Lec20_Future海洋光学及水色遥感简介课件

遥感卫星的发展现状

遥感卫星的发展现状 摘要:卫星遥感技术并不被普通人所熟知,本文阐述了现今遥感卫星在我国的应用情况,同时展望未来遥感卫星应用前景,由此引出遥感卫星商业化发展的问题,于是重点分析讨论了当前遥感卫星在商业化发展过程中所遇到的主要困难,并且针对这些困难,提出促进遥感卫星商业化尽快实现的指导理念和主要措施以及预测遥感卫星商业化的可能发展趋势。 前言 面对新的世纪、新的形势,世界各国政府都在认真思考和积极部署新的经济与社会发展战略。尽管各国在历史文化、现实国情和发展水平方面存在着种种差异,但在关注和重视科技进步上却是完全一致的。这是因为,我们面对的是一个以科技创新为主导的世纪,是以科技实力和创新能力决定兴衰的国际格局。一个在科学技术上无所作为的国家,将不可避免地在经济、社会和文化发展上受到极大制约。 卫星遥感技术集中了空间、电子、光学、计算机通信和地学等学科的最新成就,是当代高新技术的一个重要组成部分。我国卫星遥感技术的发展和应用已经走过了多年艰苦探索与攀登的道路。如今,我们欣喜的看到卫星遥感应用技术已经起步并正在走向成熟和辉煌。 近十年来全球空间对地观测技术的发展和应用已经表明,卫星遥感技术是一项应用广泛的高科技,是衡量一个国家科技发展水平的重要尺度。现在不论是西方发达国家还是亚太地区的发展中国家,都十分重视发展这项技术,寄希望于卫星遥感技术能够给国家经济建设的飞跃提供强大的推动力和可靠的战略决策依据。这种希望给卫星遥感技术的发展带来新的机遇。面对这种形势,我国卫星遥感技术如何发展,如何使卫星遥感技术真正成为实用化、产业化的技术,直接为国民经济建设当好先行,是当前业界人士关注的热门焦点。 卫星遥感技术应用 (一)、卫星遥感技术应用现状 首先,到目前为止,我国已经成功发射了十六颗返回式卫星,为资源、环境研究和国民经济建设提供了宝贵的空间图像数据,在我国国防建设中也起到了不可替代的作用。我国自行研制和发射了包括太阳和地球同步轨道在内的六颗气象卫星。气象卫星数据已在气象研究、天气形势分析和天气预报中广为使用,实现了业务化运行。一九九九年十月我国第一颗以陆地资源和环境为主要观测目标的中巴地球资源卫星发射成功,结束了我国没有较高空间分辨率传输型资源卫星的历史,已在资源调查和环境监测方面实际应用,逐步发挥效益。我国还发射了第一颗海洋卫星,为我国海洋环境和海洋资源的研究提供了及时可靠的数据。其次,除了上述发射的遥感卫星外,我国还先后建立了国家遥感中心、国家卫星气象中心、中国资源卫星应用中心、卫星海洋应用中心和中国遥感卫星地面接收站等国家级遥感应用机构。同时,国务院各部委及省市地方纷纷建立了一百六十多个省市级遥感应用机构。这些遥感应用机构广泛的开展气象预报、国土普查、作物估产、森林调查、地质找矿、海洋预报、环境保护、灾害监测、城市规划和地图测绘等遥感业务,并且与全球遥感卫星、通信卫星和定位导航卫星相配合,为国家经济建设和社会主义现代化提供多方面的信息服务。这也为迎接21世纪空间时代和信息社会的挑战,打下了坚实的基础。 最后,非常关键,必须要重点指出的是两大系统的建立完成。一是国家级基本资源与环境遥感动态信息服务体系的完成,标志着我国第一个资源环境领域的大型空间信息系统,也是全球最大规模的一个空间信息系统的成功建立;二是国家级遥感、地理信息系统及全球定位系统的建立,使我国成为世界上少数具有国家级遥感信息服务体系的国家之一。 我国遥感监测的主要内容为如下三方面: 1、对全国土地资源进行概查和详查; 2、对全国农作物的长势及其产量监测和估产; 3、对全国森林覆盖率的统计调查。 (二)、卫星遥感技术应用前景 国际上卫星遥感技术的迅猛发展,将在未来十五年把人类带入一个多层、立体、多角度、全方位和全天候对地观测的新时代。由各种高、中、低轨道相结合,大、中、小卫星相协同,高、中、低分辨率相弥补

常见遥感卫星的基本参数大全

常见遥感卫星的基本参数大全 1. BERS-1 中巴资源卫星 CBERS-1 中巴资源卫星由中国与巴西于1999年10月14日合作发射,是我国的第一颗数字传输型资源卫星。 卫星参数: 太阳同步轨道轨道高度:778公里,倾角:98.5o 重复周期:26天,平均降交点地方时为上午10:30 相邻轨道间隔时间为 4 天扫描带宽度:185公里星上搭载了CCD传感器、IRMSS红外扫描仪、广角成像仪,由于提供了从20米-256米分辨率的11个波段不同幅宽的遥感数据,成为资源卫星系列中有特色的一员。 红外多光谱扫描仪:波段数:4波谱范围:B6:0.50 –1.10(um)B7:1.55 –1.75(um)B8:2.08 –2.35(um)B9:10.4 –12.5(um)覆盖宽度:119.50公里空间分辨率:B6 –B8:77.8米B9:156米CCD相机:波段数:5波谱范围:B1:0.45 –0.52(um)B2:0.52 – 0.59(um)B3:0.63 –0.69(um)B4:0.77 –0.89(um)B5:0.51 –0.73(um)覆盖宽度:113公里空间分辨率:19.5米(天底点)侧视能力:-32 士32 广角成像仪:波段数:2波谱范围:B10:0.63 –0.69(um)B11:0.77 –0.89(um)覆盖宽度:890公里空间分辨率:256米 CBERS- 1卫星于1999年10月14日发射成功后,截止到2001年10月14日为止,它在太空中己运行2年,围绕地球旋转10475圈,向地面发送了大量的遥感图像数据,已存档218201景0级数据产品。CBERS-1卫星的设计寿命是2年,但据航天专家测定CBERS-1卫星在轨道上运行正常。有效载荷除巴西研制的宽视场成像仪于2000年5月9日因电源系统故障失效外,其余均工作正常,而且目前星上的所有设备均工作在主份状态,备份设备还未启用,星上燃料绰绰有余。因此,虽然卫星设计寿命是2年,但航天专家设计时对各个器件都打有超期服役的余量,从CBERS-1卫星目前的运行情况来,其寿命肯定要远远大于2年。所以欢迎用户继续踊跃使用CBERS- 1的数据。2002年我国将发射CBERS-2 卫星,用户期望的中巴地球资源卫星在太空中双星运行的壮观将会实现。 2、法国SPOT卫星 法国SPOT-4卫星轨道参数: 轨道高度:832公里 轨道倾角:98.721o 圈/分101.469轨道周期: 重复周期:369圈/26天 降交点时间:上午10:30分 扫描带宽度:60 公里 两侧侧视:+/-27o 扫描带宽:950公里 波谱范围: 多光谱XI B1 0.50 –0.59um 20米分辨率B2 0.61 –0.68um B3 0.78 –0.89um SWIR 1.58 –1.75um

海洋遥感技术(2)实验教学大纲

海洋遥感技术(2)实验教学大纲 一、制定本大纲的依据 根据2006级海洋技术专业(遥感与信息处理)培养计划和海洋遥感技术(2)课程的教学大纲制订。 二、本实验课程的具体安排 实验项目的设置及学时分配

备注:实验要求:填必修、选修。实验类型:填演示、验证、综合、设计。实验类别:基础、专业等 三、本实验课在该课程体系中的地位与作用 海洋遥感技术课程是一门理论性和实践性都较强的课程。本实验课是课堂授课过程的一个重要环节,是对理论知识的进一步理解和深化,是培养学生实践能力不可或缺的一个环节。其作用是通过专业语言和专业软件的学习和编程,达到对本课程重要概念、遥感原理的掌握。目的是通过对学生应用能力的训练上,使学生能够结合所学知识解决实际问题。 四、学生应达到的实验能力与标准 1、对相应卫星传感器对应的软件如SeaDas、Beam、Bilko3等有一定程度的掌握,能 熟悉基本操作,并进一步了解其原理; 2、以卫星数据的读取为例,掌握专业软件对科学数据的简单读取,并能进一步对科学 数据进行简单的编辑; 3、熟悉SeaWiFs、以及Envisat/ASAR、Envisat/MEIRS、Envisat/AATSR等的不同卫星 传感器的作用,并进一步掌握卫星数据格式以及卫星数据的接收、传输、输入、输 出、反演等基本过程; 4、通过对卫星数据的读取,能对海洋要素比如SST(海表温度)、海面风场的方向与风 速、内波、海浪方向谱、赤潮、海色、浅海地形等海洋现象,做基本的显示与反演 以及应用等。 五、讲授实验的基本理论与实验技术知识 实验一利用SeaDAS读取SeaWiFS卫星数据 1、实验的基本内容 (1)对SeaWiFS卫星数据做进一步介绍以及卫星数据的接收原理; (2)学会SeaDAS的基本使用; (3)让学生利用SeaDAS软件反演SeaWiFS卫星数据; (4)SeaDAS的反演原理,与分析/半分析算法做简单比较。 2、实验的基本要求 达到的实验技术要求,通过实例以及PPT的演示,在前两节课里让学生对SeaDAS 软件能有初步了解;熟悉并掌握SeaDAS软件,并利用SeaDAS读取SeaWiFS卫星数据,能进行基本的叶绿素、悬浮物等海色要素的反演。

南海水色遥感的主因子分析

南海水色遥感的主因子分析* 曹文熙 钟其英 杨跃忠 (中国科学院南海海洋研究所 广州 510301) 摘 要 分析了叶绿素、黄色物质和无机悬浮颗粒等要素对海水光谱反射率的贡献,并由这些要素的光学特性正演光谱反射率,与实测结果符合较好。在此基础上,利用主成分分析方法,通过对光谱反射率数据的特征向量变换和主因子回归,建立了反演南海海水叶绿素和溶解有机碳的遥感算法。与实测结果的比较表明,叶绿素和溶解有机碳的相对误差分别达17 5%和37 4%。关键词 水色,遥感算法,主因子分析,南海 1 引 言 设R 是由n 个光谱通道测得的海水光谱反射率,它是海水中叶绿素、无机悬浮颗粒、黄色物质等水色要素的函数,可表示为: R =f (c i ) (1) 其中c i (i =1,2,3)分别为叶绿素、无机悬浮颗粒和黄色物质的浓度;f (c i )是与海水光学特性有关的函数。通常采用最小二乘法由(1)式反演水色要素含量,2个波段组合的生物-光学算法基本形式为 c i = A r B xy (2) 其中r xy 为x 波段和y 波段光谱反射率的某种组合 (如比值、和、差等);A ,B 是由具体海区生物-光学特性决定的回归参数。 CZC S (海岸带水色扫描仪)遥感数据的应用经验表明,2个波段算法存在较大的局限性。这主要是由于在海水中,各种物质成分的光谱信息叠加在一起,除浮游植物外,无机悬浮颗粒及黄色物质对离水辐射的作用同样重要。随着新一代水色遥感器如Sea WiFS 及中分辨率成像光谱仪(MODIS )光谱通道的增加,研究新一代的生物-光学算法,充分利用各光谱通道的有效信息,便有了十分现实的意义[1]。 利用主因子分析方法,探讨由高光谱信息反演水色要素含量的算法模式。 2 海水反射率光谱特征 2 1 理论分析 海水反射率定义为水中上行辐照度E u ( )与下 行辐照度E d ( )的比,即R ( )=E u ( )/E d ( )。对于给定的波长 ,海水反射率R ( )是水体吸收系数a( )和后向散射系数b b ( )的函数,其函数形式可由辐射传输理论确定。在考虑水平均匀海水的情况下,式(1)可近似地表示为[2] : R ( )=0.33 b b ( ) a( )(3) 海水光学参数a( )及b b ( )取各种物质贡献 的总和: a( )=a w ( )+c a c ( )+X a x ( )+ Y a y ( ) (4)b b ( )=b b w b w ( )+b bc b c ( )+b b x b x ( ) (5) 式中c 是以叶绿素为表征的浮游植物浓度(mg m -3),X 是悬浮颗粒浓度,以其相应的散射系数表示(m -1),Y 是黄色物质浓度,以其相应的吸收系数表示(m -1 );a w 为纯水的吸收系数(m -1 ),a c 为浮 游植物的比吸收系数(m -1 (mg m -3)-1 ),a x 为悬浮颗粒的比吸收系数(无量纲),a y 为黄色物质的比吸收系数(无量纲);b w 为海水的体散射系数(m -1),b c 为浮游植物的体散射系数(m -1),b x 为悬浮颗粒的体散射系数(m -1 );b bc ,b b w 及b x 分别为浮游植物、海水和悬浮颗粒的后向散射与总散射之比。图1为各种水色要素的吸收系数[3]。 2 2 海上试验 1993年12月和1994年9月,对南海南部海区进行了2个航次的海上生物-光学试验,试验海区为 *国家自然科学基金的资助(批准号:49406066),黄良民研究员测量分析了叶绿素浓度,在此致谢。 收稿日期:1998-04-17;收到修改稿日期:1998-12-04 第3卷第2期遥 感 学 报 Vol.3,No.21999年5月 JOURNAL OF RE MOTE SENSI NG May,1999

卫星海洋学复习题

简介 卫星海洋学(satellite oceanography)是利用卫星遥感技术观测和研究海洋的一门分支学科。卫星海洋学兴起于20世纪70年代,它是卫星技术、遥感技术、光电子技术、信息科学与海洋科学相结合的产物。笼统地讲,它包括两个方面的研究,即卫星遥感的海洋学解释和卫星遥感的海洋学应用。卫星遥感的海洋学解释涉及到对各种海洋环境参量的反演机制和信息提取方法的研究,卫星遥感的海洋学应用涉及到运用卫星遥感资料在海洋学各个领域的研究。 涉猎内容 (l)海洋遥感的原理和方法:包括遥感信息形成的机理、各种波段的电磁波(可见光、红外和微波)在大气和海洋介质中传输的规律、以及海洋的波谱特征。 (2)海洋信息的提取:包括与海洋参数相关的物理模型、从遥感数据到海洋参数的反算法、遥感图像处理和海洋学解释、卫星遥感数据与常规海洋数据在各类海洋模式中的同化和融合。 (3)满足海洋学研究和应用的传感器的最佳设计和工作模式:包括光谱波段和微波频率的选择、光谱分辨率和空间分辨率的要求、观测周期和扫描方式的研究、以及传感器噪音水平的要求。 (4)反演的海洋参数在海洋学各领域中的应用。卫星遥感所获得的海洋数据具有观测区域大、时空同步、连续的特点,可以从整体上研究海洋。这极大地深化了人们对各种海洋过程的认识,引起了海洋学研究的一次深刻变革。卫星遥感资料和卫星海洋学的研究成果在海洋天气和海况预报、海洋环境监测和保护、海洋资源的开发和利用、海岸带测绘、海洋工程建设、全球气候变化、以及厄尔尼诺现象监测等科学问题上有着广泛的应用。 原理 卫星在遥远距离通过放置在某一平台上的传感器对大气或者海洋以电磁波探测方 式获取大气或者海洋的有关信息,这个过程称为遥感。海面反射、散射或自发辐射的各个波段的电磁波携带着海表面温度、海平面高度、海表面粗糙度以及海水所含各种物质浓度的信息。传感器能够测量在各个不同波段的海面反射、散射或自发辐射的电磁波能量,通过对携带信息的电磁波能量的分析,人们可以反演某些海洋物理量。传感器的遥感精度随着卫星遥感技术的发展在不断地提高,目前正在接近、达到甚至超过现场观测数据的精度。 应用 海洋表面是一个非常重要的界面。海洋与大气的能量交换都是通过这个界面进行的;海洋内部的变化也会部分地透过这一表面表现出来。运用计算机三维数值模拟和卫星遥感数据同化技术,人们就可以通过获得的海洋表面遥感信息,了解海洋内部的海洋学特征和物理变化过程。遥感监测海面的空间分辨率与电磁波的波长有关,可见光与红外辐射计获得的遥感图像具有更好的空间分辨率。虽然云的覆盖阻挡了可见光波段电磁波的透过,但是能够穿透云层的微波遥感弥补了不足。总之,可见光和红外遥感满足了人们对较高的空间分辨率监

中国海洋卫星的发展

中国海洋卫星的发展 海洋占地球表面的71%,在当今陆地资源减少、人口增长、环境恶化的情况下,世界各国对海洋资源高度关注,不断强化海洋发展战略,运用高科技进行海洋的开发与管理。美国、加拿大、欧共体、俄罗斯、印度、韩国等国纷纷发展海洋卫星。 我国是一个发展中的海洋大国,拥有丰富的海洋资源。在没有海洋卫星的情况下,我国通过船舶、浮标、飞机、海洋观测站等常规手段对海洋进行监测。这些常规手段有诸多限制,不能有效地对我国管辖海域进行全时有效监管。大力发展海洋事业,事关国家的长治久安和经济社会的可持续发展。加强对海洋的观测和了解,准确预报海洋灾害,合理开发利用海洋资源,努力保护海洋生态环境;有效维护国家海洋主权与权益,是广大海洋工作者和海洋管理部门的神圣使命和战略任务。国家海洋局从建局以来,就一直积极发展海洋科学技术,着力强化海洋观测系统建设,不断提高对海洋的持久观测能力,为海洋事业实现跨越式发展提供了强有力的支撑。 当今世界,海洋观测已进入立体观测时代。利用卫星、飞机、船舶、浮标、水下自航器、海床基观测系统及岸基台站观测系统,从空间、海面、水中、海床、沿岸对海洋环境进行多平台多层次的长时序连续立体观测,显著提高了对全球海洋的观测能力,深刻改变和加深了人们对全球海洋的认识,有效地预报了海洋灾害,大大提高了海上生产作业、军事活动、旅游娱乐的海洋环境保障能力。海洋卫星观测和水下自航器的移动观测是海洋环境立体观测的主要手段。20世纪

70年代以海洋卫星SeaSat-A的发射为标志使海洋观测进入了现代空间遥感时代。海洋卫星和卫星遥感海洋应用已成为现代海洋观测的主要手段。 虽然我国从上世纪70年代就开始将卫星遥感应用于海洋研究和海洋环境预报,并憧憬着有中国自己的海洋卫星,但一直到本世纪初的2002年,中国人才真正圆了自己的梦。2002年5月15日,海洋一号A星在太原发射中心发射升空后,经过7次变轨,到达798公里的预定轨道。我国第一颗海洋卫星--海洋一号A星的成功发射和交付使用,结束了我国没有海洋卫星的历史,大大提高了我国的海洋监测能力。我国第一颗海洋卫星(HY-1A)的成功发射和运行,不仅是我国海洋卫星遥感事业发展史上的一座里程碑,而且在海洋系列卫星的研制、发射、控制、运行、管理及水色数据的应用等方面积累了较为丰富的经验,为我国海洋卫星事业的后续发展奠定了坚实的基础。 HY-1A卫星于2004年完成了它的使命后,海洋科技工作者没有停止前进的脚步,又会同国家有关部门团结协作,奋力攻关,经过近三年的顽强拼搏,又研制成功了海洋一号B(HY-1B)卫星。这是中国海洋水色卫星系列中的第二颗星,它将接替HY-1A卫星去执行预定的海洋水色遥感观测使命。在HY-1B卫星即将发射之际,回顾中国海洋卫星事业艰难而又曲折的发展历程,展望中国海洋卫星事业光辉的发展前景,进一步激励广大海洋工作者献身祖国海洋事业的壮志豪情,有着极为重要的现实和长远意义。 一、中国海洋卫星之梦

常用遥感数据的遥感卫星基本参数大全

常用遥感数据的遥感卫星基本参数大全

常用遥感数据的遥感卫星基本参数大全 常用, 遥感数据, 遥感卫星, 基本参数, 大全 1、CBERS-1 中巴资源卫星 CBERS-1 中巴资源卫星由中国与巴西于1999年10月14日合作发射,是我国的第一颗数字传输型资源卫星 卫星参数: 太阳同步轨道轨道高度:778公里,倾角:98.5o 重复周期:26天平均降交点地方时为上午10:30 相邻轨道间隔时间为 4 天扫描带宽度:185公里星上搭载了CCD传感器、IRMSS红外扫描仪、广角成像仪,由于提供了从20米-256米分辨率的11个波段不同幅宽的遥感数据,成为资源卫星系列中有特色的一员。 红外多光谱扫描仪:波段数: 4波谱范围:B6:0.50 –1.10(um)B7:1.55 –1.75(um)B8:2.08 – 2.35(um)B9:10.4 – 12.5(um)覆盖宽度:119.50公里空间分辨率:B6 – B8:77.8米B9:156米 CCD相机:波段数: 5波谱范围:B1:0.45 –0.52(um)B2:0.52 –0.59(um)B3:0.63 –0.69(um)B4:0.77 –0.89(um)B5:0.51 – 0.73(um)覆盖宽度:113公里空间分辨率:19.5米(天底点)侧视能力:-32 士32 广角成像仪:波段数: 2波谱范围:B10:0.63 –0.69(um)B11:0.77 –0.89(um)覆盖宽度:890公里空间分辨率:256米 CBERS-1卫星于1999年10月14日发射成功后,截止到2001年10月14日为止,它在太空中己运行2年,围绕地球旋转10475圈,向地面发送了大量的遥感图像数据,已存档218201景0级数据产品。 CBERS-1卫星的设计寿命是2年,但据航天专家测定CBERS-1卫星在轨道上运行正常。有效载荷除巴西研制的宽视场成像仪于2000年5月9日因电源系统故障失效外,其余均工作正常,而且目前星上的所有设备均工作在主份状态,备份设备还未启用,星上燃料绰绰有余。因此,虽然卫星设计寿命是2年,但航天专家设计时对各个器件都打有超期服役的余量,从CBERS-1卫星目前的运行情况来,其寿命肯定要远远大于2年。所以欢迎用户继续踊跃使用CBERS-1的数据。 2002年我国将发射CBERS-2卫星,用户期望的中巴地球资源卫星在太空中双星运行的壮观将会实现。 2、法国SPOT卫星 法国SPOT-4卫星轨道参数: 轨道高度:832公里 轨道倾角:98.721o 轨道周期:101.469分/圈 重复周期:369圈/26天 降交点时间:上午10:30分 扫描带宽度: 60 公里 两侧侧视:+/-27o 扫描带宽:950公里 波谱范围:

遥感第三章海洋卫星与陆地卫星

第三章海洋卫星与陆地卫星 §装载有微波传感器的海洋卫星(Ocean-Looking Satellite with Microwave Sensors)因为微波能够穿透云层,特别是有较大功率的主动微波雷达能够穿透较厚的云层,故带有微波传感器的海洋卫星经常被誉为全天候遥感卫星。表3-1列出了装载有微波传感器的海洋卫星信息。 表3-1: 装载有微波雷达的海洋卫星

装载有微波传感器的海洋卫星属于海洋环境监测卫星,它的特点是扫描范围大,便于探测大面积海洋环境要素,例如海面风、海平面高度和海表面温度等。装载有可见光和红外波段传感器的陆地卫星属于陆地包括海岸带资源观测卫星,它的特点是扫描范围较小,但分辨率特别高,便于精确观测小面积土地资源极其变化。装载有合成孔径雷达的卫星既可以用于探测海洋环境要素,例如油污染和生物膜等生化要素、以及海洋内波、海面巨浪和海浪谱等动力要素,也可以用于探测陆地环境要素,例如水火灾害等,还可以用于探测陆地资源要素,例如地下水和矿产资源等。因此,装载有合成孔径雷达的卫星是多用途卫星。微波传感器包括高度计、散射计、合成孔径雷达和微波辐射计。高度计是一个垂直探测的主动雷达,可以测量卫星与地球之间距离、海面地形和粗糙度,并由此估计风速、表面海流和平均波高。散射计是一个宽刈幅主动雷达,通过测量海表面粗糙度可以计算海面风速和风向。合成孔径雷达是一个具有高空间分辨率的主动雷达,它利用多卜勒效应获得高空间分辨率,可测量涌浪、内波、降雨、海流边界、海冰位置及性质、和大块浮冰的速度等。微波辐射计是一个被动微波雷达,它可以测量海面反射、散射和自发辐射的辐射度和微波亮温,并由此可估计风速、水蒸气、降水率、海表面温度、海表面盐度和冰覆盖量等

中国近海水色遥感研究进展

International Journal of Ecology 世界生态学, 2017, 6(2), 82-92 Published Online May 2017 in Hans. https://www.360docs.net/doc/d317392953.html,/journal/ije https://https://www.360docs.net/doc/d317392953.html,/10.12677/ije.2017.62010 文章引用: 高慧, 赵辉, 沈春燕. 中国近海水色遥感研究进展[J]. 世界生态学, 2017, 6(2): 82-92. Progress in Ocean Color Remote Sensing of Chinese Marginal Seas Hui Gao 1, Hui Zhao 1, Chunyan Shen 2 1 College of Oceanography and Meteorology, Guangdong Ocean University, Zhanjiang Guangdong 2 Fisheries College, Guangdong Ocean University, Zhanjiang Guangdong Received: May 6th , 2017; accepted: May 23rd , 2017; published: May 27th , 2017 Abstract Ocean color remote sensing is an important means of monitoring the marine environment; it has the advantages of high observation frequency, wide spatial coverage and small influence by sea condition. In recent years, marine scientific researchers and marine monitoring branches have been paid more and more attention. This paper reviews the development process of ocean color sensor, summarizes and classifies the ocean color inversion algorithms, and further takes remote sensing of ocean color in Chinese coastal regions as an example, to show the present status, progress and application prospect of ocean color in recent years. Keywords Chinese Marginal Seas, Ocean Color Remote Sensing Algorithm, Chlorophyll-A 中国近海水色遥感研究进展 高 慧1,赵 辉1,沈春燕2 1 广东海洋大学,海洋与气象学院,广东 湛江 2广东海洋大学,水产学院,广东 湛江 收稿日期:2017年5月6日;录用日期:2017年5月23日;发布日期:2017年5月27日 摘 要 海洋水色遥感是海洋环境监测的重要手段,具有观测频率高、空间覆盖广以及受海况影响小的优点,近年来逐渐受到海洋科研工作者和海洋监测部门的重视。本文概述了水色传感器的发展历程,对水色反演

海洋水色及动力环境遥感研究进展

第19卷 第5期 中 国 水 运 Vol.19 No.5 2019年 5月 China Water Transport May 2019 收稿日期:2019-01-03 作者简介:周敏锐(1996-),女,安徽安庆人,浙江海洋大学在读硕士,主要研究方向为物理海洋。 通讯作者:蔡丽娜(1976-),女,浙江海洋大学 海洋科学与技术学院,主要从事海洋遥感的研究。 项目基金:浙江省教育厅课题科研项目及校级教改项目分组课题模式在海洋科学类专业教学体系中的应用探索(编号:Y20 1840279);浙江省2016年度高等教育教学改革项目(编号:jg20160084)。 海洋水色及动力环境遥感研究进展 周敏锐,蔡丽娜,孙静亚 (浙江海洋大学 海洋科学与技术学院,浙江 舟山 316000) 摘 要:海洋遥感主要包括海洋水色遥感、海洋动力环境及海洋地形遥感。本文结合国内外研究现状,介绍了海洋水色及动力环境遥感的机理以及相关海洋要素的遥感反演方法。同时,通过对近十年海洋水色及动力环境遥感的发展情况进行了解,总结了国内外在该领域的研究进展并提出了一些展望。 关键词:遥感;海洋水色;动力环境 中图分类号:P714 文献标识码:A 文章编号:1006-7973(2019)05-0161-03 一、前言 卫星遥感技术以其独特的优越性在海洋环境要素观测方面发挥了越来越重要的作用。在海洋动力及水文环境相关信息方面,卫星遥感可以监测海流、海浪、海面风场等海洋动力环境特性以及海面水色、水温等。海洋水色遥感主要接收水体中各种成分相关要素的光学信息,利用星载或机载传感器接收到离水辐射,并借助水体生物-光学模型,反演水色物质成分和其浓度[1]。海洋动力环境遥感主要对海洋力场引起的海洋潮汐、海流、海浪等的动力环境进行监测[2]。本文通过了解近十年海洋水色及动力环境遥感的发展情况,总结了国内外在该领域的研究进展并提出了一些展望。 二、海洋水色及动力遥感 1.悬浮泥沙的遥感监测 遥感技术具有大面积、多时效、连续观测的特点,这使得其在海洋监测方面得到广泛应用。海洋中悬浮泥沙浓度是影响海洋环境的重要因素之一,利用遥感技术观测海洋中悬浮泥沙的分布,监测结果可以很好的反映海水中悬浮泥沙的状况。 反演模型的建立是悬浮泥沙浓度反演的关键,建立合适有效的反演模型首先要找到最佳遥感特征因子和敏感波段之间的联系[3]。经验模型涉及所选的悬浮泥沙浓度和遥感反演参数两个重要的反演因子,将二者进行回归分析[4],并利用二次多项式函数[5]、三次多项式函数[6]、线性函数[7]、指数函数[8]和幂函数[9]等对其进行拟合分析,利用测得的实验数据建立起水体光学性质与悬浮泥沙浓度的定量关系。理论模型是根据辐射传输模型和生物光学模型来建立的。建立理论模型的首要步骤是通过模拟可见光的传输特性找到悬浮泥沙相关反演关系式。理论模型有光谱混合分析模型[10](SMA)、主成分分析模型和神经网络模型[11]三种。王繁等[12]人利用MODIS 数据反演河口水体悬浮泥沙质量浓度,使用人工神 经网络(ANN)的方法建立表层悬浮泥沙浓度遥感反演模型,发现利用BP 神经网络模型进行遥感反演所得精度更高。半分析方法需要实际测得的光谱数据来建立水色反演模型,通过近似关系对模型进行简化,使各个未知量之间尽可能独立,利用多波段数据得到代数方程组,最后求解方程组得到水体组分浓度[13]。 2.叶绿素及黄色物质的遥感监测 利用遥感技术对叶绿素及黄色物质含量其变化进行观测是监测海洋环境的有效方法[14]。经验方法、半分析方法[15]和分析方法[16]是目前常用的叶绿素及黄色物质浓度遥感反演方法。单波段法[17]、波段比值法和神经网络法[18]同属经验方法。 3.海流的遥感监测 海流运动会对海洋气候、海洋污染、渔业、海岸带开发、军事行动等产生影响。海流监测可以对海洋动力环境研究过程中遇到的问题提供有效的解决方案,将遥感技术应用在海流监测上,可以改善数据的时效性、准确性和完备性[19]。早在1987年,Goldstein 和Zebker 等人就提出了利用顺轨干涉合成孔径雷达测量高分辨率海表面流场的观点,应用并得到了很好的观测效果。遥感技术可以观测得到海流运动的方向、速度和尺度等信息,能及时反馈海洋动力环境的变化情况[20]。 4.海洋观测相关遥感数据 (1)中低分辨率遥感数据 卫星遥感技术可以对海洋进行大面积的连续性观测,因此在海洋监测上的应用越来越广泛,获得的遥感数据精度也越来越高。美国的Landsat 卫星数据[21]、Terra 和Aqua 卫星上的MODIS 传感器获得的数据和RADARSAT 卫星数据都是中低分辨率数据。MODIS 足够宽的光谱范围能长时间的对陆地、大气和海洋进行观测[22]。加拿大雷达卫星(RADARSAT)携带的合成孔径雷达能主动向目标物体发射

实验二 海洋水色遥感(一)

海洋遥感应用技术实验指导书 测绘工程学院海洋技术系

一、实验数据: MOD02QKM.A2009183.0235.005.2009183095546.hdf MOD03.A2009183.0235.005.2009183094110.hdf 二、目的和要求 1.理解什么是海洋水色遥感,包括哪些内容。 2.理解叶绿素在海洋水色遥感中所起的作用,通过海洋藻类的提取来对海洋水色有感性的认识。 3.MODIS L1B 数据有自己的数据特点,因此需要同学们多加了解。通过MODIS 的数据处理,来了解各种特点。请解释为什么要做几何校正和bowtie 校正?这两种校正有什么区别?bowtie 现象是什么原因造成的? 4.通过NDVI 的计算,提取出浒苔的分布区域。 5.需要对每一个步骤进行截图,而且要解释清楚这样处理的理由。最好能对截图中的信息进行解释。 三、实验内容 (一)数据的BOW-TIE 校正 (步骤参考实验一,在此不重复) (二)植被指数的提取 由于浒苔的在近红外与红光波段的光谱特征与陆地植被相似,所以可以借助于植被遥感的手段加以提取。 ①归一化差分植被指数(NDVI ) R NIR R NIR NDVI +-= 其中NIR 和R 分别表示近红外波段和红光波段的反射率。 说明:NDVI 可以用于检测植被生长状态、植被覆盖度和消除部分辐射误差等,其结果在[-1,1]。负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR 和R 近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大。 其中NIR 和R 分别表示近红外波段和红光波段的反射率。 绿色健康植被覆盖地区的RVI 远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI 在1附近,植被的RVI 通常大于2。RVI 是绿色植物的灵敏指示参数,与LAI 、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量。 分别计算监测海域的RVI 和NDVI ,对获取的植被指数利用阈值法进行综合判断,提取监测海域的浒苔信息。阈值的选取与监测的海区和浒苔的生长分布状况有关。 通过ENVI 软件中的波段运算功能,进行RVI 和NDVI 的计算。 注意:请弄清楚MODIS 数据中,NIR 和R 分别代表哪个波段。 NDVI 计算:

卫星海洋学

【P1】卫星海洋学涉及的详细内容有;①海洋遥感的原理和方法:包括遥感信息形成的机理、各种波段的电磁波(可见光、红外光和微波)在大气和海洋介质中传输的规律以及海洋的波谱特征。②海洋信息的提取:包括与海洋参数相关的物理模型、从遥感数据到海洋参数的反演算法、遥感图像处理和海洋学解释、卫星遥感数据与常规海洋数据在各类海洋模式中的同化和融合。③满足海洋学研究和应用的传感器的最佳设计和工作模式:包括光谱波段和微波波段频率的选择、光谱分辨率和空间分辨率的要求、观测周期和扫描方式的研究以及传感器噪声水平的要求。④反演的海洋参数在海洋学各领域中的应用。卫星遥感所获得的海洋数据具有观测区域大、时空同步、连续的特点,可以从整体上研究海洋。 【P6】我国气象卫星包括两个主要系统:极轨卫星系统和地球静止卫星系统。 我国第一代极轨卫星系统“风云一号”系列 我国第一代地球静止气象卫星“风云二号”系列 我国研制的第二代太阳同步轨道气象卫星“风云三号” 【P8】2002年5月15日,我国第一颗海洋探测卫星“海洋一号”A与“风云一号”D气象卫星作为一箭双星同时发射升空。 【P30】红外波段的波长为0.7-1000μm,位于可见光波段的红光以外。按波长可细分为近红外(15-1000μm)。 【P31】遥感按照电磁波的光谱可分为可见光与红外反射遥感、热红外遥感和微波遥感;按照目标的能量来源可分为主动式遥感和被动式遥感;按照传感器使用的平台可分为航天或卫星遥感、航空遥感、地面遥感;按照空间尺寸可分为全球遥感、区域遥感和城市遥感;按照应用领域可分为资源遥感与环境遥感;按照研究对象可分为气象遥感、海洋遥感和陆地遥感;按照应用目的可分为陆地水资源遥感、土地资源遥感、植被资源遥感、海洋环境遥感、海洋资源遥感、地质调査遥感、城市规划和管理遥感、测绘制图遥感、考古调査遥感、综合环境监测遥感和规划管理遥感等。 【P33】NOAA/TIROS系列卫星载有改进型甚高分辨率辐射计(AVHRR) 【P37】“风云一号”的主要传感器是多通道可见光和红外扫描辐射计(MVISR)俗名十通道扫描辐射计。 【P43-44】海岸带水色扫描仪(CZCS)属于第一代水色扫描仪,宽视场海洋观测传感器(SeaWiFS)和中国海洋水色和温度扫描仪(COCTS)属于第二代水色扫描仪,中等分辨率成像光谱仪(MODIS)属于第三代水色扫描仪。 水色传感器与陆地资源或气象传感器的主要不同点是:①信噪比(SNR)极高,在一般传感器作为暗像元的水体目标上,要求SNR>500以上;因此,如果不作自动增益调整,其在陆地目标上的信号将趋于饱和。②波段带宽较窄,水色传感器的可见光通道带宽大约10 nm,近红外通道带宽大约20 nm,光谱范围一般在400~900 nm。③时间窗一般要求在当地时间10: 30-14: 30之间过境,最好是中午12 : 00左右。④要求卫星平台具有倾斜功能,以避免太阳直射光在海面的反射进入视场。⑤再访问时间1~3天,空间几何分辨率500~1 100m。 ⑥具有绝对的精度指标要求。 装载于Nimbus-7上的沿岸带水色扫描仪(CZCS)是6波段辐射计装载于SeaStar上的SeaWiFS是8波段辐射计,装载于1999年发射的EOS上的中等分辨率成像光谱仪(MODIS)是36波段辐射计。 【P47-49】安装在TERRA和AQUA两颗卫星上的MODIS获取的数据有三个特点:第一,NASA 对MODIS数据实行全世界免费接受的政策(TERRA卫星除MODIS外的其他传感器获取的数据均采取公开有偿接收和使用的政策),这样的政策对于目前我国大多数科学家来说是不可多得的数据资源;第二,MODIS数据涉及波段范围广(36个波段)、数据分辨率高(250m、500m、和1000m),对陆地、大气和海洋的研究有较高的实用价值;第三,TERRA和AQUA卫星都是

海洋遥感总结

1.狭义广义遥感 狭义遥感:主要指从远距离、高空以至外层空间的平台上,利用可见光、红外、微波等探测器,通过摄影或扫描、信息感应、传输和处理,从而识别地面物质的性质和运动状态的现代化技术系统。(利用电磁波进行遥感) 广义遥感:利用仪器设备从远处获得被测物体的电磁波辐射特征(光,热),力场特征(重力、磁力)和机械波特征(声,地震),据此识别物体。(除电磁波外,还包括对电磁场、力场、机械波等的探测) 两者探测手段不一样 2.遥感技术系统 信息源-信息获取-信息纪录和传输-信息处理信息应用 3.遥感的分类 (1)按照探测电磁波的工作波段分类:可见光遥感、红外遥感、微波遥感等 (2)按照传感器工作方式分类:主动遥感、被动遥感 4.遥感的应用 内容上可概括:资源调查与应用、环境监测评价、区域分析规划、全球宏观研究 5.海洋遥感的意义 (1)海洋气候环境监测的需要 海洋占全球面积约71%,海洋是全球气候环境变化系统中不可分割的重要部分 厄尔尼诺、拉尼娜、热带气旋、大洋涡流、上升流、海冰等现象都与海洋密切相关。 厄尔尼诺是热带大气和海洋相互作用的产物,它原是指赤道海面的一种异常增温,现在其定义为在全球范围内,海气相互作用下造成的气候异常。 (2)海洋资源调查的需要 海洋是人类最大的资源宝库,是全球生命支持系统的基本组成部分,海洋资源的重要性促使人们采用各种手段对其进行调查研究 海岸带是人类赖以生存和进行生产活动的重要场所,海岸带资源的相关调查对于沿海资源的合理开发与利用非常重要 (3)海洋遥感在海洋研究中的重要性 海洋遥感具有大范围、实时同步、全天时、全天候多波段成像技术的优势可以快速地探测海洋表面各物理量的时空变化规律。它是20世纪后期海洋科学取得重大进展的关键学科之一。 重要性体现在:是海洋科学的一个新的分支学科;为海洋观测和研究提供了一个崭新的数据集,并开辟了新的考虑问题的视角;多传感器资料可推动海洋科学交叉学科研究的发展1.海洋遥感的概念(重点)、研究内容 海洋遥感:指以海洋及海岸带作为监测、研究对象,利用电磁波与大气和海洋的相互作用原理来观测和研究海洋的遥感技术。 研究内容:海洋遥感物理机制、海洋卫星传感器方案、海洋参数反演理论和模型、海洋图象处理与信息提取方法、卫星数据海洋学应用 2.海洋遥感发展回顾经历阶段(重点) 起步阶段、探索阶段、海洋卫星与传感器的试验阶段、应用研究和业务使用阶段 3.第一颗海洋实验卫星是SeasatA(重点) 海洋一号(HY-1) 2002.5.15 试验性海洋水色卫星 10波段海洋水色仪4波段ccd成像仪

几种遥感数据比较

NASA 对于有这方面兴趣的人,我推荐一本书:《地球卫星遥感》 共有两卷。主要是有关中分辨串成像光谱仪(MODIS)产品的信息和应用,介绍了美国国家极轨环境卫系统(NPOESS)和NPOESS预备计划(NPP),还探讨了其他卫星遥感装备和应用,论及NASA 用于监测和探测地球变化的主要卫星系统——地球观测系统(EOS),EOS包括的卫星Terra、Aqua 和Aura及其装载的MODIS、AIRS、AMSU、AMSR-E、OMI等遥感仪器,并讨论NPP将携带的4个NPOESS系统重要部件:可见光红外成像辐射组件(VIIRS),航线交叉红外探测器(CrIS),先进技术微波探测器(ATMS)以及臭氧成图和廓线仪装置(OMPS)。既包括现代遥感技术的基础知识,又涉及卫星遥感的领域。 其中负责观测陆地的Terra、负责观测地球水循环的Aqua和负责搜集大气数据的Aura共同组成了完整的eos地球观测系统,服务于nasa的地球科学计划(ese)。 1 GRACE 10. Gravity Recovery and Climate Experiment (GRACE)重力恢复与气候实验 The primary goal of the GRACE mission is to accurately map variations in the Earth's gravity field over its 5-year lifetime. The GRACE mission has two identical spacecrafts flying about 220 kilometers apart in a polar orbit 500 kilometers above the earth. It will map the Earth's gravity fields by making accurate measurements of the distance between the two satellites, using geodetic quality Global Positioning System (GPS) receivers and a microwave ranging system. This will provide scientists from all over the world with an efficient and cost-effective way to map the Earth's gravity fields with unprecedented accuracy. The results from this mission will yield crucial information about the distribution and flow of mass within the Earth and it's surroundings. The gravity variations that GRACE will study include: changes due to surface and deep currents in the ocean; runoff and ground water storage on land masses; exchanges between ice sheets or glaciers and the oceans; and variations of mass within the earth. Another goal of the mission is to create a better profile of the Earth's atmosphere. The results from GRACE will make a huge contribution to NASA's Earth science goals, Earth Observation System (EOS) and global climate change studies. GRACE is a joint partnership between the NASA in the United States and Deutsche Forschungsanstalt fur Luft und Raumfahrt (DLR) in Germany. Dr. Byron T apley of The University of Texas Center for Space Research (UTCSR) is the Principal Investigator (PI), and Dr. Christoph Reigber of the GeoForschungsZentrum (GFZ) Potsdam is the

相关文档
最新文档