恒电位法研究电极

恒电位法研究电极
恒电位法研究电极

恒电位法就是将研究电极依次恒定在不同的数值上,然后测量对应于各电位下的电流。极化曲线的测量应尽可能接近体系稳态。稳态体系指被研究体系的极化电流、电极电势、电极表面状态等基本上不随时间而改变。

在实际测量中,常用的控制电位测量方法有以下两种:静态法:将电极电势恒定在某一数值,测定相应的稳定电流值,如此逐点地测量一系列各个电极电势下的稳定电流值,以获得完整的极化曲线。对某些体系,达到稳态可能需要很长时间,为节省时间,提高测量重现性,往往人们自行规定每次电势恒定的时间。

动态法:控制电极电势以较慢的速度连续地改变(扫描),并测量对应电位下的瞬时电流值,以瞬时电流与对应的电极电势作图,获得整个的极化曲线。

动态法:控制电极电势以较慢的速度连续地改变(扫描),并测量对应电位下的瞬时电流值,以瞬时电流与对应的电极电势作图,获得整个的极化曲线。

同样,为节省时间,对于那些只是为了比较不同因素对电极过程影响的极化曲线,则选取适当的扫描速度绘制准稳态极化曲线就可以了。

上述两种方法都已经获得了广泛应用,尤其是动态法,由于可以自动测绘,扫描速度可控制一定,因而测量结果重现性好,特别适用于对比实验。

上述两种方法都已经获得了广泛应用,尤其是动态法,由于可以自动测绘,扫描速度可控制一定,因而测量结果重现性好,特别适用于对比实验。

恒电流法就是控制研究电极上的电流密度依次恒定在不同的数值下,同时测定相应的稳定电极电势值

采用恒电流法测定极化曲线时,由于种种原因,给定电流后,电极电势往往不能立即达到稳态,不同的体系,电势趋于稳态所需要的时间也不相同,因此在实际测量时一般电势接近稳定(如1min~3min内无大的变化)即可读值,或人为自行规定每次电流恒定的时间。

获得数据,原始数据应该是电流一列,电位一列,弄成TXT格式

导入origin中,我习惯把电位设为X轴,电流为y,处理电流数据,先除以腐蚀面积,得到电流密度i,再对电流密度的绝对值取对数,logi。

作图,得到logi-E的极化曲线图。

找到尖尖对应的电位,就是开路电位,在离开路电位±(60~120)mV处,就是线性极化区(注意阴极和阳极分别有一个),把这两个区域的数据点单独放到一个表里,作图,会得到两段近似直线的线段,用线性拟合就可以得到两条线的直线方程了,交点就是腐蚀电位和腐蚀电流了。

两条直线的斜率就是ba 和bc,(如果是E为横坐标,要取倒数),就可以算极化电阻Rp=ba*bc/[2.303*icorr*(ba+bc)]

3电化学三电极体系

3电化学三电极体系https://www.360docs.net/doc/d45231403.html,work Information Technology Company.2020YEAR

.3电化学三电极体系 电化学传感器中用得最多的是三电极体系,对应的三个电极分别是工作电极、参比电极和辅助电极。三个电极组成两个回路,工作电极和辅助电极(对电极)组成的回路,用来测电流;工作电极和参比电极组成的回路,用来测电极的电位。图1.2是电化学传感器中常用的三电极体系示意图, 辅助电极又叫对电极(counter electrode ),它在整个体系中的作用是与工作电极形成回路,保持电流的畅通稳定,就好比电路里需同时具备火线和零线一样,由此可见,对电极在电化学测试体系中不可或缺。对电极保证电化学反应发生在工作电极上但又不会影响工作电极上的反应。对电极的表面积比工作电极的表面积要大,这样就能降低加在对电极上的电流密度,使它在检测过程中不容易被极化。常用的对电极材料有Ag, Pt, Ni等。

参比电极(reference electrode)是指具有己知恒定电位,且接近理想不极化的电极,基本上没有电流通过它。在电化学检测的三电极体系中,参比电极一方面在热力学上提供参比,另一方方面则是将工作电极隔离起来。为了满足电化学检测体系的需要,参比电极必须是良好的可逆电极,且电极电势要符合能斯特方程,在很小的电流流经过后,电极的电势能快速回到原状,当然电势的稳定和重现性必须很好。常用的参比电极主要有三种:标准氢电极(normal hydrogenelectrode , NHE );甘汞电极(calomel electrode ) }}0 g' 20};银/氯化银电极(Ag/AgCI协”,’‘]。其中的甘汞电极和银/氯化银电极在实验室最为常用。甘汞电极的电极反应是:Hg2Cl2 + 2e二2Hg十 2C1",而银/氯化银电极的电极反应则是AgCI + e一Ag +Cl",从反应式中可看出,二者的电位皆与氯离子的浓度有关。在本课题中所使用的三电极系统中,参比电极均为银/氯化银电极。 所研究的反应发生在工作电极(working electrode)上,各种能导,一匕的材料都能用作工作电极,既可以是固体,也可以是液体。虽然对_!_作电极的材料没有很明确的限制,但是对_f作电极本身有一定的要求。最堪本的一矛a--是工作电极自身所发生的反应不会影响到所研究的电化学反应,并且电极的工作电位窗口要尽可能宽;最一暇要的是电极必须不能与溶剂或者电解质组分发生反应;电极的表面应该呈光滑镜面状态,表面面积不能太大,而且就算沾染到污物,也能通过简单的预处理使电极表面达到使用要求。固体电极使用较为广泛的有玻碳电极[f6} }l、铂电极[[g}、金电极[9-川、碳糊电极

三电极体系

三电极体系 在介绍三电极体系之前,我们要先了解下电化学工作站的基础原理。 在恒电位模式下,工作站将精确控制对电极(CE)相对于工作电极(WE)的电位,从而准确定义工作电极(WE)与参比电极(RE)之间的电位差,并与用户指定值相对应。 在恒电流模式下,工作站将严格控制WE和CE之间的电流,监测RE和WE之间的电位差。 通过使用工作站,在测量期间的任何时候都可以使用负反馈机制来精确控制用户指定的值(即施加的电位或电流),如原理图所示。 从原理图中可以看出,CE连接到电子模块的输出端,该电子模块称为控制放大器(CA)。控制放大器迫使电流经过电解池。使用电流跟随器(LowCF) 或分流器(HighCR)分别测量低电流和高电流的电流值。始终使用差分放大器

(Diffamp) 测量RE和S之间的电位差。根据当前所选择的模式(恒电位或恒电流),PSTAT / GSTAT开关会自动切换。 随后信号将进入加和点(Σ),并与数模转换器(Ein)设置的波形一起输入到控制放大器中。 三电极体系 三电极体系是电化学中最常用的设置。在这种情况下,电流在CE和WE之间流动,WE和CE之间控制电位差,并在RE和S之间测量电位差。由于WE 与S相连,在WE虚地模式下,通过控制CE的极化过程,可始终控制RE和WE之间的电位差。WE和CE之间的电位无需测量,通过调整控制放大器以使WE和RE之间的电位达到用户的要求。这种配置可以控制WE电化学界面与RE 的电位。 为了减少由于RE和WE之间残留溶液而导致的欧姆降,可使用鲁金毛细管

将RE的末端尽可能地靠近WE表面,如上图。由于几乎没有电流流入参比电极,因此毛细管上的电压降很小或没有,从而确保毛细管的末端电位非常接近于RE 电位。

常用金属的电极电位

标准电极电位是以标准氢原子作为参比电极,即氢的标准电极电位值定为0,与氢标准电极比较,电位较高的为正,电位较低者为负。如氢的标准电极电位H2←→H+ 为 一般标准电极电位以298K(即25摄氏度) 常见金属的标准电极电位: 石墨的标准电极电位为 + V 一价金Au+ +e = Au原子价标准电极电位为 + 1.692 V 三价金Au3+ + 3e=Au原子价标准电极电位为 + 1.498 V 钯Pd2+2e=Pd的标准电极电位为 + 0.830 V 三价铑 Rh3+ + 3e=Rh 的标准电极电位为 + 0.800 V 银 Ag+ +e=Ag的标准电极电位为 + 0.799 V 钌Rh3+ + 3e = Rh的标准电极电位为 + 0.790 V 汞 Hg2/2+ + 2e 的标准电极电位为 + 0. 789 V 铜 Cu2+ + 2e 的标准电极电位为 + V 氯化银的标准电极电位为 + 0. 222 V 氢2H+ + 2e = H2的标准电极电位为V

铁Fe3++3e=Fe的标准电极电位为- V 铅 Pb2+ + 2e=Pb 的标准电极电位为- V 锡 Sn2+ + 2e=Sn 的标准电极电位为- V 钼 Mo3+ + 3e=Mo 的标准电极电位为- V 镍 Ni2+ + 2e=Ni 的标准电极电位为- V 钴 Co2+ + 2e=Co 的标准电极电位为- V 铟 In3+ + 3e=In 的标准电极电位为- V 镉 Cd2+ + 2e 的标准电极电位为- V 铁 Fe2+ + 2e=Fe的标准电极电位为- V 镍硼Ni-B镀层的自腐蚀电位为,比Ni-B-PTFE的自腐蚀电位要高,而Ni-B-PTFE复合镀层的自腐蚀电位为左右 铬 Cr3+ + 3e = Cr 的标准电极电位为-0. 74 V 锌Zn2+ + 2e 的标准电极电位为-0. 763 V 钨 W 的标准电极电位为- 1. 05 V 锰 Mn2+ + 2e 的标准电极电位为- V 钛 Ti2+ + 2e 的标准电极电位为- V 铝 Al3+ + 3e 的标准电极电位为- V 镁 Mg2+ + 2e 的标准电极电位为- V 钕 Nd 是一种活性极强的金属,标准平衡电位为- V 1氢 H 3锂Li 4铍Be 5硼 B 6碳 C

直接电位法-用氟离子电极测定水中氟离子

直接电位法—用氟离子选择电极测定水中氟 一、实验目的:掌握用离子选择电极测定微量离子的原理和实验方法。 二、实验原理: 氟离子选择电极由氟化镧单晶膜制成,其电极电位F ? 与F ―浓度之间的关系符合Nernst 方程: --=F lga F 2.303RT K F ? 它与参比电极(SCE, 接正极)一起插入含F ―试液组成电池,当控制试液的离子强度保持恒定时,其电池的电动势可表示为: -?+-=-=F C lg F 2.303RT γ???K E SCE F SCE 即: E = K′ + S lg C F 式中K′与SCE ?、内?(内参比电极的电位)、不?(膜不对称电位)、液?(液接电位)、 活度系数γ有关,在一定条件下是常数。S 为斜率。它与温度。离子选择电极性质有关,理论值是F 2.303RT 。一定温度下,每只电极有其固定的S 值。所以电动势E 与F ―浓度的对数lg C F 成直线关系,这就是用氟离子选择电极(直接电位法)测定F ―的理论依据。 ① 选择性 阴离子: : OH- LaF 3 + 3OH - = La(OH)3↓ + 3F - 阳离子: Fe 3+、Al 3+、Sn(Ⅳ) ( 易与F -形成稳定配位离子) ② 支持电解质------控制试液的离子强度。 ③ 总离子强度调节缓冲液-----控制试液pH 和离子强度以及消除干扰。 三、实验仪器及药品 pHS –2型酸度计、氟离子选择性电极、饱和甘汞电极、电磁搅拌器 100 mg·L -1 F -的标准贮备液、总离子强度缓冲溶液(TISAB )。 四、实验步骤: 1. 溶液配制

(1) 标准系列的配置:用吸量管分别移取10 mg·L -1的氟标准溶液1.00、2.00、4.00、6.00、8.00、10.00于六支50 mL 的容量瓶中,各加入TISAB 液10 mL, 用去离子水稀释至刻度,摇匀,即得氟离子浓度相应为0.20、0.40、0.80、 1.20、1.60、 2.00 mg·L -1的标准系列。 (2) 水样的稀释处理:移取含氟离子量﹤4 mg·L -1的水样10 mL 于100 mL 容量瓶中,加入TISAB 溶液20 mL ,用去离子水稀释至刻度,摇匀。 2. 清洗电极 将氟电极接仪器负极接线柱,甘汞电极接仪器正极接线柱。将两电极插入蒸馏水中,开动搅拌器,搅洗电极几分钟,使电位小于-200 mV ,若读数大于-200mV ,则更换蒸馏水,如此反复几次即可达到电极的空白值。若仍不能使电位小于-200 mV ,可用金相砂轻轻擦拭氟电极,继续清洗至-200 mV 。 3. 标准曲线的测绘 将配置好的标准系列溶液由稀到浓依次倒入100 mL 塑料烧杯中,放入搅拌棒,插入清洗合格的电极(用滤纸吸去水滴),搅拌2分钟,停止15s 读其静态下的稳定电位值。照此测量、记录各标准溶液的电位值。每次更换时,都必须用滤纸吸干电极上附着的溶液,并且用少量待测溶液润洗烧杯。 4. 水样的测定 重新用去离子水清洗电极。 移取稀释处理后的水样50 mL 于干净的150 mL 的烧杯中,按照上述“3”的方法测量、记录水样的电位值(E )。然后,没加入100 mg·L -1的氟标准溶液0.5 mL 就测量、记录一次电位值,连续标加5次,记录各累加体积及其相应的电位值(E 1、E 2、…、E 5)。 五、数据处理 1. 绘制标准曲线,在半对数坐标纸上以E 对C F 作图(或在方格纸上以E 对lg C F 作图)绘制标准曲线。根据所测水样的电位值从标准曲线上查出被测试液F -浓度(C F ),计算出试样中氟含量。 2. 用标准加入法算出原水样的氟离子浓度。 S x V V )1(10C C S E S F -=?-

电化学三电极工作体系

电化学测量三电极系统:工作电极,辅助电极(对电极),参比电极。参比电极的作用是在测量过程中提供一个稳定的电极电位,对于一个三电极的测试系统,之所以要有一个参比电极,是因为有些时候工作电极和辅助电极(对电极)的电极电位在测试过程中都会发生变化的,为了确切的知道其中某一个电极的电位(通常我们关心的是工作电极的电极电位),我们就必须有一个在测试过程中电极电位恒定的电极作为参比来进行测量。如果可以确定辅助电极的电极电位在测试过程中是不发生变化或者变化可以忽略不计时,我们就不必使用参比电极。这就是所谓的双电极测试系统。辅助电极的作用是在整个测试中形成一个可以让电流通过的回路,只有一个电极外电路上是不可能有稳定的电流通过的。这就好比电路里面必须要有火线和零线一样。因此辅助电极对于电化学测试是必须的,而参比电极则可以根据具体情况进行选择,并不是一定要有的。 参比电极(Reference electrode): 参比电极具有已知恒定的电位,为研究对象提供一个电位标准。测量时,参比电极上通过的电流极小,不致引起参比电极的极化。经常使用的参比电极主要有以下三种: A.标准氢电极(NHE):常以在标准状态下,氢离子和氢气的活度为1时的电位即E?为电极电位的基准,其值为0. B.甘汞电极(Calomel electrode):甘汞电极是实验室最常用的参比电极之一,它的电极反应是:Hg2Cl2 + 2e = 2Hg + 2Cl-,可见其电位与氯离子的浓度有关。当溶液中的KCl达到饱和时,叫做饱和甘汞电极(SCE),标准电极电位为0.2412 V;KCl浓度为1 时的电极电位为0.2801 V;KCl浓度为0.1 M时的电极电位为0.3337 V. C.银氯化银电极(Ag/AgCl):银氯化银电极也是实验室最常用的参比电极之一,其电极反应为:AgCl + e = Ag + Cl-,其电位也受Cl-浓度的影响。KCl饱和时的电极电位为0.199 V. 银—氯化银电极:银—氯化银电极具有非常良好的电极电位重演性、稳定性,由于它是固体电极,故使用方便,应用很广。甚至有取代甘汞电极的趋势,这是由于汞有毒性,此外,甘汞电极的温度变化所引起的电极电位变化的滞后现象较大,而氯化银电极的高温稳定性较好。它是一种常用的参比电极。AgCl在水中的溶解度约为10-5(25 ℃),是很小的。但是如果在KCl溶液中,由于AgCl和Cl-能生成络合离子,使其AgCl的溶解度显著增加。在1 M KCl 溶液中,AgCl的溶解度为1.4×10-2 g/L,而在饱和KCl溶液中则高达10 g/L。因此为保持电极电位的稳定,所用KCl溶液需要预先用AgCl饱和。特别是在饱和KCl溶液中更应注意。此外,如果把饱和KCl溶液的Ag/AgCl电极插在稀溶液中,在液接界处KCl溶液被稀释,这是部分原先溶解的Ag离子将会分解,而析出Ag沉淀。这些Ag沉淀容易堵塞参比电极管的多孔性封口。由于上述缺点,通常不采用饱和KCl溶液作为Ag/AgCl电极的电解液。

参比电极的正确使用及维护

参比电极的正确使用及维护 一.参比电极的正确使用及维护 1.使用时应拔去加液口橡皮塞,以使盐桥溶液借重力作用维持一定流速渗漏于与待测溶液通路。玻璃加液口和橡皮塞应该经常插洗保存。 2.测量时,参比电极盐桥液面应高于待测界面(2~3)cm,以防止待测液向甘汞电极内扩散,如待测液中含有氯化物、硫化物、络合剂、银盐和过氯酸盐等向内扩散,都将影响参比电极的电位。 3.参比电极的溶液中应防止气泡产生,以免测量回路断路。 4.参比电极的电解液要经常加入,及时补充,其浓度要按照说明书的要求配制,如是饱和氯化钾溶液作盐桥时要维持有过量氯化钾晶体,操作时只要把盛有氯化钾晶体的饱和溶液的瓶放入温水待氯化钾溶解后再补入,冷却后在电极内氯化钾即会析出。 5.甘汞电极的电极电位有较大的负温度系数和热滞后性,在测量时要尽量防止甘汞电极温度大幅度波动。克服这种缺点办法,通常在甘汞电极下部加一伸长的盐桥管,而使电极处于室温下,而盐桥溶液的温度与待测溶液相同。精确测量时将甘汞电极置于恒温槽内。 6.参比电极的液接部毛孔经常会被堵塞,电极阻抗增高,往往引起指示值波动。在这种情况下,应不时括去积垢或更换电极。只有在液接部不被沾污和保持流畅的情况下,才能保持其正确测量。 7.甘汞电极使用温度不宜超过70℃,如果测定场合水温超过70℃,应使用银-氯化银电极。 8.关于银-氯化银电极有一点值得一提,即银-氯化银电极对光敏感,而许多使用它作内参比的玻璃电极具有透明杆子,如果标定时,它们是暴露在日光下的,然后浸入溶液测量时,离开日光照射,这样会造成几mV电位的漂移。如果在电极杆上,套上一个黑色的聚乙稀管,这个问题即可解决。 9.固体参比电极,在电极前端帽子中应盛有KCL溶液,不可使其干涸,使用前应将电极竖直放置在盛有KCL溶液容器中数小时 10.参比电极的检查方法 10.1内阻检查方法:参比电极的内阻一般小于10KΩ,检查时可采用实验室电导率仪,电导率仪的插座一端接参比电极,另一端接一根金属丝,把参比电极与金属丝同时浸入溶液中,其内阻应小于10KΩ.如内阻很大说明液接界部分堵塞,电极需要处理。 10.2电极电位检查:使用一支好的参比电极,与被怀疑性能不良的参比电极接入pH计输入端,二支电极同时浸入KCL溶液(或pH=4。00缓冲液),假如二支电极型号相同,其电位差应小于3mv或电位变化小于1mv。如果电位差大于3mv或电位变化大于1mv,电极应该更换或再生。 10.3外观检查:一支好的甘汞电极,甘汞芯中汞、氯化亚汞、脱脂棉三层界面应该请晰,金属汞呈光亮颜色,氯化亚汞呈灰色。Ag-AgCL电极呈暗棕色,如呈灰白色则说明AgCL部分分解。 11.参比电极的再生方法参比电极的问题大多数在液接界部分堵塞,一般可用如下方法消除: 11.1浸泡液接界部:从电极但端点溶去结晶。配置10%饱和KCL溶液和90%去离子水混合液。加热混合液至(60-70)0C把电极浸入热混合液中约20分钟 至2小时,溶液浸没电极端点结晶。 11.2氨浸泡Ag-AgCL电极液接界部分经常被AgCL堵塞,除去AgCL最好方法采用浓氨水。具体操作如下:排空Ag-AgCL电极内充液,把电极浸入浓氨水中(10-20)分钟,取出电极后用去离子水冲洗干净(注意:不能让浓氨水进入电极内部)。 11.3真空处理:最容易方法是用吸气泵,用软管套住参比电极的液接界部,打开水流造成真空抽吸内充液流过液接界,除去机械堵塞物。 11.4煮沸液接界:(此方法不能用于甘汞电极,只适用Ag-AgCL电极)。电极液接界部分浸入沸水中不应超过(10-20)秒,在下一次煮沸前,电极应冷却到室温。 11.5 当上述方法失效后,可用纱纸研磨液接界部分,用机械方法消除堵塞。本方法最大缺点是在研磨时沙粒磨下并堵塞液接界,造成永久性堵塞的后果。如果电极应不适用而废弃的话,可以采用此方法。12.参比电极的储存:

三电极体系资料讲解

工作电极参比电极对电极 研究对象工作电极 参比电极:确定工作电极电位 辅助电极有时也称对电极:传导电流 三电极体系含两个回路,一个回路由工作电极和参比电极组成,用来测试工作电极的电化学反应过程,另一个回路由工作电极和辅助电极组成,起传输电子形成回路的作用。 电化学需要两个电极同时发生氧化还原反应,那么需要两个电极 但是针对您要研究的工作电极,需要参比电极精确地控制工作电极的电极电位, 那么就需要额外的参比电极, 以三者成为三电极体系。 参比电极和工作电极构成测试回路,体系可当成断路。 工作电极和对电极构成另外的回路,是构成电解槽的回路,满足电化学反应平衡的。 研究的是工作电极,只有精确地测定工作电极的电位,才能够考察电位同电化学反应,吸附等界面反应的规律。 至于辅助电极和工作电极之间的联系,主要是在于构建电化学反应平衡,另外要保证辅助电极不要影响到工作电极。 而确定辅助电极和工作电极之间的电位,用电压表就ok了,不需要双参比电极分别确定两电极电位。 当然,是否以后的电化学工作站,可以确定双参比,分别控制辅助电极和参比电极,可能也算是个新思路吧 三电极是指工作电极;电导电极;甘汞电极。用上电化学工作站的时候需要用上250ml电解池再放上三电极做自己想要做的式样。 同时,三个电极不要接触上,但要尽可能的近 工作电极与对电极构成电流的回路,它们之间的电压叫槽牙,可用普通的伏特计测量。工作电极与参比电极之间通过高输入阻抗的电位差计测量,类似于电位法的装置,是用来监控工作电极电位的线路。上面有位说是断路,不确切,应该有微小电流流过。

楼上的说得都差不多了,本人补充点:参比电极要尽可能地靠近研究电极,一般用甘汞电极;辅助电极也就是对电极一般用铂电极或者其他,面积一般比研究电极的大5倍或以上。 对于电化学三电极体系的工作原理,用一句话概括就是三电极两回路: 三电极指的是工作电极、参比电极和对电极,工作电极又称为研究电极,顾名思义就是我们所要考察的电极;参比电极是用来测量工作电极电势的;对电极又称为辅助电极,只是用来通过电流的 两回路指的是极化回路和测量回路 电化学研究最常用的测试手段是电极极化曲线的测量,在三电极体系中,通过对工作电极施以不同的极化,测试电流密度与电势的对应关系曲线,了解工作电极的电化学性能。 借贵宝地问一下,参比电极中Ag/AgCl和甘汞电极的区别,仅仅是参考电位不同吗,还是有其他不一样的地方? Ag/AgCl与SCE相比,具有较小的温度系数,可制作的更加紧凑。要根据实验体系来选择参比电极 你也说过了,电化学需要两个电极同时发生氧化还原反应,但是一般情况下对电极不发生氧化或还原反应,只起着导电的作用,而真正氧化或者还原的电极是工作电极,那整个电路之发生了单一的反应啊? 您提到的对电极不发生氧化或还原反应的,这句话是不对的 在循环伏安测试中,如果工作电极处于某一电位下的氧化或者还原反应,那么与之对应的对电极一定会发生还原或者氧化反应。 这是一定的。 因此,在电解槽中阳极和阴极的反应是成对出现的,而三电极体系是同一道理。 因为维持电化学反应平衡是要由阳极氧化反应的失电子用于阴极反应的得电子上。电子不是槽电流产生的,而是电极反应产生的,发生一侧的还原,必然有一侧的氧化,这才是真实的电化学反应平衡,是存在耦合关系的。 前面说得很有道理,但是有一点我觉得不妥,你说阳极氧化反应的失电子用于阴极反应的得电子上,我觉得在电解的时候阴极的电子是有电源负极提供的,虽然阳极氧化失去电子,但是他的电子也是回到电源正极。你说呢? 我觉得我们应该探讨下就是阳极氧化失去的电子回到正极上的情况,这么说回到正极的话难道会增大电源的电压,或者是这部分回到正极的电子作用到了阴极还原所需要的电子

无机及分析化学第十三章 电化学分析法课后练习与答案

第十三章电化学分析法 一、选择题 1. 下列( )不是玻璃电极的组成部分。 A.Ag-AgCl 电极 B.一定浓度的HCl 溶液 C.饱和KCl溶液 D .玻璃管 2.测定溶液PH值时,所用的指示电极是: ( ) A.氢电极 B.铂电极 C.氢醌电极 D.玻璃电极 3.测定溶液PH时,所用的参比电极是: ( ) A.饱和甘汞电极 B.银-氯化银电极 C.玻璃电极 D.铂电极 4.在电位滴定中,以△E/△V为纵坐标,标准溶液的平均体积V为横坐标,绘制△E/△V~ V曲线, 滴定终点为:( ) A.曲线的最高点 B. 曲线的转折点 C.曲线的斜率为零时的点 D. △E/△V=0对应的 5.在电位法中离子选择性电极的电位应与待测离子的浓度() A.成正比 B.的对数成正比 C.复合扩散电流公式 D. 符合能斯特方程式 6.玻璃电极使用前一定要在水中浸泡24h以上, 其目的是( ) A.清洗电极 B.活化电极C.校正电极 D.检查电极好坏 7.25℃时, 标准溶液与待测溶液的pH值变化一个单位,电池电动势的变化为( ) A.0.058V B.58V C.0.059V D.59V 8.pH玻璃电极膜电位的产生是因为( ) A.电子得失 B. H+穿过玻璃膜C.H+被还原 D. 溶液中H+和玻璃膜水合层中的H+的交换作用 9.在离子选择性电极分析法中,( )说法不正确。 A. 参比电极电位恒定不变 B.待测离子价数愈高,测定误差愈大 C.指示电极电位与待测离子浓度呈能斯特响应 D.电池电动势与待测离子浓度成线性关系。 10.电位滴定与容量滴定的根本区别在于()。 A.滴定仪器不同 B.指示终点的方法不同

三电极体系

三电极体系 电极(electrode)是与电解质溶液或电解质接触的电子导体或半导体,为多相体系。电化学体系借助于电极实现电能的输入或输出,电极是实施电极反应的场所。一般电化学体系分为二电极体系和三电极体系,用的较多的是三电极体系。相应的三个电极为工作电极、参比电极和辅助电极。 工作电极: 又称研究电极,是指所研究的反应在该电极上发生。一般来讲,对工作电极的基本要求是:工作电极可以是固体,也可以是液体,各式各样的能导电的固体材料均能用作电极。(1) 所研究的电化学反应不会因电极自身所发生的反应而受到影响,并且能够在较大的电位区域中进行测定; (2) 电极必须不与溶剂或电解液组分发生反应; (3) 电极面积不宜太大,电极表面最好应是均一平滑的,且能够通过简单的方法进行表面净化等等。 工作电极的选择:通常根据研究的性质来预先确定电极材料,但最普通的“惰性”固体电极材料是玻碳(铂、金、银、铅和导电玻璃)等。采用固体电极时,为了保证实验的重现性,必须注意建立合适的电极预处理步骤,以保证氧化还原、表面形貌和不存在吸附杂质的可重现状态。在液体电极中,汞和汞齐是最常用的工作电极,它们都是液体,都有可重现的均相表面,制备和保持清洁都较容易,同时电极上高的

氢析出超电势提高了在负电位下的工作窗口记被广泛用于电化学分析中。 辅助电极:又称对电极,辅助电极和工作电极组成回路,使工作电极上电流畅通,以保证所研究的反应在工作电极上发生,但必须无任何方式限制电池观测的响应。由于工作电极发生氧化或还原反应时,辅助电极上可以安排为气体的析出反应或工作电极反应的逆反应,以使电解液组分不变,即辅助电极的性能一般不显著影响研究电极上的反应。但减少辅助电极上的反应对工作电极干扰的最好办法可能是用烧结玻璃、多孔陶瓷或离子交换膜等来隔离两电极区的溶液。 为了避免辅助电极对测量到的数据产生任何特征性影响,对辅助电极的结构还是有一定的要求。如与工作电极相比,辅助电极应具有大的表面积使得外部所加的极化主要作用于工作电极上。辅助电极本身电阻要小,并且不容易极化,同时对其形状和位置也有要求。 参比电极: 是指一个已知电势的接近于理想不极化的电极。参比电极上基本没有电流通过,用于测定研究电极(相对于参比电极)的电极电势。在控制电位实验中,因为参比半电池保持固定的电势,因而加到电化学池上的电势的任何变化值直接表现在工作电极/电解质溶液的界面上。实际上,参比电极起着既提供热力学参比,又将工作电极作为研究体系隔离的双重作用。

参比电极使用维护方法综述

参比电极使用维护综述 参比电极是决定指示电极电位的重要因素, 作为一个理想的参比电极应具备 以下条件:①能迅速建立热力学平衡电位,这就要求电极反应是可逆的。②电极 电位是稳定的,能允许仪器进行测量。常用的参比电极有甘汞电极和银 -氯化银 电极。 参比电极的使用及维护 1?使用时应拔去加液口橡皮塞,以使盐桥溶液借重力作用维持一定流速渗漏 于与待测溶液通路。玻璃加液口和橡皮塞应该经常插洗保存。 2. 测量时,参比电极盐桥液面应高于待测界面(2~3)cm ,以防止待测液向甘 汞电极内扩散,如待测液中含有氯化物、硫化物、络合剂、银盐和过氯酸盐等向 内扩散,都将影响参比电极的电位。 3. 参比电极的溶液中应防止气泡产生,以免测量回路断路。 4. 参比电极的电解液要经常加入,及时补充,其浓度要按照说明书的要求配 制,如是饱和氯化钾溶液作盐桥时要维持有过量氯化钾晶体, 氯化 钾晶体的饱和溶液的瓶放入温水待氯化钾溶解后再补入, 化钾即会 析出。 5. 甘汞电极的电极电位有较大的负温度系数和热滞后性, 止 甘汞电极温度大幅度波动。克服这种缺点办法,通常在甘汞电极下 部加一伸长 的盐桥管,而使电极处于室温下,而盐桥溶液的温度与待测溶液相同。 精确测量 时将甘汞电极置于恒温槽内操作时只要把盛有 冷却后在电极内氯 在测量时要尽量防

6?参比电极的液接部毛孔经常会被堵塞,电极阻抗增高,往往引起指示值波动。在这种情况下,应不时括去积垢或更换电极。只有在液接部不被沾污和保持流畅的情况下,才能保持其正确测量。 7?甘汞电极使用温度不宜超过70 C,如果测定场合水温超过70 C,应使用银-氯化银电极。 8?关于银-氯化银电极有一点值得一提,即银-氯化银电极对光敏感,而许多使用它作内参比的玻璃电极具有透明杆子,如果标定时,它们是暴露在日光下的,然后浸入溶液测量时,离开日光照射,这样会造成几mV电位的漂移。如果在电极杆上,套上一个黑色的聚乙稀管,这个问题即可解决。 9?固体参比电极,在电极前端帽子中应盛有KCL溶液,不可使其干涸,使用前应将电极竖直放置在盛有KCL溶液容器中数小时。 参比电极的检查方法 1、内阻检查方法:参比电极的内阻一般小于10K Q,检查时可采用实验室电导率 仪,电导率仪的插座一端接参比电极,另一端接一根金属丝,把参比电极与金属丝同时浸入溶液中,其内阻应小于10K Q.如内阻很大说明液接界部分堵塞,电极需要处理。 2、电极电位检查:使用一支好的参比电极,与被怀疑性能不良的参比电极接入pH 计输入端,二支电极同时浸入KCL溶液(或pH=4。00缓冲液),假如二支电极型号相同,其电位差应小于3mv或电位变化小于1mv。如果电位差大于3mv或电位变化大于 1mv,电极应该更换或再生

氟离子选择电极直接电位法测定牙膏中的氟实验报告

1 氟离子选择电极直接电位法测定牙膏中的氟实验报告 试剂与仪器 试剂 (1)F-标准溶液(L):实验室提供; (2)TISAB(总离子强度调节缓冲溶液):实验室提供,在500ml水中,加入57ml冰醋酸,的氯化钠和的柠檬酸钠,用水稀释至1L,pH值为至。 表一:TISAB的组成与离子强度 组成C i Z i2 NaCl(1mol/L) Hac(L) NaAc(L) 柠檬酸三钠(L) I Z I2= mol/L pH=~ 112+112=2 弱酸 += += 仪器 pH510型pH计/离子计;电磁搅拌器;氟离子选择性电极,Ag/AgCl电极,超声波清洗器。 ~mol/L的氟的标准溶液系列的配置 取50ml的容量瓶,加入L氟标准液,加入25mlTISAC,用水稀释至刻度。照此法,配置~的氟的标准溶液,浓度差为10倍。 标准氟工作曲线的制作 利用pH510型pH计/离子计,由稀至浓测量上述标准溶液系列的电位值。 以F-浓度的对数为横坐标,电位(mV)为纵坐标,绘制标准曲线。标准曲线如图一。 牙膏中氟含量的测定 准确称取的牙膏样品于小烧杯中,用25mlTISAB稀释转移到50ml容量瓶。定容,超声波震荡几分钟。 取待测液用以上pH510型pH计/离子计测量此时溶液的电位值,记录于表一。 根据标准氟工作曲线以及样品的电位值求出牙膏中所含有的氟的浓度,并与国家标准进行比对。

3 结果与讨论 数据记录 表二:离子选择性电极直接测量牙膏中氟含量的结果记录表 C F- / mol/L E /mV 空白液483 419 358 300 242 牙膏样品316 表三:样品测定结果记录表 样品质量/g牙膏中氟含量/% 316 数据处理 根据所获得的实验数据,用Excel软件合成E(mV)-(-lgC F-)工作曲线,得到的工作曲线图和关系数据如图一所示: 图一:E(mV)-(-lgC F-)工作曲线

三电极体系

所有电化学系统均包含至少两个浸入电解质溶液中或紧密附着于电解质的电极,并且在许多情况下,必须使用隔膜将两个电极分开。我们将分别介绍电极,隔膜,电解质溶液和电解池的设计和安装。 电极是与电解质溶液或电解质接触的电子导体或半导体,并且是多相系统。电化学系统通过电极实现电能的输入或输出,电极是进行电极反应的地方。普通的电化学系统分为两电极系统和三电极系统,并且最常使用三电极系统。对应的三个电极是工作电极,参比电极和辅助电极。 工作电极:也称为研究电极,表示正在研究的反应在该电极上发生。一般来说,工作电极的基本要求是:工作电极可以是固体或液体,并且可以使用各种导电固体材料作为电极。(1)所研究的电化学反应不受电极本身反应的影响,可以在较大的电位区域中进行测量;(2)电极不得与溶剂或电解质成分发生反应;(3)电极面积不应太大。电极表面应均匀且光滑,并且可以通过简单方法清洁表面。 工作电极的选择:通常根据研究的性质预先确定电极材料,但是最常见的“惰性”固体电极材料是玻璃碳(铂,金,银,铅和导电玻璃)。当使用固体电极时,为了确保实验的可重复性,必须注意建立适当的电极预处理步骤,以确保氧化还原的可再现状态,表面形态以及不存在吸附的杂质。在液体电极中,汞和汞齐是最常用的工作电极。它们都是液体,具有可重现的均匀表面。这很容易准备和保持清洁。同时,电极上的高氢释放超电势增加。负电势下的工作窗口广泛用于电化学分析。

辅助电极:也称为对电极。辅助电极和工作电极形成一个环路,以使工作电极平滑连接,以确保所研究的反应在工作电极上发生,但必须没有办法限制电池观察的响应。当工作电极发生氧化或还原反应时,可以将辅助电极布置为用于气体沉淀反应或工作电极反应的逆反应,以保持电解质组成不变,即,辅助电极的性能通常不显着。影响研究电极上的反应。但是,减少反应对工作电极上辅助电极干扰的最佳方法可能是使用烧结玻璃,多孔陶瓷或离子交换膜将溶液隔离在两个电极区域中。 为了避免辅助电极对测量数据的任何特性影响,对辅助电极的结构仍存在一定要求。与工作电极相比,辅助电极应具有较大的表面积,以使外部极化主要作用在工作电极上。辅助电极本身具有小的电阻并且不易于极化,并且还需要其形状和位置。 参比电极:是指已知电势接近理想非极化电极的电极。基本上没有电流流过参比电极,该电流用于确定研究电极(相对于参比电极)的电极电位。在受控电势实验中,由于参比半电池保持固定电势,因此添加到电化学电池中的电势的任何变化都直接显示在工作电极/电解质溶液的界面上。实际上,参比电极不仅具有提供热力学参比的作用,而且还具有分离工作电极作为研究系统的双重作用。 参比电极需要具备的一些特性:(1)交流电流密度大,是可逆电极,电极电势符合能斯特方程。2)当有小电流流过时,电极电位可以迅速恢复到原始状态;3)它应具有良好的潜在稳定性和可重复性。 参比电极的类型:可以为不同的研究系统选择不同的参比电极。

参比电极

Ag/Ag2SO4用于铅酸蓄电池 Cd电极常用于电池制造中以控制正负极板质量,Hg/Hg2SO4常用于实验室的准确测量中[1]。它的缺点是价高、易碎和易造成环境污染。 Ag2SO4电极在文献中报道极少,几乎没有关于Ag2SO4参比电极的介绍。至今此电极尚未有作为铅酸电池中参比电极应用的报道。其主要原因可能是Ag2SO4的溶解度太高所致,Ag+离子可能会污染铅酸电池的电解质溶液。Ag2SO4在硫酸溶液中的溶解度为0.03mol/1000gH2O[2]。但是现在已经有合适的隔膜材料,可阻挡扩散污染。 Pb/PbSO4电极对Ag/Ag2SO4参比电极的电极电位: 此反应 在标准情况下(25℃、1bar)Pb/PbSO4与Ag/Ag2SO4参比电极之间的电位差为 ,E0与硫酸浓度无关。 已知Ag/Ag2SO4参比电极比Hg/Hg2SO4参比电极(同溶液)要正0.0384V,此值也与硫酸浓度无关。 PbO2/PbSO4电极对Ag/Ag2SO4参比电极的电极电位: △G0=-199.42kJ E0=1.0334V 式中a s为硫酸活度,a w为水的活度。 例如,在5mol硫酸中,PbO2/PbSO4对于同液Ag/Ag2SO4的电极电位,计算为1.0881V,如酸浓度为1mol,计算为0.9173V(硫酸平均活度系数用)

内径为3mm的薄壁尼龙管,(可用聚丙烯管代替),低部紧塞AGM,此要AGM塞长15mm,其上放上Ag、Ag2SO4、少量SiO2成胶剂和少量AR级的硫酸溶液。加入的酸量刚好把Ag2O全部转化为Ag2SO4。 此活性混合物在尼龙管中干燥(中间插银丝),将银丝与上部接头焊好,用环氧树脂封固。使用前,AGM塞和活性混合物用含合适浓度的硫酸浸泡100h以上(15mm长的AGM 需要100h来平衡酸浓度),也可将需要的酸量加入活性物上部(用针管注入),参比电极中吸收的硫酸约200mg(35%的硫酸)。 用此电极在铅酸电池中Ag2SO4会少量扩散进入电池,按fick定律估算,总量小于1mg/年。 此电极牢固,防撞击,电位重现性在1~2mV内。 用法:可在电池盖上钻一小孔放入酸中,或VRLA电池的AGM上,参比电极尖端位置对电位稍有影响。 硫酸银电极 Ag2SO4+2e=2Ag+ SO42- E Ag2SO4= E Ag2SO40-0.0591/2loga SO42- =0.653 有严格定义的电极电位,易于制备做成各种式样的电极,电位的可重现性达±1mV,电极的结构牢固,可以防震,且无毒性物质,在高温时稳定。 对于同样的硫酸溶液中的铅蓄电池负极(Pb/PbSO4电极)对Ag/Ag2SO4参比电极的电极电位为-1.009V(25℃),它与硫酸的浓度无关,已由实验证实。PbO2/PbSO4正极对Ag/Ag2SO4参比电极的电位,符合下列的关系式((25℃)。 式中a s为硫酸活度,a w为水的活度。此式也可由实验

三电极体系

2. 2电化学性能测试 2. 2. 1电化学性能表征 ①活化性能:MH电极一般需经过若干次充放电循环后,才能达到最大放电容量,这个过程称作MH电极的活化。一般来说,MH电极的活化是下列几种作用的结果:合金粒子在充放电循环中粉化,因而增加了合金与电解液接触的表面积;具有电催化活性的金属元素在合金表面分凝;由于一些合金元素或其氧化物从合金中溶出,增大了电极的孔率。活化性能好是指储氢合金能在较短的充放电次数达到最好的初始容量。 ②电化学容量:从电极反应可知,充电时储氢合金M吸收一个氢原子相当于得到一个电子,因此氢化物电极的电化学容量取决于金属氢化物MH、中的含氢量x.金属氢电极的理论容量计算见式(1-19). MH电极的实际容量与储氢合金本身的可逆储氢特性,热力学稳定性以及电池的工作条件如温度、压力及放电速率有关,在适宜的放电条件下,对于可逆性优异的电极材料〔如LaNi5 ),其实际容量可接近于理论容量。储氢合金的电化学容量越高越好。 ③循环寿命:MH电极经过若干次活化循环,容量逐渐增大到最大容量,此后,随着循环次数的增加,容量逐渐衰退。通过电极容量降低到一定值时的循环次数可以量度电极的循环寿命,这时决定其实用化的关键特性。合金的抗氧化腐蚀能力是决定氢化物电极容量衰退的一个重要因素。Willems等[65]对LaNis及LaNi4Cu电极的研究表明,电极的容量随循环次数的增加而按指数衰减,可表示如下: 式中,C。为第n次循环容量 C。为理论放电容量 n为循环次数 n*为经验参数 2. 2. 2测试仪器 实验用MH电极的电化学性能采用如图2-2所示的开口式三电极电解池测试。 其中辅助电极(正极)采用Ni(OH)2电极,以HgO/Hg电极作为参比电极,6mo1/L的KOH 溶液为电解液。图中B为极化电源,为研究电极提供极化电流。E为测量电位的仪器。电极

参比电极

参比电极 PH复合电极到底是什么意思? 复合电极是什么啊,什么意思,PH电极又是怎么回事?经常客户会问到我们这个问题,就在我们帮他们选型的时候,加了一些术语就不好理解了,所以搞电极这一块的朋友,还得把这些问题弄清楚才行啊。 我们把pH玻璃电极和参比电极组合在一起的电极就称为pH复合电极, 即pH计的复合电极。外壳为塑料的就称为塑壳pH复合电极。外壳为玻璃的就称为玻璃pH复合电极。复合电极的最大优点是合二为一,使用方便。pH复合 电极的结构主要由电极球泡、玻璃支持杆、内参比电极、内参比溶液、外壳、外参比电极、外参比溶液、液接界、电极帽、电极导线、插口等组成。 1)电极球泡:它是由具有氢功能的锂玻璃熔融吹制而成,呈球形,膜厚在0.1~0.2mm左右,电阻值250兆欧(25℃)。 2)玻璃支持管:是支持电极球泡的玻璃管体,由电绝缘性优良的铅玻璃制成,其膨胀系数应与电极球泡玻璃一致。 3)内参比电极:为银/氯化银电极,主要作用是引出电极电位,要求其电 位稳定,温度系数小。 4)内参比溶液:零电位为7pH的内参比溶液,是中性磷酸盐和氯化钾的混 合溶液,玻璃电极与参比电极构成电池建立零电位的pH值,主要取决于内参 比溶液的pH值及氯离子浓度。 5)电极塑壳:电极塑壳是支持玻璃电极和液接界,盛放外参比溶液的壳体,由聚碳酸酯塑压成型。 6)外参比电极:为银/氯化银电极,作用是提供与保持一个固定的参比电势,要求电位稳定,重现性好,温度系数小。 7)外参比溶液:为 3.3mol/L的氯化钾凝胶电解质,不易流失,无需添加。 8)砂芯液接界:液接界是构通外参比溶液和被测溶液的连接部件,要求渗 透量稳定。 9)电极导线:为低噪音金属屏蔽线,内芯与内参比电极连接,屏蔽层与外 参比电极连接。 总结这九点,是对电极的构造进行了系统的描述。从里到外,了解这些,电极的原理就好容易理解一些了。

电化学体系三电极介绍

电化学体系三电极介绍 所有电化学体系至少含有浸在电解质溶液中或紧密附于电解质上的两个电极,而且在许多情况下有必要采用隔膜将两电极分隔开。我们将分别介绍电极、隔膜、电解质溶液及电解池的设计与安装。 电极(electrode)是与电解质溶液或电解质接触的电子导体或半导体,为多相体系。电化学体系借助于电极实现电能的输入或输出,电极是实施电极反应的场所。一般电化学体系分为二电极体系和三电极体系,用的较多的是三电极体系。相应的三个电极为工作电极、参比电极和辅助电极。 工作电极: 又称研究电极,是指所研究的反应在该电极上发生。一般来讲,对工作电极的基本要求是:工作电极可以是固体,也可以是液体,各式各样的能导电的固体材料均能用作电极。(1) 所研究的电化学反应不会因电极自身所发生的反应而受到影响,并且能够在较大的电位区域中进行测定; (2) 电极必须不与溶剂或电解液组分发生反应; (3) 电极面积不宜太大,电极表面最好应是均一平滑的,且能够通过简单的方法进行表面净化等等。 工作电极的选择:通常根据研究的性质来预先确定电极材料,但最普通的“惰性”固体电极材料是玻碳(铂、金、银、铅和导电玻璃)等。采用固体电极时,为了保证实验的重现性,必须注意建立合适的电极预处理步骤,以保证氧化还原、表面形貌和不存在吸附杂质的可重现状态。在液体电极中,汞和汞齐是最常用的工作电极,它们都是液体,都有可重现的均相表面,制备和保持清洁都较容易,同时电极上高的氢析出超电势提高了在负电位下的工作窗口记被广泛用于电化学分析中。 辅助电极:又称对电极,辅助电极和工作电极组成回路,使工作电极上电流畅通,以保证所研究的反应在工作电极上发生,但必须无任何方式限制电池观测的响应。由于工作电极发生氧化或还原反应时,辅助电极上可以安排为气体的析出反应或工作电极反应的逆反应,以使电解液组分不变,即辅助电极的性能一般不显著影响研究电极上的反应。但减少辅助电极上的反应对工作电极干扰的最好办法可能是用烧结玻璃、多孔陶瓷或离子交换膜等来隔离两电极区的溶液。

电位分析习题

淮阴师范学院 仪器分析课程电位分析习题 一、选择题(每题2分,共20题,40分) 1在直接电位法中的指示电极,其电位与被测离子的活度的关 系为( 4 ) (1) 无关(2) 成正比(3) 与其对数成正比(4) 符合能斯特公式 2玻璃膜钠离子选择电极对钾离子的电位选择性系数为0.002,这意味着电极对钠离子的敏感为钾离子的倍数是( 2 ) (1) 0.002 倍(2) 500 倍(3) 2000 倍(4) 5000 倍 3钾离子选择电极的选择性系数为6 pot Mg , K 10 8.1 2 - ? = + + K,当用该电极测浓度为1.0×10-5mol/L K+,浓度为 1.0×10-2mol/L Mg溶液时,由Mg引起的K+测定误差为( 3 ) (1) 0.00018% (2) 134% (3) 1.8% (4) 3.6% 4离子选择电极的电位选择性系数可用于( 2 ) (1) 估计电极的检测限(2) 估计共存离子的干扰程度 (3) 校正方法误差(4) 计算电极的响应斜率 5在电位滴定中,以?E/?V-V(?为电位,V为滴定剂体积)作图绘制滴定曲线, 滴定终点为:( ) (1) 曲线的最大斜率(最正值)点(2) 曲线的最小斜率(最负值)点 (3) 曲线的斜率为零时的点(4) ?E /?V 为零时的点 6氟化镧单晶膜氟离子选择电极的膜电位的产生是由于( 2 ) (1) 氟离子在晶体膜表面氧化而传递电子 (2) 氟离子进入晶体膜表面的晶格缺陷而形成双电层结构 (3) 氟离子穿透晶体膜而使膜内外氟离子产生浓度差而形成双电层结构 (4) 氟离子在晶体膜表面进行离子交换和扩散而形成双电层结构 7利用选择性系数可以估计干扰离子带来的误差, 若05 .0 pot j i, = K, 干扰离子的活度 为0.1mol/L, 被测离子的活度为0.2mol/L, 其百分误差为: ( 1 )

相关文档
最新文档