衔接问题的研究

摘要:如何将初等数学与高等数学进行有效衔接,成为相关教育者需要重点思考的问题。立足于初等数学与高等数学教学现状,主要分析了此二者相脱节的原因,同时提出了二者的有效衔接策略。

关键词:初等数学高等数学衔接问题策略

随着大学教育方式的转变,不管是从能力上来讲,还是从自觉性上来讲,高校学生的水平呈现出下降的趋势。在高等数学教学中,很多大一学生觉得高等数学难度较大,因此,他们学习高等数学的积极性较低。虽然导致学生学习积极性降低的原因有很多,但是初等数学与高等数学相脱节是一个非常重要的原因。

一、初等数学与高等数学教学脱节的原因

1.教育管理模式上的脱节。在中学阶段,升学率是众多老师所追求的目标。所以教师会设计明确的教学目标,引导学生学习相关的知识,在此阶段学生对老师的依赖度非常高。然而,当学生步入大学校门之后,有些学生学习目的不明确,因此,他们不愿意去学习数学这门学科。学生除了在课堂上能看到老师,在平时的课外活动时间几乎看不到老师的身影,在这种宽松的氛围下,学生都不知道该如何学习数

学。

2.教学方法上的脱节。初等数学教学进度会根据学生的接受情况来进行调整,如果很多学生难以消化上节课的知识,教师会放慢教学进度。同时在整节课堂上,教师会给学生留出足够多的练习时间,以此来让学生巩固本节课所学的知识。在初等数学教学中,教师将侧重点放在了培养学生的解题方法上,忽视了学生对数学概念的理解。然而在高等数学教学中,教师更加注重引导学生论证数学原理,深刻理解数学概念,另外教学进度比较快,每节课堂上教师会照本宣科,这就导致学生无法适应高等数学教学。

3.认识上的脱节。我们知道,微积分、空间解析几何、向量代数等是高等数学的主要组成部分。现阶段,中学数学教材中也有函数、向量等内容,所以当学生翻开高等数学书一看,他们觉得在中学阶段已经学习了这部分内容,现在根本就没有学习的必要。还有一部分学生是认为的:数学是一门公共课,并不是必修的专业课,没必要花费较多的时间去学习。这种错误的认识导致学生不太重视数学这门课。殊不知,不管是从深度上来讲,还是从广度上来讲,与高等数学教材相比较,中学数学教材中的内容就是九牛一毛。

4.教材上的脱节。在新课程改革的背景下,我国教育部不断修订了初等数学教材,与以前的教材相比较,内容发生了明显的变化。当前高等数学教材也在不断改版,但是仍

然在以前教材的基础上进行修订,这就导致初等数学教材中的内容与高等数学教材中的内容存在着脱节。

5.学习方法上的脱节。尽管高中生在学习中掌握了学习的方法,但是大部分学生仍然会陷入题海中,他们对数学概念的理解并不透彻,不能灵活运用数学公式,在做题中并不能做到举一反三。然而进入大学之后,学生在课堂也是随便一听,这种懒散的学习态度导致学生的认知能力没有得到提高,同时学生也没有掌握学习数学这门学科的方法。

二、探讨初等数学与高等数学教学衔接问题

(一)做好教学内容上的衔接

1.从绪论引导到内容贯通。在讲述绪论这部分内容的时候,教师要一一讲解绪论中的相关内容,还要过渡到内容的贯通上,换句话来讲,让学生站在新的高度来探讨初等数学与高等数学之间的共同之处与不同之处。

2.及时补授高等数学的预备知识。高等数学中包括了一些初等数学中的知识,但是在中学阶段,教师并没有讲授过这些知识,又或者教师讲授得不太透彻,这就导致学生对这部分知识的认识仅仅停留在表面上。针对这种情况,高等数学教师要在课堂上讲解初等数学知识,降低学生学习高等数学的难度。

(二)做好教学方法上的衔接

1.高等院校数学教师要适当放慢教学进度,将新知识

与旧知识相结合起来。高等院校数学教师要处理好新知识与旧知识间的关系,按照循序渐进的原则来讲授知识。与其他学科相比较,数学这门学科具有较强的系统性,新知识的教学是要建立在旧知识的基础上。在备课环节中,教师要分析初等数学与高等数学之间的内在联系,合理的处理高等数学教材。在课堂教学中,教师要巧用类比法,引导学生通过推敲旧知识来获得更多新的数学知识。

(三)利用教学比较来适当延伸知识点

比较这种思维方法可以让学生发现初等数学与高等数学之间的区别,让学生在比较的过程中掌握学习知识的方法。从范畴上来讲,初等数学属于常量数学;而高等数学却属于变量数学。因此,初等数学较为简单,而高等数学较为复杂、抽象。只有运用比较的教学方法,学生才可以顺利完成从初等数学过渡到高等数学。

(四)做好学习方法上的衔接

高等数学教学进度比较快,理论知识比较抽象,学生仅依靠课堂上的听听是无法消化这些知识的。为此,教师要让学生做好课前预习、课后复习,组织学生进行交流活动,确保学生共同进步。通过这种方法,学生的积极性得到了提高,同时学生的自主学习能力也得到了提高。当学生自身具备了自主学习意识之后,其会概括、总结知识点,构建完整的知识框架。

初等数学研究课后习题答案(2020年7月整理).pdf

初等代数研究课后习题 20071115033 数学院 07(1) 杨明 1、证明自然数的顺序关系具有对逆性与全序性,即 (1)对任何N b a ∈,,当且仅当b a <时,a b >. (2))对任何N b a ∈,,在b a <,b a =,b a >中有且只有一个成立. 证明:对任何N b a ∈,,设a A ==,b B == (1)“?” b a <,则B B ??,,使,~B A ,A B B ~, ?∴,a b >∴ “?” a b >,则B B ??,,使A B ~,,B B A ?∴,~,b a <∴ 综上 对任何N b a ∈,,b a (2)由(1)b a b a <∴与b a >不可能同时成立, 假设b a <∴与b a =同时成立,则B B ??,,使,~B A 且B A ~, ,~B B ∴与B 为有限集矛盾,b a <∴与b a =不可能同时成立, 综上,对任何N b a ∈,,在b a <,b a =,b a >中有且只有一个成立.. 2、证明自然数的加法满足交换律. 证明:对任何N b a ∈,设M 为使等式a b b a +=+成立的所有b 组成的集合 先证 a a +=+11,设满足此式的a 组成集合k ,显然有1+1=1+1成立 φ≠∈∴k 1,设k a ∈,a a +=+11,则 +++++++=+=+==+a a a a a 1)1()1()(1 k a ∈∴+,N k =∴, 取定a ,则1M φ∈≠,设,b M a b b a ∈+=+,则 ()()a b a b b a b a +++++=+=+=+ ,b M M N + ∴∈∴= ∴ 对任何N b a ∈,,a b b a +=+ 3、证明自然数的乘法是唯一存在的 证明:唯一性:取定a ,反证:假设至少有两个对应关系,f g ,对b N ?∈,有 (),()f b g b N ∈,设M 是由使()()f b g b =成立的所有的b 组成的集合, ()()1f b g b a ==? 1M φ∴∈≠ 设b N ∈则()()f b g b =()()f b a g b a ∴+=+ ()()f b g b ++∴=,b M +∴∈,M N ∴= 即b N ?∈,()()f b g b =

初等数学专题论文

初等数学研究期末专题论文 函数方程与函数的奇偶性 摘要 函数的奇偶性是函数的一种重要性质,也是高中数学教学中的重点内容,如何让学生正确理解函数的奇偶性并能灵活应用,是每位数学教师不断探论的问题。本文详细讲述了函数奇偶性的判断方法,以及应该注意的地方,对比较抽象的题目给出合适的证明方法。 关键词:函数 奇偶性 方程 性质 1.关于函数奇偶性的定义 (1)一般地,如果对函数()x f 的定义域内任意一个x 都有 ()()0 f x f x --=(()()x f x f =-),那么函数()x f 就叫做偶函数,如:2)(x x f =,()x x f =。 (2)一般地,如果对函数()x f 的定义域内任意任意一个x 都有()()0=-+x f x f (()()x f x f -=-),那么函数()x f 就叫做奇函数,如:()x x f = , ()x x f 1 = 。 例1:判断函数())1lg(2x x x f -+=的奇偶性。 解:x x x ≥>+221 ∴函数()x f 的定义域为R 又()())1lg()1lg(22x x x x x f x f +++-+=-+ 01lg )1lg(22==-+=x x 。 ∴ ()x f 为奇函数。 例2:判断函数x x e e x f -+=)(的奇偶性。 解:显然)(x f 的定义域为R 又)()(x f e e x f x x -=+=- ∴)(x f 为偶函数。

2.函数奇偶性的几个性质 2.1 对称性 函数的定义域关于原点对称 如: 2.2 整体性 奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立。 2.3 可逆性 )()()(x f x f x f ?=-是偶函数 )()()(x f x f x f ?-=-是奇函数 2.4 等价性 0)()()()(=--?=-x f x f x f x f 0)()()()(=-+?=-x f x f x f x f 2.5 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 2.6 可分性 根据奇偶性可将函数分为四类:奇函数,偶函数,既是奇函数又是偶函数,非奇非偶函数。 3.判断函数奇偶性的方法 3.1定义法 1.任取自变量的一个值x ,x -是否有定义,如果存在一个属于定义域的0x 但在0x -没有定义,则既不是奇函数也不是偶函数,若)(x f -存在,则进行下一步。 2.)()(x f x f ±=-着相当于证明一个恒等式,有时,为了运算上的方便可转而验证 0)()(=-±x f x f , 1)() (±=-x f x f ,???=-+偶函数 奇函数)(20)()(x f x f x f 判断步骤如下: ① 定义域是否关于原点对称;

数学分析教学与三种基本数学能力的培养

第26卷第6期大 学 数 学V ol.26, .6 2010年12月COLLEGE M AT H EM AT ICS Dec.2010数学分析教学与三种基本数学能力的培养 钱晓元 (大连理工大学数学科学学院,大连116024) [摘 要]基本的专业数学能力可分为三个方面:数学发现能力,数学论证能力和数学表达能力.本文结合数学分析课程的教学实践,阐述通过具体教学环节,贯彻培养三种能力的有效途径和方法. [关键词]教学;数学分析;数学能力 [中图分类号]G642.0 [文献标识码]C [文章编号]1672 1454(2010)06 0203 04 1 引 言 数学类专业教育主要有两大目标,一是掌握数学知识,二是培养数学能力.由于当今知识内容的爆炸性增长,知识更新周期的加快,以及现代社会的学习型特点和创新性要求,对数学能力的重视程度则日益提高,成为数学专业教育的主导价值. 数学能力是一个笼统的概念,目前还没有公认的严格定义.就教育方面而言,数学能力,就是运用数学基本理论和方法解决数学及其应用中遇到的实际问题的能力.这种能力的培养,从初等教育甚至学前教育已经开始,但是作为大学数学类专业教育的目标,在质和量方面必然有更高的层次和追求.具体地说,就是在掌握数学科学遵循的游戏规则基础上,从事包括数学的研究、应用和教学在内的各种专业数学工作的能力. 我们认为,基本的专业数学能力可以分为以下三个方面:数学发现能力,数学论证能力和数学表达能力.数学发现能力,指的是发现未知数学事实和联系,包括理解和模仿前人发现的能力.数学论证能力,是运用逻辑演绎方法证明数学命题的能力.而数学表达能力,是用合乎数学通用规范的学术语言,准确、清晰、简洁地陈述有关数学发现和论证内容的能力.显然,要有效地解决数学及其应用问题,必须同时具备这三种能力并加以综合运用,缺一不可.从另一个角度来看,一个合格的数学类专业毕业生,其专业训练带来的技能优势,主要就体现在这三个方面. 数学分析是数学类专业最重要的一门基础课,数学类专业开设的多数专业课程都可以看成数学分析的后续课.在数学分析的教学中,系统地培养数学发现、论证和表达能力,是理所当然的.本文将就这一课题,结合数学分析课程的教学实践,阐述通过具体教学环节,贯彻培养三种能力的有效途径和方法. 2 数学分析教学与数学发现能力的培养 数学科学具备特有的思维模式,它以形式逻辑为基础,以演绎推理为手段,建立了坚固宏伟的知识体系.数学分析以实数理论奠基,首先建立严格的极限理论,次第展开微分、积分、无穷级数等内容.数学以逻辑演绎为基础的特性得到充分的体现,而数学定理基于直观、经验和数值实验的发现过程,反倒容易被忽略.数学学科的一些重大的发展,一些重要的数学思想、概念、方法及理论的提出和形成,却并 [收稿日期]2008 01 11 [基金项目]大连理工大学教改基金

初等数学研究论文

姓名:苏章燕学号:201102024002 班级:师范1班 分类思想 摘要:分类讨论的问题在这学期做高考题和中考题过程中,很多题上面都有体现。是在问题的解答出现多种情况且综合考虑无法深入时,我们往往把可能出现的所有情况分别进行讨论,得出每种情况下相应的结论,这种思想方法就是分类的思想。 关键词:分类讨论、函数、例题、集合分类 一、分类要素 分类的思想运用到每个具体数学问题中都有三个基本内容,即分类三要素,在分类的合定义中,三要素就是全集,子集和子集的分类根据。分类的逻辑定义中,三要素是母项,子项和分类标准。 二、分类的规则 在问题讨论前,首先应弄清楚我们所研究对象的范围,即全集。分类就要在这个特定范围内进行,要防止在全集不明确的情况下或全集外进行讨论。 每次分类都必须以同一本质属性为标准,被分概念或集合有若干本质属性,确定某一个作为分类标准。那么在分类过程中就要始终使用这个标准。同一次讨论中标准只能是一个。如实数在讨论绝对值时,可分为整数、负数和零;在讨论其他性质和运算时可分为有理数与无理数。又如函数按自变量个数可分为一元函数、二元函数乃至多元函数;按单调性可分为增函数、减函数和非单调函数(在某一区间内);按定义域可分为在R上都有意义的函数与定义域不是R的函数;按奇偶性可分为奇函数、偶函数和非奇非偶函数(在定义域内);按属性可分为代数函数和超级函数。诸如此类,按不同标准就有不同的分类。 分类的完整性,把集合A分为A1、A2、···An等n个子集的分类,集合A应是这n 个子集的并集,集合的每一个元素都属于且仅属于其中的一个子集,分类时必须防止遗漏,如把角分为第一象限角、第二象限角、第三象限角、第四象限角,就不是一个完整的分类,因为终边落在坐标轴上的角就不在其中。 分类的互斥性,分类中分成的各部分必须是互相排斥的,即分类中各个子集的交集是空集,如平面几何中把三角形分为锐角三角形、等腰三角形······的分类就是不正确的分类,因为存在着等腰锐角三角形,这是由于破坏了分类的互斥性。 分类的逐级性,被分概念必须分成与它最邻近的概念。有些问题必须要连续分类,这就要求严格按层次逐级进行划分、讨论。 分类的种类,人们对事物的认识有一个由现象到本质逐步深化的无线过程,因此分类也有一个从现象分类到本质这样一个逐步深化的过程。 现象分类就是根据事物的外部标志或外部联系所进行的分类,这种分类往往会把本质上相同的事物分为不同的类别,而把本质上不相同的事物归为同一类别。如平面几何中多边形按边数分类就是一个现象分类,因为凸多变形和凹多边形即使边数相同其性质也大相径庭,而正多边形(不管它边数多少)都具有很多共性,它们本质上是相同的。 本质分类就是根据事物的本质特征或内部联系所进行的分类,本质分类能够揭示数学对象之间的规律,如含角的三角函数的绝对值,用零点分段法对角进行的分类就属于本质分类。 分类方法的解题步骤,确定分类标准,这就是要运用辩证的逻辑思维,对具体事物作具体分析,从表面上极为相似的事物之间看出它们本质的相同点,发现事物的本质特征,只有这样才能揭示数学对象之间的规律,对数学对象进行有意义的分类。 恰当地进行分类,在确定分类标准的基础上,遵守分类的五条规则,对所讨论的问题恰当地分类,问题能否顺利讨论的关键是对所讨论对象进行正确的分类。 逐类讨论,根据分好的各类情况,逐类地加以研究,深入进行讨论,分门别类逐一把

初等数学研究复习题

1、 因式分解:32 35113x x x ---= 2、 已知21x a x x =++,则2 421 x x x =++ 3、 已知1abc =,求 111a b c a ab b bc c ca ++++++++的值; 4、 已知 111a b c a ab b bc c ca ++++++++=1,求证1abc =;

5、 = 6、 解不等式: 2233132 x x x x +-≤-+ 7、 求一个方程,使其各根分别等于方程43 67620x x x x -++-=的各根减去2。

8、 解方程22223223132231 x x x x x x x x ++++=-+-+。 9、 求不定方程7517x y -=的整数解。 10、 定义在R 上的函数()f x 满足()()()2(f x y f x f y x y x y R +=++∈、,(1)2f =,则(3)f -等于 11、 若函数()y f x =的定义域是[]0,2,则函数(2)()1f x g x x =-的定义域是 12、 0= 13、 将多项式32 22x x x -++表示成(1)x -的方幂形式是 14、 将分式22233(1)(25) x x x x x ----+分解成部分分式之和

15、 求函数2 y =的值域 16、 已知5,4x <求函数14245 y x x =-+-的最大值。 17、 解方程:4322316320x x x x +-++=

18、 已知x y z 、、是互不相等的正数,且1,x y z ++=求证:111(1)(1)(1)8x y z ---> 19、 利用多项式对称性因式分解: (1)555()()()()f x y z x y y z z x =-+-+-、、 设222(,,)()()()[()()],f x y z x y y z z x L x y z M xy yz xz =---+++++ (2)5555 ()()f x y z x y z x y z =++---、、 设222()()()[()()]x y y z z x k x y z m xy yz zx ++++++++

数学分析学年论文

学年论文 题目: 学生: 学号: 院(系): 专业: 指导教师: 2011 年月日

浅谈微积分以及如何学好数学分析 什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。 微积分学基本定理指出,求不定积分与求导函数互为逆运算[把上下限代入不定积分即得到积分值,而微分则是导数值与自变量增量的乘积],这也是两种理论被统一成微积分学的原因。我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。 微积分的基本原理告诉我们求导和积分是互逆的运算,微积分的精髓告诉我们我们之所以可以解决很多非线性问题,本质的原因在于我们化曲为直了,现实生活中我们会遇到很多非线性问题,那么解决这样的问题有没有统一的方法呢?经过研究思考和总结,我认为,微积分的基本方法在于:先微分,后积分。 定理:如果函数F(x)是连续函数,则f(x)在区间[a,b]上的一个原函数.牛顿--莱布尼兹公式公式进一步揭示了定积分与原函数(不定积分)之间的联系。它表明:一个连续函数在区间[a,b]上的定积分等于它的任一个原函数在[a,b]上的增量。因此它就给定积分提供了一个有效而简便的计算方法。通常也把牛顿--莱布尼兹公式称作微积分基本公式 微分学的主要内容包括:极限理论、导数、微分等。积分学的主要内容包括:定积分、不定积分等。 要学好微积分,我觉得应该注意以下3个方面: 1、基本概念 常常是这样,理解概念比理解定理更困难,而且更基本.概念不清前进.理解概念要从两个方面入手.一是概念的内涵,一是概念的外延.概念的内涵就是概念的基本属性.概念的外延就是概念所概括的一切对象.微积分的基本概念有五个:函数,极限,导数,微分和定积分. 函数概念讲的是两个实数集合间的对应关系.首先使用函数一词的是莱布尼兹,在1692年的论文中他第一次提出函数这一概念.随着数学的发展,函数的定义不断改进和明确.最先将函数概念公式化的是约翰.伯努利,他在1718年说:"一个变量的函数是指由这个变量和常量以任意一种方式组成的一种量."欧拉将伯努利的思想进一步解析化.在《无限小分析引论》(1748)中,他将函数定义为"变量的函数是一个由该变量与一些常数以任意方式组成的解析表达式.并明确宣布:"数学分析是关于函数的科学."微积分被视为建立的微分基础上的函数论.欧拉的函数定义在18世纪后期占据了统治地位.在这一定义的基础上,函数概念本身大大丰富了.欧拉还明确区分了代数函数与超越函数.他把超越函数看成是用无穷多次算术运算得到的表达式,即用无穷级数表示的函数.第一个给出函数一般定义的是

初等数学研究(程晓亮、刘影)版课后习题答案

初等数学研究(程晓亮、刘影)版课后习题答案

初等数学研究(程晓亮、刘影)版课后习题答案 第一章 数 1添加元素法和构造法,自然数扩充到整数可以看成是在自然数的基础上添加0到扩大的自然数集,再添加负数到整数集;实数扩充到复数可以看成是在实数的基础上构造虚数单位i 满足12-=i ,和有序实数对),(b a 一起组成一个复数bi a +. 2(略) 3从数的起源至今,总共经历了五次扩充: 为了保证在自然数集中除法的封闭性,像b ax =的方程有解,这样,正分数就应运而生了,这是数的概念的第一次扩展,数就扩展为正有理数集. 公元六世纪,印度数学家开始用符号“0”表示零.这是数的概念的第二次扩充,自然数、零和正分数合在一起组成算术数集. 为了表示具有相反意义的量,引入了负数.并且直到17世纪才对负数有一个完整的认识,这是数的概念的第三次扩充,此时,数的概念就扩展为有理数集. 直到19世纪下半叶,才由皮亚诺、戴德金、维尔斯特拉斯等数学家的努力下构建了严格的实数理论.这是数的概念的第四次扩充,形成了实数集. 虚数作为一种合乎逻辑的假设得以引进,并在进一步的发展中加以运用.这是数学概念的第五次扩充,引进虚数,形成复数集. 4证明:设集合D C B A ,,,两两没有公共元素d c b a ,,,分别是非空有限集D C B A ,,,的基数,根据定义,若b a >,则存在非空有限集'A ,使得B A A ~'?;若d c ≥从而必存在非空有限集'C ,使得D C C ~'?,所以)(C A ?)(D B ??所以集合C A ?的基数c a +大于集合D B ?的基数d b +,所以d b c a +>+. 5(1)解:按照自然数序数理论加法定义, 15 55555155155 )25(2535''=++=++?=+?=+?=?=? (2)解:按照自然数序数理论乘法定义 8 7)6(])15[()15()25(2535'''''''' '===+=+=+=+=+ 6证明:?1当2=n 时,命题成立.(反证法)

(完整版)初等数学研究复习汇总

第一章 1、自然数集是有序集 2、自然数集具有阿基米德性质即:如果a,b∈N,则存在n∈N,使na>b 3、自然数集具有离散型即:在任意两个相邻的自然数a和a’之间不存在自然数b, 使a

值 例:求00080cos 40cos 20cos ??8 120sin 8160sin 20sin 880cos 80sin 220sin 480cos 40cos 40sin 220sin 280cos 40cos 20cos 20sin 2000000 0000 0000= ===???=解:原式N c N a N c N b N b N a ac b c b a log log log log log log :1,,2=--=求证, 的正数,且是不等于例:设原式右边原式左边所以,得证明:由==-?-?=--=-=-+==a N c N b N c N a N a N b N c N c N b N b N a N b N c N a N b N c N a N b N a c b log log )log (log log )log (log log log 1log 1log 1log 1log log log log log log log 2213cot cot cot 3tan tan tan =-+-θθθθθθ例:求证的值 内的两相异实根,求在为方程、例:已知)sin(),0()0(cos sin βαπβα+≠=+mn p x n x m 原式右边(原式左边证明:(综合法)==?-?-?-?-=--?-+?-=13tan cot 3cot tan 23tan cot 3cot tan 2)3cot )(cot 3tan tan 3tan cot 13cot tan 1θ θθθθθθθθθθθθθθθ

解题研究的现状分析

解题研究的现状分析 罗增儒 2-1 解题研究的基本工作 2-1-1 资料性的分类汇编 2-1-2 数学方法论的研究 2-1-3 波利亚学说的研究与超越 2-1-4 解题教学的研究与应用 2-1-5 竞赛数学的学科建设 2-1-6 数学思维的研究 2-1-7 解题策略的研究 2-1-8 初等数学的研究 2-1-9 教育数学的研究 2-1-10 以开放题为代表的新题型研究 2-1-11 中学数学刊物繁荣 2-1-12 数学解题的实证与心理学分析 2-1-13 数学解题理论的建设 2-1-14 中国解题学派正在形成

2-2 解题研究的存在问题 解题研究中的主要问题是,还存在着一些片面的认识、盲目的实践与停留在操作的层面上等,我们指出6点. ●“解题理论”研究的取消论 ●解题研究的误区 ●考试目的 ●理论与实践的脱节 ●解题研究多停留在操作层面,也缺少有效的方法深入到心理层面 ●缺少争鸣气氛 2-2-1 “解题理论”研究的取消论 认为随着数学内容的学习和数学知识的丰富,解题方法可以自然而然地掌握、解题能力可以自然而然地生成,“解题理论”的研究纯属多余的标新立异.一些连中学教材的习题都不能独立完成的空头理论家,更为这种观点提供了口实.而来自学生的情况却是,许多人学了课本内容不会解题,还有的人解了许多题却说不清思路.教师中也有类似情况. 解题理论须以解题实践为基础,但是,再丰富的经验也无法代替理论,并且,缺乏正确理论指导的实践常常会流于盲目. 2-2-2 解题研究的误区 表现1.很多文章只是用现成的例子说明现成的观点,或用现成的观点解释现成的例子,缺少创新,有的更是低层次的简单重复.还有很多文章明显资料占有不充分,现在有网络条件,建议动手写作之前,先搜寻一遍,至少要有一点新意、有一点自己的心得,才形成文章. 表现2.长期徘徊在一招一式的归类上,缺少观点上的提高或实质性的突破;有时候,只是解题方法的简单堆积或解题技巧的神秘出现,在解题具体操作与解题策略(或数学思想方法)之间还缺少沟通的桥梁. 表现3.多研究“怎样解”,较少问“为什么这样解”,更少问“怎样学会解”,重结果、轻过程. 表现4.更关注现成的、形式化问题的求解,对问题的“提出”和“应用”研究不足. 因此,尽管中国有丰富的解题资料,却始终未上升为系统的解题理论.

《初等数学研究》教学大纲

《初等数学研究》教学大纲Research on elementary mathematics 课程名称:初等数学研究英文名称:课程性质:专业必修课 4 学分: 64 理论学时: 64 总学时:适用专业:数学与应用数学先修课程:数学分析,高等代数,解析几何一、教学目的与要求应使学生在掌握近、通过本课程的开设,初等数学研究是数学教育专业开设的必修课程。现做到初等与高等相结合。系统深入掌握中学数学内容有关的初等数学知识,代数学的基础上,以填补学生在中学数现代数学思想方法,尽量反映近、一方面,通过初等数学内容的研究,处学与高等数学之间的空白;另一方面,试图用近、现代数学的思想方法居高临下地分析、为当好一名使学生对中学数学内容有个高屋建建瓴的认识与理解,研究中学数学内容,理、使学生进行解题策略的训练,同时通过本课程的开设,中学数学教师打下扎实的知识基础。具有一定的解题能力。由于学生对初等数学内容并非一无所知,因此,必须突出与强调课程的研究性质。在每章、以帮助学生形成自主探索、研究,每节之后提出若干问题让学生进行探索、合作交流的学习方式,以便他们将来走向教学岗位后,能较快地适应课程改革的形势。必要时运用小组合作的方式进行适学生自学为辅的教学方法,本课程主要采用以讲授为主、当的专题讨论。周,有32八学期开设,安排---初等数学研究是专业选修课,系主干课程。一般情况下第七课时。64共,周36条件时可安排二、教学内容与学时分配序

号章节名称学时分配 1 第一章绪论 2 2 第二 章集合与逻辑 6 3 第三章数与式的理论 8 4 第四章函数的理论 8 5 第五章方程、不等式 8 6 公理化方法与演绎推理 6 7 第七章几何变换 8 8 第八章几何的向量结构及坐标 法 6 9 第九章排列、组合 6 10 第十章中学数学解题策略 6 合计学时数 64 三、各章节主要知识点与教学要求课时) 2第一章绪论(中学数学与初等数学的关系,中学数学的特点,中学数学的发展历程,包括数学研究的对象,本课程的研究 对象,学习本课程的目的意义,等等本章重点:中学数学的 特点本章难点:无掌握中学数学的特点,中学数学的发展历程;要求学生了解数学研究的对象,本章教学要求:中学数 学与初等数学的关系,掌握本课程的研究对象,学习本课程的 目的意义课时)6第二章集合与逻辑(集合集合的特性, 集合的运算。集合的运用命题的逻辑演算命题的特征,简 单命题,复合命题的真值定义,等价命题,简单命题的演算 命题中的量词假言命题的四种形式,量词的否定,存在量词, 全称量词,开语句的复合,真值集,开语句,充分条件与必要 条件集合与逻辑的关系本章重点:复合命题的真值定义, 等价命题,假言命题的四种形式本章难点:假言命题的四种 形式,开语句的复合,本章教学要求:要求学生掌握假言命题

数学分析

第一讲 微积分思想的产生与发展历史 在微积分产生之前,数学发展处于初等数学时期。人类只能研究常量,而对于变量则束手无策。在几何上只能讨论三角形和圆,而对于一般曲线则无能为力。到了17世纪中叶,由于科学技术发展的需要,人们开始关注变量与一般曲线的研究。在力学上,人们关心如何根据路程函数去确定质点的瞬时速度,或者根据瞬时速度去求质点走过的路程。在几何上,人们希望找到求一般曲线的切线的方法,并计算一般曲线所围图形的面积。令人惊讶的是,不同领域的问题却归结为相同模式的数学问题:求因变量在某一时刻对自变量的变化率;因变量在一定时间过程中所积累的变化。前者导致了微分的概念;后者导致了积分的概念。两者都包含了极限与无穷小的思想。 1.极限、无穷小、微分、积分的思想在中国古代早已有之 公元前4世纪,中国古代思想家和哲学家庄子在《天下篇》中论述:“至大无外,谓之大一;至小无内,谓之小一。”其中大一和小一就是无穷大和无穷小的概念。而“一尺之棰,日取其半,万世不竭。”更是道出了无限分割的极限思想。 公元3世纪,中国古代数学家刘徽首创的割圆术,即用无穷小分割求面积的方法,就是古代极限思想的深刻表现。他用圆内接正多边形的边长来逼近圆周,得到了 142704.3141024.3<<π , 并深刻地指出:“割之弥细,所失弥少;割之又割,以至于不可割,则与圆周合体而无所失矣。”

我国南北朝时期的数学家祖暅(中国古代数学家祖冲之之子)发展了刘徽的思想,在求出球的体积的同时,得到了一个重要的结论(后人称之为“祖暅原理”):“夫叠基成立积,缘幂势既同,则积不容异。”用现在的话来讲,一个几何体(“立积”)是由一系列很薄的小片(“基”)叠成的;若两个几何体相应的小片的截面积(“幂势”)都相同,那它们的体积(“积”)必然相等。 利用祖暅原理求球体的体积:取一个几何体为上半球体 {};将圆柱体 {2222,x y z R z ++≤≥0222x y R +≤,0z R ≤≤}减去 (即挖去)倒立的圆锥{222x y z +≤,0z R ≤≤}视为另一个几何体。则对任意的0z R ≤≤,过(0,0,)z 点作水平截面,得到的截口面积相等, 都为,由此得到球体的体积为(22R z π?)34 3 V R π=。 2.十七世纪前微分学与积分学的发展历史 公元前5世纪,古希腊数学家安提丰(Antiphon )创立了“穷竭法”,认为圆内接正多边形当边数不断增加,最后多边形就与圆相合。公元前2世纪,古希腊数学家阿基米德(Archimedes )对“穷竭法”作出了巧妙的应用,他在《论抛物线求积法》中用“穷竭法”求抛物弓形的面积,他构造一系列三角形使它们的面积和不断接近抛物弓形的面积,这就是极限理论的最初形式。在《论球和柱体》一书中,阿基米德首先得到了球和球冠的表面积、球和球缺的体积的正确公式。阿基米德的著作代表了古希腊数学的顶峰。 1615年,德国数学家开普勒(J. Kepler, 1571-1630)用无穷小微元来确定曲边形的面积与体积。他把圆看作边数无限多的多边形,圆

初等数学研究试题答案

习题一 1、数系扩展的原则是什么?有哪两种扩展方式?(P9——P10) 答:设数系A 扩展后得到新数系为B ,则数系扩展原则为: (1)A 的元素间所定义的一些运算或几本性质,在B 中被重新定义。而且对于A 的元素来说,重新定义的运算和关系与A 中原来的意义完全一致。 (2)在A 中不是总能实施的某种运算,在B 中总能施行。 (3)在同构的意义下,B 应当是A 的满足上述三原则的最小扩展,而且有A 唯一确定。 数系扩展的方式有两种: (1)添加元素法。 (2)构造法。 2、对自然数证明乘法单调性:设,,,a b c N ∈则 (3),a b ac bc >>若则; 证明:(1)设命题能成立的所有C 组成集合M 。 由归纳公理知,,N M =所以命题对任意自然数成立。 (2),,.a b b a k k N <=+∈若则有 (P17定义9) 由(1)有()bc a k c =+ ac bc ∴< (P17.定义9) 或:,,.a b b a k k N <=+∈若则有 bc ()a k c ac kc =+=+ 3、对自然数证明乘法消去律:,,,a b c N ∈设则 (1),;ac bc a b ==若则

(2)ac bc a b <<若,则; (3)ac bc a b >>若,则。 证明(1)(用反证法) (2)方法同上。 (3)方法同上。 4、依据序数理论推求: 解: 1313134++=='()先求,, (P16.例1)323231(31)45,++=+=+=='''再求, (2)31313??=先求,, 5、设n N ∈,证明n 415n 1+-是9的倍数。 证明:1n 141511189,1n =+?-==①当时,是的倍数故时命题成立。 k n k 415k 19=+-②假设当时,命题成立。即是的倍数。则当n=k+1时: k 1k 415k 11 4415k 1315k 18441519(52) k k k +++-=+--?+=+---()()()。 1n k ∴=-当时,命题成立。 由①,②知,对于任一自然数n 成立。 6、用数学归纳法证明下式对于任意自然数都成立: 证明: ①412111--3-3.11-21n +?==== ==?当时,左边,右边左边右边。 ②n k =假设当时,等式成立,即:

初等数学研究答案1

初等数学研究答案1

大学数学之初等数学研究,李长明,周焕山版,高等教育出版社 习题一 1答:原则:(1)A ?B (2)A 的元素间所定义的一些运 算或基本关系,在B 中被重新定义。而且对于A 的元素来说,重新定义的运算和关系与A 中原来的意义完全一致。 (3)在A 中不是总能施行的某种 运算,在B 中总能施行。 (4) 在同构的意义下,B 应当是A 满足上述三原则的最小扩展,而且由A 唯一确定。 方式:(1)添加元素法;(2)构造法 2证明:(1)设命题能成立的所有c 组成集合M 。 a=b ,M 11b 1a ∈∴?=?∴, 假 设 bc ac M c =∈,即,则 M c c b b bc a ac c a ∈'∴'=+=+=', 由归纳公理知M=N ,所以命题对任意 自然数c 成立。 ( 2)若a < b ,则 bc kc ac bc,k)c (a )1(b k a N k =+=+=+∈?即,,由,使得

则acb , 则 ac m c bc ac,m )c (b )1(a m b N m =+=+=+∈?即,,由,使得 则ac>bc 。 3 证明:(1)用反证法:若 b a b,a b a <>≠或者,则由三分性知。当a >b 时, 由乘法单调性知ac >bc. 当a 或者,则由三分性知不小于。当a >b 时,由乘法单调性知ac >bc. 当a=b 时,由乘法单调性知ac=bc.这与acbc 矛盾。则a>b 。 4. 解:(1)4 313='=+ 5 41323='='+=+ 652333='='+=+ 7 63343='='+=+ 8 74353='='+=+ (2)313=? 631323=+?=? 9 3232333=+?='?=?

初等数学专题研究答案

习题解答 第一讲 自然数的基数理论与序数理论 1、在自然数的基数理论中,证明自然数的乘法满足交换律 证明:对于{(,)|,}A B a b a A b B ?=∈∈与{(,)|,}B B b a b B a A ?=∈∈, 定义A B ?到B A ?的映射为:(,)(,),(,),(,)f a b b a a b A B b a B A ??→∈?∈? 显然这个映射是A B ?到B A ?的一一映射,所以A B B A ?=?,于是按定义有: A B B A ?=?,即乘法满足交换律。 2、利用最小数原理证明定理14. 定理14的内容是:设()p n 是一个与自然数有关的命题,如果:(1)命题()p n 对无穷多个自然数成立;(2)假如命题对0()n k k n =≥成立时,能够推出命题对 1n k =-也成立,那么对一切自然数不小于n 0的自然数n ,命题()p n 必然成立。 证明:如果命题不真,设使命题不成立的自然数构成集合M ,那么M 非空,因此,M 中必有一个最小数000()r r n ≥。 此时,由于不大于0r 的自然数只有有限个,按照条件(1),至少有一个自然数0()r r r >,命题在r 处成立;于是由条件(2) ,命题对1r -也成立,连锁应用条件(2),那么命题在12,,,,, r r r r k ---处都成立,而这个序列是递减的,因此0r 必然出现在这个序列中,这与0r 的假定不符,这个矛盾说明定理14成立。 3、用序数理论证明3+4=7 证明:313432313145,(),''''+==+=+=+== 33323256(),'''+=+=+== 34333367()'''+=+=+== 4、设平面内两两相交的n 个圆中,任何三个不共点,试问这n 个圆将所在的平面分割成多少个互不相通的区域?,证明你的结论。 解:设这n 个圆将所在平面分割成()f n 个部分,显然1224(),()f f ==; 如果满足条件的n 个圆把平面分割成()f n 个部分,那么对于满足条件的n+1个圆

初等数学研究期末复习题:选择题与填空题1

初等数学研究期末复习题:选择题与填空题 一.选择题 1.如图,有一块矩形纸片ABCD ,AB =8,AD =6.将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则△CEF 的面积为( ). A C B D A .2 B .4 C . 6 D . 8 2.若M =223894613x xy y x y -+-++(x ,y 是实数),则M 的值一定是( ). A .正数 B .负数 C .零 D .整数 3.已知点I 是锐角三角形ABC 的内心,A 1,B 1,C 1分别是点I 关于边BC ,CA ,AB 的对称点.若点B 在△A 1B 1C 1的外接圆上,则∠ABC 等于( ). A .30° B .45° C .60° D .90° 4.设A =22211148()34441004 ?++???+---,则与A 最接近的正整数是( ). A .18 B .20 C .24 D .25 5.设a 、b 是正整数,且满足于5659a b ≤+≤,0.90.91a b <<,则22b a -等于( ). A .171 B .177 C .180 D .182 6 的结果是( ). A .无理数 B .真分数 C .奇数 D .偶数 7.设4r ≥,1 1 1a r r =-+ ,b = ,c =,则下列各式一定成立 的是( ). A .a b c >> B .b c a >> C .c a b >> D .c b a >> 8.若x 1,x 2,x 3,x 4,x 5为互不相等的正奇数,满足(2005-x 1)(2005-x 2)(2005-x 3)(2005- x 4)(2005-x 5)=242,则2222212345 x x x x x ++++的未位数字是( ). A .1 B .3 C .5 D .7 9. 已知1m = 1n =且22(714)(367)m m a n n -+--=8,则a 的值等于( ). A .5- B .5 C .9- D .9 10.Rt △ABC 的三个顶点A ,B ,C 均在抛物线y =x 2上,并且斜边AB 平行于x 轴.若斜边上的高为h ,则( ). A .h <1 B .h =1 C .12

初等数学研究(程晓亮、刘影)版课后习题答案教程文件

初等数学研究(程晓亮、刘影)版课后习题答案 第一章 数 1添加元素法和构造法,自然数扩充到整数可以看成是在自然数的基础上添加0到扩大的自然数集,再添加负数到整数集;实数扩充到复数可以看成是在实数的基础上构造虚数单位i 满足12-=i ,和有序实数对),(b a 一起组成一个复数 bi a +. 2(略) 3从数的起源至今,总共经历了五次扩充: 为了保证在自然数集中除法的封闭性,像b ax =的方程有解,这样,正分数就应运而生了,这是数的概念的第一次扩展,数就扩展为正有理数集. 公元六世纪,印度数学家开始用符号“0”表示零.这是数的概念的第二次扩充,自然数、零和正分数合在一起组成算术数集. 为了表示具有相反意义的量,引入了负数.并且直到17世纪才对负数有一个完整的认识,这是数的概念的第三次扩充,此时,数的概念就扩展为有理数集. 直到19世纪下半叶,才由皮亚诺、戴德金、维尔斯特拉斯等数学家的努力下构建了严格的实数理论.这是数的概念的第四次扩充,形成了实数集. 虚数作为一种合乎逻辑的假设得以引进,并在进一步的发展中加以运用.这是数学概念的第五次扩充,引进虚数,形成复数集. 4证明:设集合D C B A ,,,两两没有公共元素d c b a ,,,分别是非空有限集D C B A ,,,的基数,根据定义,若b a >,则存在非空有限集'A ,使得B A A ~'?;若d c ≥从而必存在非空有限集'C ,使得D C C ~'?,所以)(C A ?)(D B ??所以集合 C A ?的基数c a +大于集合 D B ?的基数d b +,所以d b c a +>+. 5(1)解:按照自然数序数理论加法定义, 15 55555155155)25(2535''=++=++?=+?=+?=?=? (2)解:按照自然数序数理论乘法定义 8 7)6(])15[()15()25(2535'''''''''===+=+=+=+=+ 6证明:?1当2=n 时,命题成立.(反证法)

初等数学研究考试大纲

《初等数学研究》考试大纲 Elementary Mathematics Research 一、本大纲适用专业 数学与应用数学。 二、考试目的 测试学生对初等数学的基本内容和方法的熟练程度。 三、考试内容 第一章数系 1. 考试知识点 (1)数的概念的扩展; (2)自然数序数理论及其性质; (3)整数环、有理数域、实数域、复数域的建立及性质。 2. 考试要求 (1)了解数系扩展的两种形式及其所遵循的原则; (2)掌握自然数的基数理论及整数环的构造; (3)理解自然数集扩充到有理数集的有关概念,弄清自然数、整数运算的概念及其运算律,掌握有理数大小比较的法则、有理数的运算法则和有理数域的性质; (4)理解无理数、实数概念,掌握实数大小比较的法则、实数的运算法则和实数域的性质; (5)理解复数概念,掌握复数的两种表示形式、复数的运算和复数域的性质。 第二章解析式 1. 考试知识点 (1)多项式的恒等定理; (2)待定系数法; (3)因式分解方法; (4)分式恒等变形; (5)根式的化简和计算; (6)解不等式(组); (7)不等式的证明; (8)几个著名的不等式。

(1)了解解析式的概念及其分类; (2)了解多项式概念,掌握待定系数法和多项式的因式分解方法; (3)了解分式的概念和定理;掌握分式恒等变形; (4)掌握根式的运算和变形; (5)掌握不等式的基本性质、解法和证明; (6)熟悉几个著名的不等式。 第三章方程与函数 1. 考试知识点 (1)方程(组)的同解理论及基本解法; (2)几类特殊的高次方程的解法; (3)分式方程、无理方程和超越方程的解法 (4)函数概念的形成和发展; (5)初等函数的性质。 2. 考试要求 (1)掌握各种代数方程中的同解理论(弄清增、失根原因及检验方法)及基本解法; (2)掌握特殊的高次方程的解法; (3)掌握简单的分式方程、无理方程和超越方程的解法; (4)了解函数概念的发展与几种定义方式; (5)掌握初等函数的基本性质。 第四章数列 1. 考试知识点 (1)数列的通项公式; (2)等差与等比数列; (3)高阶等差数列、斐波那契数列、分群数列; (4)数学归纳法的基本形式和其他形式; (5)数列的母函数。 2. 考试要求 (1)掌握求数列通项的方法; (2)熟练掌握等差与等比数列的综合题; (3)了解高阶等差数列、斐波那契数列、分群数列; (4)熟练掌握数学归纳法的各种形式的应用; (5)了解数列的母函数。 第五章排列与组合

相关文档
最新文档