漆酶氧化醇羟基

漆酶氧化醇羟基
漆酶氧化醇羟基

漆酶催化活性中心结构及应用的研究进展

第8卷第2期2000年 6月 纤维素科学与技术 Journal of Cellulose Science and T echnology V ol.8 N o.2 Jun. 2000 综述评论漆酶催化活性中心结构及应用的研究进展Ξ 李光日 余惠生3 付时雨 秦文娟 (中国科学院广州化学研究所纤维素化学开放研究实验室 广州 510650) 文 摘:综述了漆酶催化活性中心结构及应用的研究进展。漆酶的催化 反应发生在铜离子形成的活性中心,但其氧化能力与氨基酸配体有密切 的关系。漆酶可应用于带有羟基或氨基的芳香族单体的聚合反应,偶氮 染料的合成及降解,稠环芳烃的降解去毒等。同时在纸浆的洁净漂白,化 学分析中痕量物质的检测,食品的保鲜及改良和环保等方面有重要应用。 关键词:漆酶,催化活性中心结构 中图法分类号:Q55 0 前 言 漆酶是一类含铜的多酚氧化酶(P—diphenol:oxidoreductase,EC1.10.3.2)。早在1883年,Y oshida从漆树的分泌物中发现了一种蛋白质,它可使油漆迅速固化[1]。1894年Bertrand将这种蛋白质命名为漆酶[2]。随后人们发现这种酶不仅存在于漆树的分泌物中[3~5],而且存在于多种植物[6~8]、昆虫[9,10]和高等真菌中[11~15]。 近年来,漆酶在痕量物质的分析、染料合成与降解、食品性质的改良、环保和皮革工业等领域显示了较高的应用价值。尤其重要的是漆酶在氧化还原介体的协助下具有降解木素的能力[16],可以用于纸浆中残余木素的脱除,有利于发展全无氯的纸浆漂白技术。与传统的氯漂工艺相比,利用漆酶来脱除纸浆中的残余木素,不会产生有毒性的氯酚类化合物,对减少环境污染有着重要的意义。因此漆酶作为一种具有很大的潜在应用价值的酶越来越受到人们的关注。关于漆酶产生方面的研究大多数是以白腐菌为研究对象,只有少数是以细菌[17]为研究对象。王佳玲等人对产漆酶白腐菌菌种,培养方式及产漆酶效果的影响因素等方面做过较为系统的总结[18]。本文将分以下三个方面对近年来有关漆酶的一些研究结果进行扼要的综述。 1 漆酶的催化活性中心结构 漆酶一般以单蛋白体的形式存在,其分子量范围一般是从52K Da到110K Da,也有些漆酶分子的分子量大于110K Da。不同来源的漆酶其分子被不同程度地糖基化,碳水化合物含量占10%~45%(质量分数),一般情况下真菌漆酶的碳水化合物含量要低于植物漆酶的碳水化合物含量[19]。含有糖基的蛋白不易结晶,为了研究漆酶蛋白多肽的 收稿日期:2000-01-06 国家自然科学基金和广东省科学基金资助课题 3通讯联系人

真菌漆酶的研究进展及其应用前景

万方数据

万方数据

万方数据

真菌漆酶的研究进展及其应用前景 作者:周雪婷, 张跃华, 罗志文, 潘亭如, 缪天琳 作者单位:佳木斯大学,黑龙江佳木斯,154007 刊名: 农业与技术 英文刊名:Agriculture & Technology 年,卷(期):2012,32(9) 参考文献(33条) 1.王光辉;季立才中国漆树漆酶的底物专一性 1989 2.Nina H;Laura-Leena K Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear coper site 2002(08) 3.雷福厚;蓝虹云漆树漆酶和真菌漆酶的异同研究[期刊论文]-中国生漆 2003(01) 4.李慧蓉白腐真菌生物学和生物技术 2005 5.Harald Claus Laccases:structure.reactions,distrihution 2004(35) 6.张丽白腐真菌产漆酶对染料废水降解的研究 2004 7.张敏;肖亚中;龚为民真菌漆酶的结构与功能[期刊论文]-生物学杂志 2003(20) 8.Gimifreda L;Xu F;Bollag J-M Laccases:a useful group of oxido reductive enzymes 1999(03) 9.Xu F;Kulys J J;Duke K Redox Chemistry in Laccase-Catalyzed Oxidation of N-Hydroxy Compounds 2000(66) 10.堵国成;赵政;陈坚真菌漆酶的酶活测定及其在织物染料生物脱色中的应用[期刊论文]-江南大学学报(自然科学版) 2003(02) 11.缪静;姜竹茂漆酶的最新研究进展[期刊论文]-烟台师范学院学报(自然科学版) 2001(17) 12.刘尚旭;赖寒木质素降解酶的分子生物学研究进展[期刊论文]-重庆教育学院学报 2001(14) 13.何为;詹怀宇;王习文;伍红一种改进的漆酶酶活检测方法[期刊论文]-华南理工大学学报(自然科学版) 2003(31) 14.季立才;胡培植漆酶结构,功能及应用 1996(18) 15.侯红漫白腐菌Pleurotus ostreatus漆酶及对蒽醌染料和碱木素脱色的研究 2004 16.Huang Z Y;Huang H P;CaiR X Organic solvent enhanced spectrofluorin etric method for determition of laccase activity 1998(01) 17.Badiani M;Felici M;Luna M Laccase assay by means of highperfomance liquid chromatography 1983(02) 18.Wood D.A Production,Purification and Properties of Extracelluar laccase of Agaricus bisporus 1980(17) 19.林俊芳;刘志明;陈晓阳真菌漆酶的酶活测定方法评价[期刊论文]-生物加工过程 2009(04) 20.望天志;李卫莲;万洪文微量热法测定漆酶的活性[期刊论文]-自然杂志 1997(06) 21.Kirk T K;Farrell R L Enzymatic "combustion":The microbial degradation of lignin 1987(10) 22.张爱萍;秦梦华;徐清华漆酶在制浆造纸中的应用研究进展[期刊论文]-中国造纸学报 2004(02) 23.Reid I D Biological pulping in paper manufacture 1991(08) 24.Bergbauer M;Eggert C;Kraepelin G Degradation of chlorinated lignin compounds in a bleach plant effluent by the white-rot fungus Trametes Versicolor 1991(35) 25.林建城酶在食品工业,轻工业和环境保护上的应用分析[期刊论文]-莆田学院学报 2005(02) 26.林鹿;陈嘉翔白腐菌对纸浆CEH漂白废水的脱色、消除毒性和芳香化合物的降解 1996(11) 27.E Rodriguez;MA.Pickard;R Vazquez-Duhalt Industial dye decolorization by laccases from ligninolytic fungi 1999(38) 28.Bollag J M;Myers C Detoxification of aquatic and terrestrial sites through binding of pollutants to humic substances 1992(117-118) 29.Majcherczy A Oxidation of ploycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor 1998(22) 30.刘涛;曹瑞饪漆酶在环境保护领域中的研究及应用进展[期刊论文]-云南环境科学 2005(03) 31.Collins P J;Kotterman M J J;Field J A;Dobson A Oxidation of Anthracene and Benzo[a]pyrene by Laccase from Trametes versicolor[外文期刊] 1996(12)

过氧化氢酶

过氧化氢酶 过氧化氢酶,是催化过氧化氢分解成氧和水的酶,存在于细胞的过氧化物体内。过氧化氢酶是过氧化物酶体的标志酶, 约占过氧化物酶体酶总量的40%。过氧化氢酶存在于所有已知的动物的各个组织中,特别在肝脏中以高浓度存在。过氧化氢酶在食品工业中被用于除去用于制造奶酪的牛奶中的过氧化氢。过氧化氢酶也被用于食品包装,防止食物被氧化。 触酶 过氧化氢酶(CAT)是一种酶类清除剂,又称为触酶,是以铁卟啉为辅基的结合酶。它可促使H2O2分解为分子氧和水,清除体内的过氧化氢,从而使细胞免于遭受H2O2的毒害,是生物防御体系的关键酶之一。CAT作用于过氧化氢的机理实质上是H2O2的歧化,必须有两个H2O2先后与CAT相遇且碰撞在活性中心上,才能发生反应。H2O2浓度越高,分解速度越快。 来源 几乎所有的生物机体都存在过氧化氢酶。其普遍存在于能呼吸的生物体内,主要存在于植物的叶绿体、线粒体、内质网、动物的肝和红细胞中,其酶促活性为机体提供了抗氧化防御机理。 CAT是红血素酶,不同的来源有不同的结构。在不同的组织中其活性水平高低不同。过氧化氢在肝脏中分解速度比在脑或心脏等器官快,就是因为肝中的CAT含量水平高。 过氧化氢酶历史 作为一种物质,过氧化氢酶是在1811年被过氧化氢(H2O2)的发现者泰纳尔(Louis Jacques Thénard)首次发现。1900年,Oscar Loew将这种能够降解过氧化氢的酶命名为“catalase”,即过氧化氢酶,并发现这种酶存在于许多植物和动物中。1937年,詹姆斯·B·萨姆纳将来自牛肝中的过氧化氢酶结晶,并在次年获得了该酶的分子量。1969年,牛的过氧化氢酶的氨基酸序列得以解出。而后,1981年,其三维结构得以解析。 功能 过氧化氢是一种代谢过程中产生的废物,它能够对机体造成损害。为了避免这种损害,过氧化氢必须被快速地转化为其他无害或毒性较小的物质。而过氧化氢酶就是常常被细胞用来催化过氧化氢分解的工具。 但过氧化氢酶真正的生物学重要性并不是如此简单:研究者发现基因工程改造后的过氧化氢酶缺失的小鼠依然为正常表现型,这就表明过氧化氢酶只是在一些特定条件下才对动物是必不可少的。 一些人群体内的过氧化氢酶水平非常低,但也不显示出明显的病理反应。这很有可能是因为正常哺乳动物细胞内主要的过氧化氢清除剂是过氧化物还原酶(peroxiredoxin),而不是过氧化氢酶。

几种抗氧化酶的作用

一.超氧化物歧化酶(SOD): 超氧化物歧化酶,是一种新型酶制剂,是生物体重要的抗氧化酶,广泛分布于各种生物体,如动物,植物,微生物等。SOD具有特殊的生理活性,是生物体清除自由基的首要物质。SOD在生物体的水平高低意味着衰老与死亡的直观指标;现已证实,由氧自由基引发的疾病多达60多种。它可对抗与阻断因氧自由基对细胞造成的损害,并及时修复受损细胞。由于现代生活压力,环境污染,各种辐射和超量运动都会造成氧自由基大量形成;因此,生物抗氧化机制中SOD的地位越来越重要! 超氧化物歧化酶(SOD)按其所含金属辅基不同可分为三种,第一种是含铜(Cu)锌(Zn)金属辅基的称(Cu.Zn—SOD),最为常见的一种酶,呈绿色,主要存在于机体细胞浆中;第二种是含锰(Mn)金属辅基的称(Mn—SOD),呈紫色,存在于真核细胞的线粒体和原核细胞;第三种是含铁(Fe)金属辅基的称(Fe—SOD),呈黄褐色,存在于原核细胞中。 SOD是一种含有金属元素的活性蛋白酶。超氧化物岐化酶(SOD)能催化如下的反应:O2-+H+→H2O2+O2,O2-称为超氧阴离子自由基,是生物体多种生理反应中自然生成的中间产物。它是活性氧的一种,具有极强的氧化能力,是生物氧毒害的重要因素之一。SOD是机体天然存在的超氧自由基清除因子,它通过上述反应可以把有害的超氧自由基转化为过氧化氢。尽管过氧化氢仍是对机体有害的活性氧,但体的过氧化氢酶(CAT)和过氧化物酶(POD)会立即将其分解为完全无害的水。

这样,三种酶便组成了一个完整的防氧化链条。 目前,人们认为自由基(也称游离基)与绝大部分疾病以及人体的衰老有关。所谓的自由基就是当机体进行代时,能夺去氧的一个电子,这样这个氧原子就变成自由基。自由基很不稳定,它要在身体组织细胞的分子中再夺取电子来使自己配对,当细胞分子推出新一个电子后,它也变成自由基,又要去抢夺细胞膜或细胞核分子中的电子,这样又称会产生新的自由基。如,超氧化物阴离子自由基、羟自由基、氢自由基和甲基自由基,等等。在细胞由于自由基非常活泼,化学反应性极强,参与一系列的连锁反应,能引起细胞生物膜上的脂质过氧化,破坏了膜的结构和功能。它能引起蛋白质变性和交联,使体的许多酶及激素失去生物活性,机体的免疫能力、神经反射能力、运动能力等系统活力降低,同时还能破坏核酸结构和导致整个机体代失常等,最终使机体发生病变。因此,自由基作为人体垃圾,能够促使某些疾病的发生和机体的衰老。虽然自由基会对机体产生诸多危害,但是在一般的条件下人体细胞也存在着清除自由基、抑制自由基反应的体系,它们有的属于抗氧化酶类,有的属于抗氧化剂。像SOD就是一种主要的抗氧化酶,能清除超氧化物自由基,在防御氧的毒性、抑制老年疾病以及预防衰老等方面起着重要作用。 SOD能专一地清除体有害的自由基,以解除自由基氧化体的某些组成成分而造成的机体损害。如氧中毒、急性炎症、水肿、自身免疫性疾病、辐射病等疾病都与活性氧的毒性有关。实验证明,SOD能够清除自由基,因此可消除上述疾病的病因。此解毒反应过程是两步:

超氧化物歧化酶资料

超氧化物歧化酶 超氧化物歧化酶,别名肝蛋白、奥谷蛋白,简称:SOD。SOD是一种源于生命体的活性物质,能消除生物体在新陈代谢过程中产生的有害物质。对人体不断地补充SOD具有抗衰老的特殊效果。超氧化物歧化酶是1938年Marn等人首次从牛红血球中分离得到超氧化物歧化酶开始算起,人们对SOD的研究己有七十多年的历史。1969年McCord等重新发现这种蛋白,并且发现了它们的生物活性,弄清了它催化过氧阴离子发生歧化反应的性质,所以正式将其命名为超氧化物歧化酶。 SOD(超氧化物歧化酶)是国际上公认的具有人体垃圾“清道夫”、“抗衰王”、“美容骄子”之称,是对抗“百病之源”活性氧自由基最有力的物质,是近半个世纪以来社会科学界、医学界、生物界最举世瞩目的价值发现,它的研究与发展代表着生物医药的高科技技术发展的前沿,在科技成果及学术领域占据重要的国际地位。SOD(超氧化物歧化酶)被国家列入生物医药“国家十一五规划”重点项目。2011年是“国家十二五规划”的第一年,SOD行业将再次跻身国家当前优先发展的高科技产业化项目,标志着中国健康产业链SOD新兴行业的崛起, 使全人类迈入健康经济时代。利用超氧化物歧化酶(SOD)产业化建设,一方面可架构生物医药、保健食品、日用美容化妆品、化工化学、农业五大版块经济支柱的绿色产业链循环经济圈发展。另一方面打造SOD科技应用成果转化的孵化器平台引领生化医药美容化妆品食品等行业的新型健康原料的应用,有利于促进再生资源利用,产生巨大的社会效益和经济效益。 一、反应机理 超氧化物岐化酶,它催化如下的反应: 2O2-+2H+→H2O2+O2 O2-称为超氧阴离子自由基,是生物体多种生理反应中自然生成的中间产物。它是活性氧的一种,具有极强的氧化能力,是生物氧毒害的重要因素之一。 SOD是机体内天然存在的超氧自由基清除因子,它通过上述反应可以把有害的超氧自由基转化为过氧化氢。尽管过氧化氢仍是对机体有害的活性氧,但体内的过氧化氢酶(CAT)和过氧化物酶(POD)会立即将其分解为完全无害的水。这样,三种酶便组成了一个完整的防氧化链条。 SOD属于金属蛋白酶,按照结合金属离子种类不同,该酶有以下三种:含铜与锌超氧化物歧化酶(Cu-ZnSOD )、含锰超氧化物歧化酶(Mn-SOD )和含铁超氧化物歧化酶(Fe-SOD )。三种SOD都催化超氧化物阴离子自由基,将之歧化为过氧化氢与氧气。 目前,人们认为自由基(也称游离基)与绝大部分疾病以及人体的衰老有关。所谓的自由基就是当机体进行代谢时,能夺去氧的一个电子,这样这个氧原子就变成自由基。自由基很不稳定,它要在身体组织细胞的分子中再夺取电子来使自己配对,当细胞分子推陈出新动一个电子后,它也变成自由基,又要去抢夺细胞膜或或细胞核分子中的电子,这样又称会产生新的自由基。如,超氧化物阴离子自由基、羟自由基、氢自由基和甲基自由基,等等。在细胞由于自由基非常活泼,化学反应性极强,参与一系列的连锁反应,能引起细胞生物膜上的脂质过氧化,破坏了膜的结构和功能。它能引起蛋白质变性和交联,使体内的许多酶及激素失去生物活性,机体的免疫能力、神经反射能力、运动能力等系统活力降低,同时还能破坏核酸结构和导致整个机体代谢失常等,最终使机体发生病变。因此,自

真菌基因组学研究进展

真菌基因组学研究进展 真菌为低等真核生物,种类庞大而多样。据估计,全世界约有真菌150万种,已被描述的约8万种。真菌在自然界分布广泛,存在于土壤、水、空气和生物体内外,与人类生产和生活有着非常密切的关系。许多真菌在自然界的碳素和氮素循环中起主要作用,参与淀粉、纤维素、木质素等有机含碳化合物及蛋白质等含氮化合物的分解。有些真菌如蘑菇、草菇、木耳、麦角、虫草、茯苓等可直接供作食用和药用,或在发酵工业、食品加工业、抗生素生产中具有重要作用。然而,也有些种类引起许多植物特别是重要农作物的病害,如水稻稻瘟病、小麦锈病、玉米腥黑穗病、果树病害等。少数真菌甚至是人类和动物的致病菌,如白色假丝酵母Candida albicans等。因此,合理利用有益真菌,控制和预防有害 真菌具有重要意义。 本文整理了已完成基因组序列测定的真菌的信息,并对真菌染色体组的历史、测序策略及其基因组学的研究进展进行了评述。 1真菌染色体组的研究历史和资源 1986年美国科学家Thomas Rodefick提出基因组学概念,人类基因组计划带动了模式生物和其它重要生物体基因组学研究。阐明各种生物基因组DNA中碱基对的序列信息及破译相关遗传信息的基因组学已经成为与生物学和医学研究不可分割的学科。由欧洲、美国、加拿大和日本等近百个实验室六百多位科学家通力合作,1996年完成第一个真核生物酿酒酵母Saccharomyces cerevisiae的基因组测序,这 对于酵母菌类群来说是一个革命性的里程碑,并且激起了真核基因功能和表达的第一次全球性研究(Goffeau etal,1996)。随后粟酒裂殖酵母Schizosaccharomyces pombe(Wood etal.2002)和粗糙脉孢 霉Neurospora crassa(Galagan etal.2003)染色体组的完成显露出酿酒酵母作为真菌模式生物的局限性。尽管如此,真菌染色体组测序的进展最初是缓慢的。为加快真菌染色体组研究的步伐,2000年由 美国Broad研究所与真菌学研究团体发起真菌基因组行动(fungal genome initiative,FGI),目的是 促进在医药、农业和工业上具有重要作用的真菌代表性物种的基因组测序。2002年2月FGI发表了第 一份关于测定15种真菌基因组计划的白皮书。2003年6月,真菌基因组行动发表了第二份白皮书,列 出了44种真菌作为测序的目标,强调对其中10个属即青霉属Penicillium、曲霉属Aspergillus、组 织胞浆菌属Histoplasma、球孢子菌Coccidioides、镰刀菌属Fusarium、脉孢菌属Neurospora、假丝 酵母属Candida、裂殖酵母属Schizosaccharomyces、隐球酵母属Cryptococcus和柄锈病菌属Puccin& 的物种优先进行测序。之后,经过FGI、法国基因组学研究项目联(G6nolevures Consortium)、美国能 源部联合基因组研究所(The DOE Joint Genome Institute,JGI)DOE联合基因组研究所、基因组研究 院(The Institute for Genomic Research,TIGR)、英国The Wellcome Trust Sanger InstimteSanger和华盛顿大学基因组测序中心等共同努力;得到包括美国国家人类染色体研究所、国 家科学基金会、美国农业部和能源部等的资助,也有来自学术界和产业集团如著名的 Monsanto、Syngenta、Biozentrum、Bayer Crop Science AG和Exelixis等公司的持续合作,在最近 的几年里,真菌基因组学研究取得重大突破。至2008年6月1日,共有3734种生物的全基因组序列测定工作已经完成或正在进行,公开发表812个完整的基因组,其中,70余种真菌基因组测序工作已经 组装完成或正在组装,分别属于子囊菌门、担子菌门、接合菌门、壶菌门和微孢子虫(Microsporidia) 的代表。此外,还有Ajellomyces dermatitidis和Antonospora locustae等20余种真菌基因组序列 正在测定中(Bemal etal.2001)。这些真菌都是重要的人类病原菌、植物病原菌、腐生菌或者模式生物,基因组大小为2.5—81.5Mb,包含酵母或产生假菌丝的酵母、丝状真菌,或者具有二型性(或多型性) 生活史的真菌,拥有与动物和植物细胞一样的的细胞生理学和遗传学特征,包括多细胞性、细胞骨架结

过氧化氢酶活力的测定实验报告

竭诚为您提供优质文档/双击可除过氧化氢酶活力的测定实验报告 篇一:实验35过氧化氢酶的活性测定 植物在逆境下或衰老时,由于体内活性氧代谢加强而使h2o2发生累积。h2o2可以直接或间接地氧化细胞内核酸,蛋白质等生物大分子,并使细胞膜遭受损害,从而加速细胞的衰老和解体。过氧化氢酶可以清除h2o2,是植物体内重要的酶促防御系统之一。因此,植物组织中h2o2含量和过氧化氢酶活性与植物的抗逆性密切相关。本实验用分光光度法测定过氧化氢含量,利用高锰酸钾滴定法和紫外吸收法测定过氧化氢酶活性。 一、过氧化氢含量的测定 【原理】 h2o2与硫酸钛(或氯化钛)生成过氧化物—钛复合物黄色沉淀,可被h2so4溶解后,在415nm波长下比色测定。在一定范围内,其颜色深浅与h2o2浓度呈线性关系。 【仪器和用具】 研钵;移液管0.2ml×2支,5ml×1支;容量瓶10ml×

7个,离心管5ml×8支;离心机;分光光度计。 【试剂】 100μmol/Lh2o2丙酮试剂:取30%分析纯h2o257μl,溶于100ml,再稀释100倍;2mol/L硫酸;5%(w/V)硫酸钛;丙酮;浓氨水。【方法】 1.制作标准曲线:取10ml离心管7支,顺序编号,并按表40-1加入试剂。 待沉淀完全溶解后,将其小心转入10ml容量瓶中,并用蒸馏水少量多次冲洗离心管,将洗涤液合并后定容至10ml 刻度,415nm波长下比色。 2.样品提取和测定:(1)称取新鲜植物组织2~5g(视h2o2含量多少而定),按材料与提取剂1∶1的比例加入4℃下预冷的丙酮和少许石英砂研磨成匀浆后,转入离心管 3000r/min下离心10min,弃去残渣,上清液即为样品提取液。(2)用移液管吸取样品提取液1ml,按表35-1加入5%硫酸钛和浓氨水,待沉淀形成后3000rpm/min离心10min,弃去上清液。沉淀用丙酮反复洗涤3~5次,直到去除植物色素。(3)向洗涤后的沉淀中加入2mol硫酸5ml,待完全溶解后,与标准曲线同样的方法定容并比色。3.结果计算:植物组织中h2o2含量(μmol/gFw)= 式中c—标准曲线上查得样品中h2o2浓度(μmol);Vt —样品提取液总体积(ml);V1—测定时用样品提取液体积

抗氧化酶的作用

重要的抗氧化酶和抗氧化剂的作用 超氧化物歧化酶(SOD)是美国的McCord和Fridovich在1969年发现的一种清除超氧阴离子自由基的酶。SOD是一种广泛存在于生物体内的金属酶,按金属辅基的成分不同主要分成三类,第一类含铜和锌,称为CuZn-SOD,是最常见的一种,呈蓝绿色,主要存在于真核细胞的细胞浆内。第二类含锰,称为Mn-SOD,呈粉红色,主要存在于原核细胞体、真核细胞的细胞浆和线粒体内。第三类含铁,称为Fe-SOD,呈黄褐色,主要存在于原核细胞中。另外,在牛肝中还发现一种CoZn-SOD[8]。 正常生理状态下,机体产生的自由基和清除自由基的速率处于动态平衡状态。但当机体内自由基产生增多,就会对机体的蛋白质、脂质和DNA造成损伤,导致机体疾病的发生。SOD是生物体内对抗氧自由基的一种最重要的抗氧化酶,是专门清除超氧阴离子自由基的。它的作用是将氧自由基歧化,发生2O2- +2H+ SOD H2O2 + O2的反应。由于H2O2 在SOD活性部位生成,会对SOD本身产生杀伤。催化产生的H2O2 如果不被及时清除,它会与O2-反应生成毒性更大的羟基自由基。衰老自由基学说认为,代谢产生的自由基对机体造成的损害可引起衰老,SOD可有效的清除自由基,在一定程度上延缓衰老。此外,SOD还具有增强机体免疫力,提高机体对自由基引发的疾病的抵抗力,消除运动性疲劳等生理功能[3]。 过氧化氢酶(CAT)是一种末端氧化酶,广泛存在于动植物和微生物体内,酶分子结构中含有铁卟啉环,1个分子酶蛋白中含有四个铁原子[9]。CAT的生物学功能是催化过氧化氢分解为水和氧,2 H2O2 CAT 2H2O + O2 。过氧化氢酶(CAT),广泛存在于动植物和微生物体内的一种末端氧化酶。它的生物功能是催化细胞内的过氧化氢分解,起抗氧化作用,即2H2O2 2H2O+O2,它可防止过氧化氢含量过高对机体组织造成损伤,对细胞起到保护作用。 本研究结果显示,力竭运动后,大鼠的心组织、肝组织和肺组织中CAT活性均表现出升高,这可能是由于运动应激造成大鼠组织过氧化物质增多,使得组织CAT活性对应升高。同时,结果显示,联合补充谷氨酰胺和番茄红素对力竭运动大鼠肝组织和肺组织的抗氧化能力提高的效果最为明显,而单纯补充番茄红素对心脏

漆酶在制浆造纸中的应用研究进展

收稿日期:2004 07 19(修改稿) 作者简介:张爱萍,女,1980年生;山东轻工业学院硕士研究生;主要研究方向:纤维资源的制浆造纸特性与生物技术应用。 E mail:zhap@https://www.360docs.net/doc/d35969302.html, 漆酶在制浆造纸中的应用研究进展 张爱萍 秦梦华 徐清华 (山东轻工业学院制浆造纸工程省级重点学科,山东济南,250100) 摘 要:漆酶是一种多酚氧化酶,参与木素的降解或聚合,具有氧化木素的能力,在制浆造纸中的应用已拓展到脱墨、漂白、制浆、废水处理、增加湿强性能等诸多方面。本文综述了近年来漆酶在制浆造纸工业中的应用研究进展。关键词:漆酶;脱墨;漂白;湿强中图分类号:Q55 文献标识码:A 文章编号:1000 6842(2004)02 0161 05 漆酶是一种含酮的多酚氧化酶(p diphenol oxidore ductase,EC 1 10 3 2),最早是1883年Yoshida 从漆树的分泌物中发现的[1],以后的研究进一步发现漆酶广泛存在于昆虫、植物和真菌中,尤其在一些能够降解天然木素的白腐菌(T versicolo r )中大量存在。 作为一种木素降解酶,漆酶可以降解生物体中的木素。漆酶的氧化还原电势比较低,为300~800m V (对标准氢电极)[2],只能氧化降解木素中的酚型结构单元(图1),而不能氧化占木素90%的非酚型结构。1990年[3] 发现如果有低分子质量的化合物作为氧化还原介体,漆酶能氧化非酚型木素结构(图2),最适合的介体是一些酚型化合物和杂环如卟啉类化合物,这些介体物质有的来自真菌次生代谢产物或木素降解产物,如紫丁香醛和来自P ycno porus cinnabarinus 的3 羟基邻氨基苯甲酸(3 hydroxyanthranilicacid,3 HAA);有的来自人工合成化合物,如AB TS[2,2 联氨 二(3 乙基 苯并噻唑 6 磺酸)]、HB T (1 羟基苯并三唑)、VI O (紫尿酸)、NHA(N 羟基 N 乙酰苯胺)等[4]。据报道,在氧气存在的条件下,漆酶能将介体转化成共介体,由于这种共介体尺寸较小,能够渗透进入纤维而与木素反应,脱木素机理基于自由基的形成[5 6]。目前,漆酶在制浆造纸工业的诸多方面得到了广泛的应用,如二次纤维回用、漂白、制浆、废水处理、纤维性能的改善,湿强剂及纤维板制造等,本文就这些方面的研究进展进行了综述。 1 漆酶在二次纤维回用中的应用 近年来,二次纤维在原料中所占的比例日益增加, 脱墨技术引起了越来越多的关注,酶法脱墨是一种经济有效的脱墨方法,可以减少化学脱墨带来的环境污染,而且酶处理可以改善浆料滤水性能和纸页强度,降 低漂白化学品用量。 图1 漆酶氧化酚型木素结构 图2 漆酶介体体系氧化非酚型木素结构 161 Vol 19,No.2,2004 Transactions of China Pulp and Paper 中 国 造 纸 学 报

漆酶

漆酶性质及应用 漆酶(1accase)是一种含铜的多酚氧化酶,通常由500个氨基酸单一多肽组成,其中含有19种氨基酸,漆酶有一定的含糖量[1]。真菌漆酶是一种糖蛋白,由肽链、糖配基和Cu2+三个部分组成,分子量在60-390kDa之间[2]。肽链一般由500-550个氨基酸组成[3],糖配基有氨基己糖、葡萄糖、甘露糖、半乳糖、岩藻糖和阿拉伯糖,占整个分子重量的10%-80%。糖配基组成及含量的不同是漆酶分子量存在较大差异的主要原因。 漆酶一般含有4个铜离子(P. radiate漆酶除外,仅含2个铜离子,无3号铜离子)。根据其光谱特征,可划分为3种类型的铜: 1号铜(只有一个铜离子,顺磁性)具有典 型的蓝铜谱带:紫外可见光谱上600nm [ε: 5000 (mol·L-1cm)-1]处出现峰值,在EPR (电子顺磁共振)谱上有一个小的平行超精细耦合结构[A11:(4070) * 10-4cm-1],它参与分子内的电子传递,把电子从底物传递到其他铜原子上; 2号铜(只有一个铜离子,顺磁性)只具一般的EPR谱带(A11>140×10-4m-1); 3号铜由2个3号铜原子通过一个OH桥配位连接起来,组成双核铜区,具有抗磁性,因而在EPR上无谱带,紫外可见光谱上330nm处的肩峰是3号Cu2+的特征峰。漆酶空间结构更详细的资料来自其晶体衍射的研究。含四个铜原子的酶分子是常见的形式,而某些酶蛋白的辅基有例外的情况。Karhunen E[4]等的研究指出,phlebia radiata产生的漆酶中只含有2个铜原子,另外还有一分子的有机小分子辅基吡咯喹琳醌(pyrroloquinolin-equi-none, PQQ),该辅基在分子中扮演类似Ⅲ型铜原子的功能。 漆酶能够催化酚类、芳胺类、羧酸类、甾体类激素、生物色素、金属有机化合物和非酚类物质生成醌类化合物、羰基化合物和水,属于铜蓝氧化酶(或称为铜蓝蛋白酶)中的一小族,广泛存在于真菌、植物和昆虫中,有报道细菌也能产生漆酶I21。漆酶含有的铜离子,它们位于酶的活性位,在氧化反应中能够协同传递电子并将氧还原成水。目前, 研究最多的产漆酶微生物大多是白腐真菌, 主要有黄孢原毛平革菌、彩绒革盖菌、变色栓菌、射脉菌、凤尾菇等。 1883年Yoshida[5]最先从漆树液中发现了漆酶131,后来被Bertranc命名。我国最早研究漆酶的是刘国智、黄葆同等,他们于20世纪50年代末利用漆酶在催化反

几种抗氧化酶的作用

一?超氧化物歧化酶(SOD): 超氧化物歧化酶,是一种新型酶制剂,是生物体重要的抗氧化酶, 广泛分布于各种生物体,如动物,植物,微生物等。SOD具有特殊的生理活性,是生物体清除自由基的首要物质。SOD在生物体的水平高低意味着衰老与死亡的直观指标;现已证实,由氧自由基引发的疾病多达60多种。它可对抗与阻断因氧自由基对细胞造成的损塞,并及时修复受损细胞。由于现代生活压力,环境污染,各种辐射和超量运动都会造成氧自由基大量形成;因此,生物抗氧化机制中SOD 的地位越来越重要! 超氧化物歧化酶(SOD)按其所含金属辅基不同可分为三种,第一种是含铜(Cu)锌(Zn)金属辅基的称(Cu.Zn—SOD),最为常见的一种酶,呈绿色, 主要存在于机体细胞浆中;第二种是含猛(Mn) 金属辅基的称(Mn—SOD),呈紫色,存在于真核细胞的线粒体和原核细胞;第三种是含铁(Fe)金属辅基的称(Fe-SOD),呈黄褐色, 存在于原核细胞中。 SOD是一种含有金属元素的活性蛋白酶。超氧化物岐化酶(SOD)能催化如下的反应:O2-+H+fH26+6,。2淋为超氧阴离子自由基,是生物体多种生理反应中自然生成的中间产物。它是活性氧的一种,具有极强的氧化能力,是生物氧毒塞的重要因素之一°SOD 是机体天然存在的超氧自由基清除因子,它通过上述反应可以把有蚩的超氧自由基转化为过氧化氢。尽管过氧化氢仍是对机体有蚩的活性氧,但体的过氧化氢酶(CAT)和过氧化物酶(POD)会 立即将其分解???专 为完全无蚩的水。这样,三种酶便组成了一个完整的防氧化链条。 目前,人们认为自由基(也称游离基)与绝大部分疾病以及人体的衰老有关。所谓的自由基就是当机体进行代时,能夺去氧的一个电子,这样这

漆酶对环境污染物降解的研究

《环境生物技术》论文 ——漆酶对污染物降解的研究 漆酶对环境污染物降解的研究 摘要:漆酶是一种含铜多酚氧化酶,该酶是一种氨基酸残基在500个左右的单体酶,一般都为酸性蛋白,漆酶的应用集中在以下几方面:生物漂白,环境治理,漆酶降解有害物质,工业废水处理;其他方面的应用;等等。本文进行了漆酶对废水降解的初步研究,并对染料废水的降解机理和部分影响因素进行了一定的分析探讨。 关键词:漆酶、应用、降解机理、影响因素。 漆酶是一种含铜的多酚氧化酶,和植物中的抗坏血酸氧化酶、哺乳动物的血浆铜蓝蛋白属铜蓝氧化酶家族中的同一小族,在结构和功能上存在着许多相似之处。它最早是从日本漆树的汁液中发现的,后来也发现其存在于多种植物、昆虫和高等真菌中【1】。不同来源的漆酶具有不同的催化性质.即使是相同来源,比如同一白腐菌菌种,可分泌多种具有不同性质的漆酶组分,包括氧化能力,酶蛋白分子量,最适pH值、底物的专一性等等…,因此所起的作用是各不相同的。在漆酶降解木素方面已进行了较多较深入的研究,漆酶除了能氧化木质素以外,还被证明能催化多种底物,如酚类化合物及其衍生物、芳胺及其衍生物、羧酸及甾体激素等【2】。由于许多漆酶氧化的底物为环境污染物,因此利用白腐真菌产生的漆酶处理印染废水,降解染料化合物的研究在环境保护中具有十分重要的意义。应用漆酶来实现纸浆的生物漂白正是研究的一个热点【3】;另外,漆酶还具有降解氯化有机物去除环境中有毒污染物毒性的作用,本文就漆酶的这一性质做一介绍。

1 漆酶的催化机理 一般认为生物法降解主要有两种机理在起作用:吸附和降解,以降解为主。生物降解又分为两步:一是染料分子吸附到菌体上,部分透过细胞膜进入细胞体内;二是利用微生物产生的酶催化氧化还原染料分子,破坏不饱和共轭体系,达到去色的目的,中间产物进一步氧化还原分解并最终分解为C02和水或转化为所需的营养物质,组成新的原生质【4】。 根据对漆酶光谱学、动力学和晶体衍射的研究,漆酶催化底物的方式可能如下:底物结合于酶活性中心的I型铜原子位点,通过cys.His途径将其传递给三核位点,该位点进一步把电子传递给结合到活性中心的第二底物氧分子,使之还原为水。整个反应过程需要连续的单电子氧化作用来满足漆酶的充分还原,还原态的酶分子再通过四电子转移传递给分子氧,因此漆酶又被称为分子电池。在此过程中,氧还原很可能分两步进行,两个电子转移产生过氧化氢中间体,该中间体在另两单电子作用下被还原为水。 2 漆酶的主要用途 2. 1 环境治理 生物整治包括染料脱色、工业废水处理和土壤修复等领域。因漆酶对底物的专一性要求不高,含介体的酶催化系统能氧化大范围的化合物,所以在环境污染控制中有广泛的应用。由于合成染料广泛的用于印染工业,目前已超过10,000种。合成染料被人们设计成防水、抗光照、抗氧化的生物难降解化合物,以通常的活性污泥方法处理纺织废水很难达到预期目的,同时存在着花费高和污泥再处理的问题。而筛选的染料降解细菌,对降解的染料结构有高度的专一性,不适用于化学结构多样性的纺织废水处理【5】。 由于漆酶具有降解残余木素、氧化去除有毒氯酚化台物的作用.因此不少研究者尝试将漆酶用于处理含酚的工业废水。效果还是比较显著的。木材剥皮废水中含有有色的酚型化台物,使用漆酶处理该废水。通过催化氧化聚合反应,可去除90%以上的鞣酸类和其他酚型化台物,废水经硫酸铝絮凝后,色度下降82%;同样的混台废水经漆酶处理lh随后经硫酸铝絮凝,由色谱分析证实86%的氯代酚,99%的氯代愈疮木酚和80%的氯代香草醛,92%的氯代儿荣酚可被去除掉。漆酶还可以降低造纸厂漂白车间碱抽提段废水,漆酶经固定化后,可进一步提高漆酶处理废水脱色的有效性,每一单位酶活所降低的废水色度值.就白腐菌处理废水与漆酶处理废水的脱色效果比较而言,白腐菌处理3天可使废水脱色30%-50%,与漆酶处理几小时的脱色效果相近。但随着处理时间的延长,白腐菌总的废水脱色率达到70%一80%,比用漆酶处理的废水的脱色率高20%~30%,这可能是由于白腐菌处理时,分泌出的多种酶所起的协同作用。因此结合使用两种或多种酶可能提高处理废水的效果【6】。

真菌漆酶的研究进展

真菌漆酶的研究进展 宋瑞(安徽大学生命科学学院合肥230039) 【摘要】漆酶是一种蓝色多铜氧化酶,和植物中的抗坏血酸氧化酶,哺乳动物的血浆铜蓝蛋白属同族,能够催化多种有机底物和无机底物的氧化[1,2],同时伴随分子氧还原成水。漆酶广泛分布于真菌、高等植物、少量细菌和昆虫中,尤其在白腐真菌中普遍存在。漆酶特有的结构性质和作用机理使其具有巨大的应用价值。本文就真菌漆酶结构,功能的研究进展作一综述,并对其应用作简单介绍。 【关键词】真菌漆酶三维结构功能应用 1真菌漆酶结构特征 1.1 漆酶的组成 漆酶是一种糖蛋白,肽链一般约由500个氨基酸组成[3],糖基含量差异较大,占整个分子质量的10%—80%[4],据相关报道,漆酶的热稳定性可能与其糖基化有关。糖组成包括半乳糖、葡萄糖、甘露糖、岩藻糖、氨基己糖和阿拉伯糖等。Mayer[5]认为漆酶并不均一,它由多条5000~7000分子量的糖肽链基本结构单元组成。由于结构单元之间的缔合度不同,造成了各种漆酶分子量的不同。另外,分子中的糖基的差异,也会引起漆酶的分子量随来源不同会有很大的差异,从59—390ku不等。真菌漆酶约含19种氨基酸,绝大部分为单体酶,但也有例外,如双孢蘑菇和长绒毛栓菌漆酶由两个亚基组成[6],而柄孢壳漆酶I由四个亚基组成。漆酶种类繁多,不同种类的真菌产生的漆酶种类不同,即使同一种真菌在不同环境下也产生不同种漆酶。

1.2漆酶的晶体结构 由于漆酶是含糖蛋白质,且糖质量分数较高,一直以来很难获得X-衍射分析所用的单晶体,因此阻碍了关于漆酶结构的研究进展。1998年第一个漆酶晶体是Ducros V[7]制备的来自灰盖鬼伞(Coprinus cinereusv)T1Cu缺失型漆酶晶体,并分析了其结构。至今为止,Bacillus subtilis(CoA)[8];Melanocarpus albomyces(MaL)[9];Rigidoporus lignosus(RiL)[10];Pycnoporus cinnabaricus(PcL)[11];Coprinus cinereus(CcL)[12]和Trametes versicolor(TvL)[13]漆酶的三维结构已相继被报道。 漆酶分子整体由3个杯状结构域所组成,分别称作结构域A、B、C,每个结构域主要由β-折叠桶,α-螺旋,loop结构所组成。三者紧密结合形成球状结构。这是铜蓝蛋白家族所共有的结构形式[7,9]。分子当中含有二硫键,漆酶种类不同,二硫键数目也不一样,MaL 漆酶分子由3个二硫键,分别是位于结构域A Cys4~Cys12、结构域A和C界面上Cys114~Cys540、结构域C Cys298~Cys332,而CcL,RiL漆酶中则含有两个二硫键。在CcL漆酶分子中,由结构域A的Cys85和结构域B的Cys487形成一个二硫键,另一个二硫键存在于结构域A和结构域B(Cys117—Cys204)之间。一个伸展的loop(氨基酸284—327)连接结构域B和结构域C。Asn343上有N连接的N—乙酰葡萄胺。 1.3 漆酶的催化中心 真菌漆酶分子中一般都含有4个Cu原子,根据磁学和光谱学性

超氧化物歧化酶的研究

超氧化物歧化酶的研究 班级:生物班姓名:胡金金学号:11 摘要:超氧化物歧化酶是生物体内清除超氧阴离子自由基的一种重要酶,具有重要的生理功能,在医药、食品、化妆品中有广泛的应用前景。现从分类、分布、结构、理化性质、催化机理、分离提取工艺、应用前景等方面探讨了超氧化物歧化酶的基础研究进展。 关键词:超氧化物歧化酶、理化性质、生物学功能、提取工艺、应用前景 到现在为止,人们已从细菌、原生动物、藻类、霉菌、植物、昆虫、鸟、鱼类和哺乳动物等生物体内分离得到SOD。超氧化物歧化酶(superoxide dismutase,简称SOD),是一类广泛存在于生物体内的金属酶,能够催化超氧阴离子自由基发生歧化反应,平衡机体内的氧自由基,己成为化学及生物化学热 门的研究课题。作为生物体内超氧阴离子自由基的清洁剂,SOD在防辐射、抗衰老、消炎、抑制肿瘤和癌症、自身免疫治疗等方面显示出独特的功能,在医学、食品、化妆品等领域得到越来越多的应用。目前,世界各地学者对SOD的研究方兴未艾,深入研究SOD不仅有着大的理论意义,也有着重大的实际应用价值。 1超氧化物歧化酶的结构和理化性质 1.1超氧化物歧化酶的结构 超氧化物歧化酶(SOD)从结构上可分为两族:CuZn-SOD为第一族,Mn-SOD和Fe-SOD为第二族。天然存在的SOD,虽然活性中心离子不同,但催化活性部位却具有高度的结构同一性和进化的保守性,即活性中心金属离子都是与3或4个组氨酸(His)、咪唑基(Mn-SOD含1个天门冬氨酸羧基配位)和1个H2O分子呈畸变的四方锥或扭曲的四面体配位。CuZn-SOD作为SOD结构上的第一族,是人们对于SOD结构研究的突破口,也是人们了解最多的一种SOD。比较不同来源的CuZn-SOD的氨基酸序列可以发现,它们的同源性都很高。有些氨基酸还很保守,在所有序列中都不变,这暗示着这些氨基酸与活性中心有关。如图1牛红细胞CuZn-SOD的结构所示:每个铜原子除分别与4个组氨基酸残基(His1118)的咪唑氮配位外,还与一轴向水分子形成远距离的第五配位,Zn则与3个组氨酸残基(His)和1个天冬氨酸(D81)配位。Cu、Zn共同连接组氨酸61组成/咪唑桥0结构。图1 牛红细胞CuZn-SOD 的结构示意图 图1 牛红细胞CuZn-SOD的结构示意图[1] ] Mn-SOD和Fe-SOD同属于SOD结构上的第二族,Mn-SOD是由203个氨基酸残基构成的四聚体,Mn(ó)是处于三角双锥配位环境中,其中一轴向配位为水分子,另一轴向被蛋白质辅基的配位His-28占据,另3个配基His-83、His-170和Asp-166位于赤道平面。Fe-SOD的活性中心是由3个His,1个Asp 和1个H2O扭曲四面体配位而成。 1.2超氧化物歧化酶的理化性质 SOD 的等电点偏酸性, 为酸性蛋白SOD 对热、pH 值和蛋白水解酶的稳定性比一般酶要高。三种 SOD 的主要理化性质见下表[2]。 2超氧化物歧化酶生物学功能 2.1 超氧化物歧化酶与胁迫 生存环境的变化是不可避免的,任何生物必须去适应各种变化.以植物为例,经研究发现,不同条件、不同物种、不同的发育时期及不同器官发生胁迫后,SOD活性表现有升有降。然而SOD活性不论是升高还是降低,都表现出抗性强的品种比抗性弱的品种活性高.即当SOD活性降低时,抗性强的品种下降幅度小;而当SOD活性升高时,抗性强的品种升高幅度大;或者抗逆性强的品种活性升高而抗逆性弱的品种降低。这说明在逆境条件下植物的抗性强弱与植物体内能否维持较高的SOD活性水平有关。SOD的作用底物是生物体内产生的超氧阴离子自由基O厂,作用机理是: 之后H2O2:被抗坏血酸和过氧化氮酶(前者是主要的)分解为H2O和O2,从而解除O2-所造成的氧化胁迫

相关文档
最新文档