精馏塔塔底温度控制方案

精馏塔塔底温度控制方案

精馏塔是化工生产中常用的一种分离设备,主要用于将混合物中的各组分按照其沸点的不同进行分离。在精馏过程中,塔底温度的控制是非常重要的,因为它直接影响到产品的纯度和收率。本文将对精馏塔塔底温度控制方案进行详细的介绍。

一、精馏塔塔底温度控制的重要性

1. 保证产品质量:精馏塔塔底温度的稳定与否直接关系到产品的质量。如果塔底温度过高,会导致产品中轻组分的损失,降低产品的纯度;反之,如果塔底温度过低,会导致产品中重组分的残留,影响产品的性能。

2. 提高生产效率:合理的塔底温度控制可以提高精馏过程的效率,减少能源消耗,降低生产成本。

3. 保证生产安全:精馏塔塔底温度的波动可能导致操作不稳定,甚至引发安全事故。因此,对塔底温度进行有效的控制是非常必要的。

二、精馏塔塔底温度控制方案

1. 串级控制方案

串级控制是一种常见的温度控制方案,它通过将主控制器的输出作为副控制器的设定值,实现对温度的精确控制。具体实施步骤如下:

(1)选择主控制器和副控制器:根据精馏塔的特点和工艺要

求,选择合适的控制器类型,如PID控制器、模糊控制器等。

(2)设定主控制器的参数:根据工艺要求和实际操作经验,设定主控制器的比例、积分和微分参数。

(3)设定副控制器的参数:根据主控制器的输出和塔底温度的变化趋势,设定副控制器的比例、积分和微分参数。

(4)实施串级控制:将主控制器的输出作为副控制器的设定值,实现对塔底温度的精确控制。

2. 前馈控制方案

前馈控制是一种基于模型的控制方案,它通过预测塔底温度的变化趋势,提前调整控制参数,以实现对塔底温度的快速响应。具体实施步骤如下:

(1)建立精馏塔的温度模型:根据精馏塔的工作原理和操作条件,建立精馏塔的温度模型。

(2)设计前馈控制器:根据温度模型,设计前馈控制器,实现对塔底温度的预测和控制。

(3)实施前馈控制:将前馈控制器的输出与主控制器的输出相结合,实现对塔底温度的快速响应和精确控制。

3. 自适应控制方案

自适应控制是一种基于数据驱动的控制方案,它通过实时监测塔底温度的变化,自动调整控制参数,以实现对塔底温度的稳定控制。具体实施步骤如下:

(1)收集历史数据:收集精馏塔的操作数据,包括塔底温度、操作条件等。

(2)建立模型:根据历史数据,建立精馏塔的温度模型和控制模型。

(3)设计自适应控制器:根据模型,设计自适应控制器,实现对塔底温度的实时监测和自动调整。

(4)实施自适应控制:将自适应控制器与主控制器相结合,实现对塔底温度的稳定控制。

三、精馏塔塔底温度控制的优化策略

1. 优化控制器参数:通过对控制器参数的实时调整,实现对塔底温度的精确控制。

2. 优化操作条件:根据精馏塔的特点和工艺要求,优化操作条件,如进料流量、回流比等。

3. 优化设备结构:通过改进精馏塔的结构设计,提高传热效率,降低能耗。

4. 引入先进控制技术:如模糊控制、神经网络控制等,提高控制系统的性能。

精馏塔塔底温度控制是精馏过程的关键,对产品质量、生产效率和生产安全具有重要意义。本文介绍了三种常见的塔底温度控制方案:串级控制、前馈控制和自适应控制,并提出了优化策略。实际应用中,可以根据精馏塔的特点和工艺要求,选择合适

的控制方案,并通过优化控制器参数、操作条件、设备结构和引入先进控制技术等手段,实现对塔底温度的精确控制和稳定控制。

精馏塔塔底温度控制方案

精馏塔塔底温度控制方案 精馏塔是化工生产中常用的一种分离设备,主要用于将混合物中的各组分按照其沸点的不同进行分离。在精馏过程中,塔底温度的控制是非常重要的,因为它直接影响到产品的纯度和收率。本文将对精馏塔塔底温度控制方案进行详细的介绍。 一、精馏塔塔底温度控制的重要性 1. 保证产品质量:精馏塔塔底温度的稳定与否直接关系到产品的质量。如果塔底温度过高,会导致产品中轻组分的损失,降低产品的纯度;反之,如果塔底温度过低,会导致产品中重组分的残留,影响产品的性能。 2. 提高生产效率:合理的塔底温度控制可以提高精馏过程的效率,减少能源消耗,降低生产成本。 3. 保证生产安全:精馏塔塔底温度的波动可能导致操作不稳定,甚至引发安全事故。因此,对塔底温度进行有效的控制是非常必要的。 二、精馏塔塔底温度控制方案 1. 串级控制方案 串级控制是一种常见的温度控制方案,它通过将主控制器的输出作为副控制器的设定值,实现对温度的精确控制。具体实施步骤如下: (1)选择主控制器和副控制器:根据精馏塔的特点和工艺要

求,选择合适的控制器类型,如PID控制器、模糊控制器等。 (2)设定主控制器的参数:根据工艺要求和实际操作经验,设定主控制器的比例、积分和微分参数。 (3)设定副控制器的参数:根据主控制器的输出和塔底温度的变化趋势,设定副控制器的比例、积分和微分参数。 (4)实施串级控制:将主控制器的输出作为副控制器的设定值,实现对塔底温度的精确控制。 2. 前馈控制方案 前馈控制是一种基于模型的控制方案,它通过预测塔底温度的变化趋势,提前调整控制参数,以实现对塔底温度的快速响应。具体实施步骤如下: (1)建立精馏塔的温度模型:根据精馏塔的工作原理和操作条件,建立精馏塔的温度模型。 (2)设计前馈控制器:根据温度模型,设计前馈控制器,实现对塔底温度的预测和控制。 (3)实施前馈控制:将前馈控制器的输出与主控制器的输出相结合,实现对塔底温度的快速响应和精确控制。 3. 自适应控制方案 自适应控制是一种基于数据驱动的控制方案,它通过实时监测塔底温度的变化,自动调整控制参数,以实现对塔底温度的稳定控制。具体实施步骤如下:

精馏塔提留段温度单回路控制

精馏原理以及工业流程 精馏操作分为连续精馏和间歇精馏,本设计的研究对象是连续精馏的过程。连续精馏的流程装置如下图所示,其操作过程是:原料液经预热加热到一定温度后,进入精馏塔中的进料板,料液在进料板上与自塔上部下降的回流液体汇合后,在逐板下流,最后流入塔底再沸器中,液体在逐板下降的同时,它与上升的蒸汽在每层塔板上相互接触,同时进行部分汽化和部分冷凝的质量和能量的传递过程。操作时,连续从再沸器中取出的部分液体作为塔底产品,部分液体汽化产生上升蒸汽,从塔底回流入塔内出塔顶蒸汽进入冷凝器中被冷凝成液体,并将部分冷凝液用泵送回塔顶作为回流液体,其余部分经冷却器后被送出作为塔顶产品。 图连续精馏装置工艺流程图 精馏塔的特性 精馏塔的特性分为静态特性和动态特性,以二元简单精馏过程为例,说明精馏塔的基本关系。 1.2.1精馏塔的静态特性 一个精馏塔,进料与出料应保持物料平衡,即总物料量以及任一组分都符合物料平衡关系。图所示的精馏过程,其物料平衡关系为: 总物料平衡 B D F += () 轻组分平衡 B D f x B x D z F ?+?=? ()

由式()和()联立可得: B B f D x x z D F x +-= )( B D f D x x z x F D --= () 式中 F 、D 、B ——分别为进料、顶馏出液和底馏出液流量; f z 、D x 、B x ——分别为进料、顶馏出液和底馏出液中轻组分含量。 从上述关系可看出:当F D 增加时将引起顶、底馏出液中轻组分含量减少,即D x 、B x 下降。而当F B 增加时将引起顶、底馏出液中轻组分含量增加。即D x 、B x 上升。 然而,在F D (或F B )一定,且f z 一定的条件下并不能完全确定D x 、B x 的数值,只能确定D x 与B x 之间的比例关系,也就是一个方程只能确定一个未知数。要确定D x 与B x 两个因数,必须建立另一个关系式:能量平衡关系。 在建立能量平衡关系时,首先要了解一个分离度的概念。所谓分离度s 可用下式表示: ) 1()1(D B B D x x x x s --= () 从上 式可见:随着分离度s 的增大,而B x 减小,说明塔系统的分离效果增大。影响分离度s 的因素很多,诸如平均挥发度、理论塔板数、塔板效率、进料组分、进料板位置以及塔内上升蒸汽量V 和进料量F 的比值等。对于一个既定的塔来说: ) (F V f s ≈ () 式()的函数关系也可用一近似式表示: β =F V In )1()1(D B B D x x x x -- () 式中β为塔的特性因子。 由式()、()可以看出,随着F V 增加,s 值提高。也就是D x 增加,B x 下降,分离效果提高了。由于V 是由再沸器施加热量来提高的,所以该式实际是表示塔的能量对产品成分的影响,故称为能量平衡关系式。而且由上述分析可见:F V 的增大,塔的分离效果提高,能耗也将增加。

精馏塔的温度控制

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计 院(系): 专业班级: 学号: 学生姓名: 指导教师:(签字) 起止时间:

摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 影响物料平衡因素包括进料量和进料成分变化,顶部馏出物及底部出料变化;影响能量平衡因素主要包括进料温度或热焓变化,再沸器加热量和冷凝器冷却量变化,及塔的环境温度变化。采用串级控制系统能有效地去除蒸汽压强的波动对温度的影响。使用超驰控制系统控制釜液输出端,在塔釜温度较低时,塔底不出料只有当温度达到低线以上,液位控制器取代温度控制器以后,才有出料排出。 关键词:提馏段;温度;串级控制;超驰控制

目录 第1章绪论 .................................................................................... 错误!未定义书签。第2章课程设计的方案 ................................................................ 错误!未定义书签。 概述......................................................................................... 错误!未定义书签。 物料平衡关系 ................................................................. 错误!未定义书签。 能量平衡关系 ................................................................. 错误!未定义书签。 设计方案................................................................................. 错误!未定义书签。 控制方案类型 ................................................................. 错误!未定义书签。 控制方案的选择 ............................................................. 错误!未定义书签。第3章系统各仪表选择 ................................................................ 错误!未定义书签。 检测变送器的原理................................................................. 错误!未定义书签。 温度变送器的选择 ....................................................... 错误!未定义书签。 流量变送器的选择 ....................................................... 错误!未定义书签。 执行器的选择......................................................................... 错误!未定义书签。 调节器的选择......................................................................... 错误!未定义书签。 调节器与执行器、检测变送器的选型................................. 错误!未定义书签。 电磁流量计 .............................................................................. 错误!未定义书签。第4章系统仿真 ............................................................................ 错误!未定义书签。 串级控制系统MATLAB仿真分析 ............................................ 错误!未定义书签。

精馏塔提馏段温度控制系统.doc

University of South China 过程控制仪表课程设计 设计题目:精馏塔提馏段温度控制系统**:*** 班级:自动化073班 学号:*********** 指导教师:高飞燕唐耀庚 2 0 1 0年12 月31日

1、系统简介 精馏操作是炼油、化工生产过程中的一个十分重要的环节。精馏塔的控制直接影响到工厂的产品的质量、产量和能量的消耗,因此精馏塔的自动控制长期以来一直受到人们的高度重视。精馏塔是一个多输入多输出的对象,它由很多级塔板组成,内在机理复杂,对控制要求又大多较高。这些都给自动控制带来一定的困难。同时各塔工艺结构特点有千差万别,这需要深入分析特性,结合具体塔的特点,进行自动控制方案设计和研究。精馏塔的控制最终目标是:在保证产品质量的前提下,使回收率最高,能耗最小,或使总收益最大。在这个情况为了更好实现精馏的目标就有了提馏段温度控制系统的产生。 按提馏段指标的控制方案:当塔釜液为主要产品时,常常按提馏段指标控制。如果是液相进料,也常采用这类方案。这是因为在液位相进料时,进料量的变化,首先影响到塔底产品浓度,塔顶或精馏段塔板上的温度不能很好地反映浓度的变化,所以采用提馏段控制温度比较及时。另外如果对釜底出料的成分要求高于塔顶出料,塔顶或精馏段板上温度不能很好反映组分变化和实际操作回流比大于几倍最小回流比时,可采用提馏段控制。提馏段温度是衡量质量指标的间接指标,而以改变再沸器加热量作为控手段的方案,就是提馏段温控。 2、设计方案及仪表选型 2.1控制方案的确定 图2-1是精馏塔底部示意图,在再沸器中,用蒸汽加热塔釜液产生蒸汽,然后在塔釜中与下降物料进行传热传质。为了保证生产过程顺利进行,需要把提馏段温度θ。保持恒定。为此在蒸汽管路上装上一个调节阀,用它来控制加热蒸汽流量。从调节阀的做到温度θ发生变化,需要相继通过很多热容积。实践证明,加热蒸汽压力的波动对θ的影响很大。此外,还有来自液相加料方面的各种干扰,包括它的流量、温度和组分等,它们通过提馏段的传质过程,以及再沸器中传热条件(塔釜温度、再沸器液面等),最后也影响到温度θ。很明显当加热蒸汽压力波动较大时,如果采用如图2-1所示的简单单回路温度控制系统,调节品质一般不能满足生产要求。由于存在这些扰动故考虑串级控制系统。

精馏塔精馏段温度比值控制方案设计

目录 1. 精馏塔控制系统介绍1 1.1精馏塔原理1 2. 精馏塔精馏段控制分析2 2.1精馏塔精馏段的控制要求2 2.2精馏塔精馏段的扰动分析3 2.3精馏塔被控变量的选择7 3. 比值控制系统8 3.1比值控制系统简介8 3.2比值控制系统的设计9 4. 精馏塔精馏段温度比值控制系统设计11 4.1精馏塔精馏段比值控制系统参数的选择11 4.2控制参数的确定11 4.3现场仪表选型,编制有关仪表信息的设计文件12 4.4系统块图13 5. 分析被控对象特性,选择控制算法(调节器控制规律的确定)13 5.1比值系数的确定14 6. 精馏塔精馏段温度控制分析15 7. 系统仿真与参数整定17 7.1 控制系统的Simulink仿真框图17 7.2 PID参数整定17 8. 课程设计总结21

9. 参考文献22

1.精馏塔控制系统介绍 1.1精馏塔原理 精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。有板式塔和填料塔两种主要类型。根据操作式又可分为连续精馏塔和间歇精馏塔。 蒸汽由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发组分不断地向蒸汽中转移,蒸汽中的难会发组分不断地向下降液中转移,蒸汽越接近塔顶,其易挥发组分浓度越高,而下降液越接近塔底,其难挥发组分则越富集,达到组分分离的目的。由塔顶上升的蒸汽进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸汽返回塔中,另一部分液体则作为釜残液取出。蒸馏的基本原理是将液体混合物部分气化,利用其中各组分挥发度不同的特性,实现分离目的的单元操作。蒸馏按照其操作式可分为:简单蒸馏,闪蒸,精馏,特殊精馏等。 1.2精馏装置的作用 (1)精馏段的作用 加料版以上的塔段为精馏段,其作用是逐板增加上升气相中的易挥发组分的浓度。 (2)提馏段的作用 包括加料版在的以下塔板为提馏段,其作用是逐板提取下降的液相中易挥发组分。 (3)塔板的作用 塔板是供气液两相进行传质和传热的场所。每一块塔板上气液两相进行双

精馏塔的温度控制

辽宁工业大学 过程控制系统课程设计(论文) 题目:精馏塔温度控制系统设计 院(系):专业班级:学号:学生姓名: 指导教师:(签字)起止时间:

摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 影响物料平衡因素包括进料量和进料成分变化,顶部馏出物及底部出料变化;影响能量平衡因素主要包括进料温度或热焓变化,再沸器加热量和冷凝器冷却量变化,及塔的环境温度变化。采用串级控制系统能有效地去除蒸汽压强的波动对温度的影响。使用超驰控制系统控制釜液输出端,在塔釜温度较低时,塔底不出料只有当温度达到低线以上,液位控制器取代温度控制器以后,才有出料排出。 关键词:提馏段;温度;串级控制;超驰控制

目录 第1 章绪论................................................ 错.. 误! 未定义书签 第2 章课程设计的方案...................................... 错. 误! 未定义书签概述.................................................. 错.. 误! 未定义书签 物料平衡关系 ..................................... 错.. 误! 未定义书签 能量平衡关系 ..................................... 错.. 误! 未定义书签设计方案.............................................. 错.. 误! 未定义书签 控制方案类型 ..................................... 错.. 误! 未定义书签 控制方案的选择 ................................... 错.. 误! 未定义书签第3 章系统各仪表选择...................................... 错. 误! 未定义书签检测变送器的原理...................................... 错. 误! 未定义书签温度变送器的选择 ................................. 错.. 误! 未定义书签 流量变送器的选择 ................................. 错.. 误! 未定义书签执行器的选择.......................................... 错.. 误! 未定义书签 调节器的选择.......................................... 错.. 误! 未定义书签 调节器与执行器、检测变送器的选型...................... 错误! 未定义书签串级控制系统MATLAB仿真分析错. 误! 未定义书签

精馏塔的温度控制

. 辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计 院(系): 专业班级: 学号: 学生姓名: 指导教师:(签字) 起止时间:

摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 影响物料平衡因素包括进料量和进料成分变化,顶部馏出物及底部出料变化;影响能量平衡因素主要包括进料温度或热焓变化,再沸器加热量和冷凝器冷却量变化,及塔的环境温度变化。采用串级控制系统能有效地去除蒸汽压强的波动对温度的影响。使用超驰控制系统控制釜液输出端,在塔釜温度较低时,塔底不出料只有当温度达到低线以上,液位控制器取代温度控制器以后,才有出料排出。 关键词:提馏段;温度;串级控制;超驰控制

目录 第1章绪论 (1) 第2章课程设计的方案 (2) 2.1概述 (2) 2.1.1 物料平衡关系 (2) 2.1.2 能量平衡关系 (3) 2.2设计方案 (3) 2.2.1 控制方案类型 (3) 2.2.2 控制方案的选择 (4) 第3章系统各仪表选择 (9) 3.1检测变送器的原理 (9) 3.1.1 温度变送器的选择 (9) 3.1.2 流量变送器的选择 (10) 3.2执行器的选择 (11) 3.3调节器的选择 (12) 3.4调节器与执行器、检测变送器的选型 (14) 电磁流量计 (14) 第4章系统仿真 (15) 4.1串级控制系统MATLAB仿真分析 (15) 第5章课程设计总结 (18) 第6章参考文献 (20)

精馏塔精馏段温度控制设计方案

精馏塔精馏段温度控制设计方案 1.课题研究的背景和意义 石油化工生产常需将液体混合物分离以达到提纯或回收有用组分的目的。分离互溶液体混合物有许多种方法,精馏是在炼油、化工等众多生产过程中广泛应用的一个传质过程。精馏过程通过反复的汽化与冷凝,使混合物料中的各组分分离,分别达到规定的纯度。精馏塔的控制直接影响到产品质量、产量和能量消耗,因此精馏塔的自动控制问题长期以来一直受到人们的高度重视[1]。 精馏过程是由精馏装置来实现的,精馏装置一般是由精馏塔、再沸器(重沸器)、冷凝冷却器、回流罐及回流泵等组成。 实际生产过程中,精馏操作可分为间歇精馏和连续精馏两种。石油化工等大型生产过程主要采用的连续精馏。 精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。有板式塔与填料塔两种主要类型。根据操作方式又可分为连续精馏塔与间歇精馏塔。蒸溜的原理是蒸气由塔底进入。蒸发出的气相与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向气相中转移,气相中的难挥发(高沸点)组分不断地向下降液中转移,气相愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,从而达到组分分离的目的。由塔顶上升的气相进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,加热蒸发成气相返回塔中,另一部分液体作为釜残液取出。 精馏塔是一个多输入多输出的多变量过程,其内在机理复杂,动态响应迟缓,变量之间相互关联,不同的塔工艺结构差别很大,而工艺对控制提出的要求又较高,所以确定精馏塔的控制方案是一个极为重要的课题[1]。 2.课题研究的现状 随着生产过程向着大型、连续和强化方面发展,对操作条件要求更加严格,参数间相互关系更加复杂,对控制系统的精度和功能提出许多新的要求,对能源消耗和环境污染也有明确的限制,采用传统的单回路PID控制往往不能达到控制要求,为此,需要在简单控制系统的基础上,采取其他设施,组成复杂控制系统,也称多回路控制系统。在这种控制

精馏塔提馏段的温度控制设计

成绩 过程控制仪表课程设计 设计题目精馏塔提馏段的温度控制系统学生姓名 XX 专业班级自动化X X X X班 学号 XXXXXXXXXXX 指导老师 XXX 2019年XX月XX日

《过程控制仪表》课程设计评分标准表 姓名:XX 学号:XXXXXXXXX 课程设计的最终成绩采取“优秀”、“良好”、“中等”、“及格”和“不及格”五级记分。100-90分(优秀)、89-80(良好)、79-70(中等)、69-60(及格)、低于60(不及格)

《过程控制仪表课程设计》任务书

目录 1.设计任务与要求 (1) 1.1 设计任务 (1) 1.2 设计要求 (1) 2.系统简介 (1) 3.设计方案及仪表选型 (2) 3.1控制方案的确定 (2) 3.2系统原理及方框图 (3) 3.3仪表选型 (4) 4.系统仿真分析 (10) 5.控制系统仪表配接图及说明 (13) 6.仪表型号清单 (13) 7.总结 (14) 参考文献 (14)

1.设计任务与要求 1.1 设计任务 过程控制仪表课程设计,是《自动化仪表与装置》课程中的后续课程,实践教学环节,也是一次全面的专业知识的运用和实践。 ⑴巩固和深化所学课程的知识: 通过课程设计,要求学生初步学会运用本门课程和其它相关课程的基本知识和方法,来解决工程实际中的具体的设计问题,检验学生对本门课程及相关课程内容的掌握的程度,以进一步巩固和深化所学课程的知识。 ⑵培养学生的设计、实践能力: 通过课程设计,从方案选择、设计计算到绘制图纸、编写设计说明书,可以培养学生对工程设计的独立工作能力,树立正确的设计思想,掌握自动控制系统中各环节使用仪表的基本方法和步骤,为以后从事工程设计打下良好的基础。⑶使学生能熟悉和运用设计资料,学会查阅相关文献,如有关国家标准、手册、图册等,以完成作为工程技术人员在工程设计方面所必须的基本训练。 1.2 设计要求 (1)编写过程控制仪表设计说明书。内容包括:控制系统的简单介绍,工艺流程分析;各环节仪表的选型、仪表的工作原理及性能指标;控制系统的仿真分析;仪表间的配接说明。 (2)绘制工艺流程原理框图。 (3)给出系统仪表型号清单。 (4)绘制仪表盘电气接线图,端子接线图。 2.系统简介 精馏操作是炼油、化工生产过程中的一个十分重要的环节,精馏过程是一个复杂的传质传热过程,表现为:过程变量多,被控变量多,可操纵的变量也多,精馏塔的控制直接影响到工厂的产品的质量、产量和能量的消耗,因此精馏塔的自动控制长期以来一直受到人们的高度重视。各塔工艺结构特点有千差万别,这需要深入分析特性,结合具体塔的特点,进行自动控制方案设计和研究,其自动控制系统的核心在于品质指标的设定、被控变量和操作变量的选择。在精馏塔的控制系统设计中,应选取馏出产品的质量指标、蒸馏产品的产量指标和蒸馏过程

精馏塔温度控制系统设计

摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 精馏塔的大多数前馈信号采用进料量。当进料量来自上一工序时,除了多塔组成的塔系中可采用均匀控制或串级均匀控制外,还有用于克服进料扰动影响的控制方法前馈—反馈控制。 前馈控制是一种预测控制,通过对系统当前工作状态的了解,预测出下一阶段系统的运行状况。如果与参考值有偏差,那么就提前给出控制信号,使干扰获得补偿,稳定输出,消除误差。前馈的缺点是在使用时需要对系统有精确的了解,只有了解了系统模型才能有针对性的给出预测补偿。但在实际工程中,并不是所有的干扰都是可测的,并不是所有的对象都是可得到精确模型的,而且大多数控制对象在运行的同时自身的结构也在发生变化。所以仅用前馈并不能达到良好的控制品质。这时就需要加入反馈,反馈的特点是根据偏差来决定控制输入,不管对象的模型如何,也不管外界的干扰如何,只要有偏差,就根据偏差进行纠正,可以有效的消除稳态误差。解决前馈不能控制的不可测干扰。 前馈反馈综合控制在结合二者的优点后,可以提高系统响应速度 关键词:提馏段温度前馈-反馈串级控制

目录 第1章绪论........................................................................................... 错误!未定义书签。第2章控制方案................................................................................... 错误!未定义书签。 2.1 概述 ................................................................................................ 错误!未定义书签。 2.2系统组成的总体结构 (2) 第3章系统仪表选择 (7) 3.1 检测变送器的原理 (7) 3.1.1 温度变送器的选择 (7) 3.1.2 流量变送器的选择 (8) 3.1.3 液位变送器的选择 (9) 3.2 执行器的选择 (10) 3.3 调节器的选择 (10) 3.4 调节器与执行器、检测变送器的选型 (11) 第4章系统仿真 (13) 4.1串级控制系统matlab仿真分析 (13) 4.2液位控制系统仿真分析 (14) 第5章课程设计总结 (16) 参考文献 (17)

精馏塔的安全运行分析——精馏塔的温度控制

精馏塔的安全运行分析——精馏塔的温度控制 (最新版) 编制人:__________________ 审核人:__________________ 审批人:__________________ 编制单位:__________________ 编制时间:____年____月____日 序言 下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大 家解决实际问题。文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢! 并且,本店铺为大家提供各种类型的安全管理制度,如通用安全、交通运输、矿山安全、石油化工、建筑安全、机械安全、电力安全、其他安全等等制度,想了解不同制度格式和写法,敬请关注! Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of safety management systems, such as general safety, transportation, mine safety, petrochemical, construction safety, machinery safety, electrical safety, other safety, etc. systems, I want to know the format and writing of different systems ,stay tuned!

精馏塔常用控制方案简介

精馏塔常用控制方案简介 1.1.2 精馏塔常用控制方案简介 a)传统控制方案 1)按物料平衡关系控制精馏塔 物料平衡控制方式并不对塔顶或塔底产品质量进展直接的控制,而依据精馏塔的物料平衡及能量平衡关系进展间接控制。其根本原理是,当进料成分不变和进料温度一定时,在持全塔物料平衡的前提下,保持进料量F、再沸器加热量、塔顶产品量D一定;或者说保持D/F和B/F一定,就可保证塔顶、塔底产品质量指标一定。 2)质量指标控制 精馏塔质量指标由精馏塔产品的纯度表达,精馏塔产品的纯度直接影响因素为精馏段灵敏板温度与提馏段灵敏板温度。因此,精馏塔质量指标控制方案与温度控制有直接联系。 3)温度控制 当为了生产两种合格的产品,只有塔顶、塔底两种。而没有侧线产品时,常用的控制方案是:利用回流量来控制顶部塔板的温度,改变通往再沸器加热蒸汽量来控制底部塔板的温度。 b)先进控制方案 1)自适应解耦控制 一些学者将自适应控制应用于精馏塔的不同组分控制。但是.没有考虑控制回路之问耦合的影响。目前已提出的多变量自适应解耦控制算法,只能对最小相位系统实现动态解耦,对非最小相位系统实现近似动态解耦,近来,有人根据精馏塔的特点提出了一种可以对闭环系统实现动静态解耦的自适应控制器,并在精馏塔上进展了实验。

2)多变量预测控制 预测控制是一类以对象模型为根底的计算机控制算法,依据对象模型的不同,预测算法可粉为模型算法(MAC)、动态矩阵控制算法(DMC)、广义预测控制(GPC)等详细实现形式。工业上应用说明:多变量预测控制到达了期望的效果,实现了常压塔的平稳操作,提高了装置适应处理量与原料性质变化的能力;并简化了控制过程,减少了劳动强度及人工干预,显著提高了产品的合格率。1.2 问题的提出及解决问题的途径 对于精馏过程中的温度控制系统,当只有塔顶、塔底两种产品,而没有侧线产品时,常用的控制方案是:利用回流量来控制顶部塔板的温度,改变通往再沸器加热蒸汽量来控制底部塔板的温度。这两个控制是互相干扰的。当改变蒸汽量时,不但会影响塔底的温度,也会影响塔顶的温度,从而引起温度调节阀的动作,以改变回流量,而它又会影响塔底的温度,如此反复,使系统不易稳定,调节频繁,产品质量不高。为此,我们在这个控制系统中引入解耦补偿环节,以消除控制系统之间有害的耦合关系,使它们成为彼此独立的控制回路,使整个系统易于稳定,产品质量也有所提高。 而传统的解耦控制器及解耦网络的设计不仅依赖于数学模型的准确性,而且难以实现。采用常规解耦控制方法要求首先建立系统的较准确的数学模型,然而,这对于一些系统或过程,建立准确的数学模型决非是一件容易实现的事。模糊控制摆脱了数学模型的束缚,开辟了解耦控制的一条新的途径。 因此,本文针对精馏过程中的温度控制问题,提出了一种模糊解耦控制的方案,提供了一条有效的解决途径,借助于操作工的经历及

相关主题
相关文档
最新文档