精馏塔的温度控制

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计

院(系):

专业班级:

学号:

学生姓名:

指导教师:(签字)

起止时间:

摘要

随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。

影响物料平衡因素包括进料量和进料成分变化,顶部馏出物及底部出料变化;影响能量平衡因素主要包括进料温度或热焓变化,再沸器加热量和冷凝器冷却量变化,及塔的环境温度变化。采用串级控制系统能有效地去除蒸汽压强的波动对温度的影响。使用超驰控制系统控制釜液输出端,在塔釜温度较低时,塔底不出料只有当温度达到低线以上,液位控制器取代温度控制器以后,才有出料排出。

关键词:提馏段;温度;串级控制;超驰控制

目录

第1章绪论 (1)

第2章课程设计的方案 (2)

2.1概述 (2)

2.1.1 物料平衡关系 (2)

2.1.2 能量平衡关系 (3)

2.2设计方案 (3)

2.2.1控制方案类型 (3)

2.2.2控制方案的选择 (4)

第3章系统各仪表选择 (9)

3.1检测变送器的原理 (9)

3.1.1 温度变送器的选择 (9)

3.1.2 流量变送器的选择 (10)

3.2执行器的选择 (11)

3.3调节器的选择 (12)

3.4调节器与执行器、检测变送器的选型 (14)

电磁流量计 (14)

第4章系统仿真 (15)

4.1串级控制系统MATLAB仿真分析 (15)

第5章课程设计总结 (18)

第6章参考文献 (20)

第1章绪论

精馏塔是化工生产中分离互溶液体混合物的典型分离设备。它是依据精馏原理对液体进行分离,即在一定压力下,利用互溶液体混合物各组分的沸点或饱和蒸汽压不同,使轻组份(即沸点较低或饱和蒸汽压较高的组分)汽化。经多次部分液相汽化和部分气相冷凝,使气相中的轻组分和液相中的重组分浓度逐渐升高,从而实现分离的目的,满足化工连续化生产的需要。精馏塔塔釜温度控制的稳定与否直接决定了精馏塔的分离质量和分离效果,控制精馏塔的塔釜温度是保证产品高效分离,进一步得到高纯度产品的重要手段。维持正常的塔釜温度,可以避免轻组分流失,提高物料的回收率,也可减少残余物料的污染作用。

影响精馏塔温度不稳定的因素主要是来自外界来的干扰(如进料流量,温度及成分等的变化对温度的影响)。一般情况下精馏塔塔釜的温度,我们是通过控制精馏塔釜内灵敏板的温度来控制的。灵敏板是当外界条件或负荷改变时精馏塔内温度变化最灵敏的一块塔板。以往调节只是采用灵敏板温度调节器单一回路调节,调节反应慢,时间滞后,对精馏操作而言,产品的纯度很难保证。精馏塔是一个多输入多输出的对象,它由很多级塔板组成,内在机理复杂,对控制要求又大多较高。这些都给自动控制带来一定的困难。同时各塔工艺结构特点有千差万别,这需要深入分析特性,结合具体塔的特点,进行自动控制方案设计和研究。精馏塔的控制最终目标是:在保证产品质量的前提下,使回收率最高,能耗最小,或使总收益最大。在这个情况为了更好实现精馏的目标就有了提馏段温度控制系统的产生。

第2章 课程设计的方案

2.1 概述 精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。有板式塔与填料塔两种主要类型。根据操作方式又可分为连续精馏塔与间歇精馏塔。

蒸气由塔底进入。蒸发出的气相与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向气相中转移,气相中的难挥发(高沸点)组分不断地向下降液中转移,气相愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,从而达到组分分离的目的。由塔顶上升的气相进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,加热蒸发成气相返回塔中,另一部分液体作为釜残液取出。

影响精馏塔提馏段过程的因素是多方面的,而提馏段是在一定物料平衡和能量平衡的基础上进行操作的,因此,分析精馏塔的物料和能量平衡对制定提馏段控制策略至关重要。

2.1.1 物料平衡关系

物料平衡指的是单位时间内进塔的物料量应等于离开塔的诸物料量之和。物料平衡体现了塔的生产能力,它主要是靠进料量和塔顶、塔底出料量来调节的。操作中,物料平衡的变化具体反应在塔底液面上。当塔的操作不符合总的物料平衡式时,可以从塔压差的变化上反映处来。例如进的多,出的少,则塔压差上升。对于一个固定的精馏塔来讲,塔压差应在一定的范围内。塔压差过大,塔内上升蒸汽的速度过大,雾沫夹带严重,甚至发生液泛而破坏正常的操作;塔压差过小,塔内上升蒸汽的速度过小,塔板上汽液两相传质效果降低,甚至发生漏液而大大降低塔板效率。物料平衡掌握不好,会使整个塔的操作处于混乱状态,掌握物料平衡是塔操作中的一个关键。如果正常的物料平衡受到破坏,它将影响另两个平衡,即:汽液相平衡达不到预期的效果,热平衡也被破坏而需重新予以调整。

对提留段内任一塔板j 作物料平衡计算,其组分的物料平衡关系为:

x B x j L s y j V s --=1

式中,V s 表示各层塔板的上升蒸汽量,y j 为塔板j 上气相的轻组分浓度,L s 为提留段内各层踏板的下流液体流量,x j 1-是从1-j 快塔板留下的液相中轻组分

浓度,B 为塔釜采出量,X 为塔釜采出物轻组分的浓度。

2.1.2 能量平衡关系

在稳态时,进入精馏塔的所有能量必然与离开塔的能量相平衡,表示为:

H B B H D D Q C H F F Q H ++==

式中,F 、D 、B 分别表示进料量、塔顶采集量和塔釜采出量,Q h 为再沸器加热量,Qc 为冷凝器冷却量,Hf 、Hp 、Hb 分别为进料、塔顶和塔釜产品的热焓。从平衡方程并结合精馏塔工艺特点,不难看出影响能量平衡的因素为:进料量、进料浓度、进料温度和进料状态、再沸器的加热量、冷凝器冷却量、回流量。

2.2 设计方案

2.2.1 控制方案类型

精馏塔的控制目标应是:在保证产品质量合格的前提下,使塔的总收益(利润)最大或成本最小。具体对一个精馏塔来说,需从四个方面考虑,设置必要的控制系统。

(1)产品质量指标控制

塔顶或塔底产品之一合乎规定的分离纯度,另一端产品成分应维持在规定的范围内。在某些特定的条件下也有要求塔顶和塔底产品均保证一定纯度的要求。

(2)物料平衡控制

塔顶、塔底的平均采出量应等于平均进料量,而且这两个采出量的变动应该比较缓和,以维持塔的正常平稳操作,以及上下工序的协调工作。为此,必须对冷凝液罐(回流罐)和塔釜液位进行控制,使其介于规定的上、下限之间。

(3)能量平衡控制

应使精馏塔的输入、输出能量维持平衡,使塔的操作压力维持稳定。

(4)约束条件控制

为保证精馏塔正常而安全地运行,必须使某些操作限制在约束条件之内。常用的精馏塔限制条件有液泛限、漏液限、压力限和临界温差限等。所谓液泛限也称气相速度限,即塔内气相上升速度过高时,雾沫夹带十分严重,实际上液相将从下面塔板倒流到上面塔板,产生泛液,破坏正常操作。漏液限也称最小气相上升速度限,当气相上升速度小于某一数值时,将产生塔板漏液,板效率会下降。防止液泛和液漏,可通过塔压降或压差来监视气相速度,一般控制气相速度在液泛附近略小于液泛点较好。

压力限是指塔的操作压力限制,一般是最大操作压力限,就是说塔的操作压力不能过大,否则会影响塔内的汽液平衡,严重超限甚至会影响到安全生产。

临界温差限主要是指再沸器两侧的温差限度,当这一温差高于临界温差时,给热系数会急剧下降,传热量会随之下降,将不能保证塔的正常传热的需要。

2.2.2控制方案的选择

图2.1精馏塔提馏段单回路温度控制方案

由于精馏塔是以复杂控制系统,根据不同的控制要求,控制方案多种多样。

方案一:图2-1是精馏塔提馏段示意图,在再沸器中,用蒸汽加热塔釜液产生蒸汽,然后在塔釜中与下降物料进行传热传质。为了保证生产过程顺利进行,需要把提馏段温度θ保持恒定。为此在蒸汽管路上装上一个调节阀,用它来控制加热蒸汽流量。从调节阀的做到温度θ发生变化,需要相继通过很多热容积。实践证明,加热蒸汽压力的波动对θ的影响很大。此外,还有来自液相加料方面的各种干扰,包括它的流量、温度和组分等,它们通过提馏段的传质过程,以及再沸器中传热条件(塔釜温度、再沸器液面等),最后也影响到温度θ。很明显当加热蒸汽压力波动

较大时,如果采用如图2-1所示的简单单回路温度控制系统,调节品质一般不能满足生产要求。而且精馏塔温度过高或过低会引起精馏塔控制质量变差,由于存在这些扰动故考虑串级温度控制系统。

方案二:如下图所示在蒸汽输入端引入串级控制系统,在塔釜出料端引入选择性控制系统。其P&ID图如下图所示

阀门2

图2.2 精馏塔提馏段复杂控制系统

(1)蒸汽输入端串级控制系统

串级控制系统就是两只调节器串联起来工作,其中一个调节器的输出作为另一个调节器的给定值的系统。整个系统包括两个控制回路,主回路和副回路。副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。一次扰动:作用在主被控过程上的,而不包括在副回路范围内的扰动。二次扰动:作用在副被控过程上的,即

包括在副回路范围内的扰动。

为了提高精馏效率和保证产品纯度,我们采用灵敏板温度调节器与再沸器加热蒸汽流量调节器串级控制系统来对灵敏板温度进行控制。其中灵敏板温度调节器是主调节器,再沸器加热蒸汽流量调节器是副调节器,对映的主被控变量为提馏段温度,副被控变量为蒸汽流量。

串级控制部分的结构框图如图2.3所示

图2.3 串级控制部分结构框图

在串级控制回路中,根据安全运行准则,当系统出现故障时,蒸汽阀门应处于关闭状态,所以选择阀门1为气开阀,所以0

K v。

1>

根据工艺条件确定副被控对象的特性。阀打开,蒸汽量增加,可确定

K P。

2>

根据负反馈准则,选反作用控制器,即:0

K C。蒸汽量增加,提馏段

2>

温度升高,0

K P。

1>

根据负反馈准则,选反作用控制器,即0

K C。

1>

副控制器是反作用,主控制器从串级切换到主控时,主控制器的作用方式不变。

通过实际改造和使用,串级控制系统增加副控制回路,是控制系统性能得到改善,表现在下列方面。

1、抗干扰性强。由于主回路的存在,进入副回路的干扰影响大为减小。同时,由于串级控制系统增加了一个副回路,具有主、副两个调节器,大大提高了调节器的放大倍数,从而也就提高了对干扰的克服能力,尤其对于进入副回路的干扰。表现更为突出。

2、及时性好。串级控制对克服容量滞后大的对象特别有效。

3、适应能力强。串级控制系统就其主回路来看,它是一个定值控制系统,但其副回路对主调节器来说,却是一个随动控制系统,主调节器能够根据对象操作条件和负荷的变化情况不断纠正副调节器的给定值,以适应操作条件和负荷的变化。

4、能够更精确控制操纵变量的流量。当副被控变量是流量时,未引入流量副回路,控制阀的回差、阀前压力的波动都会影响到操纵变量的流量,使它不能与主控

制器输出信号保持严格的对应关系。采用串级控制系统后,引入流量副回路,使流量测量值与主控制器输出一一对应,从而能够更精确控制操纵变量的流量。

通过采用串级控制系统,塔釜温度控制更加平稳,产品纯度很高,随着控制系统软件和硬件的不断发展和完善,计算机集散型控制系统的应用和普及,精馏塔的分离质量将会越来越好,分离精度也将会越来越高。

釜液输出端的超驰控制系统

控制回路中有选择器的控制系统称为选择性控制系统。选择器实现逻辑运算,分别为高选器和低选器两类。高选器(>)输出是其输入信号中的高信号,低选器 输出是其输入信号中的低信号。即

高选器 u 0=u i max(1,u i 2 ,···)

低选器 u 0=u i min(1,u i 2 ,···)

选择器将逻辑运算规律引入控制算法,极大丰富自动化内容和范围,成为一类基本控制系统结构。

使用选择性控制系统的目的如下:

生产过程中某一工况参数超过安全软限时,用另一个控制回路替代原有控制回路,使工艺过程能安全运行,这类选择性控制系统称为超驰控制系统。

在本系统中,开车时,塔釜温度较低,应保证塔底不出料。因塔底已有液位,经LT 和正作用LC 控制器,输出升高,但塔温尚低,因此,低设置值的控制器TC2输出较小,被低选器LY 选中,用于控制塔底出料,即关闭采出控制阀。只有当温度达到低线以上,液位控制器取代温度控制器以后,才有出料排出。

1.选择器类型的选择

(1)选择控制阀。根据安全运行准则,选择控制阀为气开阀,0>K V 。

(2)选择被控对象增益。开车时,塔釜温度较低,为保证塔底不出料,应用温度取代液位控制,此时构成一个单闭环温度控制系统。阀门打开,温度降低。

(3)确定正常控制器和取代控制器的正反作用。根据负反馈原则,可确定Kc1<0,Kc2<0,温度和液位都选择正作用的控制器。

2.控制器控制规律的选择

超驰控制系统要求超过安全软限时能迅速切换到取代控制器。因此取代控制器应选择比例度较小的P 或PI 控制器。

第3章系统各仪表选择

3.1检测变送器的原理

检测变送环节的作用是将工业生产过程的参数(流量、压力、温度、物位、成分等)经检测、变送单元转换为标准信号。在模拟仪表中,标准信号通常采用4-20mA,1-5V,0-10mA电流或电压信号,20-100kPa气压信号;在现场总线仪表中,标准信号为数字信号。图3-1为检测变送环节的工作原理

图3.1 检测变送环节工作原理图

检测元件和变送器的基本要求是准确、迅速和可靠。准确指检测元件和变送器能正确反映被控或被测变量,误差应小;迅速指能及时反映被控或被测变量的变化;可靠是检测元件和变送器的基本要求,它应能在环境工况下长期稳定运行。

3.1.1温度变送器的选择

热电偶作为温度传感元件,能将温度信号转换成电动势(mV)信号,配以测量毫伏的指示仪表或变送器可以实现温度的测量指示或温度信号的转换。具有稳定、复现性好、体积小、响应时间较小等优点、热电偶一般用于500°C以上的高温,可以在1600°C高温下长期使用。

热电阻也可以作为温度传感元件。大多数电阻的阻值随温度变化而变化,如果某材料具备电阻温度系数大、电阻率大、化学及物理性能稳定、电阻与温度的关系接近线性等条件,就可以作为温度传感元件用来测温,称为热电阻。热电阻分为金属热电阻和半导体热敏电阻两类。大多数金属热电阻的阻值随其温度升高而增加,

而大多数半导体热敏电阻的阻值随温度升高而减少。

铂铑10-铂热电偶传感器测温范围在0~1600℃,WRP型铂铑10-铂热电阻性能可靠、耐高温、抗氧化,可长期工作在0~1600℃环境下。

本系统选择PCT/TT系列温度变送器。PCT/TT系列温度变送器有很好的性价比,

解决所有温度测量问题,变送器精确,耐用,可靠。为了满足所有工业标准,对于

不同的介质提供大量的测量配置。PCT/TT系列提供二类温度变送器,PCT/TT100用100ΩA级,铂金电阻式热探测器输入,PCT/TT1000用1000ΩA级,铂金电阻式热探测

器输入。变送器在二线制系统中产生4-20mA的线性输出。变送器的输入电源可以是

7-35V的直流电,非稳压,并且极性不敏感。

3.1.2流量变送器的选择

本系统选择电磁流量计TI046D,法拉第电磁感应定律指出,导体在磁场中运动

时会产生感应电压。在电磁仪表中,流动介质相当于运动的导体。与流速成比例的

感应电压用两个测量电极检出并传送到放大器。流体体积根据管道直径进行计算,

恒定磁场由交变极性的开关直流电流产生。

3.2

图Ue = B • L • v

Q = A • v

Ue = 感应电压

B = 磁感应强度(磁场)

L = 电极间距

V = 流速

Q = 体积流量

A = 管道截面积

I = 电流强度

该流量计电源为3-30V的直流电,测量范围0.01 … 10 m / s,输出可选择电流输出或脉冲输出。在本系统中选择电流输出,其大小为4 - 20 mA。

3.2执行器的选择

执行器位于控制回路的最终端,因此,又称为最终元件。执行器直接与被控介质接触,在高低温、高压、腐蚀性、粉尘和爆炸性环境运行时,执行器的选择尤为重要。

控制器的动作是由调节器的输出信号通过各种执行机构来实现的,在由电信号作为控制信号的控制系统中,目前广泛使用的是以下三种控制方式:

(1)按动力来源分,有气动和电动两大类;

(2)按动作极性分,有正作用和反作用两大类;

(3)按动作特性分,有比例和积分两大类。

本系统采用智能直行程电动调节阀,用来对控制回路的流量进行调节。电动调节阀的型号为QSVP-16K。具有精度高、技术先进、体积小、重量轻、推动力大、功能强、控制单元与电动执行机构一体化、可靠性强、操作方便等优点。电源为单相220V,控制信号为4-20mA或1-5VDC,输出为4-20mADC的阀位信号,使用和校正非常方便。阀参数如下:

公称压力:PN1.6-32.0Mpa

工作温度:-100-1000℃

公称通径:DN8-600mm

连接方式:法兰,螺纹,焊接

材质:304,316,304L,316L,SS316,WCB,CF3,CF8,铸钢,铸铁,球墨铸铁,锻钢,不锈钢,等。

精馏塔温度控制系统设计

精馏塔温度控制系统设计 精馏塔是一种常见的化工设备,用于分离液体混合物中的成分。精馏 塔温度控制系统的设计是确保精馏塔能够稳定运行,提高产品质量和产量 的关键。下面将详细介绍精馏塔温度控制系统的设计原理和步骤。 精馏塔温度控制系统的设计原理是根据精馏塔内部的物料性质和工艺 要求,通过控制介质的流量和温度来实现温度的稳定控制。精馏塔内部通 常分为多个段落,每个段落都有一个特定的温度要求。温度的控制涉及到 对塔釜的加热和冷却以及介质的流量调节。 1.确定控制目标:根据工艺要求和产品规格,确定需要控制的温度范 围和偏差,以及控制精度要求。 2.确定控制方法:根据工艺特点和实际情况,选择适合的控制方法。 常见的控制方法包括比例控制、比例积分控制、比例积分微分控制等。 3.确定传感器:选择合适的温度传感器,用于测量精馏塔内部的温度。常见的温度传感器包括热电偶、热敏电阻等。 4.确定执行器:根据控制目标和方法,选择合适的执行器。常见的执 行器包括电动调节阀、蒸汽控制阀等。 5.设计控制回路:根据控制方法和控制器的性能,设计控制回路。控 制回路包括传感器、控制器和执行器。 6.参数整定:根据实际情况和反馈调整,优化控制回路的参数。参数 整定通常包括比例增益、积分时间和微分时间等。 7.验证和优化:通过实际运行验证控制系统的性能,并根据实际情况 进行反馈调整和优化。

总之,精馏塔温度控制系统的设计是确保精馏塔能够稳定运行,提高产品质量和产量的关键。设计步骤包括确定控制目标、控制方法、传感器和执行器的选择、设计控制回路、参数整定以及验证和优化。合理的设计能够使温度控制更加稳定和可靠。

精馏塔塔底温度控制方案

精馏塔塔底温度控制方案 精馏塔是化工生产中常用的一种分离设备,主要用于将混合物中的各组分按照其沸点的不同进行分离。在精馏过程中,塔底温度的控制是非常重要的,因为它直接影响到产品的纯度和收率。本文将对精馏塔塔底温度控制方案进行详细的介绍。 一、精馏塔塔底温度控制的重要性 1. 保证产品质量:精馏塔塔底温度的稳定与否直接关系到产品的质量。如果塔底温度过高,会导致产品中轻组分的损失,降低产品的纯度;反之,如果塔底温度过低,会导致产品中重组分的残留,影响产品的性能。 2. 提高生产效率:合理的塔底温度控制可以提高精馏过程的效率,减少能源消耗,降低生产成本。 3. 保证生产安全:精馏塔塔底温度的波动可能导致操作不稳定,甚至引发安全事故。因此,对塔底温度进行有效的控制是非常必要的。 二、精馏塔塔底温度控制方案 1. 串级控制方案 串级控制是一种常见的温度控制方案,它通过将主控制器的输出作为副控制器的设定值,实现对温度的精确控制。具体实施步骤如下: (1)选择主控制器和副控制器:根据精馏塔的特点和工艺要

求,选择合适的控制器类型,如PID控制器、模糊控制器等。 (2)设定主控制器的参数:根据工艺要求和实际操作经验,设定主控制器的比例、积分和微分参数。 (3)设定副控制器的参数:根据主控制器的输出和塔底温度的变化趋势,设定副控制器的比例、积分和微分参数。 (4)实施串级控制:将主控制器的输出作为副控制器的设定值,实现对塔底温度的精确控制。 2. 前馈控制方案 前馈控制是一种基于模型的控制方案,它通过预测塔底温度的变化趋势,提前调整控制参数,以实现对塔底温度的快速响应。具体实施步骤如下: (1)建立精馏塔的温度模型:根据精馏塔的工作原理和操作条件,建立精馏塔的温度模型。 (2)设计前馈控制器:根据温度模型,设计前馈控制器,实现对塔底温度的预测和控制。 (3)实施前馈控制:将前馈控制器的输出与主控制器的输出相结合,实现对塔底温度的快速响应和精确控制。 3. 自适应控制方案 自适应控制是一种基于数据驱动的控制方案,它通过实时监测塔底温度的变化,自动调整控制参数,以实现对塔底温度的稳定控制。具体实施步骤如下:

精馏塔的温度控制

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计 院(系): 专业班级: 学号: 学生姓名: 指导教师:(签字) 起止时间:

摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 影响物料平衡因素包括进料量和进料成分变化,顶部馏出物及底部出料变化;影响能量平衡因素主要包括进料温度或热焓变化,再沸器加热量和冷凝器冷却量变化,及塔的环境温度变化。采用串级控制系统能有效地去除蒸汽压强的波动对温度的影响。使用超驰控制系统控制釜液输出端,在塔釜温度较低时,塔底不出料只有当温度达到低线以上,液位控制器取代温度控制器以后,才有出料排出。 关键词:提馏段;温度;串级控制;超驰控制

目录 第1章绪论 .................................................................................... 错误!未定义书签。第2章课程设计的方案 ................................................................ 错误!未定义书签。 概述......................................................................................... 错误!未定义书签。 物料平衡关系 ................................................................. 错误!未定义书签。 能量平衡关系 ................................................................. 错误!未定义书签。 设计方案................................................................................. 错误!未定义书签。 控制方案类型 ................................................................. 错误!未定义书签。 控制方案的选择 ............................................................. 错误!未定义书签。第3章系统各仪表选择 ................................................................ 错误!未定义书签。 检测变送器的原理................................................................. 错误!未定义书签。 温度变送器的选择 ....................................................... 错误!未定义书签。 流量变送器的选择 ....................................................... 错误!未定义书签。 执行器的选择......................................................................... 错误!未定义书签。 调节器的选择......................................................................... 错误!未定义书签。 调节器与执行器、检测变送器的选型................................. 错误!未定义书签。 电磁流量计 .............................................................................. 错误!未定义书签。第4章系统仿真 ............................................................................ 错误!未定义书签。 串级控制系统MATLAB仿真分析 ............................................ 错误!未定义书签。

精馏塔的安全运行分析——精馏塔的温度控制

精馏塔的安全运行分析——精馏塔的温度控制精馏塔是化工过程中常用的设备,用于将混合液体按照其不同的沸点 进行分离。在精馏过程中,温度控制是非常重要的,因为温度的控制直接 影响到分离效果和设备的安全运行。本文将对精馏塔的温度控制进行分析,并探讨其安全运行问题。 首先,精馏塔的温度控制是通过控制加热和冷却的方式进行的。一般 来说,精馏塔的顶部会有一个冷凝器,用于冷却和收集顶部的馏分。底部 则会有一个加热器,用于提供加热能量,并驱动液体分离过程。在实际操 作中,温度的控制主要是通过调节加热和冷却的强度来实现的。 对于精馏过程,温度的控制非常重要。首先,温度过高会导致设备的 安全风险。当温度超过液体的沸点时,液体将会产生汽化,形成气相物质 进入顶部冷凝器,如果冷凝器的冷却能力不足,可能会导致无法充分收集 顶部的馏分,甚至出现溢流现象。同时,高温还会增加精馏塔内部的压力,增加设备的风险。因此,需要通过调节加热的强度,使得温度能够控制在 安全范围内。 另一方面,温度过低也是需要注意的问题。过低的温度会导致分离效 果不理想,不能充分实现分离的目的。因此,需要通过提高加热的强度或 降低冷却的强度,使得温度能够维持在适当的范围内,以获得良好的分离 效果。 在温度控制方面,精馏塔还有一个重要参数是反应塔的冷却水温度。 冷却水的温度直接影响到精馏过程中的冷凝效果。一般来说,冷却水温度 越低,冷凝效果越好,但同时也会增加水的用量和处理成本。因此,在实 际操作中,需要在安全和经济的基础上,选择适当的冷却水温度。

除了在操作中对温度进行控制外,还要注意精馏塔的安全运行。首先,需要定期检查精馏塔的加热器和冷凝器的状态,以确保其正常工作。其次,需要保证加热器和冷凝器的设计和运行参数满足工艺要求,并安装适当的 安全设备,如压力表、温度控制器等。此外,需要保持精馏塔的良好通风,以防止易燃气体积聚和引发火灾。最后,在精馏过程中要严格遵守操作规 程和安全操作规范,定期进行设备维护和检修,确保设备的安全运行。 综上所述,精馏塔的温度控制是精馏过程中非常重要的一环。通过合 理的温度控制,可以实现分离效果的最大化,并确保设备的安全运行。在 操作中,需要注意温度过高和过低的问题,并保证加热器和冷凝器的正常 工作。此外,还需要注意安装安全设备,保持良好的通风条件,并严格遵 守操作规程和安全操作规范,以确保精馏塔的安全运行。

精馏塔精馏段温度比值控制方案设计

目录 1. 精馏塔控制系统介绍1 1.1精馏塔原理1 2. 精馏塔精馏段控制分析2 2.1精馏塔精馏段的控制要求2 2.2精馏塔精馏段的扰动分析3 2.3精馏塔被控变量的选择7 3. 比值控制系统8 3.1比值控制系统简介8 3.2比值控制系统的设计9 4. 精馏塔精馏段温度比值控制系统设计11 4.1精馏塔精馏段比值控制系统参数的选择11 4.2控制参数的确定11 4.3现场仪表选型,编制有关仪表信息的设计文件12 4.4系统块图13 5. 分析被控对象特性,选择控制算法(调节器控制规律的确定)13 5.1比值系数的确定14 6. 精馏塔精馏段温度控制分析15 7. 系统仿真与参数整定17 7.1 控制系统的Simulink仿真框图17 7.2 PID参数整定17 8. 课程设计总结21

9. 参考文献22

1.精馏塔控制系统介绍 1.1精馏塔原理 精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。有板式塔和填料塔两种主要类型。根据操作式又可分为连续精馏塔和间歇精馏塔。 蒸汽由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发组分不断地向蒸汽中转移,蒸汽中的难会发组分不断地向下降液中转移,蒸汽越接近塔顶,其易挥发组分浓度越高,而下降液越接近塔底,其难挥发组分则越富集,达到组分分离的目的。由塔顶上升的蒸汽进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸汽返回塔中,另一部分液体则作为釜残液取出。蒸馏的基本原理是将液体混合物部分气化,利用其中各组分挥发度不同的特性,实现分离目的的单元操作。蒸馏按照其操作式可分为:简单蒸馏,闪蒸,精馏,特殊精馏等。 1.2精馏装置的作用 (1)精馏段的作用 加料版以上的塔段为精馏段,其作用是逐板增加上升气相中的易挥发组分的浓度。 (2)提馏段的作用 包括加料版在的以下塔板为提馏段,其作用是逐板提取下降的液相中易挥发组分。 (3)塔板的作用 塔板是供气液两相进行传质和传热的场所。每一块塔板上气液两相进行双

精馏塔的温度控制

辽宁工业大学 过程控制系统课程设计(论文) 题目:精馏塔温度控制系统设计 院(系):专业班级:学号:学生姓名: 指导教师:(签字)起止时间:

摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 影响物料平衡因素包括进料量和进料成分变化,顶部馏出物及底部出料变化;影响能量平衡因素主要包括进料温度或热焓变化,再沸器加热量和冷凝器冷却量变化,及塔的环境温度变化。采用串级控制系统能有效地去除蒸汽压强的波动对温度的影响。使用超驰控制系统控制釜液输出端,在塔釜温度较低时,塔底不出料只有当温度达到低线以上,液位控制器取代温度控制器以后,才有出料排出。 关键词:提馏段;温度;串级控制;超驰控制

目录 第1 章绪论................................................ 错.. 误! 未定义书签 第2 章课程设计的方案...................................... 错. 误! 未定义书签概述.................................................. 错.. 误! 未定义书签 物料平衡关系 ..................................... 错.. 误! 未定义书签 能量平衡关系 ..................................... 错.. 误! 未定义书签设计方案.............................................. 错.. 误! 未定义书签 控制方案类型 ..................................... 错.. 误! 未定义书签 控制方案的选择 ................................... 错.. 误! 未定义书签第3 章系统各仪表选择...................................... 错. 误! 未定义书签检测变送器的原理...................................... 错. 误! 未定义书签温度变送器的选择 ................................. 错.. 误! 未定义书签 流量变送器的选择 ................................. 错.. 误! 未定义书签执行器的选择.......................................... 错.. 误! 未定义书签 调节器的选择.......................................... 错.. 误! 未定义书签 调节器与执行器、检测变送器的选型...................... 错误! 未定义书签串级控制系统MATLAB仿真分析错. 误! 未定义书签

精馏塔的温度控制

. 辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计 院(系): 专业班级: 学号: 学生姓名: 指导教师:(签字) 起止时间:

摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 影响物料平衡因素包括进料量和进料成分变化,顶部馏出物及底部出料变化;影响能量平衡因素主要包括进料温度或热焓变化,再沸器加热量和冷凝器冷却量变化,及塔的环境温度变化。采用串级控制系统能有效地去除蒸汽压强的波动对温度的影响。使用超驰控制系统控制釜液输出端,在塔釜温度较低时,塔底不出料只有当温度达到低线以上,液位控制器取代温度控制器以后,才有出料排出。 关键词:提馏段;温度;串级控制;超驰控制

目录 第1章绪论 (1) 第2章课程设计的方案 (2) 2.1概述 (2) 2.1.1 物料平衡关系 (2) 2.1.2 能量平衡关系 (3) 2.2设计方案 (3) 2.2.1 控制方案类型 (3) 2.2.2 控制方案的选择 (4) 第3章系统各仪表选择 (9) 3.1检测变送器的原理 (9) 3.1.1 温度变送器的选择 (9) 3.1.2 流量变送器的选择 (10) 3.2执行器的选择 (11) 3.3调节器的选择 (12) 3.4调节器与执行器、检测变送器的选型 (14) 电磁流量计 (14) 第4章系统仿真 (15) 4.1串级控制系统MATLAB仿真分析 (15) 第5章课程设计总结 (18) 第6章参考文献 (20)

精馏塔精馏段温度控制设计方案

精馏塔精馏段温度控制设计方案 1.课题研究的背景和意义 石油化工生产常需将液体混合物分离以达到提纯或回收有用组分的目的。分离互溶液体混合物有许多种方法,精馏是在炼油、化工等众多生产过程中广泛应用的一个传质过程。精馏过程通过反复的汽化与冷凝,使混合物料中的各组分分离,分别达到规定的纯度。精馏塔的控制直接影响到产品质量、产量和能量消耗,因此精馏塔的自动控制问题长期以来一直受到人们的高度重视[1]。 精馏过程是由精馏装置来实现的,精馏装置一般是由精馏塔、再沸器(重沸器)、冷凝冷却器、回流罐及回流泵等组成。 实际生产过程中,精馏操作可分为间歇精馏和连续精馏两种。石油化工等大型生产过程主要采用的连续精馏。 精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。有板式塔与填料塔两种主要类型。根据操作方式又可分为连续精馏塔与间歇精馏塔。蒸溜的原理是蒸气由塔底进入。蒸发出的气相与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向气相中转移,气相中的难挥发(高沸点)组分不断地向下降液中转移,气相愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,从而达到组分分离的目的。由塔顶上升的气相进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,加热蒸发成气相返回塔中,另一部分液体作为釜残液取出。 精馏塔是一个多输入多输出的多变量过程,其内在机理复杂,动态响应迟缓,变量之间相互关联,不同的塔工艺结构差别很大,而工艺对控制提出的要求又较高,所以确定精馏塔的控制方案是一个极为重要的课题[1]。 2.课题研究的现状 随着生产过程向着大型、连续和强化方面发展,对操作条件要求更加严格,参数间相互关系更加复杂,对控制系统的精度和功能提出许多新的要求,对能源消耗和环境污染也有明确的限制,采用传统的单回路PID控制往往不能达到控制要求,为此,需要在简单控制系统的基础上,采取其他设施,组成复杂控制系统,也称多回路控制系统。在这种控制

精馏塔塔釜温度控制系统

摘要 在石油、轻工、化工等生产过程中,常常需要将原料、中间产物或粗产品中的组成部分进行分离,而精馏是最常用的方法。精馏是石油、化工等众多生产过程中广泛应用的传质过程,通过精馏过程,使混合物料中的各组分分离,分别达到规定的纯度。分离的机理是利用混合物中各组分的挥发度不同(沸点不同),使液相中的轻组分(低沸点)和汽相中的重组分(高沸点)相互转移,从而实现分离。精馏装置由精馏塔、再沸器、冷凝冷却器、回流罐及回流泵等组成。精馏塔是一个多输入多输出的多变量过程,内在机理较为复杂、动态响应迟缓、变量之间相互关联,不同的塔结构差别很大,而工艺对控制的要求又较高,所以确定精馏塔的控制方案是一个极为重要的课题。我们此次设计就是要设计一个精馏塔温度的控制系统。要求当物料进入精馏塔时,塔釜的温度可控并且温度恒定,保证生产的连续性。 关键词:精馏、多输入多输出、动态响应。

第1章绪论 精馏塔是化工生产中分离互溶液体混合物的典型分离设备。它是依据精馏原理对液体进行分离,即在一定压力下,利用互溶液体混合物各组分的沸点或饱和蒸汽压不同,使轻组份(即沸点较低或饱和蒸汽压较高的组分)汽化。经多次部分液相汽化和部分气相冷凝,使气相中的轻组分和液相中的重组分浓度逐渐升高,也就是说在提馏段上升的轻组分的易挥发组分逐渐增多,难挥发组分逐渐减少,而下降液相中易挥发组分逐渐减少,难挥发组分逐渐增多,从而实现分离的目的,满足化工连续化生产的需要。精馏塔塔釜温度控制的稳定与否直接决定了精馏塔的分离质量和分离效果,控制精馏塔的塔釜温度是保证产品高效分离,进一步得到高纯度产品的重要手段。维持正常的塔釜温度,可以避免轻约分流失,提高物料的回收率;也可减少残余物料的污染作用。 影响精馏塔温度不稳定的因素主要是来自外界来的干扰(如进料流量,温度及成分等的变化对温度的影响)。一般情况下精馏塔塔釜的温度,我们是通过控制精馏塔釜内灵敏板的温度来控制的。灵敏板是当外界条件或负荷改变时精馏塔内温度变化最灵敏的一块塔板。以往调节只是采用灵敏板温度调节器单一回路调节,调节反应慢,时间滞后,对精馏操作而言,产品的纯度很难保证。从上述干扰分析来看,有些干扰是可控的,有些干扰是不可控的。从而选择一种可靠并且稳定的控制系统是非常重要的。

精馏塔温度控制系统设计

摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 精馏塔的大多数前馈信号采用进料量。当进料量来自上一工序时,除了多塔组成的塔系中可采用均匀控制或串级均匀控制外,还有用于克服进料扰动影响的控制方法前馈—反馈控制。 前馈控制是一种预测控制,通过对系统当前工作状态的了解,预测出下一阶段系统的运行状况。如果与参考值有偏差,那么就提前给出控制信号,使干扰获得补偿,稳定输出,消除误差。前馈的缺点是在使用时需要对系统有精确的了解,只有了解了系统模型才能有针对性的给出预测补偿。但在实际工程中,并不是所有的干扰都是可测的,并不是所有的对象都是可得到精确模型的,而且大多数控制对象在运行的同时自身的结构也在发生变化。所以仅用前馈并不能达到良好的控制品质。这时就需要加入反馈,反馈的特点是根据偏差来决定控制输入,不管对象的模型如何,也不管外界的干扰如何,只要有偏差,就根据偏差进行纠正,可以有效的消除稳态误差。解决前馈不能控制的不可测干扰。 前馈反馈综合控制在结合二者的优点后,可以提高系统响应速度 关键词:提馏段温度前馈-反馈串级控制

目录 第1章绪论........................................................................................... 错误!未定义书签。第2章控制方案................................................................................... 错误!未定义书签。 2.1 概述 ................................................................................................ 错误!未定义书签。 2.2系统组成的总体结构 (2) 第3章系统仪表选择 (7) 3.1 检测变送器的原理 (7) 3.1.1 温度变送器的选择 (7) 3.1.2 流量变送器的选择 (8) 3.1.3 液位变送器的选择 (9) 3.2 执行器的选择 (10) 3.3 调节器的选择 (10) 3.4 调节器与执行器、检测变送器的选型 (11) 第4章系统仿真 (13) 4.1串级控制系统matlab仿真分析 (13) 4.2液位控制系统仿真分析 (14) 第5章课程设计总结 (16) 参考文献 (17)

精馏塔精馏段温度控制设计方案

精馏塔精馏段温度控制设计方案 (共52页) -本页仅作为预览文档封面,使用时请删除本页-

精馏塔精馏段温度控制设计方案 1.课题研究的背景和意义 石油化工生产常需将液体混合物分离以达到提纯或回收有用组分的目的。分离互溶液体混合物有许多种方法,精馏是在炼油、化工等众多生产过程中广泛应用的一个传质过程。精馏过程通过反复的汽化与冷凝,使混合物料中的各组分分离,分别达到规定的纯度。精馏塔的控制直接影响到产品质量、产量和能量消耗,因此精馏塔的自动控制问题长期以来一直受到人们的高度重视[1]。 精馏过程是由精馏装置来实现的,精馏装置一般是由精馏塔、再沸器(重沸器)、冷凝冷却器、回流罐及回流泵等组成。 实际生产过程中,精馏操作可分为间歇精馏和连续精馏两种。石油化工等大型生产过程主要采用的连续精馏。 精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。有板式塔与填料塔两种主要类型。根据操作方式又可分为连续精馏塔与间歇精馏塔。蒸溜的原理是蒸气由塔底进入。蒸发出的气相与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向气相中转移,气相中的难挥发(高沸点)组分不断地向下降液中转移,气相愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,从而达到组分分离的目的。由塔顶上升的气相进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,加热蒸发成气相返回塔中,另一部分液体作为釜残液取出。 精馏塔是一个多输入多输出的多变量过程,其内在机理复杂,动态响应迟缓,变量之间相互关联,不同的塔工艺结构差别很大,而工艺对控制提出的要求又较高,所以确定精馏塔的控制方案是一个极为重要的课题[1]。 2.课题研究的现状 随着生产过程向着大型、连续和强化方面发展,对操作条件要求更加严格,参数间相互关系更加复杂,对控制系统的精度和功能提出许多新的要求,对能源消耗和环境污染也有明确的限制,采用传统的单回路PID控制往往不能达到控制要求,为此,需要在简单控制系统的基础上,采取其他设施,组成复杂控制系统,也称多回路控制系统。在这种控制

精馏塔精馏段温度比值控制方案设计说明

目录 1. 精馏塔控制系统介绍错误!未定义书签。 1.1精馏塔原理1 2. 精馏塔精馏段控制分析2 2.1精馏塔精馏段的控制要求2 2.2精馏塔精馏段的扰动分析2 2.3精馏塔被控变量的选择6 3. 比值控制系统6 3.1比值控制系统简介6 3.2比值控制系统的设计7 4. 精馏塔精馏段温度比值控制系统设计8 4.1精馏塔精馏段比值控制系统参数的选择8 4.2控制参数的确定8 4.3现场仪表选型,编制有关仪表信息的设计文件9 4.4系统方块图9 5. 分析被控对象特性,选择控制算法〔调节器控制规律的确定10 5.1比值系数的确定10 6. 精馏塔精馏段温度控制分析10 7. 系统仿真与参数整定12 7.1 控制系统的Simulink仿真框图12 7.2 PID参数整定12 8. 课程设计总结13 9. 参考文献13

1.精馏塔控制系统介绍 1.1精馏塔原理 精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。有板式塔和填料塔两种主要类型。根据操作方式又可分为连续精馏塔和间歇精馏塔。 蒸汽由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发组分不断地向蒸汽中转移,蒸汽中的难会发组分不断地向下降液中转移,蒸汽越接近塔顶,其易挥发组分浓度越高,而下降液越接近塔底,其难挥发组分则越富集,达到组分分离的目的。由塔顶上升的蒸汽进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸汽返回塔中,另一部分液体则作为釜残液取出。蒸馏的基本原理是将液体混合物部分气化,利用其中各组分挥发度不同的特性,实现分离目的的单元操作。蒸馏按照其操作方式可分为:简单蒸馏,闪蒸,精馏,特殊精馏等。 1.2精馏装置的作用 〔1精馏段的作用 加料版以上的塔段为精馏段,其作用是逐板增加上升气相中的易挥发组分的浓度。 〔2提馏段的作用 包括加料版在内的以下塔板为提馏段,其作用是逐板提取下降的液相中易挥发组分。 〔3塔板的作用 塔板是供气液两相进行传质和传热的场所。每一块塔板上气液两相进行双向传质,只要有足够的塔板数,就可以将混合液分离成两个较纯净的组分。 〔4再沸器的作用 其作用是提供一定流量的上升蒸气流。 〔5冷凝器的作用 其作用是提供塔顶液相产品并保证有适当的液相回流。回流主要补充塔板上易挥发组分的浓度,是精馏连续定态进行的必要条件。精馏是一种利用回流使混合液得到高纯度分离的蒸馏方法。

在精馏操作中怎样调节塔顶温度?

在精福操作中怎样调节塔顶温度? 塔顶温度是决定塔顶产品质量的重要因素。在塔压不变的前提下,顶温升高,塔顶产品中的重组分含量增加,质量下降。 塔顶温度的调节方法,主要为两种:一种是固定回流量,调节回流温度;一种是固定回流温度,调节回流量。由于生产装置日趋大型化,考虑到生产的稳定性,调节回流量的方法得到了广泛采用。具体的调节方法如下: ①用回流量控制顶温。回流量加大,顶温降低,这种调节方法多在塔顶为全凝器时采用。 ②当塔顶使用的冷剂在传热过程中有相变化时,可用冷剂的蒸发压力与顶温串级调节来控制顶温。蒸发压力降低,对应的蒸发温度也降低,引起顶温降低。这种方法在塔顶冷凝器为分凝器时可以改变回流量;在塔顶冷凝器有过冷作用时,又可以用来改变回流温度。 ③当塔顶的冷剂在传热过程中无相变化时,可用冷剂流量与顶温串级调节来控制顶温。 如流量加大,顶温降低。这种方法既可改变回流量,又可改变回流温度。 ④用塔顶冷凝器的换热面积调节顶温。提高冷剂液面,换热面积增大, 顶温降低。这种方法既可改变回流量,又可改变回流温度。

⑤当精福段的物料浓度比较高时,可用某两板间的温差来调节顶温。 温差增大,回流液量加大,顶温降低。 在精福操作中,有时釜温升不起来的原因是什么? 精福塔在开车的升温过程及正常操作中都会遇到釜温升不起来的现象 在开车的升温过程中,釜温升不起来的原因可能是: ①加热系统的疏水器(或叫排水阻气阀)失灵; ②扬水站的回水阀门未开; ③再沸器内的蒸汽冷凝液没有排空,蒸汽加不进去; ④塔釜物料中有大量的水存在(水与物料不相溶); ⑤设备结构不合理,使釜液循环受阻; ⑥由于操作不当(再沸器供热太晚或进料量太大,太猛),造成回流到塔釜的轻组分量太大,一时釜温很难提到正常,特别是低温液相进料的塔,极易出现这种现象。此时应改变进料量、进料组成或加大塔顶采出量,以调整操作。 正常操作中,引起釜温提不起来的原因可能是: ①塔底再沸器的液相循环管堵塞,使釜液不循环; ②再沸器列管内的物料结焦或列管被堵塞; ③排水阻气阀失灵;

相关主题
相关文档
最新文档