飞轮储能系统概述

飞轮储能系统概述
飞轮储能系统概述

飞轮储能系统概述

指利用电动机带动飞轮高速旋转,将电能转化成动能储存起来,在需要的时候再用飞轮带动发电机发电的储能方式。飞轮储能系统主要包括转子系统、轴承系统和转换能量系统三个部分构成。另外还有一些支持系统,如真空、深冷、外壳和控制系统。基本结构如图所示。

飞轮储能装置中有一个内置电机,它既是电动机也是发电机。在充电时,它作为电动机给飞轮加速;当放电时,它又作为发电机给外设供电,此时飞轮的转速不断下降;而当飞轮空闲运转时,整个装置则以最小损耗运行。

飞轮储能器中没有任何化学活性物质,也没有任何化学反应发生。旋转时的飞轮是纯粹的机械运动,飞轮在转动时的动能为:E =1/2Jω^2

式中: J为飞轮的转动惯量,ω为飞轮旋转的角速度.

由于在实际工作中,飞轮的转速可达40000~500000r/min,一般金属制成的飞轮无法承受这样高的转速,所以飞轮一般都采用碳纤维制成,既轻又强,进一步减少了整个系统的重量,同时,为了减少充放电过程中的能量损耗(主要是摩擦力损耗),电机和飞轮都使用磁轴承,使其悬浮,以减少机械摩擦;同时将飞轮和电机放置在真空容器中,以减少空气摩擦。这样飞轮电池的净效率(输入输出)可以达到95%左右。

二、国内外飞轮储能系统研究的现状、发展及未来

飞轮电池是90年代提出的新概念电池,它突破了化学电池的局限,用物理方法实现储能,由于是电能和机械能的相互转化,不会造成污染。飞轮储能电池最初只是想将其应用在电动汽车上,但限于当时的技术水平,并没有得到发展。直到上世纪90年代由于电路拓扑思想的发展,碳纤维材料的广泛应用,以及全世界范围对污染的重视,这种新型电池又得到了高速发展,并且伴随着磁轴承技术的发展,这种电池显示出更加广阔的应用前景,现正迅速地从实验室走向社会。

纵观欧美国家的现状,在汽车行业中,美国飞轮系统公司(AFS)就生产出了以克莱斯勒LHS轿车为原形的飞轮电池轿车AFS20;在火车方面,德国西门子公司已研制出长1.5m,宽0.75m的飞轮电池,可提供3MW的功率,同时,可储存30%的刹车能;在军用设备上,美国已经开始尝试使用飞轮装置,尤其是大型混能牵引机车上,美国国防部预测未来的战斗车辆在通信、武器和防护系统等方面都广泛需要电能,飞轮电池由于其快速的充放电,独立而稳定的能量输出,重量轻,能使车辆工作处于最优状态,减少车辆的噪声(战斗中非常重要),提高车辆的加速性能等优点,已成为美国军方首要考虑的储能装置;在太空方面,由于飞轮储能装置的储能密度很大,并且随着材料学和磁悬浮轴承技术的不断发展,在卫星上使用的飞轮储能装置甚至小到可以装进卫星壁中,而且飞轮储能装置运行的时候损耗很小,基本上不用维护,这就使得飞轮技术不断应用于卫星装置和太空空间站的太阳能储能电池中作为它们的能量供应中心来使用,同时飞轮还可以用于卫星的姿态控制中。

根据市场研究公司Research and Markets最新发布的报告,从2010年到2014年,全球飞轮储能市场的年复合增长率将达到12%。不过,国内飞轮储能市场开始发力也只有3、4年时间。美国、德国、日本等发达国家对飞轮储能技术的开发和应用比较多。欧洲的法国国家科研中心、德国的物理高技术研究所、意大利的SISE均正开展高温超导磁悬浮轴承的飞轮储能系统研究。飞轮储能的研究主要着力于研发提高能量密度的复合材料技术和超导磁悬浮技术。其中超导磁悬浮是降低损耗的主要方法,而复合材料能够提高储能密度,降低系统体积和重量。2014年9月16日国内第一台飞轮200千瓦工业化磁飞轮调试成功,各项实验测试指标均达良好,飞轮运行正常,性能安全可靠。专家评价,这项具有完全知识产权的储能技术和产品填补了国内科技和市场的空白。

目前已有机构在积极开发混合电动车(HEV)用的飞轮电池系统。其主要作用:A)稳定主动力源的功率输出。在混合动力汽车起步、爬坡和加速时,飞轮电池能够快速、大能量的放电,为主动力源提供辅助动力,并减少主动力源的动力输出损耗。B)提高能量回收的效率。在混合动力电动汽车下坡、滑行和制动时,飞轮电池能够快速、大量的存储动能,充电速度不受“活性物质”化学反应速度的影响,可提高再生制动时能量回收的效率。飞轮储能用于HEV,存在的主要问题是如何尽可能减轻飞轮的陀螺效应以及提高飞轮的工作效率。对应同等级别的汽车,安装飞轮储能系统后,可以采用相对小的发动机来提供动力,实现节能和减排的目的。最近国家工业和信息化部发布《新能源汽车生产企业及产品准入管理规则》时,特别将高效储能器作为解决新能源途径之一写入了规则,作为高效储能器的代表,飞轮储能在汽车上应用有着巨大潜力。据称,飞轮电池比能呈可达150W ?h/kg,比功率达5000-10000W/kg,使用寿命长达25年,可供电动汽车行驶500万公里。

飞轮储能技术看似很神秘,其实与人们生活密切相关,比如地铁列车进出站时的能量转换,列车进站刹车时将多余能量输入飞轮,列车出站提速时需要能量,飞轮将能量输出,这个系统可为地铁节省20%左右的能量消耗。飞轮技术在我国仍处在研发阶段,而国际发达国家已有几十年的发展历史,在诸多领域获得应用,如F1赛车能量回收、轨道牵引能量回收、微电网调压及并网,超低温余热回收利用、应急UPS电源、高速离心风机等。

飞轮储能技术的现状和发展前景

飞轮储能技术的现状和发展前景 飞轮储能系统(FESS)又称飞轮电池或机械电池,由于它与化学电池相比所具有 的巨大优势和未来市场的巨大潜力,引起了人们的密切关注。它结合了当今最新的磁悬浮技术、高速电机技术、电力电子技术和新材料技术,使得飞轮储存的能量有了质的飞跃,再加上真空技术的应用,使得各种损耗也非常小。 飞轮电池的发展开始于20 世纪70 年代,当时正处于石油禁运和天然气危机时期。此时,美国能量研究发展署(ERDA) 及其后的美国能源部(DoE) 资助飞轮系统的应用开发,包括电动汽车的超级飞轮的研究。 Lewis 研究中心(LeRC) 在ERDA 的 协助和美国航空航天局(NASA) 的资助下专门研究用于真空下的机械轴承和用于复合车辆的飞轮系统的传动系统。NASA 同时也资助Goddard 空间飞行中心(GSFC) 研究适用于飞行器动量飞轮的电磁轴承。80 年代,DoE 削减了飞轮储能研究的资助,但NASA 继续资助GSFC 研究卫星飞轮系统的电磁轴承,同时还资助了Langley 研 究中心(LaRC) 及Marshall 空间飞行中心(MSFC) 关于组合能量储存和姿态控制的动量飞轮构形的研究。 近10 年来,一大批新型复合材料和新技术的诞生和发展,如高强度的碳素纤维 复合材料(抗拉强度高达8. 27 GPa) 、磁悬浮技术和高温超导技术、高速电机/ 发电机技术以及电力电子技术等,使得飞轮能够储存大量的能量,给飞轮的应用带来了新的活力。它可应用于国防工业(如卫星、电磁炮和电热化学枪、作战侦察车辆等) 、汽车工业(电动汽车) 、电力行业(如电力质量和电力负载调节等) 、医疗和电信业(作UPS 用) 等1NASA 的应用有航天器(宇宙飞船) 、发射装置、飞行器动力系统、不间断电源(UPS) 和宇宙漫步者。

飞轮储能

所谓飞轮储能,是利用高速旋转的飞轮将能量以动能的形式储存起来。需要能量时,飞轮减速运行,将存储的能量释放出来。我们小时候玩过的回力玩具汽车就是飞轮储能的简单应用。 不过,现在对飞轮储能的要求是将其应用于更大规模的储能。据戴兴建介绍,飞轮储能的技术优势是技术成熟度高、高功率密度、长寿命、环境特性友好。目前,国外产品经过不断地更新和提高性能,寿命已经达到15年、10万次以上。而化学电池一般只有几千次充放电的寿命,往往几年就需要更换。 戴兴建算了笔账:电池的运行需要空调作保证,因此需要额外的电费;两三年更换电池,又是一笔费用;同样容量的储能,飞轮储能的占地面积只有电池的1/3。综合起来,两者在寿命期内的竞争成本差不多。 不过,飞轮储能的劣势也很明显:能量密度不够高、自放电率高,如停止充电,能量在几到几十个小时内就会自行耗尽。 Active Power公司的飞轮储能系统单位模块输出250千瓦,待机损耗为2.5千瓦,因此有些数据称其效率为99%。“但这是有条件的。”戴兴建说,“只有在迅速用掉的情况下才有这么高的效率。如果自放电的话,效率大大降低。” 例如,几万转高速飞轮系统损耗在100瓦左右,1千瓦时的系统只能维持10小时的自放电。因此,戴兴建指出,飞轮储能最适合高功率、短时间放电或频繁充放电的储能需求。他认为,没有一种万能的储能技术能够满足所有的储能需求,飞轮储能根据其特点具体定位三块细分市场。 第一,高品质不间断电源。 有统计数据显示,美国95%以上的停电都由分秒级的电能质量差导致。电压突变在电网中很常见,但在一些高精密度产品的生产车间,电压突变会造成精密仪器的损坏。目前,国际市场上已经在用的基于飞轮储能的UPS有3000~4000套系统,以平均10万美元/台计算,

飞轮储能技术的发展现状

飞轮储能技术的发展现状 摘要: 飞轮储能技术已成为国际能源界研究的热点之一。从飞轮储能技术的技术进展(包括飞轮本体、转子支承系统、电动/发电机、电力转换器与真空室)角度出发,系统地介绍了该技术国内外的发展现状。 关键词: 飞轮储能系统,电动机/发电机,电力转换器,真空室 近年来,飞轮储能技术发展非常迅速。国内外都积极地投入大量资金和人力在这项储能技术上,目前已经有了可喜成果,以飞轮储能五大关键技术为出发点,分别对其技术发展现状进行阐述。 1飞轮转子技术现状 美国休斯顿大学的德克萨斯超导中心致力于纺锤形飞轮开发,这是一种等应力设计,形状系数等于或接近1,材质同样为玻璃纤维复合材料,储能1kWh、重19kg、飞轮外径30.48cm。美国Beacon 电力公司推出的Beacon 智能化储能系统,其飞轮转子以一种强度高、重量轻的石墨和玻璃纤维复合材料制成,用树脂胶合。美国Satcon 技术公司开发的伞状飞轮,这种结构有利于电机的位置安放,对系统稳定性十分有利,转动惯量大,节省材料,轮毂强度设计合理。 NASA Glenn 中心和美国宾州州立大学高级复合材料制造中心等单位均采用湿法缠绕工艺制备了复合材料飞轮。 2飞轮储能的轴承支承系统技术现状 2.1机械轴承 美国TSI 公司应用高级的润滑剂、先进的轴承材料及设计方法和计算机动态分析,成功地开发出内部含有固体润滑剂的陶瓷轴承,最新又研制的基于真空罩的超低损耗轴承,其摩擦系数只有0.000 01。 2.2被动磁轴承(PMB) 目前对永磁轴承的研究较少,目前主要集中在对超导磁轴承(SMB)的研究上。 西南交通大学超导技术研究所从20 世纪90 年代初期开始,就一直致力于高温超导磁悬浮技术的应用基础研究,2000 年研制成功了世界首辆载人的高温超导磁悬浮实验车。 日本ISTEC 正在对10kWh/400kW 等级飞轮系统中的SMB 进行组装实验,同时加工设计100kWh等级飞轮定子。 德国ATZ 公司则从2005 年开始对5kWh/250kW 等级的飞轮进行研究。ATZ 公司与 L-3MM 合作生产高温超导储能,并即将进行工程应用电性能测试。并且两家机构还达成共

储能技术的应用心得

储能技术应用的发展前景阅读报告 摘要:针对电的储能技术主要分为三种:物理储能(抽水蓄能、压缩空气储能和飞轮储能)、电化学储能(液流电池、铅酸电池、锂离子电池、钠硫电池、镍镉电池、镍氢电池和超级电容器等)和电磁储能(如超导电磁储能等)。 一、概述 目前我国储能行业刚刚起步,比较成熟的储能技术是抽水蓄能和铅酸电池,技术进步最快的是电化学储能,其中以液流电池、锂离子电池和钠硫电池最为显著。在实际生产和应用方面,我国已经在实验以及试用不少电化学储能技术,但从整体来看,在实际生产中主要以中低端的镍氢动力电池和铅酸电池为主,更大容量的液流电池、锂离子电池、超级电容器等领域的关键技术虽有突破,但由于缺乏政策支持,未发展到商业化运作和大规模运用的阶段,部分储能技术如磷酸铁力、液流电池等真正的大规模工业化适用刚刚开始,产业化水平很低。 二、能量型和功率型电池分析 能量型储能以高比能量为特点,主要用于高能量输入、输出场合;功率型储能以高比功率为特点主要用于瞬间高功率输入、输出场合。 据了解,功率型储能电池主要用于调频,其特点是能够在短时间内,满足大功率充放电要求。各种电池技术中,以飞轮储能和超级电容的效果最好,前者理论上没有寿命限制,后者单体循环寿命为100万次。 风电一般每年运行2000-3000小时,要保证功率平滑输出,大概每10秒就要充、放电一次,那么储能电池1年的充放电次数就是100万次。高度频繁的充放电情况目前只有飞轮能够承受。但飞轮电池在高温下寿命缩短,具有较低的比能量和比功率,且存在一定的环境污染,镍镉电池与铅酸电池相似存在重金属污染。新兴化学储能如液流电池与钠硫电池是目前适合大规模发展的电力化学储能技术。全钒液流电池循环寿命长、能量转换效率较高,选址和设计灵活,安全环保但比能量和比功率较低适用于可再生能源储能和调峰电源以及应急电源。 近年来,风力发电在中国发展得十分迅猛。截至2012年底,风电累计装机容量达到7532.4万千瓦;但是,由于风能等可再生能源具有不连续、不稳定的非稳态特性,大规模并网后对电网调峰、调频及电能质量均会带来不利影响。因此,随着风电装机容量占电网电力比例的提高,弃风限电现象也频频出现。

储能技术应用和发展前景

储能是智能电网、可再生能源接入、分布式发电、微电网以及电动汽车发展必不可少的支撑技术,可以有效地实现需求侧管理、消除昼夜峰谷差、平滑负荷,可以提高电力设备运行效率、降低供电成本,还可以作为促进可再生能源应用,提高电网运行稳定性、调整频率、补偿负荷波动的一种手段。智能电网的构建促进储能技术升级、推动储能需求尤其是大规模储能需求的快速增长,从而带来相应的投资机会。 随着储能技术的大量应用必将在传统的电力系统设计、规划、调度、控制方面带来变革。储能技术关系到国计民生,具有越来越重要的经济价值和社会价值,目前储能在中国的发展刚刚起步。国家应该尽快研究储能技术的相关产业标准,加强储能技术基础研究的投入,切实鼓励技术创新,掌握自主知识产权;从规模储能技术发展起始阶段就重视环境因素,防治环境污染;充分发挥储能在节能减排方面的作用,把对新能源的鼓励政策延伸到储能环节。 近年来,我国电网峰谷差逐年增大,多数电网的高峰负荷增长幅度在10%左右,甚至更高。而低谷负荷的增长幅度则维持在5%甚至更低。峰谷差的增加幅度大于负荷的增长幅度,在电网中引入储能系统成为了实现电网调峰的迫切需求。 储能技术拥有广泛的应用前景,但实现规模化储能当前仍是一个世界性难题。目前,我国约有40个储能示范项目,而规模在1000千瓦级的项目为数不多。这些储能项目多起到示范、探索性作用,并不具备产业化意义。 储能产业的发展机遇

由于我国的能源中心和电力负荷中心距离跨度大,电力系统一直遵循着大电网、大电机的发展方向,按照集中输配电模式运行,随着可再生能源发电的飞速发展和社会对电能质量要求的不断提高,储能技术应用前景广阔。储能技术主要的应用方向有:风力发电与光伏发电互补系统组成的局域网,用于偏远地区供电、工厂及办公楼供电;通信系统中作为不间断电源和应急电能系统;风力发电和光伏发电系统的并网电能质量调整;作为大规模电力存储和负荷调峰手段;电动汽车储能装置;作为国家重要部门的大型后备电源等。随着储能技术的不断进步,安全性好、效率高、清洁环保、寿命长、成本低、能量密度大的储能技术将不断涌现,必将带动整个电力行业产业链的快速发展,创造巨大的经济效益和社会效益。 国家电网公司近期确定的智能电网重点投资领域中包括了大量储能应用领域,如发电领域的风力发电和光伏发电中应用储能技术项目,配电领域储能技术,电动汽车充放电技术等。无论是风电还是太阳能发电,其自身都具有随机性和间歇性特征,其装机容量的快速增长必对电网调峰和系统安全带来不利影响,所以,必须要有可靠的储能技术作为支撑和缓冲。先进储能技术能够在很大程度上解决新能源发电的波动性问题,使风电及太阳能发电大规模的安全并入电网。 并网逆变器作为光伏电池与电网的接口装置,将光伏电池的直流电能转换成交流电能并传输到电网上,在光伏并网发电系统中起着至关重要的作用。并网逆变器性能对于系统的效率、可靠性,系统的寿命及降低光伏发电成本至关重要。 储能技术发展有利于推进风电就地消纳,在当前产业梯度转移的大背景下,可考虑在大型风电基地附近布局供热、高耗能产业,同时加快建立风电场与这些大电力用户和电力系统的协调运行机制。国家电网近期确定的智能电网重点投资

飞轮物理储能系统分析及应用

飞轮物理储能系统分析及应用 随着人们生活质量在不断提高,对于电力的需求在不断加大,随着储能技术日趋成熟和成本快速下降,中国储能产业快速发展,逐步从研发示范向商业化阶段过渡,但整体来看储能产业还处于发展初期阶段,仍存在发展前景不明晰、技术标准不完善、商业模式和市场机制不清晰等问题。从发展规模、技术经济性、产业链等方面总结中国储能发展现状,基于“源-网-荷-储”协调规划理论,从宏观层面展望新能源大规模发展形势下中长期储能发展前景,研究储能在电力系统中的合理运行方式、与新能源消纳关系等重要问题;从微观层面对储能在电源侧、电网侧和用户侧等场景的应用关键问题及发展对策进行分析,并提出相关建议,为推动中国储能产业健康发展提供参考。 标签:飞轮储能系统;交流侧储能;直流侧储能;储能前景分析 1、引言 通过对相关一系列储能技术进行分析和研究,就能对我国电力系统在实际运行过程中的状况进行全面的了解。通过运用新能源,能科学有效的处理能源大规模缺乏这一问题。在对系统自身稳定性进行加强的基础上,还能对其全面性给予保证,进一步提高功率在波动过程中的指令,加强电能质量,对出现的问题进行科学处理。现阶段无论是储能系统的前期规划,还是中期进行推动的过程,都能加强经济性,对资源配置进行不断优化的基础上,还能保证不同场合的储能系统都能得到科学有效的运用。 2、飞轮物理储能系统简介 飞轮储能系统是一种机电能量转换的储能装置,突破了化学电池的局限,用物理的方式实现储能,通过电动机/发电机互逆式双向电机,实现电能与高速旋转的飞轮的机械动能之间的相互转换与存储,并通过电力电子设备实现与不同系统之间的接入与控制。 当充电时,采用电动机工作模式,电能通过电力转换器变换后驱动电机运行,电动机带动飞轮加速旋转,将电能转变为机械能存储,完成充电过程;当放电时,采用发电机工作模式,利用发电机将飞轮高速旋转的动能转变为电能,经电力转换器输出适用于负载的电流与电压,完成放电过程。 2.1飞轮系统核心组件 飞轮模块:系统核心部件,可实现20年免维护 图形用户界面:提供系统状态监测、系统功能设定等功能 飞轮控制单元:实现飞轮储能系统的监测、控制、通信等功能

飞轮储能

蒋书运 研究领域: 1、高速加工机床(高速精密电主轴;机床结构动、热态特性分析等) 2、电能存储新技术(飞轮储能系统) 项目 1、飞轮储能系统机电耦合与解耦设计的理论与方法; 国家自然科学基金; 2002-2004; 应用基础研究。 2、新型高效飞轮储能关键技术研究; 国家863计划项目; 2007-2009年; 高技术研究。 3、带电涡流阻尼器与大承载永磁悬浮轴承的储能飞轮转子动力学研究; 国家自然科学基金; 2012-2015;

应用基础研究。 4、中国博士后科学研究基金:飞轮储能系统机电耦合非线性振动与飞轮本体结构优化设计 文章 1、鞠立华, 蒋书运. 飞轮储能系统机电耦合非线性动力学分析[J]. 中国科学:技术科学, 2006, 36(1):68-83. 2、Jiang S, Lihua J U. Study on electromechanical coupling nonlinear vibration of flywheel energy storage system[J]. 中国科学:技术科学, 2006, 49(1):61-77.飞轮储能系统机电耦合非线性振动研究 3、Wang H, Jiang S, Shen Z. The Dynamic Analysis of an Energy Storage Flywheel System With Hybrid Bearing Support[J]. Journal of Vibration & Acoustics, 2009, 131(5):051006.具有混合轴承支撑的储能飞轮系统的动态分析 4、Jiang S, Wang H, Wen S. Flywheel energy storage system with a permanent magnet bearing and a pair of hybrid ceramic ball bearings[J]. Journal of Mechanical Science and Technology, 2014, 28(12):5043-5053.具有永磁轴承和一对混合陶瓷球轴承的飞轮储能系统 一、什么是飞轮储能 飞轮储能是指利用电动机带动飞轮高速旋转,在需要的时候再用飞轮带动发电机发电的储能方式。 飞轮储能系统主要包括转子系统、轴承系统和转换能量系统三个部分构成。另外还有一些支持系统,如真空、深冷、外壳和控制系统。基本结构如图所示。 转子系统

飞轮储能技术

飞轮储能技术研究 汽车08-2班张吉泉0707130226 摘要:介绍了飞轮储能技术的基本原理和应用.飞轮储能技术作为一种新型能源储备方式,具有大储能、高功率、无污染、适用广、维护简单、可实现连续工作等优点越来越为世界各国所重视,成为研究热点。 关键词:飞轮储能;电力;复合材料;飞轮电池 引言:近年来.世界各地屡屡发生大面积停电等重人电力事故.美国、加拿人、英国、瑞典、意人利等都遭遇了地铁瘫痪、民航、铁路运输中断等事故.经济损失达上千亿美元.大面积停电和严重缺电能够迅速波及整个网络.其损失和造成的影响都是难以估量的.采取一些有效的措施把用电低谷时多余的电能储存起来.在用电高峰时释放出来缓解用电压力是各国都在积极考虑的问题.现在己采取的储能技术有机械储能(飞轮、抽水、弹簧、压缩空气等)、热能蓄能(显热、潜热、蒸发、融解、升华等)、电磁蓄能(电容器、超导等)和化学蓄能(蓄电池、合成燃料、浓度差发电、物理化学能量等).其中发展最快、规模最大的是抽水蓄能.其次是压缩空气蓄能.排在第二位的就是飞轮蓄能.飞轮蓄能装置可配置在城市和用电中心附近的变电所.用来调峰调频.它的规模己达几十和几百MW级.特别是由于高温超导磁力轴承的开发和应用.将加速飞轮储能技术的发展.与其他形式的储能方式相比较.飞轮储能具有大容量、高效率、无限循环寿命、零排放、无污染和装置对环境无要求等优点. 1飞轮储能原理 飞轮储能系统主要包括3个部分:(1)转子系统;(2)支撑转子的轴承系统;(3)转换能量和功率的电动/发电机系统.另外还有一些支持系统,如真空、深冷、外壳和控制系统.基木结构如图1所示. 1 .1飞轮转子 飞轮转子是飞轮储能系统的一个重要的组成部分.储存在飞轮内的动能E用下式表示为 式中J和w分别表示飞轮的转动惯量和转动角速度.考虑到制造飞

飞轮储能系统的并网控制方法设计

飞轮储能系统的并网控制方法设计 中国科学院电工研究所的研究人员刘文军、唐西胜等,在2015年第16期《电工技术学报》上撰文,采用带LCL滤波器的背靠背双PWM变流器作为飞轮电机与电网进行能量交换的接口,提出一种飞轮储能系统并网控制方法。 该方法由电网侧变流器控制和电机侧变流器控制两部分组成,并经过充电、预并网和并网运行三个阶段。 在充电和预并网阶段,电网侧变流器采用不控整流方式,电机侧变流器先后采用速度外环和电压外环控制方式; 在并网运行阶段,电网侧变流器控制采用基于电网侧电流外环、变流器侧电流内环的直接功率控制策略,控制并网有功功率的大小及流向;电机侧变流器控制采用直流母线电压外环、电流内环的双闭环控制策略,维持直流母线电压恒定。 采用零极点对消降阶法及对称优化函数等效法分别设计电机侧内外环控制器参数。进行了飞轮储能系统的充电、预并网和并网运行实验。实验结果验证了所提飞轮储能系统并网控制方法的可行性。 飞轮储能由于具有无环境污染、使用寿命长、充放电次数无限制等特点,且与传统化学电池相比优势明显,已得到了国内外研究学者的广泛关注。采用飞轮储能系统并网运行,可以主动调节电网有功功率,确保系统供需平衡,减少有功负荷变化、间歇性可再生能源接入电网等对系统稳定性、可靠性的影响,在电力系统调频、间歇式可再生能源发电等领域具有广阔的应用前景。 飞轮储能并网控制方法作为飞轮储能系统的关键技术之一,是飞轮储能系统成功参与电网功率调节的关键,具有重要意义。 背靠背双PWM变流器目前在具有再生能量反馈的交直交变频调速系统中得到了广泛的应用。文献采用背靠背变流器将电机制动时产生的能量回馈给电网,其直流母线电压由电网侧变流器控制,电机侧变流器采用速度外环、电流内环,但由于该控制方法以电机转速为控制目标,其从电网吸收和回馈给电网的功率不可控。

国内外飞轮储能技术发展现状研究

国内外飞轮储能技术发展现状研究 时间:2011-11-1 来源:北极星电力网 一、大规模发展新能源和推动节能环保亟须发展大容量储能产业 传统能源的日益匮乏和环境日趋恶化,极大地促进了新能源的发展,新能源发电的规模也快速攀升。但风电、太阳能发电自身所固有的随机性、间歇性特征,决定了其规模化发展必然会对电网调峰和系统安全运行带来显著影响,必须要有先进的储能技术作支撑。国外有关研究表明,如果风电装机占装机总量的比例在10%以内,依靠传统电网技术以及增加水电、燃气机组等手段基本可以保证电网安全;但如果所占比例达到20%甚至更高,电网的调峰能力和安全运行将面临巨大挑战。储能技术在很大程度上解决了新能源发电的随机性、波动性问题,可以实现新能源发电的平滑输出,能有效调节新能源发电引起的电网电压、频率及相位的变化,使大规模风电及太阳能发电方便可靠地并入常规电网。 中国新能源大发展在即,对储能产业有更急迫的现实需求。预计到2020年风电和太阳能发电装机会突破1.7亿千瓦,占全国发电装机总量的比例会超过15%。但由于目前我国电力系统煤电比例较高,在部分地区又主要是调峰能力差的供热机组,核电发展很快但却不能参与调峰,水电、燃气发电等调峰性能优越的电源所占比例过低,导致现有电力系统接纳新能源的能力很弱。再加上我国能源资源所在地多远离负荷地,不得不实施风电、光电的“大规模集中开发、远距离输送”,这更进一步加大了电网运行和控制风险。随着国内新能源发电规模的快速扩大,电网与新能源的矛盾越来越突出,对储能的需求更为迫切。 大容量储能还可提高能源利用效率,为国家节约巨额投资。为应对城市尖峰负荷,电力系统每年都要新增大量投资用于电网和电源后备容量建设,但利用率却非常低。以上海为例,2004—2006年间,为解决全市每年只有183.25小时的尖峰负荷,仅对电网侧的投资每年就超过200亿元,而为此形成的输配电能力的年平均利用率不到2%。同样是为了应对尖峰负荷,转而采用大容量储能技术,不仅投资会成倍减少,而且由于储能设施占地少、无排放,其节地、节能、减排的效果是其他调峰措施无法比拟的。 二、全球大容量储能技术呈多元化发展格局,中国企业已掌握关键技术,拥有自主知识产权。 全球储能技术主要有化学储能(如钠硫电池、液流电池、铅酸电池、镍镉电池、超级电容器等)、物理储能(如抽水蓄能、压缩空气储能、飞轮储能等)和电磁储能(如超导电磁储能等)三大类。目前技术进步最快的是化学储能,其中钠硫、液流及锂离子电池技术在安全性、能量转换效率和经济性等方面取得重大突破,产业化应用的条件日趋成熟。钠硫电池的充电效率已可达到80%,能量密度是铅酸蓄电池的3倍,循环寿命更长。日本在此项技术上处于国际领先地位,2004年日本在本国Hitachi自动化工厂安装了当时世界上最大的钠硫电池系统,容量是9.6MW/57.6MWh。液流钒电池的基础材料是钒,该电池具有能量效率高、蓄电容量大、能够100%深度放电、寿命长等优点,已进入商业化阶段。锂离子电池的基础材料是锂,已开始在电动自行车、电动汽车等领域应用,近年来由于磷酸亚铁锂、纳米磷酸铁锂等新材料的开发与应用,大大改善了锂离子电池的安全性能和循环寿命,大容量锂电池储能电站正逐渐兴起。 物理储能中最成熟也是世界应用最普遍的是抽水蓄能,主要用于电力系统的调峰、填谷、调频、调相、紧急事故备用等。其能量转换效率在70%—75%左右。目前世界范围内抽水蓄能电站总装机容量9000万千瓦,约占全球发电装机容量的3%。压缩空气技术早在1978年就实现了应用,但由于受地形、地质条件制约,没有大规模推广。飞轮蓄能的特点是寿命长、无污染,动态特性好,但超大容量的飞轮,目前技术尚不成熟。电磁储能技术现在仍很昂贵,还没有商业化。

飞轮储能系统及简述

飞轮储能系统及简述 在电网的调频调峰方面,飞轮储能电站与核电站,火电站等其他类型的电站相比,在爬升能力,调峰调频比率等方面有着一定的优势。 1研究意义 储能技术应用于电力系统,可以改变电能生产、输送与消费必须同步完成的传统模式。目前,我国正在规划与大力发展坚强智能电网,全面覆盖发-输-变-配-用-调的六大环节与信息平台的建设。储能技术将是未来智能电网的重要组成部分,涉及其建设的各个主要环节。发展储能技术重要意义包括削峰填谷、调节节约能源、提高电力电网系统效率、保证电力电网系统安全等方面。同时采用储能技术可以弥补新能源发电的随机性、波动性,并实现新能源发电的平滑输出,使大规模风电及太阳能发电更安全更可靠地并入常规电网。储能技术也可以解决电动汽车充电的随机性、波动性问题,有效调节电动汽车充电引起的电网电压、频率及相位的变化,为新能源汽车的大规模推广提供基础。随着智能电网、分布式供电等新技术的推广应用,储能的作用进一步突现出来。大规模储能技术的发展和应用将对新能源乃至整个电力系统带来革命性的影响。 2飞轮储能的原理 飞轮储能是利用高速旋转的飞轮将电能以动能形式储存起来。典型的飞轮储能系统的基本结构如图1所示, 主要由五部分组成:飞轮转子、支撑轴承、高速电机、双向变流器、真空室。为了减少空闲运转时的损耗,提高飞轮的转速和飞轮储能装置的效率,飞轮储能装置轴承的设计一般都使用非接触式的磁悬浮轴承技术,而且将电机和飞轮都密封在一个真空容器内以减少风阻。通常发电机和电动机使用一台电机来实现,通过轴承直接和飞轮连接在一起。

图1飞轮储能系统的基本结构 其工作原理为:系统储能时,高速电机作为电动机运行,由工频电网提供的电能经变频器驱动电机加速,电机拖动飞轮加速储能,能量以动能形式储存在旋转的飞轮体中。当飞轮达到设定的最大转速后,系统处于能量保持状态,直到接收到一个释放能量的控制信号,系统释放能量,高速旋转的飞轮利用其惯性作用拖动电机减速发电,经变流器输出适用于电网要求的电能,完成动能到电能的转换。在整个飞轮储能装置中,飞轮是其中的核心部件,它决定了整个装置的储能多少,其储存的能量为: J 为飞轮的转动惯量, 与飞轮的形状和重量有关;ω为飞轮转动的角速度。 3飞轮储能的技术优势 储能技术是指,将电能通过某种装置转换成其他便于存储的能量高效存储起来,在需要时,可以将所存储的能量方便地换成所需形式能量的一种技术。储能技术主要有物理储能(如抽水蓄能、压缩空气储能、飞轮储能等)、化学储能(如各类蓄电池、可再生燃料电池、液流电池、超级电容器等)和电磁储能(如超导电磁储能等)。 飞轮储能是用物理方法实现电能存储, 是一种高度机电一体化产品, 是最有发展前途的储能技术之一。飞轮储能与其他几种典型储能方式性能比较如表1所示。飞轮储能使用寿命可达到20年以上,超过了其他几种储能方式,并且由于飞轮储能是机械储能方式,对于工作温度没有特定的要求,对于环境几乎没有影响。飞轮储能具有较大的容量密度和功率密度,维护周期长,系统稳定性强,适用于调峰调频,电能质量调节,输配电系统稳定性,UPS等场合。

储能技术及其在现代电力系统中的应用

储能技术及其在现代电力系统中的应用 内容摘要 从电力系统安全高效运行的角度论述了电能存储技术的重要性,介绍了目前常用的几种储能技术的发展现状,指出了该领域当前的热点研究问题。 现代电力系统中的新问题 安全、优质、经济是对电力系统的基本要求。近年来,随着全球经济发展对电力需求的增长和电力企业市场化改革的推行,电力系统的运行和需求正在发生巨大的变化,一些新的矛盾日显突出,主要的问题有:①系统装机容量难以满足峰值负荷的需求。②现有电网在输电能力方面落后于用户的需求。③复杂大电网受到扰动后的安全稳定性问题日益突出。④用户对电能质量和供电可靠性的要求越来越高。⑤电力企业市场化促使用户则需要能量管理技术的支持。⑥必须考虑环境保护和政府政策因素对电力系统发展的影响。 2000年到2001年初,美国加州供电系统由于用电需求的增长超过电网的供电能力,出现了电力价格大范围波动以及多次停电事故;我国自2002年以来,已连续四年出现多个省市拉闸限电的状况;在世界上的其他国家和地区,也不同程度地出现了电力供应短缺的现象。系统供电能力,尤其是在输电能力和调峰发电方面的发展已经落后于用电需求的增长,估计这种状况还会在一段时间内长期存在,对电力系统的安全运行将带来潜在的威胁。 加强电网建设(新建输电线路和常规发电厂),努力提高电网输送功率的能力,可以保证在满足系统安全稳定运行的前提下向用户可靠地输送电能。但是,由于经济、环境、技术以及政策等方面因素的制约,电网发展难以快速跟上用户负荷需求增长的步伐,同时电网在其规模化发展过程中不可避免地会在一段时间甚至长期存在结构上的不合理问题;另一方面,随着电力企业的重组,为了获取最大利益,企业通常首先选择的是尽可能提高设备利用率,而不是投资建设新的输电线路和发电厂。因此,单靠上述常规手段难以在短时间内有效地扭转电力供需不平衡的状况。 长期以来,世界各国电力系统一直遵循着一种大电网、大机组的发展方向,按照集中输配电模式运行。在这种运行模式下,输电网相当于一个电能集中容器,系统中所有发电厂向该容器注入电能,用户通过配电网络从该容器中取用电能。对于这种集中式输配电模式,由于互联大系统中的电力负荷与区域交换功率的连续增长,远距离大容量输送电能不可避免,这在很大程度上增加了电力系统运行的复杂程度,降低了系统运行的安全性。 目前,电力系统还缺乏高效的有功功率调节方法和设备,当前采用的主要方法是发电机容量备用(包括旋转备用和冷备用),这使得有功功率调控点很难完全按系统稳定和经济运行的要求布置。某些情况下,即使系统有充足的备用容量,如果电网发生故障导致输电能力下降,而备用机组又远离负荷中心,备用容量的电力就难以及时输送到负荷中心,无法保证系统的稳定性。因此,在传统电力系统中,当系统中出现故障或者大扰动时,同步发电机并不总是能够足够快地响应该扰动以保持系统功率平衡和稳定,这时只能依靠切负荷或者切除发电机来维持系统的稳定。但是,在大电网互联的模式下,局部的扰动可能会造成对整个电网稳定运行的极大冲击,严重时会发生系统连锁性故障甚至系统崩溃。美国和加拿大2003年8月14日发生的大停电事故就是一个惨痛的教训。如果具有有效的有功和无功控制手段,快速地平衡掉系统中由于事故产生的不平衡功率,就有可能减小甚至消除系统受到扰动时对电网的冲击。 在现代电力系统中,用户对于电能质量和供电可靠性的要求越来越高。冲击过电压、电压凹陷、电压闪变与波动以及谐波电压畸变都不同程度地威胁着用户设备特别是敏感性负荷的正常运行。电力市场化的推行也促使电力供应商和用户一起共同寻求新的能量管理技术支

储能技术应用和发展前景

储能技术应用和发展前景 深圳市中美通用电池有限公司网址:WWW+中美通用电池首字母+COM General Electronics Battery Co., Ltd. 网址:WWW+中美通用电池首字母+COM 储能是智能电网、可再生能源接入、分布式发电、微电网以及电动汽车发展必不可少的支撑技术,可以有效地实现需求侧管理、消除昼夜峰谷差、平滑负荷,可以提高电力设备运行效率、降低供电成本,还可以作为促进可再生能源应用,提高电网运行稳定性、调整频率、补偿负荷波动的一种手段。智能电网的构建促进储能技术升级、推动储能需求尤其是大规模储能需求的快速增长,从而带来相应的投资机会。 随着储能技术的大量应用必将在传统的电力系统设计、规划、调度、控制方面带来变革。储能技术关系到国计民生,具有越来越重要的经济价值和社会价值,目前储能在中国的发展刚刚起步。国家应该尽快研究储能技术的相关产业标准,加强储能技术基础研究的投入,切实鼓励技术创新,掌握自主知识产权;从规模储能技术发展起始阶段就重视环境因素,防治环境污染;充分发挥储能在节能减排方面的作用,把对新能源的鼓励政策延伸到储能环节。 近年来,我国电网峰谷差逐年增大,多数电网的高峰负荷增长幅度在10%左右,甚至更高。而低谷负荷的增长幅度则维持在5%甚至更低。峰谷差的增加幅度大于负荷的增长幅度,在电网中引入储能系统成为了实现电网调峰的迫切需求。 储能技术拥有广泛的应用前景,但实现规模化储能当前仍是一个世界性难题。目前,我国约有40个储能示范项目,而规模在1000千瓦级的项目为数不多。这些储能项目多起到示范、探索性作用,并不具备产业化意义。 储能产业的发展机遇

飞轮储能系统研究方案

电机与电器专题课报告——飞轮储能系统研究 哈尔滨工业大学 2014年6月

飞轮储能系统研究 摘要:飞轮储能系统(FESS)又称飞轮电池或机电电池,由于它与化学电池相比所具有的巨大优势和未来市场的巨大潜力,引起了人们的密切关注。它结合了当今最新的磁悬浮技术、高速电机技术、电力电子技术和新材料技术,使得飞轮储存的能量有了质的飞跃,再加上真空技术的应用,使得各种损耗也非常小。本文针对该领域近年来的研究成果,对飞轮储能系统的几大关键部件全面的论述。 引言: 飞轮电池是一种高科技机电一体化产品,它在国防工业、汽车工业、电力工业、电信业等领域具有广阔的应用前景。作为电池家族的成员,这种新型的电池与化学电池相比具有以下几方面突出的优点。 (1)储能密度高。转子转速大于60000r/min的飞轮电池,在75%放电深度下 产生大于20Whr/lb的比能量(此值还不是最高的),而镍氢电池只有5~6Whr/lb的比能量,其放电深度一般限制在30%~40%的范围内。 (2)无过充电、过放电问题。化学电池一般不能深度放电,也不能过充电, 否则其寿命会急剧下降。而飞轮电池在深度放电时,其性能完全不受影响,而且在电力电子协助下,非常容易防止过充电(实际上是限制转子的最高转速)。飞轮电池的寿命主要取决于其电力电子的寿命,故一般可达到20年左右。 (3)容易测量放电深度,充电时间较短。飞轮电池只要测出转子的转速,就 能确切知道其放电深度,而化学电池就没有这么容易了。另外,飞轮电池的充电一般在几分钟之内即可完成,而化学电池则需要几个小时,常

见的需要七八个小时。 (4)对温度不敏感。化学电池在高温或低温时其性能会急剧下降,而飞轮电 池则不然。 (5)对环境友好。化学电池在报废后会对环境产生恶劣影响,而且回收成本 较高。飞轮电池是一种绿色电池,它不会对环境产生任何影响,故它在电动汽车方面的应用极具潜力。 飞轮电池的发展开始于20世纪70年代,当时正处于石油禁运和天然气危机时期。此时,美国能量研究发展署(ERDA)及其后的美国能源部(DoE)资助飞轮系统的应用开发,包括电动汽车的超级飞轮的研究Lewis研究中心(LeRC)在ERDA 的协助和美国航空航天局(NASA)的资助下专门研究用于真空下的机械轴承和用于复合车辆的飞轮系统的传动系统。NASA同时也资助Goddard空间飞行中心(GSFC)研究适用于飞行器动量飞轮的电磁轴承。80年代,DoE削减了飞轮储能研究的资助,但NASA继续资助GSFC研究卫星飞轮系统的电磁轴承,同时还资助了Langley研究中心(LaRC)及Marshall空间飞行中心(MSFC)关于组合能量储存和姿态控制的动量飞轮构形的研究。 近10年来,一大批新型复合材料和新技术的诞生和发展,如高强度的碳素纤维复合材料(抗拉强度高达8。27GPa)、磁悬浮技术和高温超导技术、高速电机/发电机技术以及电力电子技术等,使得飞轮能够储存大量的能量,给飞轮的应用带来了新的活力。它可应用于国防工业(如卫星、电磁炮和电热化学枪、作战侦察车辆等)、汽车工业(电动汽车)、电力行业(如电力质量和电力负载调节等)、医疗和电信业(作UPS用)等。NASA的应用有航天器(宇宙飞船)、发射装置、飞行器动力系统、不间断电源(UPS)和宇宙漫步者。

飞轮储能技术研究报告

飞轮储能技术研究报告 1飞轮储能技术原理简介 飞轮储能的概念起源于20世纪70年代,但囿于当时的技术水平,该技术并没有得到实际应用;直到20世纪90年代,随着碳纤维材料的广泛应用和磁轴承技术的发展,飞轮电池被美国科学家研发成功。它突破了化学电池的局限,用物理方法实现储能,实现电能和机械能的相互转化,工作过程中不会造成任何污染。 飞轮储能(Flywheel Energy Storage)属于一种物理储能的方式,通过电力电子设备驱动飞轮进行高速旋转,利用飞轮高速旋转时所具备的动能进行能量存储,通过电动/发电一体化双向高效电机配合真空中的飞轮实现电能和动能的双向转换,如图1所示。 图1飞轮储能系统的工作原理 飞轮储能系统主要由高强度合金或复合材料做成的飞轮转子、高速轴承、电动/发电机、电力转换器、真空安全罩等部分组成,如图2所示。

图2 飞轮储能系统的本体结构 飞轮储能设施充放电的具体实现方式为: (1)当飞轮存储能量时,电动/发电一体化双向高效电机实现电动机运行状态,将电能转换为飞轮转子的动能,飞轮转速升高实现能量的存储; (2)当飞轮释放能量时,电动/发电一体化双向高效电机实现发电机运行状态,将高速旋转的飞轮转子动能转换为电能,飞轮转速下降实现能量的释放。 飞轮所存储的能量计算公式为:22 1ωJ E =,其中J 为飞轮的转动惯量,ω为飞轮旋转的角速度。 从上述公式中可以看到,飞轮存储的能量值与飞轮转速的平方,以及飞轮的转动惯量成正比。飞轮的转动惯量取决于飞轮的质量分布和半径,在飞轮体积和质量分布一定的情况下通过提高飞轮的转速可以更为显著地提高飞轮存储的能量值。 飞轮储能系统的控制策略原理如图3所示:

飞轮储能图文说明

飞轮储能图文说明 飞轮蓄能是机械蓄能的一种形式,以惯性能(动能)的方式,将能量储存在高速旋转的飞轮中。当车辆制动时,飞轮蓄能系统托动飞轮加速,将车身的惯性动能转化为飞轮的旋转动能。当车辆需起动或加速时,飞轮减速,释放其旋转动能给车身。 飞轮储能作为一种纯机电的储能系统,具有比能量大、比功率高、无二次污染、寿命长等优点,在短时间内得到了很快发展。 目前,飞轮储能技术己经在UPS、电力系统、混合动力机车等领域获得了成功应用。飞轮储能技术涉及多种学科与技术,主要包括机械科学、电气科学、磁学、控制科学和材料科学等多学科,以及复合材料的成型与制造技术、高矫顽力稀土永磁材料技术、磁悬浮技术、传感技术、用于变压变频的电力电子技术、高速双向电动机/ 发电机技术等关键技术。 飞轮储能装置的结构如图3-7 所示,主要包括5 个基本组成部分:(1)采用高强度玻璃纤维(或碳纤维)复合材料的飞轮转子;(2)悬浮飞轮的电磁轴承及机械保护轴承;(3)电动/ 发电互逆式电机;(4)电机控制与电力转换器;(5) 高真空及安全保护罩。 轴承 真空容器 电机 飞轮 轴承 图3-7 飞轮储能原理 现代飞轮储能系统的飞轮转子在运动时由磁力轴承实现转子无接触支承,而机械保护轴承主要负责转子静止或存在较大的外部扰动时的辅助支承,以避免飞轮转子与定子直接相撞而导致灾难性破坏。高真空及安全保护罩用来保持壳体内始终处于真空状态,减少转子运转的风耗,同时避免一旦转子产生爆烈或定子与转子相碰时发生意外。此外还有一些辅助系统,例如用来负责电机和磁悬浮轴承的冷却系统,显示仪表则用来显示剩余电量和工作状态。 飞轮储能系统是一种机电能量转换与储存装置,它存在两个工作模式:一种为“充电”

飞轮储能系统研究

电机与电器专题课报告 ——飞轮储能系统研究 哈尔滨工业大学 2014年6月 飞轮储能系统研究 摘要:飞轮储能系统(FESS)又称飞轮电池或机电电池,由于它与化学电池相比所具有的巨大优势和未来市场的巨大潜力,引起了人们的密切关注。它结合了当今最新的磁悬浮技术、高速电机技术、电力电子技术和新材料技术,使得飞轮储存的能量有了质的飞跃,再加上真空技术的应用,使得各种损耗也非常小。本文针对该领域近年来的研究成果,对飞轮储能系统的几大关键部件全面的论述。 引言: 飞轮电池是一种高科技机电一体化产品,它在国防工业、汽车工业、电力工业、电信业等领域具有广阔的应用前景。作为电池家族的成员,这种新型的电池与化学电池相比具有以下几方面突出的优点。 (1)储能密度高。转子转速大于60000r/min的飞轮电池,在75%放电深度下产生大于 20Whr/lb的比能量(此值还不是最高的),而镍氢电池只有5~6Whr/lb的比能量,其放电深度一般限制在30%~40%的范围内。 (2)无过充电、过放电问题。化学电池一般不能深度放电,也不能过充电,否则其寿 命会急剧下降。而飞轮电池在深度放电时,其性能完全不受影响,而且在电力电子协助下,非常容易防止过充电(实际上是限制转子的最高转速)。飞轮电池的寿命主要取决于其电力电子的寿命,故一般可达到20年左右。 (3)容易测量放电深度,充电时间较短。飞轮电池只要测出转子的转速,就能确切知 道其放电深度,而化学电池就没有这么容易了。另外,飞轮电池的充电一般在几分钟之内即可完成,而化学电池则需要几个小时,常见的需要七八个小时。 (4)对温度不敏感。化学电池在高温或低温时其性能会急剧下降,而飞轮电池则不然。 (5)对环境友好。化学电池在报废后会对环境产生恶劣影响,而且回收成本较高。飞 轮电池是一种绿色电池,它不会对环境产生任何影响,故它在电动汽车方面的应用极具潜力。

飞轮储能系统及其工程应用

飞轮储能系统及其工程应用 (辽宁工程技术大学,机械工程学院)诉讼 摘要:飞轮储能系统是一种具有广阔应用前景的机械储能装置。本文介绍了飞轮储能系统的原理和基本结构,并阐述了飞轮储能系统在相应工程领域的应用情况。 关键字:飞轮;储能系统;应用 Application of Flywheel Energy Storage Technology Liang-Shengzhao (Liaoning Technical University,College of mechanical engineering,fluid power transmission and control engineering) ABSTRACT:Flywheel is a mechanical based on energy storage method with a wide range of potential applications.In this paper,we introduce the principle and components of a flywheel energy storage system,and look at applications of the technology in relevant engineering fields. Key words:flywheel;storage energy system;application 能源问题是当今人类面临的重要问题之一,尤其是对于像阜新这样的资源枯竭型城市。随着石油、煤炭等不可再生能源的日益稀少,人们将目光转向了新能源以及能源存储系统的研究和开发应用。飞轮储能系统是一种绿色的能量存储装置,它具有高能量转换效率、储存密度大、绿色环保等特点。到目前为止,飞轮储能系统已经被广泛应用于航空航天、UPS电源、交通运输、核工业等领域。 1 飞轮储能系统的工作原理 图1为飞轮储能系统的工作原理。系统充电时,外接电源驱动飞轮转子加速旋转,当飞轮达到一定工作转速时,停止驱动电动机,系统完成充电。党外不需要能量时,高速旋转的飞轮转子降低转速,通过动/发一体机的发电功能将动能转化成电能释放。衡量飞轮储能系统性能的重要指标是系统的储能密度,即:

飞轮储能系统概述

飞轮储能系统概述 指利用电动机带动飞轮高速旋转,将电能转化成动能储存起来,在需要的时候再用飞轮带动发电机发电的储能方式。飞轮储能系统主要包括转子系统、轴承系统和转换能量系统三个部分构成。另外还有一些支持系统,如真空、深冷、外壳和控制系统。基本结构如图所示。 飞轮储能装置中有一个内置电机,它既是电动机也是发电机。在充电时,它作为电动机给飞轮加速;当放电时,它又作为发电机给外设供电,此时飞轮的转速不断下降;而当飞轮空闲运转时,整个装置则以最小损耗运行。 飞轮储能器中没有任何化学活性物质,也没有任何化学反应发生。旋转时的飞轮是纯粹的机械运动,飞轮在转动时的动能为:E =1/2Jω^2 式中: J为飞轮的转动惯量,ω为飞轮旋转的角速度. 由于在实际工作中,飞轮的转速可达40000~500000r/min,一般金属制成的飞轮无法承受这样高的转速,所以飞轮一般都采用碳纤维制成,既轻又强,进一步减少了整个系统的重量,同时,为了减少充放电过程中的能量损耗(主要是摩擦力损耗),电机和飞轮都使用磁轴承,使其悬浮,以减少机械摩擦;同时将飞轮和电机放置在真空容器中,以减少空气摩擦。这样飞轮电池的净效率(输入输出)可以达到95%左右。 二、国内外飞轮储能系统研究的现状、发展及未来 飞轮电池是90年代提出的新概念电池,它突破了化学电池的局限,用物理方法实现储能,由于是电能和机械能的相互转化,不会造成污染。飞轮储能电池最初只是想将其应用在电动汽车上,但限于当时的技术水平,并没有得到发展。直到上世纪90年代由于电路拓扑思想的发展,碳纤维材料的广泛应用,以及全世界范围对污染的重视,这种新型电池又得到了高速发展,并且伴随着磁轴承技术的发展,这种电池显示出更加广阔的应用前景,现正迅速地从实验室走向社会。

相关文档
最新文档