高数积分总结30504

高数积分总结30504
高数积分总结30504

第四章 一元函数的积分及其应用

第一节 不定积分

一、原函数与不定积分的概念

定义1.设

)(x f 是定义在某区间的已知函数,若存在函数)(x F ,使得)()(x f x F ='或dx x f x dF )()(=,则称)(x F 为)(x f 的一个原函数

定义2.函数)(x f 的全体原函数C x F +)(叫做)(x f 的不定积分,,记为:

?+=C x F x x f )(d )(

其中 )(x f 叫做被积函数 x x f d )(叫做被积表达式 C 叫做积分常数

“?”叫做积分号

二、不定积分的性质和基本积分公式

性质1. 不定积分的导数等于被积函数,不定积分的微分等于被积表达式,即

()?=='?

x x f x x f x f x x f d )(d )(d )(d )(;. 性质2. 函数的导数或微分的不定积分等于该函数加上一个任意函数,即

?+=+=?'C x f x f C x f x x f )()(d ,)(d )(或

性质3. 非零的常数因子可以由积分号内提出来,即

?≠=?)0(d )(d )(k x x f k x x kf . 性质4. 两个函数的代数和的不定积分等于每个函数不定积分的代数和,即

[]??±=?±x x g x x f x x g x f d )(d )(d )()(

基本积分公式

(1)?+=C kx x k d (k 为常数) (2)C x x x ++=?+111d μμμ(1-≠μ) (3)C x x x +=?ln d 1 (4)?+=C e dx e x x (5)?+=C a a x a x x ln d (6)?+=C x x x sin d cos

三、换元积分法和分部积分法

定理1. 设)(x ?可导,并且.)(d )(?+=C u F u u f 则有

C

x F x u C u F u u f x u x x f x

x x f +=+?=?'?))(()()(d )()()(d )]([d )()]([???????代回令凑微分 该方法叫第一换元积分法(integration by substitution),也称凑微分法.

定理2.设)(t x ?=是可微函数且0)(≠'t ?,若)())((t t f ??'具有原函数)(t F ,则

()()d x t f x x

?=?换元 ()()()()

()11d .

t x f t t t F t C F x C ????--='????++?????积分回代

该方法叫第二换元积分法

:

)d (的原则或及选取v v u ' 1) v 容易求得 ; x v u x v u d d )2''?

?比 解题技巧: :的一般方法及选取v u '

把被积函数视为两个函数之积 ,按 “ 反对幂指三” 的顺序,

前者为u 后者为.v '

第二节 定积分概念

一、原函数与不定积分的概念

二、定积分的定义和存在定理

三、定积分的几何意义与定积分的性质

1.定积分的几何意义

2. 定积分的性质

性质1.=?±dx x g x f b a )]()([±?b a dx x f )(?b

a dx x g )(. 性质2.

=?b a dx x kf )(k ?b a dx x f )( (k 是常数). 性质3.

=?b a dx x f )(?+c a dx x f )(?b c dx x f )(. 性质4.=?b a dx x f )(a b dx b a -=?.

推论1. 如果在],[b a 上,

则),()(x g x f ≤≤?b a dx x f )(?b a dx x g )( (a

≤?b a dx x f )(?b a dx x f )( 性质5. 0)(≥?b

a dx x f )(

b a <.

性质6. 设M 与m 分别是函数],[)(b a x f 在上的最大值及最小值,则

≤-)(a b m ≤?b a dx x f )()(a b M - (b a <).

性质7 .(定积分中值定理) 如果函数

)(x f 在闭区间],[b a 上连续,则在积分区间],[b a ]上至少存在一点ξ,使下式成立:

))(()(a b f dx x f b

a

-=?ξ (b a ≤≤ξ)

可积的充分条件:

定理1.上连续在函数],[)(b a x f ,则.],[)(可积在b a x f

定理2.,],[)(上有界在函数b a x f 且只有有限个间断点 ,则.],[)(可积在b a x f

第三节 微积分基本公式

一、微积分基本公式

1. 变上限函数

定义1. 设函数

)(x f 在区间],[b a 上连续,则它在],[b a 任意一个子区间],[x a 上可

积,则

?=Φx a dx t f x )()( ( b x a ≤≤) 是上限变量x 的函数,称此函数为积分上限函数,也称为变上限函数.

2. 微积分基本公式

定理2.=?b a

dx x f )(-)(b F )(a F 1.定积分的换元积分法

定理3.

=?b a dx x f )([]dt t t f ?'βα??)()(

注:设)(x f 在],[a a -上连续,证明

(1)若)(x f 在],[a a -为偶函数,则

?-a a dx x f )(=?a dx x f 0)(2; (2)若)(x f 在],[a a -上为奇函数,则 ?-a a dx x f )(=0. 2.定积分的分部积分法

定理4.

?-?=b

a b a b a vdu uv udv ][ 第四节 定积分的应用(这点跟高中无异,于是乎就偷懒了=v=~)

一、定积分的微元法

其实质是找出A 的微元dA 的微分表达式.

二、定积分在几何中的应用

1. 平面图形的面积 ?=

b a dx x f A )(. 2. 旋转体的体积x x A V b a d )(?=

三、定积分在物理上的应用

1.变力做功?=b a

x x F W d )( 2.液体静压dx x xf F b

a )(g ρ?= 四、定积分在医学上的应用

高数积分总结doc

第四章 一元函数的积分及其应用 第一节 不定积分 一、原函数与不定积分的概念 定义1.设)(x f 是定义在某区间的已知函数, 若存在函数)(x F ,使得) ()(x f x F ='或 dx x f x dF )()(=,则称)(x F 为)(x f 的一个原函数 定义2.函数 )(x f 的全体原函数C x F +)(叫做)(x f 的不定积分,,记为: ?+=C x F x x f )(d )( 其中 )(x f 叫做被积函数 x x f d )(叫做被积表达式 C 叫做积分常数 “ ?”叫做积分号 二、不定积分的性质和基本积分公式 性质1. 不定积分的导数等于被积函数,不定积分的微分等于被积表达式,即 ()?==' ? x x f x x f x f x x f d )(d )(d )(d )(;. 性质2. 函数的导数或微分的不定积分等于该函数加上一个任意函数,即 ?+=+=?'C x f x f C x f x x f )()(d ,)(d )(或 性质3. 非零的常数因子可以由积分号内提出来,即 ?≠=?)0(d )(d )(k x x f k x x kf . 性质4. 两个函数的代数和的不定积分等于每个函数不定积分的代数和,即 []??±=?±x x g x x f x x g x f d )(d )(d )()( 基本积分公式 (1)?+=C kx x k d (k 为常数) (2)C x x x ++= ?+1 1 1d μμμ(1-≠μ) (3)C x x x +=?ln d 1 (4)? +=C e dx e x x (5)? +=C a a x a x x ln d (6)?+=C x x x sin d cos (7)? +-=C x x x cos d sin (8)?+=C x x x tan d sec 2 (9)?+-=C x x x cot d csc 2 (10)?+=C x x x x sec d tan sec (11)?+-=C x x x x csc d cot csc (12)?++=C x x x x tan sec ln d sec (13)+-=C x x x x cot ln d csc (14)C x x +=arctan d 1

2018考研高数重点复习定积分与不定积分定理总结

2018考研高数重点复习定积分与不定积 分定理总结 在暑期完成第一轮基础考点的复习之后,9月份开始需要对考研数学所考的定理定义进行必要的汇总。本文为同学们整理了高数部分的定积分与不定积分定理定义汇总。 ?不定积分 1、原函数存在定理 ●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x ∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。 ●分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 ?定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2)变速直线运动的路程 2、函数可积的充分条件 ●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 ●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。 3、定积分的若干重要性质 ●性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 ●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。

●推论|∫abf(x)dx|≤∫ab|f(x)|dx。 ●性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx ≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 ●性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。 4、关于广义积分 设函数f(x)在区间[a,b]上除点c(a ?定积分的应用 1、求平面图形的面积(曲线围成的面积) ●直角坐标系下(含参数与不含参数) ●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2) ●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程) ●平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积) ●功、水压力、引力 ●函数的平均值(平均值y=1/(b-a)*∫abf(x)dx)

考研数学:高数重要公式总结(基本积分表)

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员! 考研数学:高数重要公式总结(基本积 分表) 考研数学中公式的理解、记忆是最基础的,其次才能针对具体题型进行基础知识运用、正确解答。凯程小编总结了高数中的重要公式,希望能帮助考研生更好的复习。 其实,考研数学大多题目考查的还是基础知识的运用,难题异题并不多,只要大家都细心、耐心,都能取得不错的成绩。考研生加油哦!

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员! 凯程考研: 凯程考研成立于2005年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。 凯程考研的宗旨:让学习成为一种习惯; 凯程考研的价值观:凯旋归来,前程万里; 信念:让每个学员都有好最好的归宿; 使命:完善全新的教育模式,做中国最专业的考研辅导机构; 激情:永不言弃,乐观向上; 敬业:以专业的态度做非凡的事业; 服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。 特别说明:凯程学员经验谈视频在凯程官方网站有公布,同学们和家长可以查看。扎扎实实的辅导,真真实实的案例,凯程考研的价值观:凯旋归来,前程万里。 如何选择考研辅导班: 在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。 师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经

高数积分总结

高数积分总结 一、不定积分 1、不定积分的概念也性质 定义1:如果在区间I 上,可导函数F (x )的导函数为f(x),即对任一I x ∈,都有 F`(x)=f(x)或dF(x)=f(x)dx, 那么函数F(x)就称为f(x)(或f(x)dx)在区间I 上的原函数。 定义2:在区间I 上,函数f (x )的带有任意常数项的原函数称为f (x )(或者f(x)dx )在区间I 上的不定积分,记作 ?dx x f )(。 性质1:设函数f(x)及g(x)的原函数存在,则 ???+=+dx x g dx x f dx x g x f )()()]()([。 性质2:设函数f(x)的原函数存在,k 为非零常数,则 ??=dx x f k dx x kf )()(。 2、换元积分法 (1)第一类换元法: 定理1:设f(u)具有原函数,)(x ?μ=可导,则有换元公式 ) (])([)(')]([x d f dx x x f ? μμμ??=??=。

例:求?xdx 2cos 2 解 ????=?=?=μμd dx x x dx x xdx cos )'2(2cos 22cos 2cos 2 将x 2=μ代入,既得 ?+=C x xdx 2sin 2cos 2 (2)第二类换元法: 定理2:设)(t x ψ=是单调的、可导的函数,并且.0)('≠t ψ又设 )(')]([t t f ψψ具有原函数,则有换元公式 ,] )(')]([[)() (1 x t dt t t f dx x f -=??=ψ ψψ 其中)(1 x -ψ是)(t x ψ=的反函数。 例:求? >+)0(2 2 a a x dx 解 ∵t t 2 2sec tan 1=+, 设 ??? ??<<-=22 tan ππ αt t x ,那么 tdt a dx t a t a t a a a x 2222222sec ,sec tan 1tan ==+=+=+, 于是 ? ??==+tdt dt t a t a a x dx sec sec sec 222 ∴C t t a x dx ++=+?tan sec ln 2 2 ∵a a x t 2 2sec += ,且0tan sec >+t t ∴1222222)ln(ln C a x x C a a x a x a x dx +++=+??? ? ? ?++ =+? ,

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

高等数学中有理分式定积分解法总结

由十个例题掌握有理分式定积解法 【摘要】 当被积函数为两多项式的商 () () P x Q x 的有理函数时,解法各种各样、不易掌握,在此由易到难将其解法进行整理、总结 【关键词】 有理分式 真分式 假分式 多项式除法 拆项法 凑微分法 定积分 两个多项式的商 () () P x Q x 称为有理函数,又称为有理分式,我们总假定分子多项式()P x 与分母多项式()Q x 之间无公因式,当分子多项式()P x 的次数小与分母多项式()Q x ,称有理式为真分式,否则称为假分式. 1.对于假分式的积分:利用多项式除法,总可将其化为一个多项式与一个真分式之和的形式. 例1.2 422 23 1 x x dx x +++? ()222 2 2131 x x x dx x ++-=+? 解 原式 2 2 2212311 x x dx dx dx x x =+-++??? ()42 2222 2 22 222223321.11 311 31 13111 31 arctan x x dx x x x x dx x x x dx dx x x dx dx x x dx dx dx x x x x C +++-=+=-+? ?=-- ?+?? =-++=--+?????????例 解 原式

3 24arctan 3 x x x C = +-+ 总结:解被积函数为假分式的有理函数时,用多项式出发将其化简为多项式和真分式之和的形式,然后进行积分.对于一些常见函数积分进行记忆,有助于提高解题速度,例如: 2221111x dx dx x x ? ?=- ?++?? ?? 对于真分式 () () P x Q x ,若分母可分解为两个多项式乘积()Q x =()()12Q x Q x ,且()1Q x ,()2Q x 无公因式,则可拆分成两个真分式之和: ()()P x Q x ()()()() 1 212P x P x Q x Q x =+,上述过程称为 把真分式化为两个部分分式之和.若()1Q x 或()2Q x 再分解为两个没有公因式的多项式乘积,则最后有理函数分解式中出现多项式、() () 1k P x x a -、 () () 22 l P x x px q ++等三类函数,则多项 式的积分容易求的 2.先举例,有类型一、类型二、类型三,以此为基础求解较复杂的真分式积分 2.1 类型一 ()m k ax b dx cx +? 例2.1.1 () 3 2 1x dx x -? 322 331 =x x x dx x -+-?解 原式 211 =33xdx dx dx dx x x -+-???? 211 =332x x In x C x -+++ 总结:当被积函数多项式与单项式相乘的形式,将其进行化简,使被积函数为简单幂函数, 然后利用常见积分公式进行运算 2.2 类型二 () k m cx dx ax b +?

高等数学(上)第五章定积分总结

第五章 定积分 内容:定积分的概念和性质、微积分基本公式、换元积分法、分部积分法、广义积分。 要求:理解定积分的概念和性质。掌握牛顿-莱布尼兹公式、定积分的换元法和分部积分法,理解变上限的定积分作为其上限的函数及其求导定理,理解广义积分的概念和计算方法。 重点:定积分的概念和性质;微积分基本公式;换元积分法、分部积分法。 难点:定积分的概念;变上限积分函数及其导数;换元积分法、分部积分法。 §1.定积分的概念 一、实例分析 1.曲边梯形的面积 设函数)(x f y =∈C[a , b ], 且)(x f y =>0. 由曲线0,,),(====y b x a x x f y 围成的图形称为曲边梯形. 如何定义曲边梯形的面积? (1) 矩形面积=底高. (2) 预备一张细长条的纸, 其面积底高. (3) 预备一张呈曲边梯形状的纸, 将其撕成许多细长条. (4) 启示: 将曲边梯形分割为许多细长条, 分割得越细, 误差越小. y =f (x ) x =a x =b y =f (x )

第i 个细长条面积)],,[()(11---=?∈??≈?i i i i i i i i i x x x x x x f S ξξ 曲边梯形面积: ∑=?≈ n i i i x f S 1 )(ξ 定积分概念示意图.ppt 定义: ),,2,1,max {()(lim 1 n i x x f S i n i i i =?=?=∑=→λξλ 抛开上述过程的几何意义,将其数学过程定义为定积分. 二、定积分的定义 1. 定义 设)(x f y =在[a , b ]有定义, 且有界. (1) 分割: 用分点b x x x a n =<<<= 10把[a , b ]分割成n 个小区间: } ,,2,1,max{,,,2,1],,[11n i x x x x n i x x i i i i i i =?=-=?=--λ记 (2) 取点: 在每个小区间],[1i i x x -上任取一点i , 做乘积: i i x f ?)(ξ. (3) 求和: ∑=?n i i i x f 1 )(ξ (4) 取极限: ∑=→?n i i i x f 1 )(lim ξλ 若极限存在, 则其为)(x f 在[a , b ]上的定积分, 记作: ? b a dx x f )(. 即: ∑? =→?=n i i i b a x f dx x f 1 )(lim )(ξλ [a , b ]: 积分区间;a :积分下限;b :积分上限; ∑=?n i i i x f 1 )(ξ积分和式. 问题: 定积分是极限值, 在求极限的过程中, 谁是常量, 谁是变量?

高数下册各类积分方法总结

综述:高数下册,共有如下几类积分:二重积分,三重积分,第一类线积分,第二类线积分,第一类面积分,第二类面积分。其中,除线积分外,个人认为,拿到题后,首先应用对称性把运算简化,线积分的对称性,不太常用,可以参照面积分的对称性,将积分曲面换成积分曲线即可,恕不赘述。另外要注意线积分和面积分的方向性,线积分以逆时针为正方向,面积分以坐标轴正向为正方向。 二重积分 对称性: 积分区间D关于X轴对称:被积函数是关于Y的奇函数,则结果为0: 被积函数是关于Y的偶函数,则结果为在一半区间上积分的2倍 方法:分别对x、y积分,将其中一个变量写成另一个的表达形式||极坐标换元 三重积分 对称性: 积分区间Ω关于xy面对称:被积函数是关于z的奇函数,则结果为0; 被积函数是关于z的偶函数,则结果为在一半区间上积分的2倍 方法:先重后单||先单后重(极坐标)||柱坐标||球坐标 第一类线积分 x,y,z型:具有关于参数t的表达试,用基本公式,转化成关于t的积分 x,y型:排除上一种条件的话,通常将y表示为关于x的函数,转化成关于x的积分 第二类线积分 方法: 1、用曲线的切线的方向角余弦,转化成第一类线积分 2、有参数t,可以转化成关于t的积分 3、将y表示为关于x的函数,转化成关于x的积分 4、封闭曲线,通常自己构造,可采用格林公式转化为二重积分 另:注意与路径无关的积分

第一类面积分 对称性: 积分曲面关于XY面对称:被积函数是关于z的奇函数,则结果为0: 被积函数是关于z的偶函数,则结果为在一半曲面上积分的2倍 计算方法:常规的话,只有一种,转化为关于x或y或z的积分。详见书本上的公式。 第二类面积分 对称性: 积分曲面关于XY面对称:被积函数是关于z的偶函数,则结果为0: 被积函数是关于z的奇函数,则结果为在一半曲面上积分的2倍 (注意区别于第一类) 计算方法: 1、用曲面的切线的方向角余弦,转化成第一类面积分 2、转化为二重积分,直接在前面添正负号即可 3、封闭曲面,可以用高斯公式,转化为三重积分,一般封闭曲面都是人为构造的,所以注意减掉构造面,并注意方向 4、斯托克斯公式,转化为第二类线积分,不常用 PS:用函数表达式,可以化简线面积分的被积函数,另有积分相关考点,旋度,散度,质量,质心,转动惯量,求曲面侧面面积,顶面面积,曲顶柱体体积~~~多多复习,牢记公式,一定可以渡过积分这个难关~

高数积分总结教学文案

高数积分总结

高数积分总结 一、不定积分 1、不定积分的概念也性质 定义1:如果在区间I 上,可导函数F (x )的导函数为f(x),即对任一I x ∈,都有 F`(x)=f(x)或dF(x)=f(x)dx, 那么函数F(x)就称为f(x)(或f(x)dx)在区间I 上的原函数。 定义2:在区间I 上,函数f (x )的带有任意常数项的原函数称为f (x )(或者f(x)dx )在区间I 上的不定积分,记作 ?dx x f )(。 性质1:设函数f(x)及g(x)的原函数存在,则 ???+=+dx x g dx x f dx x g x f )()()]()([。 性质2:设函数f(x)的原函数存在,k 为非零常数,则 ??=dx x f k dx x kf )()(。 2、换元积分法 (1)第一类换元法: 定理1:设f(u)具有原函数,)(x ?μ=可导,则有换元公式 ) (])([)(')]([x d f dx x x f ? μμμ??=??=。

例:求?xdx 2cos 2 解 ????=?=?=μμd dx x x dx x xdx cos )'2(2cos 22cos 2cos 2 将x 2=μ代入,既得 ?+=C x xdx 2sin 2cos 2 (2)第二类换元法: 定理2:设)(t x ψ=是单调的、可导的函数,并且.0)('≠t ψ又设 )(')]([t t f ψψ具有原函数,则有换元公式 ,] )(')]([[)() (1 x t dt t t f dx x f -=??=ψ ψψ 其中)(1 x -ψ是)(t x ψ=的反函数。 例:求? >+)0(2 2 a a x dx 解 ∵t t 2 2sec tan 1=+, 设 ??? ??<<-=22 tan ππ αt t x ,那么 tdt a dx t a t a t a a a x 2222222sec ,sec tan 1tan ==+=+=+, 于是 ? ??==+tdt dt t a t a a x dx sec sec sec 222 ∴C t t a x dx ++=+?tan sec ln 2 2 ∵a a x t 2 2sec += ,且0tan sec >+t t

高数积分总结

高数积分总结 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

高数积分总结 一、不定积分 1、不定积分的概念也性质 定义1:如果在区间I 上,可导函数F (x )的导函数为f(x),即对任一I x ∈,都有 F`(x)=f(x)或dF(x)=f(x)dx, 那么函数F(x)就称为f(x)(或f(x)dx)在区间I 上的原函数。 定义2:在区间I 上,函数f (x )的带有任意常数项的原函数称为f (x )(或者f(x)dx )在区间I 上的不定积分,记作 ?dx x f )(。 性质1:设函数f(x)及g(x)的原函数存在,则 ???+=+dx x g dx x f dx x g x f )()()]()([。 性质2:设函数f(x)的原函数存在,k 为非零常数,则 ??=dx x f k dx x kf )()(。 2、换元积分法 (1)第一类换元法: 定理1:设f(u)具有原函数,)(x ?μ=可导,则有换元公式 ) (])([)(')]([x d f dx x x f ? μμμ??=??=。

例:求?xdx 2cos 2 解 ????=?=?=μμd dx x x dx x xdx cos )'2(2cos 22cos 2cos 2 将x 2=μ代入,既得 ?+=C x xdx 2sin 2cos 2 (2)第二类换元法: 定理2:设)(t x ψ=是单调的、可导的函数,并且.0)('≠t ψ又设 )(')]([t t f ψψ具有原函数,则有换元公式 ,] )(')]([[)() (1 x t dt t t f dx x f -=??=ψ ψψ 其中)(1 x -ψ是)(t x ψ=的反函数。 例:求? >+)0(2 2 a a x dx 解 ∵t t 2 2sec tan 1=+, 设 ??? ??<<-=22 tan ππ αt t x ,那么 tdt a dx t a t a t a a a x 2222222sec ,sec tan 1tan ==+=+=+, 于是 ? ??==+tdt dt t a t a a x dx sec sec sec 222 ∴C t t a x dx ++=+?tan sec ln 2 2 ∵a a x t 2 2sec += ,且0tan sec >+t t

高数微积分公式大全(总结的比较好)

高等数学微积分公式大全 一、基本导数公式 ⑴()0c '= ⑵1 x x μ μμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2 tan sec x x '= ⑹()2 cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1 ln x x '= ⑿( )1 log ln x a x a '= ⒀( )arcsin x '= ⒁( )arccos x '= ⒂()21arctan 1x x '= + ⒃()2 1arccot 1x x '=-+⒄()1x '= ⒅ '=二、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-??= ??? 三、高阶导数的运算法则 (1)()()() () () ()()n n n u x v x u x v x ±=±???? (2)()() ()()n n cu x cu x =???? (3)()()() ()n n n u ax b a u ax b +=+???? (4)()()() ()()()()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1)() () !n n x n = (2)() () n ax b n ax b e a e ++=? (3)() () ln n x x n a a a = (4)()() sin sin 2n n ax b a ax b n π??+=++??? ??? ?? (5) ()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6)() () () 1 1! 1n n n n a n ax b ax b +??? =- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则 ⑴()0d c = ⑵()1 d x x dx μ μμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =- ⑸()2 tan sec d x xdx = ⑹()2 cot csc d x xdx =- ⑺()sec sec tan d x x xdx =? ⑻()csc csc cot d x x xdx =-? ⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1 ln d x dx x =

高等数学一微积分考试必过归纳总结要点重点

全书内容可粗分为以下三大部分:第一部分函数极限与连续(包括级数) 第二部分导数及其应用(包括多元函数) 第三部分积分计算及其应用(包括二重积分和方程) 第一部分函数极限与连续 一、关于函数概念及特性的常见考试题型: 1、求函数的自然定义域。 2、判断函数的有界性、周期性、单调性、奇偶性。 3、求反函数。 4、求复合函数的表达式。 二、极限与连续 常见考试题型: 1、求函数或数列的极限。 2、考察分段函数在分段点处极限是否存在,函数是否连续。 3、函数的连续与间断。 4、求函数的渐进线。 5、级数的性质及等比级数。 6、零点定理。 每年必有的考点 第三部分导数微分及其应用 常见考试题型: 1、导数的几何意义; 2、讨论分段函数分段点的连续性与可导性。 3、求函数的导数:复合函数求导,隐含数求导,参数方程求导; 4、讨论函数的单调性和凹凸性,求曲线的拐点; 5、求闭区间上连续函数的最值; 6、实际问题求最值。 每年必有的考点 第四部分积分计算及应用 考试常见题型 1、不定积分的概念与计算; 2、定积分的计算; 3、定积分计算平面图形的面积; 4、定积分计算旋转体的体积; 5、无穷限反常积分 6、二重积分 7、微分方程 最近几年考题中,积分计算的题目较多,而且也有一定的难度。

第一部分 函数极限与连续 一、关于函数概念及特性的常见考试题型: 1、求函数的自然定义域。 2、判断函数的有界性、周期性、单调性、奇偶性。 3、求反函数。 4、求复合函数的表达式。 例1..函数 ___________. 知识点:定义域 约定函数的定义域是使函数的解析表达式有意义的一切实数所构成的数集。 解 要使根式函数有意义必须满足23log log 0x ≥, 要使23log log 0x ≥成立, 只有3log 1x ≥,即3x ≥. 注:我们所求定义域的函数一般都是初等函数,而初等函数:由基本初等函数,经过有限次的 +-×÷运算及有限次的复合得到的函数称为初等函数。这就需要我们把基本初等函数的定义域、值域等搞清楚。 基本初等函数的性质与图形如下表所示(T 表周期):

高数微积分公式大全总结的比较好

高数微积分公式大全总 结的比较好 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高等数学微积分公式大全 一、基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1 ln x x '= ⑿()1 log ln x a x a '= ⒀( )arcsin x '= ⒁( )arccos x '= ⒂()21arctan 1x x '= + ⒃()2 1arccot 1x x '=-+⒄()1x '= ⒅ '= 二、导数的四则运算法则 三、高阶导数的运算法则 (1)()()() () () ()()n n n u x v x u x v x ±=±???? (2)()() ()()n n cu x cu x =???? (3)()()() ()n n n u ax b a u ax b +=+???? (4)()()() () ()()()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1)() () !n n x n = (2)() () n ax b n ax b e a e ++=? (3)() () ln n x x n a a a = (4)()() sin sin 2n n ax b a ax b n π??+=++??? ??? ?? (5) ()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6)() () () 1 1! 1n n n n a n ax b ax b +??? =- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则 ⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =? ⑻()csc csc cot d x x xdx =-?

高数积分公式大全

常用积分公式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? =1 ln ax b C a ++ 2.()d ax b x μ+?= 11 ()(1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +? =21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5.d () x x ax b +? =1ln ax b C b x +-+ 6.2 d () x x ax b +? =21ln a ax b C bx b x +-++ 7.2d ()x x ax b +? =21(ln )b ax b C a ax b ++++ 8.22d ()x x ax b +? =2 31(2ln )b ax b b ax b C a ax b +-+-++ 9.2 d ()x x ax b +? = 211ln ()ax b C b ax b b x +-++

(二)含有的积分 10 .x C 11 .x ? = 2 2(3215ax b C a - 12 .x x ? = 2223 2 (15128105a x abx b C a -+ 13 .x =22 (23ax b C a - 14 .2x ? =2223 2(34815a x abx b C a -+ 15 . =(0) (0) C b C b ?+>< 16 . 2a b - 17 .x =b 18 .x =2a x -+?

高等数学不定积分总结

第5章 不定积分 一、不定积分的概念和性质 若()()F x f x '=,则()d ()f x x F x C =+?, C 为积分常数不可丢! 性质1()d ()f x x f x ' ??=???或 d ()d ()d f x x f x x =?或()d ()d f x x f x dx ??=??? 性质2()d ()F x x F x C '=+?或d ()()F x F x C =+? 性质3[()()]d f x g x x αβ±?()d ()d f x x g x x α β=±?? 或[()()]d ()d ()d f x g x x f x x g x x += +??? ;()d ()d kf x x k f x x =??. 二、基本积分公式或直接积分法 基本积分公式 d k x =?k x C +d x x μ=?111x C μμ+++(μ为常数且1μ≠-) 1d x x =?ln x C + e d x x =?e x C +d x a x =?ln x a C a + cos d x x =?sin x C +sin d x x =?cos x C -+ 2d cos x x =?2sec d x x =?tan x C +2d sin x x =?2csc d x x =?cot x C -+ sec tan d x x x =?sec x C +csc cot d x x x =?csc x C -+ 2d 1x x =+?arctan x C +(arccot x C -+)=arcsin x C +(arccos x C -+) 直接积分法:对被积函数作代数变形或三角变形,化成能直接套用基本积分公式。 代数变形主要是指因式分解、加减拆并等;三角变形主要是指三角恒等式。 三、换元积分法: 1.第一类换元法(凑微分法) ()()()d (())()d (())d () ()d [()]u x u x g x x f x x x f x x f u u F u C ??????=='====+????. 注 (1)常见凑微分: 2111(), (),2), (ln ||) 2dx d ax c xdx d x c d c dx d x c a x =+=+==+ 21(tan )(cot (arcsin )(cos )1+dx d arc x d arc x d x d arc x x ==-==-

高等数学积分总结

()()()()()()()()()()01 lim n b i i a i b a f x dx f x f x dx F b F a x λξ→=???=????=-?∑??问题引例:曲边梯形的面积、变速直线运动的路程积分定义:计算方法:几何意义:连续曲线与轴所围曲边梯形面积的代数和 一元定积分物理意义:变力沿直线做功应用几何:平面图形的面积直角坐标、极坐标、体积已知平行截面、旋转体体积平面曲线的弧长直角坐标、极坐标、参数方程、旋转曲面的面积应用物理:水压力、质量与引力、边际成本 ?? ?? ?? ? ???一元不定积分:解决定积分的计算问题,将积分问题与求导问题联系起来()()()()()01,lim ,==,n i i i i D D f x y d f d dxdy d rdrd D f x y d λσξησσσθσ →=???=??? ?? ?? ???? ?? ∑????问题引例:曲顶柱体的体积、平面薄片的质量积分定义:计算方法:关键问题是定限,在直角坐标下,在极坐标下二重积分几何意义:以为底,为曲顶柱体的体积的代数和 物理意义: 应用几何:求平面图形的面积应用物理()()()()012,,lim ,,=cos ,sin ,,=sin cos ,sin sin ,cos ,=sin n i i i i i f x y z dv f v dv dxdydz x r y r z z dv rdrd dz x r y r z r dv r drd d λξηζθθθ?θ?θ??θ? →=Ω ??=?======?∑???问题引例:四维空间中曲顶柱体的体积问题 积分定义:计算方法:直角坐标 柱面坐标三重积分球面坐标定限的方法参考二重积分 几何意义、物理意义应用几何应用物理??? ???? ?? ?? ?? ???

高数积分总结30504

第四章 一元函数的积分及其应用 第一节 不定积分 一、原函数与不定积分的概念 定义1.设 )(x f 是定义在某区间的已知函数,若存在函数)(x F ,使得)()(x f x F ='或dx x f x dF )()(=,则称)(x F 为)(x f 的一个原函数 定义2.函数)(x f 的全体原函数C x F +)(叫做)(x f 的不定积分,,记为: ?+=C x F x x f )(d )( 其中 )(x f 叫做被积函数 x x f d )(叫做被积表达式 C 叫做积分常数 “?”叫做积分号 二、不定积分的性质和基本积分公式 性质1. 不定积分的导数等于被积函数,不定积分的微分等于被积表达式,即 ()?=='? x x f x x f x f x x f d )(d )(d )(d )(;. 性质2. 函数的导数或微分的不定积分等于该函数加上一个任意函数,即 ?+=+=?'C x f x f C x f x x f )()(d ,)(d )(或 性质3. 非零的常数因子可以由积分号内提出来,即 ?≠=?)0(d )(d )(k x x f k x x kf . 性质4. 两个函数的代数和的不定积分等于每个函数不定积分的代数和,即 []??±=?±x x g x x f x x g x f d )(d )(d )()( 基本积分公式 (1)?+=C kx x k d (k 为常数) (2)C x x x ++=?+111d μμμ(1-≠μ) (3)C x x x +=?ln d 1 (4)?+=C e dx e x x (5)?+=C a a x a x x ln d (6)?+=C x x x sin d cos

高数积分总结

1.二重积分形式: f(x,y)为面密度,dxdy为面积元素。 解法:①直角坐标首先是化为X型或Y型区域,如化为X型的则可写成=②极坐标(使用范围:D为圆或圆的一部分,f(x,y)中含有+项)极坐标下二重积分可化为: = 2.三重积分形式: f(x,y,z)表示点(x,y,z)处的密度,dv表示体积元素 解法:①直角坐标如往xoy面投影,Dxy为X型区域,y的范围由平行于y轴的直线穿过Dxy,穿入的是下限,穿出的上限;z的范围沿平行于z 轴的直线穿过立体,穿入的下限,穿出的上限,则有:=; ②柱面坐标(范围:投影区域为圆或圆的一部分,f(x,y,z)中含 有+项)直角坐标与极坐标的关系:x= y= z=z。 == ③球面坐标(范围:立体为球体或球体的一部分) 3.重积分的应用:①求曲面面积:A= 可以类似的推出区域为Dxy,Dyz时对应的公式。 ②求质心:类似的可推广到空间直角坐标系。 求转动惯量: = 推广到空间坐标系有: 4.曲线积分:①对弧长的曲线积分形式:当L为闭曲线是又记为:算法:关键是化为参数方程,注意积分的上限一定大于积分下限!直角坐标系下的公式:()极坐标系下的公式:() ②对坐标的曲线积分形式:P(x,y)对坐标x的积分记为;Q(x,y)对坐标y的积分记为 算法:注意对应L的起点对应L的终点! ③两类曲线积分的关系:平面曲线L 空间曲线起点对应的参数小于终点对应的时取“+”,反之取“-”。 5.曲面积分①对面积的曲面积分形式: f(x.,y,z)表示面密度ds表面积算法:若曲面往xoy面投影则有 dxdy 同理可有为曲面的方向余弦,求解的大致步骤:先将积分曲面函数化为 注意:曲面投影不能是一条曲线,积分曲面是由不同曲面组成的要分割! ②对坐标的曲面积分形式对坐标x,y的积分类似的还有对坐标z,x 和对坐标y,z的积分。为光滑有向曲面 算法:往xoy面上投影有取“+”时上侧,取“-”时为下侧,同理还有往zox 面投影右侧取“+”,往yoz面投影前侧取“+”。注意:曲面的投影为曲线时积分为零!

高数积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1. d x ax b +?=1 ln ax b C a ++ 2.()d ax b x μ +? = 11 ()(1) ax b C a μμ++++(1μ≠-) 3. d x x ax b +?=21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5. d ()x x ax b +?=1ln ax b C b x +-+ 6. 2 d () x x ax b +? =21ln a ax b C bx b x +-++ 7. 2 d ()x x ax b +?=21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++ 9. 2d ()x x ax b +? = 2 11ln ()ax b C b ax b b x +-++ ax b +的积分 10. d ax b x +3 2()3ax b C a ++ 11.d ax b x +?=32 2 (32)()15ax b ax b C a -+ 12.d x ax b x +?=22233 2(15128)()105a x abx b ax b C a -++ 13. d x ax b +? =22 (2)3ax b ax b C a -+

14. 2d x ax b +? =2223 2 (348)15a x abx b ax b C a -++ 15.x ax b +?(0) (0) ax b b C b b ax b b ax b C b b b ?+-+>+++<-- 16. 2 x ax b +?2ax b a b x ax b +-+ 17. d ax b x +?=2ax b b x ax b ++?18. d ax b x +? =2ax b a x x ax b +-++ (三)含有2 2 x a ±的积分 19. 22d x x a +?=1arctan x C a a + 20. 22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21. 22d x x a -?=1ln 2x a C a x a -++ (四)含有2 (0)ax b a +>的积分 22.2d x ax b +?=(0) (0) 2a C b b ab ax b C b ab ax b ?+>--+<-+- 23. 2d x x ax b +?=2 1ln 2ax b C a ++

相关主题