发电机定子接地保护动作分析及防范措施

发电机定子接地保护动作分析及防范措施
发电机定子接地保护动作分析及防范措施

发电机定子接地保护动作分析及防范措施结合公司三起发电机定子接地保护信号报警、动作跳闸事件,重点介绍事件处理情况,事件发生原因及分析和判断,提出相应的防范措施和相关。发电机出现定子接地故障报警后,应根据现场保护及设备动作情况,及时分析原因,做出准确判断,快速消除设备隐患,保障机组和电网安全运行。

一、前言

发电机定子接地故障是最常见的发电机故障。发电机定子接地后,接地电流经故障点、三相对地电容、三相定子绕组而构成通路。当接地电流较大时,能在故障点引起电弧,造成定子绕组和定子铁芯烧伤,甚至扩大为相间或匝间短路。对于100MW及以上的发电机,特别是水内冷机组,考虑中性点附近定子绕组可能漏水引起绝缘损坏,要求装设保护区为100%、灵敏性高的定子接地保护。当电厂发电机定子接地保护动作时,现场运行及检修人员应及时掌握发电机一次设备及保护动作信息,并立即进行分析、判断和处理,确保机组安全稳定运行。

1、发电机定子接地电流允许值

二、事件简述

事件1、2003年8月29日13时29分, #2发变组保护运行中突发“定子接地”信号光字牌,13时31分,发电机定子保护动作跳闸与系统解列。

事件2、2008年03月01日01时56分,#1发变组突然跳闸,首出“定子接地”保护动作,汽机联跳,炉MFT动作。

事件3、2008年12月5日03时17分#1机G盘发“定子接地”报警,检查发电机一、二次设备无明显异常,核对发电机各一、二次电压也未发现异常。

三、事件处理情况

事件1

此次发电机解列,检查为电厂发电机定子接地基波保护动作,这是公司发电机定子接地

保护第一次动作。电气人员在负责生产的领导现场指挥下,检修运行人员分成两批人员,按照发电机一、二次设备立即投入查找。继电保护人员核对、校验保护装置定值正常,同时检查发电机定子接地二次回路也正常;高压、运行人员对发电机本体、机端、中性点及发电机封母、PT、CT、避雷器及其附属设备外观进行了检查,没有发现明显异常。为尽快找出设备故障原因,确认发电机能否及时恢复运行,电气负责人员在没有找出具体故障位置采取了以下检测方法:

利用励磁调节器(型号:SWTA,上海华通开关厂)工频柜,缓慢对发电机手动升压至5KV(发电机出口额定电压为20kV,)分别测量发电机电压互感器(20/0.1kV)二次电压,在发电机低电压工况下,查找设备故障点。发电机各组PT的测量结果见表1:发电机出口侧PT开口二次电压:L622--B600=9V;发电机中性变压器二次电压:S601--B601=10V。

表1:发电机各组PT二次电压值

注:A、B、C单相电压均为对相应绕组N600测量值

从测量结果,可以初步判断一次设备经过渡电阻接地。重新对所有发电机一次相关设备进行复查,在检查发电机PT发现A相三组PT(在一个柜内)时,PT柜内存在异味,用测温仪测量A相3YH PT线圈外壳及铁芯,温度明显比1YH、2YH高出10℃左右。高压电气设备内部热故障主要原因包括:设备发热时间长而且较稳定,与故障点周围导体或绝缘材料发生热量传递,使局部温度升高,破坏了密封的绝缘材料或金属外壳。通过检测其周围材料的温升来判别高压电气设备的内部故障,故初步认为发电机A相3YH(励磁专用)存在绝缘损坏故障。

将故障PT拖出柜外后,再用励磁调节器的手动调节方式缓慢升压到5kV,测量其余各组PT二次电压正常,并检查发电机一次设备无异常后,将发电机电压升至额定值20kV,于15

时37分将#2机与系统并网。从发电机因保护跳闸到恢复并网整个处理过程约2个小时。

事件2

发电机保护动作时间在凌晨,时间较为特殊。电气值班人员接到电话后,首先检查发变组及录波器的报告,并立即派人检查发电机本体、发电机机端、中性点、封母附近设备,测量发电机对地绝缘为0,最终发现在发电机机端出线处,励端定子冷却水回水信号管法兰面滴水,落在发电机出线盒上并渗入出线盒内部,导致发电机A相出线绝缘波纹板对地放电击穿。

发现故障点后,电气专业立即组织人员对绝缘受损部位进行处理,并联系汽机专业对励端定子冷却水回水信号管法兰面进行紧固、消漏。用绝缘橡皮垫在法兰下部,避免出现再次漏水影响。待运行做好安全措施后,打开发电机出线盒盖板,用干抹布清除积水,并用酒精清理A相出线绝缘波纹板的电弧灼伤部位,清除灼伤部位碳化物,并涂刷绝缘清漆以填平灼伤部位。处理完毕后,摇测对地绝缘值由处理前的零升至20GΩ,绝缘合格后,恢复发电机出线盒盖板、拆除安全措施。发电机转热备后,利用励磁调节器C柜(型号:GEC-1,北京吉思电气有限公司)缓慢升到发电机电压到5kV后,测量发电机PT二次电压正常,并检查发电机一次设备无异常后,将发电机电压升至20kV,再次确认机组各参数正确无误,各组PT开口3Uo正常,现场无放电声音及冒火等异常后,按照正常并网步序将发电机并入系统。

事件3

#1机G屏突发“发电机定子接地”光字牌,检查发变组保护A、B屏“定子接地3ω”信号报警灯均亮(定子接地三次谐波保护出口方式投信号)。检修人员随后对一二次设备进行了相关检查未发现异常。由于一时未找到故障原因,发电机一直在运行,只能暂时加强对发电机机端、中性点等设备的巡视,加强对发电机电压特别是零序电压的监视。

继电保护人员随后对所有运行机组的发电机机端零序电压(含三次谐波)、中性点开口电压进行了测量和分析,具体数据见表2。通过比较得出,#1发电机中性点的三次谐波电压S601对地有3V左右,但与B601之间电压却只有0.1V左右。

表2:发电机机端、中性点零序电压

随后,用高压验电笔测量出中性点接地变压器(变压器变比为20/0.23KV)引出线有电,显示值约为700V ,即二次电压应为3V 左右。因此怀疑#1机发电机中性点接地变压器或电阻可能出现故障。断开中性点隔离刀闸,确认定子接地三次谐波压板退出,做好相应的安全隔离措施,发出《#1机发电机中性点接地变压器及回路检查》电二种票。电气检查人员对接地变压器及并联电阻进行检查,未发现异常。

进一步检查发现接地变压器二次线到接地电阻经隔板固定的接头处有生锈松动现象(见故障点3),紧固连接螺栓后,将接地变压器投入运行,测量中性点开口三次谐波电压(S601对B601)有3V

左右,此时发变组保护A 、B 屏定子接地三次谐波报警信号已消失。

四、事件分析 事件

1:发电机机端

A

相经过渡电阻

Rf

发生接地故障:

B

A

图1:发电机机端侧经过渡电阻接地

C

(1)当Rf=∞,没有发生接

地故障时,发电机中性点O 即为地电位(见图1),3U0为发电机正常运行情况下的基波零序电压值,接近于0;

(2)当Rf=0时,A 相发生金属性接地故障时,地电位即为A 相机端,此时3U0=-αEA =EA ; 式中EA 为发电机A 相电动势,α为故障点距中性点的距离(全绕组为100%)百分数,因为机端金属性接地故障点,故α=1。

(3)当0

公司发电机定子接地保护零序电压取自机端三相电压互感器的开口三角形绕组。正常运行时,机端开口三角不平衡电压有基波和三次谐波,其中以三次谐波为主(可参考表2数据)。

当高压侧发生接地故障时,高压系统中的零序电压通过变压器高、低绕组间的电容耦合传给发电机,可能超过定子接地保护的动作电压。发电机定子接地基波零序电压保护定值为15V(发电机母线接地时PT开口三角电压为100V),本例中发电机A相PT由于某种原因(如受潮、受热)绝缘损坏,引起发电机一次A相不完全非金属性接地(故障点1)时,3U0达到发电机定子接地基波动作定值,保护延时跳闸解列发电机。

发电机PT第一个绕组1YH为发电机匝间保护专用PT,该PT一次中性点并没有接地,

图2:PT接线及定子接地保护接线图

而是与发电机中性点直接连接(见图2)。本次发电机A相3YH PT定子不完全接地故障时,相当于一次系统出现了对地零序电压3U0,发电机中性点电位相应升高到3U0,因此1YH开口三角形绕组输出应仍为0(即发电机匝间保护不会启动),发电机各相电压对本绕组N600的电压也维持对称,即1YH测量A、B、C三相对本身绕组的N600电压幅值相等。

事件2:

发电机定子接地保护接入的基波3U0电压,取自机端PT开口三角绕组,基波保护范围为由机端至机内85%左右的定子绕组单相接地故障,与三次谐波保护合用,组成发电机的100%定子接地保护。

从本次发电机定子接地保护动作报告及发变组故障录波器事故报告显示,A 相绝缘受潮损坏,支撑绝缘波纹板绝缘瞬时击穿至零序电压突增至26.13V 。定子接地保护动作时,基波开口三角电压值3U 0达52.34V ,其零序电压远远超过定子接地保护定值3U 0=15V 。同时表明本次发电机定子接地基本上是金属性接地。在发电机机端出线处,励端定子冷却水回水信号管法兰面漏水,落在发电机出线盒上并渗入出线盒内部,造成发电机A 相出线支撑绝缘波纹板绝缘降低对地放电击穿。因此这是一起典型的一次设备绝缘受损击穿引起保护动作事件。

事件3:

发电机气隙磁通密度的非正弦分布和铁芯饱和的影响,其定子绕组中的感应电动势除基波外,还含有三、五、七次等高次谐波,以E 3表示发电机每相绕组的三次

E

3

U

U 图3:简单的发电机三次谐波等效图

Fig. 3: Simple generator triple frequency

equivalent chart

谐波电动势。如图3所示,假定发电机每相绕组对地电容C g 分成相等的两部分,分别集中在发电机的中性点和机端侧;将发电机端部引出线、升压变压器、厂用变压器及电压互感器等设备每相对地电容Cs 也等效集中在机端。则:

(1)发电机中性点绝缘时,发电机正常运行时机端与中性点三次谐波电压之比为:U S3/U N3=C g /(C g +2C s )<1;(Z n =∞,相当于断开)

(2)发电机经配电变压器高阻接地时,U S3/U N3= Z S3/Z N3=d , Z n 大小不同,则比值d 也不相同,但一般认为C g 、C s 、Z n 现场值是基本不变的,则 U S3/U N3的比值也就确定下来。

(3)不论发电机中性点是否接有消弧线圈,当距发电机中性点α处发生定子绕组单相接地时,中性点N 与机端S 处的三次谐波电压恒为:

U N3=αE 3

U S3 =(1-α)E 3

见图

4.

E 3

0.5 1.0

α

图4:U N3、U S3随α的变化曲线图

Fig. 4:U N3、U S3 along with α change

diagram of curves

选用U S3动作量,U N3作为制动量,组成发电机定子接地100%保护,当发电机中性点附近发生接地时,三次谐波保护具有较高的灵敏度。公司300MW 机组发电机中性点经配电变压器接地,并网前(发电机空载试验)与并网后测得的三次谐波U S3/U N3的比值在0.6~0.75范围内,定值整定为0.9左右,(厂家按照1.2倍可靠系数进行整定调试)。从发电机正常运行时,U S3/U N3的比值也基本在0.6~0.75附近波动。本例中发电机虽没有发生中性点接地故障,但因中性点接地变压器引出线松动,制动电压U n3为悬浮电位,制动量电压丢失(发变组微机保护采集的数值很小),导致U S3/U N3的比值大大超过0.9,最终造成发电机定子接地三次谐波保护动作。 五、防范措施

1、事件1发生后对绝缘受损的发电机A 相PT (3YH )进行倍频感应耐压等试验,发现PT 泄漏电流严重超标。机组停运后,对其它几组PT 也进行了相应的试验测试,发现也有不同程度的泄漏。主要原因为该类PT 为分级绝缘型,且PT 安装在机0米层,设备绝缘极易受潮损坏。为消除设备隐患,保障主机安全稳定运行,结合机组检修将所有分级绝缘的PT 更换为全绝缘型PT 。并加强发电机PT 的巡检和定期工作,定期测量发电机PT 的温度、湿度等。

2、事件2发生后,各专业采取了以下措施:电气专业完善了防止定冷水或其它水源进入隔栅通风口的措施,针对发电机出线箱A 相出线支撑绝缘波纹板受电弧灼伤,在机组检修时作了进一步处理,更换A 相绝缘波纹板。加强其它机组该部位的重点检查,确保回水管绝缘垫材质,保证机组安全运行;汽机专业全面梳理机组励端定子冷却水回水信号管法兰是否紧固,是否存在可能漏水缺陷;运行人员在发电机负荷变化大时控制好运行操作方式,特别

是在气温、压力急剧变化情况下注意定冷水系统的检查,严防定冷水温度及压力的异常波动引起法兰漏水现象的再次发生。高电压规程要求发电机出线箱隔栅处设有通风口,事件发生后,要求设备管理人员不能生搬硬套规程规定,而应结合现场的实际,灵活应用落实反措,从而最大程度保证主设备的安全运行。除采取上述措施外:现场要求照明充足便于人员巡检,及时发现设备缺陷,杜绝事故隐患。

3、事件事3反映出定期试验及检定工作中存在一定死角。定期工作中应牢记定期试验、检定的三要素:“测绝缘、清灰、紧固端子”,对于发电机中性点经配电变压器接地,除按常规做定期试验检查外,不能遗漏接地变压器及其副方并接电阻的尘土和污垢清扫及连接端子紧固等检验项目;同时要加强设备巡检,如对发变组保护点检工作时,应特别观察记录机组不同运行工况下通道参数的变化和比较,一旦发现异常及时消除。另一方面要加强继电保护人员和运行人员综合素质,提高设备故障时的处理能力。

六、结论及建议

1、发电机发生故障,伴随保护故障报警和跳闸时,应因根据当时故障信号和保护动作情况,按照相关规程要求,灵活应用,并指定一位熟悉电气人员统一指挥,迅速判断设备故障是一次设备还是二次设备造成,然后按照一、二次设备分别进行检查隔离。同时及时打印保护动作、录波器报告进行分析,逐一对发电机相关设备进行排查,切不可慌乱。

2、若机组故障可及时消除,相应保持机组恒速,以方便机组并网;若故障一时不能排除,机组应及时进行停运处理。电气人员应加强对发电机相关设备技术监督和定期工作,掌握同类型机组的故障处理方法,制定相应的防范措施,对存在隐患的设备坚决进行整治和消除,全面提高发电机安全运行水平。

3、建议发电机G盘加装发电机相对地电压监视仪表,便于发电机定子接地故障时观察发电机各相电压波动情况,以利于快速、准确查找判断故障设备。

4、鉴于公司发电机封闭母线微正压装置不正常长期退出运行,建议结合机组大、中修,对发电机封母内部支撑绝缘子、母线设备进行全面检查及清扫,提高发电机出口绝缘,防患于未然。

七、定值整定

1、零序电压式定子接地保护的动作电压,应按躲过发电机正常工况下及恶劣条件下发电机系统产生的最大横向零序电压来整定,即

Udz0=Krel*U0max

Udz0—零序电压式定子接地保护的动作电压;

Krel—可靠系数,取1.2~1.3 ; U0max—发电机正常运行时的最大横向零序电压。影响U0max的因素主要有:

(1)发电机的三次谐波电势;

(2)机端三相TV各相间的变比及角误差(主要是TV一次绕组对三次绕组之间的比误差);

(3)发电机电压系统中三相对地绝缘不一致;

(4)主变压器高压侧发生接地故障时由变压器高压侧传递到发电机系统的零序电压。

运行实践表明:最严重时,在发电机系统产生的零序电压可达发电机额定电压的8~10%,即将在机端TV开口三角绕组两端或中性点TV二次产生8~10V的电压。发电机三相绕组对地绝缘固有不一致引起的零序电压,最大为2%,即2V(二次值)。考虑到上述因素,Udz0可取5~15V。

2、在正常情况下,中性点的三次谐波电压总是大于机端三次谐波电压;公司发电机中性点经配电变压器接地,整定定值时,应选择发电机并网后,在不同负荷情况下测量中性点的三次谐波电压、机端三次谐波电压值,再设定合适的制动系数,从而可以兼顾保护定值的可靠性和灵敏性。

附:发电机变压器组接线示意图

T9-

发电机保护现象、处理

发电机保护1对于发电机可能发生的故障和不正常工作状态,应根据发电机的容量有选择地装设以下保护。 (1)纵联差动保护:为定子绕组及其引出线的相间短路保护。 (2)横联差动保护:为定子绕组一相匝间短路保护。只有当一相定子绕组有两个及以上并联分支而构成两个或三个中性点引出端时,才装设该种保护。 (3)单相接地保护:为发电机定子绕组的单相接地保护。 (4)励磁回路接地保护:为励磁回路的接地故障保护。 (5)低励、失磁保护:为防止大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响,100MW及以上容量的发电机都装设这种保护。 (6)过负荷保护:发电机长时间超过额定负荷运行时作用于信号的保护。中小型发电机只装设定子过负荷保护;大型发电机应分别装设定子过负荷和励磁绕组过负荷保护。 (7)定子绕组过电流保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作,这种保护作为外部短路的后备,也兼作纵差保护的后备保护。 (8)定子绕组过电压保护:用于防止突然甩去全部负荷后引起定子绕组过电压,水轮发电机和大型汽轮发电机都装设过电压保护,中小型汽轮发电机通常不装设过电压保护。 (9)负序电流保护:电力系统发生不对称短路或者三相负荷不对称(如电气机车、电弧炉等单相负荷的比重太大)时,会使转子端部、护环内表面等电流密度很大的部位过热,造成转子的局部灼伤,因此应装设负序电流保护。 (10)失步保护:反应大型发电机与系统振荡过程的失步保护。 (11)逆功率保护:当汽轮机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,从电力系统吸收有功功率而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。 发电机保护简介 1、发电机失磁保护失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。励磁低电压Ufd(P)判据和静稳阻抗判据均与静稳边界有关,可检测发电机是否因失磁而失去静态稳定。静稳阻抗判据在失磁后静稳边界时动作。

发电机定子绕组单相接地保护的原理与存在的问题及改进分析

发电机定子绕组单相接地保护的原理与存在的问题及改进分析 1 引言 发电机定子接地是指发电机定子绕组回路及与定子绕组回路直接相连的一次系统发生的单相接地短路。定子接按接地时间长短可分为瞬时接地、断续接地和永久接地;按接地范围可分为内部接地和外部接地;按接地性质可分为金属性接地、电弧接地和电阻接地;按接地原因可分为真接地和假接地。 近几年来,各种原理的发电机定子绕组单相接地保护装置纷纷出现,如三次谐波电压型、零序电流型等,但零序电压型由于其接线简单、维护方便、运行可靠等优点,仍在中小型机组上广泛应用。因此,对零序电压型单相接地保护进行分析和改进,仍有现实意义。 2 零序电压型单相接地保护原理 6kV发电机为中性点不接地系统,当发生定子绕组单相接地时,故障点将出现零序电压。下面以A相定子绕组任一点发生金属性接地故障为例进行分析。 当中性点直接接地系统(又称大接地电流系统)中发生接地短路时,将出现很大的零序电压和电流。还有在中性点不直接接地系统中当发生单相接地时,也会产生零序电压。零序电源在故障点,故障点的零序电压最高,系统中距离故障点越远处的零序电压就越低,取决于测量点到大地间阻抗的大小。 如图1所示,假设A相在距中性点a处(a表示由中性点到故障点的匝数中该相总匝数的百分数)的d点发生接地故障。 则零序电压为(推导过程略):Ud0=-aEA 上式表明,故障点的零序电压与a成正比,即接地点离中性点越远,零序电压越高。这样,可以利用接于机端的电压互感器开口三角形取得零序电压,构成单相接地保护,如图2所示。 3 存在问题与改进 图2是最基本的零序电压型发电机定子接地保护,实际运行中,经常发生保护误动或拒动

发电机定子接地故障排查

龙源期刊网 https://www.360docs.net/doc/d48052147.html, 发电机定子接地故障排查 作者:贾鹏 来源:《科技与创新》2015年第09期 摘要:阐述了发电机出口离相式封闭母线受潮,使得发电机组定子接地跳闸的情况,并 分析了具体的处理过程和防范措施。 关键词:定子接地故障;绝缘子;封闭母线;驱潮工作 中图分类号:TM31 文献标识码:A DOI:10.15913/https://www.360docs.net/doc/d48052147.html,ki.kjycx.2015.09.144 1 事故概述 某电厂2×300 MW发电机组采用哈尔滨电机厂生产制造的QFSN-300-2型水氢氢发电机,机端额定电压为20 kV,中性点经消弧线圈接地。发电机保护采用的是南京国电南自凌伊电力自动化有限公司生产的DGT-801A保护装置,定子接地保护采用的是基于稳态基波零序电压和三次谐波原理构成的100%保护。 该厂#1机组在负荷为226 MW的情况下运行时,发电机突然跳闸解列,汽机跳闸,锅炉 灭火,监控画面首出“发电机保护动作”,就地检查保护屏,发出了“发电机定子3U0定子接地”报警,而双套保护均动作,发出信号为发电机“定子接地”保护动作。下面,结合此次发电机定子接地故障的实际情况,简单分析了大型发电机定子接地故障的排查。 2 事故处理过程 2.1 二次系统检查 跳机后,应先全面检查保护装置,2套发电机保护装置A柜、B柜的“定子接地”保护均动作,基波3UO发跳闸信号,3次谐波3 W发报警信号,查看保护定值零序电压为8 V,延时4 s动作。查看故障录波图,发电机机端电流A,B,C三相峰值分别为3.28 A、3.30 A、3.26 A,发电机机端电压A,B,C三相峰值分别为86.979 V、80.182 V和74.518 V,C相电压下降得较快。发电机“定子接地”保护动作时,发电机机端零序电压2套保护动作值分别为8.643 9 V、8.647 4 V和8.668 8 V、8.665 2 V,零序电压达到8.6 V保护动作。对发电机出口PT一次侧做加压试验,保护屏电压显示正确,PT二次回路绝缘测试合格,基本排除了保护误动的可能。但是,这些故障数据并不能确定是发电机内部故障还是外部故障。 2.2 一次系统检查 初步检查发电机非电气系统,未发现发电机有积水、漏氢、漏油等情况,且系统工作正常。定子冷却水电导率化验合格,在发电机本体、励磁变、出线离相封母、出口PT、中性点

发电机定子单相接地处理(仅给借鉴)

发电机定子绕组单相接地,是发电机最常见的一种电气故障。非故障相对地电压上升为线电压,可能导致绝缘薄弱处发生接地形成两点接地短路,扩大事故。定子绕组单相接地的危害性主要是流过故障点的电容电流产生电弧可能烧坏定子铁心,进一步造成匝间短路或相间短路(铁心灼伤后造成磁场分布不均,定子绕组局部温度高,后果必然是相间短路损坏发电机。),使发电机遭受更为严重的破坏。 6kV发电机为中性点不接地系统,当发生定子绕组单相接地时,故障点将出现零序电压。下面以A相定子绕组任一点发生金属性接地故障为例进行分析。如图1所示,假设A相在距中性点a处(a表示由中性点到故障点的匝数占该相总匝数的百分数)的d点发生接地故障。 则零序电压为(推导过程略):Ud0=-aEA 上式表明,故障点的零序电压与a成正比, 即接地点离中性点越远,零序电压越高。这样,可以利用接于机端的电压互感器开口三角形侧取得零序电压,构成单相接地保护,如图2所示。 零序电压型单相接地保护,是从机端电压互感器开口三角形侧取得零序电压,接入保护用的过电压继电器。理想情况下,发电机正常运行时,TV开口三角形侧无零序电压,继电器不动作。但实际上,发电机在正常运行情况下,其相电压中存在三次谐波电压;另外,在变压器高压侧发生接地短路时,由于变压器高低压绕组之间有电容存在,发电机机端也会产生零序电压。为了保证保护动作的选择性,保护的整定值应躲开上述三次谐波电压与零序电压。根据运行经验,电压值一般整定为15~20V之间。按此值整定后,由于靠近中性点附近发生接地故障时,零序电压低,保护可能不会起动,故此种保护的保护范围约为由机端到中性点绕组的85%左右,保护存在死区。 规程规定,对于出口电压为6 3kV的发电机,当接地电流等于或大于5A时,单相接地保护作用跳闸;小于5A时,一般只发信号不跳闸,这是基于保护发电机定子绕组而作出的规定。 保护动作时间国家有关规程对发电机定子绕组单相接地保护的动作时间未作明确规定,各电厂应根据本厂机组的实际运行情况给出延时时间。根据运行经验,延时时间应躲过变压器高压侧后备保护的动作时间,一般为3~5s为宜,否则容易误动。 发电机定子绕组单相接地保护,对于中小型发电机,可采用零序电压型保护,实际运行中,应根据系统接线与运行方式,决定保护接线、定值整定、跳闸方式等,以利于发电机定子单相接地保护准确而可靠地动作。 如果查明接地点在发电机内部(在窥视孔能见到放电火花或电弧),应立即减负荷停机,并向上级调度汇报。如果现场检查不能发现明显故障,但“定子接地”报警又不消失,应视为发电机内部接地,30min内必须停机检查处理。 一、零序电压式定子接地保护的整定计算 1、零序动作电压 零序电压式定子接地保护的动作电压,应按躲过发电机正常工况下及恶劣条件下发电机系统

几种发电机100%定子接地保护的应用

几种发电机100%定子接地保护的应用 孙 琦 (上海阿海珐电力自动化有限公司 上海市 201315) 【摘要】 简要介绍几种发电机100%定子接地保护装置的原理、应用效果和试验维护。 【关键词】 100%定子接地保护 原理 运行比较 应用和维护 【数据库分类号】 SZ09 0 概述 单相接地是发电机常见的故障,发电机接地保护是发电机的主保护之一。我国G B/T142582 2006《继电保护及安全自动装置设计技术规程》规定:“100MW及以上大型发电机必须装设100%定子接地保护”。在1995年12月“大机组继电保护调研工作会议”上,针对当时100%定子接地保护运行中出现的问题,又提出:“对由基波和三次谐波零序电压构成的发电机定子接地保护基波段和三次谐波段分开,三次谐波段只投信号”。 在实际应用中,在确定具体的发电机定子接地投运方式时,应了解该发电机实际的单相接地电容电流,由此确定发电机定子接地保护的合理投运方式,即确定保护是投跳闸还是投信号。 为确保大型发电机的运行安全,定子接地保护的设置应确保在接地故障发生时不使单相接地故障电流发展成为相间或匝间短路电流,应使单相接地故障处不产生电弧或者使接地点电弧瞬间熄灭。这个不产生电弧的最大接地电流被定义为发电机单相接地的安全电流。 我国发电机单相接地的安全电流标准原来沿用苏联标准。规定接地电流大于5A时接地保护作用于跳闸,小于5A时保护投信号。 随着大容量发电机组在电力系统中的投运台数逐年增长,大容量发电机组在电力系统中处于更为重要的地位,对接地保护技术提出了更高的要求;随着发电机制造中电工材料质量、工艺水平的大幅度提高,发电机运行的水平可以上升也能够上升到一个更高的台阶;根据对大容量发电机组在运行中出现的问题的分析来看:5A的定子接地电流,不是一个安全的接地电流。 所以,国标G B/T1428522006《继电保护及安全自动装置设计技术规程》中对发电机定子接地电流允许值应按制造厂的规定值,如无制造厂提供的规定值可参照表1所列数据。 目前,我国的接地保护的设计、制造、安装、调试和运行维护基本遵循上述标准和规定。设计时保护装置保护的接地点故障电流一般不超过安全电流,以确保定子铁芯的安全;保护范围力求覆盖整个定子绕组;保护区内任一点接地故障争取有足够高的灵敏度;故障时暂态过电压数值尽可能小,不能威胁发电机的运行安全。 1 当前电网中运行的几种100%定子接地保护 当前,我国电网中运行着多国、多种型号的100%定子接地保护。如: 收稿日期:2007203215。

低压电网中有关电动机的接地保护问题.doc

低压电网中有关电动机的接地保护问题- 根据国标GB50055-93规定,低压交流电动机应装设接地故障保护,并规定接地故障保护应符合现行国标《低压配电设计规范》中规定。当电动机短路保护器件满足接地故障保护要求时,应采用短路保护兼作接地保护。在《低压配电设计规范》中规定:当配电线路采用熔断器作短路保护时,对于中性点直接接地网络,如果被保护线路末端发生单相接地短路时,其短路电流值不小于熔体额定电流的4倍。当用自动开关作短路保护时,其短路电流不应小于自动开关瞬时或短延时过电流脱扣器整定电流的1.5倍。 对于低压供电系统按其接地方式可分为:TN-C、TN-C-S、TN-S、TT及IT系统,在工厂配电最常用的为TN-C、TN-S系统,而近年来尤以TN-S系统在石油化工企业中应用最为广泛。 当供电线路末端发生单相接地短路时,短路电流与系统、变压器及线路的正序、负序、零序阻抗的大小有关。变压器的零序阻抗与其接线形式有很大关系,Yy接线变压器零序阻抗远远大于Dy接线变压器的零序阻抗。在系统阻抗和变压器阻抗一定的情况下,短路电流与配电线路的阻抗有关,即线路越长,导线截面越小则导线阻抗越大,相应短路电流越小。一方面我们希望短路电流小而减小接地故障造成的损失,而另一方面我们也希望故障电流大而易于检测,迅速切除故障。虽然采用高阻接地系统可以把接地故障电流限制得很小,使系统能够带故障运行而提高供电系统的可靠性,但因其故障电流很小,对保护报警设备要求较高,而很少在石油化工企业中应用。 在石油化工企业中,为了提高线路末端单相接地故障电流

而能满足保护需求,通常做法是除了电动机外壳以扁钢接地外,对于电动机回路采用3+1芯电缆供电,有时甚至采用四芯等截面电缆以降低线路的零序阻抗。 下面就TN-S系统内对于低压电动机的单相接地保护在一具体工程中的设定,谈一点体会。例如,某系统容量SX=100MV A;变压器:160kV A,Dy11,Ud=6%,Pd=14.5kW. 低压系统采用BFC式低压抽屉柜配电,由于该变电所为化工罐区变电所,负荷分散,而且距离远近不同,电动机功率也相差甚大,现选两条典型回路进行分析说明:①距配电室280m远装有75kW电动机回路;②距配电室280m远,装有2.2kW电动机回路。 (1)电缆的选择: (2)保护设定: 2.2kW电动机: 单相接地短路电流/断路器瞬时脱扣器整定电流=0.09/0.126=0.714<1.5 75kW电动机: 线路末端发生单相接地短路时,可从熔断器特性曲线上查得:熔断器在10s内熔断。 可以看出两者均满足规范要求,但是由于所选用的是抽屉柜,需用自动空气断路器实现抽屉柜带电不能开门的连锁要求,而且为了操作方便,我们对于上述2.2kW电动机回路选用熔断器加空气断路器加接触器回路方案,由NT熔断器作为短路保护。考虑到对于上述75kW回路虽然采用熔断器作为短路保护能够满足规范要求,但如果线路末端发生单相接地短路,短路电流不是很大,熔断器熔断时间过长,不利于安全运行,我们采用限流

利用三次谐波电压构成的100%发电机定子接地保护

利用三次谐波电压构成的100%发电机定子接地保护的工作原理? 由于发电机气隙磁通密度的非正旋分布和铁芯饱和的影响,其定子中的感应电动势除基波外,还含有三、五、七次等高次谐波。因为三次谐波具有零序分量的性质,在线电动势中它们虽然不存在,但在相电动势中亦然存在,设以E3表示之。 为便于分析,假定: (1)把发电机每相绕组对地电容CG分成相等的两部分,每部CG/2分等效地分别集中在发电机的中性点N和机端S。 (2)将发电机端部引出线、升压变压器、厂用变压器以及电压互感器等设备的每相对地电容CS 也等效的集中放在机端。 根据理论分析,在上述加设条件下,可得出下列结论: (1)当发电机中性点绝缘时,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为 US3/UN3=CG/(CG+2CS)<1 (2)当发电机中性点经消弧线圈接地时,若基波电容电流被完全补偿,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为 US3/UN3=(7CG-2CS)/9(CG+2CS)<1 (3)不论发电机中性点是否接有消弧线圈,当在距发电机中性点α(中性点到故障点的匝数占每相分支总匝数的百分比)处发生定子绕组金属性单相接地时,中性点N和机端S处的三次处的三次谐波电压恒为 UN3=αE3 US3=(1-α)E3 如图所示: 从上图中可以看出,UN3=f(α)、US3=f(α)皆为线性关系,它们相交于α=0.5处;当发电机中性点接地时,α=0,UN3=0,US3=E3; 当机端接地时,α=1,UN3=E3,US3=0; 当α<O.5时,恒有US3>UN3; 当α>O.5时,恒有 UN3>US3。 综上所述,用US3作为动作量,UN3作为制动量构成发电机定子绕组单相接地保护,且当US3>

关于定子接地保护的几个问题

关于定子接地保护的几个问题 李玉海张小庆徐敏 摘要以几次事故为例说明:用“允许接地电流”来决定定子接地保护投运方式是不合理的。对于双水内冷发电机及没有匝间保护的大、中型发电机,其定子接地保护应投跳闸。3次谐波电压型接地保护动作可靠性低的原因是:调整不当,工作环境条件差,回路及继电器本身有缺陷。为提高其动作可靠性,应掌握机组机端3次谐波电压和中性点3次谐波电压的变化规律,改善环境,并及时更换不良的3次谐波电压型保护。发电机中性点经配电变压器接地,降低了定子接地保护的动作灵敏度,对经计算不可能产生过电压的发电机,应将配电变压器换成单相电压互感器(TV)或消弧线圈。无条件换时,应尽量增加二次侧并联电阻。基波零序电压型接地保护的定值应为5 V~10 V。 关键词定子接地保护投运方式灵敏度可靠性 分类号TM 772 TM 307 STUDY ON STATOR EARTH FAULT PROTECTION Li Yuhai, Zhang Xiaoqing, Xu Min (Northwest China Electric Power Test & Research Institute, 710054, Xi'an, China) Abstract Based on the experiences obtained from a number of fault analyses, the operation mode can not be determined by permissible ground current. For double-water inner-cooled generator and the large and medium sized generator without interturn fault protection, the stator earth fault protection should act on tripping. Low reliability of 3ω based earth fault protection is mainly resulted from improper adjustment , relatively bad working condition and the inherent defects in relay circuit. In order to raise reliability of 3ωbased earth fault protection, change of U*s3 and U*N3 with generator stator voltage and load should be measured, working condition should be improved and the protection not working properly should be replaced with new one. Grounding the generator neutral through distribution transformer will decrease sensitivity of stator earth fault protection. For the generator without possibility of over-voltage through calculation, the single phase potential transformer or arc-suppression coils should be used to replace the distribution transformer, if doing so is impossible, resistance of the resistor parallelly connected with secondary winding of distribution transformer based earth fault should be increased properly. The setting value of 3u protection should be 5 V~10 V. Keywords stator earth fault protection operation mode sensitivity reliability

发电机定子接地保护动作跳闸分析

发电机定子接地保护动 作跳闸分析 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

发电机定子接地保护动作跳闸分析郑州热电厂3号发电机为典型的发电机变压器组(发变组)单元接线,发电机为东方电机厂生产的QFSN-200-2型,机组于1992年投运,现处于稳定运行期。2001-11-18,3号发电机处于正常运行状态,当时机组带有功负荷125MW,无功负荷25Mvar,对外供热量160t/h。 1事故经过 凌晨01:35,3号机集控室铃响,中央信号盘发出“保护回路故障”和“故障录波器动作”光字,随即喇叭叫,中央信号盘又出“发电机定子接地”、“主汽门关闭”、“断水保护动作”、“远方跳闸动作”、“6kV配电装置故障”光字,发变组表计无明显冲击,发变组控制盘发电机出线开关Ⅲ建石1、灭磁开关Q7、励磁调节柜输出开关Q4绿灯闪光,除副励电压表外,发变组其它表计均无指示;厂用电盘6kVⅠ、Ⅱ段出“BZT动作”光字,6kV高压厂用电备用电源进线开关6107,6207 红灯闪光,6kV高压厂用电备用变压器高压侧开关建备1绿灯平光, 6kVⅠ、Ⅱ段电压表指示为0,高、低压厂用电失电,集控室工作照明失去,保安电源联动正常,值班人员立即退出6107,6207联动开关,将上述跳闸开关复位后,发现Ⅲ建石1、Q7、6kV高压厂用电工作电源进线开关6104,6204均为绿灯平光,红灯闪光,由于灯光指示异常,为防止扩大事故,在确认6104,6204断开后,于01:38,手动合上建备1,高、

低压厂用电恢复正常。到保护间检查,发变组保护A柜“发电机定子接地零序电压”和“发电机定子接地三次谐波”发信、跳闸灯均亮,“主汽门关闭”和“发电机断水”灯亮。值班人员对发变组所属一次系统外观进行检查,未发现明显异常。厂用电失压期间,接于3号机UPS的机、炉所有数字监视表计均无指示。02:35,在高低压厂用电恢复正常后,3号发电机从0起升压,当定子电压升至2kV时,发电机零序电压为2V,当定子电压升至2.5kV时,中央信号盘出“定子接地”光字,于是将发电机电压降至0,断开Q4和微机非线性励磁调节器控制开关KK1、KK2,通知检修进一步查找原因。运行值班人员将发变组解备,并将发电机气体置换后,检修人员拆掉发电机5m处出线,对发电机做交直流耐压试验正常,封闭母线出线、主变及高压厂用变做交流耐压试验正常,然后逐一将发电机出线电压互感器推入工作位置,做交流耐压试验,当推入发电机出线电压互感器2YHA时,发现2YHA相泄漏电流达50mA,其它相只有1mA,遂判断为2YHA故障,将其更换并恢复发电机接线,机组重新从0升压正常。 2原因分析及对策 此次事故原因通过电气检修做交、直流耐压试验及更换发电机出线电压互感器2YHA后,发电机重新零起升压正常的情况看,可以确认为是发电机出线电压互感器2YHA相对地绝缘降低,造成发电机定子接地保护动作引起。

发电机定子接地处理及原因分析(完稿)

中国华能集团公司 2017年技师考评申报材料 (论文) 申报单位:华能九台电厂 姓名:赵丽丽 工种:电气试验工 专业:电气检修

发电机定子接地处理及原因分析 华能吉林发电有限公司九台电厂赵丽丽 摘要:发电机是电力之源,作为火力发电厂主要设备,发电机的定子和转子绕组绝缘和接头由于电、热和机械振动影响会逐渐老化和接触不良,运行中易产生事故。发电机在日常生产中起着至关重要的作用,它的健康运行与否直接关系到发电厂能否经济运行,当发电机发生接地故障时,对事故发生原因进行分析和判断,并根据现场保护动作及设备情况及时分析原因,准确判断出是一次设备还是二次设备造成,并快速消除设备隐患,保证机组安全稳定运行。本文介绍了我厂发电机定子接地故障的查找过程、处理经过、原因分析及防范措施等。 关键词:发电机绝缘定子接地直流耐压故障分析 1、机组概述 我电厂2号发电机组为670MW超临界燃煤发电机组,汽轮发电机(QFSN-670—2型)由哈尔滨电机厂有限责任公司制造。机组型式为水-氢-氢冷670MW发电机组。本型发电机为三相交流隐极式同步发电机。发电机采用整体全密封、内部氢气循环、定子绕组水内冷、定子铁芯及端部结构件氢气表面冷却、转子绕组气隙取氢气内冷的冷却方式。定子电压20KV,定子电流21.49KA。该机组于2009年12月6日投运至今,曾发生过励侧主引线并联环上下接头处漏氢已处理好,本次故障发生前机组运行稳定,已持续运行一年多。 2、机组运行方式及动作情况 故障前,我厂1号、2号机组正常双机运行,1号发电机有功功率540MW,2号发电机有功功率465MW,频率50Hz。,2号发电机组于2014年08月22日19时06分跳闸,发变组保护正确动作,厂用电切换正确。主机联跳2号炉机组打闸停机,500KV开关场内5021、5022断路器跳闸,检查发变组保护动作报告为:2014-08-22 19:06:22:111,01000ms,定子零序电压,01005ms,定子零序电压高段。查看发变组保护起动后1至2个周波内发电机机端电压UA1=16.67V,UB1=82.24V,UC1=89.28V,发电机机端零序电压值72.18V,发电机中性点零序电压值40.12V。(详见附图1)

发电机定子单相接地保护

发电机定子绕组单相接地保护方案综述 发布: 2009-8-07 09:59 | 作者: slrd8888 | 查看: 882次 1 前言 定子绕组单相接地故障是发电机最常见的一种故障,而目往往是更为严重的绕组内部故障发生的先兆,因此定子接地保护意义重大。目前实际应用中比较成熟的定子接地保护有基波零序电压保护、三次谐波电压保护及二者组合构成的保护,国外的发电机中性点大都是经高阻接地,较多的采用的是外加电源式的保护。近十几年微机保护的飞速发展,为新保护原理的开发提供了强大的硬件平台和广阔的软件空间。其中基于自适应技术、故障分量原理和小波变换的保护比较突出,它们有力地推动了单相接地保护技术的发展。 扩大单元接线的发电机定子接地保护迫切需要具有选择性的保护方案,由于零序方向保护自身的缺陷、基于行波原理的保护在理论和技术上尚不够成熟,因此将小波变换应用到选择性定子接地保护有着重要的意义。 2 定子绕组单相接地保护方案 发电机定子绕组单相接地时有如下特点:内部接地时,流经接地点的电流为发电机所在电压网络对地电容电流的总和,此时故障点零序电压随故障点位置的改变而改变;外部接地故障时,零序电流仅包含发电机本身的对地电容电流。这些故障信息对接地保护非常重要,下面就介绍几种定子接地保护方法。 2.1 零序电流定子接地保护 由单相接地故障特点可知,对直接连在母线上的发电机发生内部单相接地时,外接元件对地电容较大,接地电流增大超过允许值,这就是零序电流接地保护的动作条件。这种保护原理简单,接线容易。但是当发电机中性点附近接地时,接地电流很小,保护将不能动作,因此零序电流保护存在一定的死区。 2.2 基波零序电压定子接地保护

发电机定子接地保护

大容量发电机为什么要采用100%定子接地保护?并说明附加直流电压的100%定子绕组单相接地保护的原理? 答:利用零序电流和零序电压原理构成的接地保护,对定子绕组都不能达到100%的保护范围,在靠近中性点附近有死区,而实际上大容量的机组,往往由于机械损伤或水冷系统的漏水原因,在中性点附近也有发生接地故障的可能,如果对之不能及时发现,就有可能使故障扩展而造成严重损坏发电机事故。因此,在大容量的发电机上必须设100%保护区的定子接地保护。发电机正常运行时,电流继电器线圈中没有电流,保护不动作。当发电机定子绕组单相接地时,直流电压通过定子回路的接地点,加到电流继电器上,使之有电流通过而动作,并发出信号。 根据3U。的计算公式,当故障发生在机端时U。的值最大,整定值容易选择,当故障发生在中性点附近时,U。很小无法确定整定值。于是零序电压接地保护在中性点附近存在死区。所以利用发电机相电压中固有的少量三次谐波做三次谐波接地保护,三相绕组中的三次谐波电势通过绕组对地分布电容和发电机所连接设备对地导纳形成Us和Un,大小与机端和中性点对地等值导纳成反比,由于机端所连接设备对地电容使机端等值电容增大,故通常Us≤Un。接地故障时,接地点迫使Us和Un发生变化,故障点越靠近中性点,Un减小得越多,而Us增大得越多,因此利用三次谐波电压Us与Un的相对变化,可以有效的消除中性点附近的保护死区,与前述的3U。构成100%接地保护

发电机定子接地是指发电机定子绕组回路及与定子绕组回路直接相连的一次系统发生的单相接地短路。定子接按接地时间长短可分为瞬时接地、断续接地和永久接地;按接地范围可分为内部接地和外部接地;按接地性质可分为金属性接地、电弧接地和电阻接地;按接地原因可分为真接地和假接地。1)定子接地的原因可能引起发电机定子接地的原因有:◆ 小动物引起定子接地。如老鼠窜入设备,使发电机一次回路的带电导体经小动物接地,造成瞬时接地报警。 ◆ 定子绕组绝缘损坏。除了绝缘老化的原因,主要还有各种外部原因引起绝缘损坏。如定子铁芯叠装松动、绝缘表面落下导电性物体(如铁屑)、绕组线棒在槽中固定不紧等,在运行中产生振动使绝缘损坏;制造发电机时,线棒绝缘留有局部缺陷,运转时转子零件飞出,定子端部固定零件帮扎不紧,定子端部接头开焊等因素均能引起绝缘损坏。◆ 定子绕组引出线回路的绝缘瓷瓶受潮或脏物引起定子回路接地;◆ 水冷机组漏水及内冷却水导电率严重超标,引起接地报警;◆ 发变组单元接线中,主变压器低压绕组或高压厂用变压器高压绕组内部发生单相接地,都会引起定子接地报警信号;发电机带开口三角形绕组的电压互感器高压熔断器熔断时,也会发出定子接地报警信号,这种现象通常称为“假接地”。2)定子接地的现象及判断当发电机定子绕组及与定子绕组直接连接的一次回路发生单相接地或发电机电压互感器高压熔断器熔断时,均发出“`定子接地”光字牌报警信号,按下发电机定子绝缘测量按钮,“定子接地”电压表出现零序电压指示。发电机发出“定子接地”报警后,应判断接地相别和真、假接地。判断的方法是:当定子一相接地为金属性接地时,通过切换定子电压表可测得接地相对地电压为零,非接地相对地电压为线电压,各线电压不变且平衡。按下定子绝缘测量按钮,“定子接地”电压表指示为零序电压值,其值应为100V。如果一点接地发生在定子绕组内部或发电机出口且为电阻性,或接地发生在发变组主变压器低压绕组内,切换测量定子电压表,测得的接地相对地电压大于零而小于相电压,非接地相对地电压大于相电压而小于线电压,“定子接地”电压表指示小于100V。当发电机电压互感器高压侧一相或两相熔断器熔断时,其二次侧开口三角形绕组端电压也要升高。如U相熔断器熔断,发电机各相一次对地电压未发生变化,仍为相电压,但电压互感器二次侧电压测量值因U相熔断器熔断发生了变化,即UUV、UWU降低,而UVW仍为线电压(线电压不平衡),各相对地电压UV0、UW0接近相电压,UU0明显降低(相对地无电压升高),“定子接地”电压表指示为100/3V,发出“定子接地”光字牌信号(假接地)。综上所述,真、假接地的根本区别在于:真接地时,定子电压表指示接地相对地电压降低(或等于零),非接地相对地电压升高(大于相电压但不超过线电压),而线电压仍平衡;假接地时,相对地电压不会升高,线电压也不平衡。这是判断真、假接地的关键。3)发电机定子接地的处理对于中性点不接地或经中性点经消弧线圈接地的发电机(200MW及以下),当发生单相接地时,接地点六均不超过允许值(2~4A),故可继续运行,并查找和处理接地故障,若判明接地点在发电机内,应立即减负荷停机,若接地点在机外,运行时间不超过2h;对于中性点经高阻接地的发电机(200MW及以上),当发生单相接地时,姐弟保护一般作用于跳闸,动作跳闸待机停转后,通过摇测接地电阻,找出故障点。这是考虑接地点发生在发电机内部时,接地电弧电流易使铁芯损坏,对大机组来说,铁芯损坏不易修复。另外,接地电容电流能使铁芯熔化,融化的铁芯又会引起损坏区扩大,使有效铁芯“着火”,由单相短路发展为相间短路。由上所述,当接到“定子接地”报警后,若判明为真接地,应检查发电机本体及所连接的一次回路,如接

利用三次谐波电压构成的100%发电机定子接地保护的工作原理

由于发电机气隙磁通密度的非正旋分布和铁芯饱和的影响,其定子中的感应电动势除基波外,还含有三、五、七次等高次谐波。因为三次谐波具有零序分量的性质,在线电动势中它们虽然不存在,但在相电动势中亦然存在,设以E3表示之。 为便于分析,假定: (1)把发电机每相绕组对地电容CG分成相等的两部分,每部CG/2分等效地分别集中在发电机的中性点N和机端S。 (2)将发电机端部引出线、升压变压器、厂用变压器以及电压互感器等设备的每相对地电容CS也等效的集中放在机端。 根据理论分析,在上述加设条件下,可得出下列结论: (1)当发电机中性点绝缘时,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为 US3/UN3=CG/(CG+2CS)<1 (2)当发电机中性点经消弧线圈接地时,若基波电容电流被完全补偿,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为 US3/UN3=(7CG-2CS)/9(CG+2CS)<1 (3)不论发电机中性点是否接有消弧线圈,当在距发电机中性点α(中性点到故障点的匝数占每相分支总匝数的百分比)处发生定子绕组金属性单相接地时,中性点N和机端S处的三次处的三次谐波电压恒为 UN3=αE3US3=(1-α)E3 如图所示:

从上图中可以看出,UN3=f(α)、US3=f(α)皆为线性关系,它们相交于α=0.5处;当发电机中性点接地时,α=0,UN3=0,US3=E3;当机端接地时,α=1,UN3=E3,US 3=0;当α<O.5时,恒有US3>UN3;当α>O.5时,恒有UN3>US3。 综上所述,用US3作为动作量,UN3作为制动量构成发电机定子绕组单相接地保护,且当US3>UN3时保护动作,则在发电机正常运行时保护不会误动,而在发电机中性点附近发生接地时,保护具有很高的灵敏度。用这种原理构成的发电机定子绕组单相接地保护,可以保护定子绕组中性点及其附近范围内的接地故障,对其余范围则可用反应基波零序电压的保护,从而构成了100%发电机定子绕组接地保护。

发电机保护配置

发电机保护基本原理 发电机可能发生的故障 定子绕组相间短路 定子绕组匝间短路 定子绕组一相绝缘破坏引起的单相接地 励磁回路(转子绕组)接地 励磁回路低励(励磁电流低于静稳极限对应的励磁电流)、失磁 发电机主要的不正常工作状态 过负荷 定子绕组过电流 定子绕组过电压 三相电流不对称 过励磁 逆功率 失步、非全相、断路器出口闪络、误上电等 发电机的主要保护和作用 纵差保护 作用:发电机及其引出线的相间短路保护 规程:1MW以上发电机,应装设纵差保护。对于发电机变压器组:当发电机与变压器间有断路器时,发电机装设单独的纵差保护;当发电机与变压器间没有断路器时,100MW及以下发电机可只装设发电机变压器组公用纵差保护;100MW及以上发电机,除发电机变压器组公用纵差保护还应装设独立纵差保护,对于200MW及以上发电机变压器组亦可装设独立变压器纵差保护。 与发变组差动区别:发变组差动需要考虑厂用分支,要考虑涌流制动、各侧平衡调节。 纵向零序电压 作用:发电机匝间短路(也能反映相间短路)。 规程:50MW以上发电机,当定子绕组为星形接线,中性点只有三个引出端子时,根据用户和制造厂的要求,也可装设专用的匝间短路保护。 定子接地 作用:定子绕组单相接地是发电机最常见的故障,由于发电机中心点不接地或经高阻接地,定子绕组单相接地并不产生大的故障电流。 常用保护方式:基波零序电压(90%)、零序电流、三次谐波零序电压(100%) 定子接地 规程:与母线直接连接的发电机:当单相接地故障电流(不考虑消弧线圈的补偿作用)大于允许值时,应装设有选择性的接地保护装置。保护装置由装于机端的零序电流互感器和电流继电器构成,其动作电流躲过不平衡电流和外部单相接地时发电机稳态电容电流整定,接地保护带时限动作于信号,但当消弧线圈退出运行或由于其它原因,使残余电流大于接地电流允许值时应切换为动作于停机。 发电机变压器组:对100MW以下发电机应装设保护区不小于90%的定子接地保护,对100MW及以上的发电机应装设保护区为100%的定子接地保护。保护装置带时限动作于信号必要时也可动作于停机。 励磁回路接地保护 作用:励磁回路一点接地故障对发电机并未造成危害。但若继而发生两点接地将严重危害发电机安全。 实现方法:采用乒乓式原理。 规程:1MW及以下水轮发电机,对一点接地故障宜装设定期检测装置,1MW以上水轮发电机应装设一点接地保护装置。 100MW以及汽轮发电机,对一点接地故障可采用定期检测,装置对两点接地故障应装设两点接地保护装置。 转子水内冷汽轮发电机和100MW及以上的汽轮发电机,应装设励磁回路一点接地保护装置,并可装设两点接地保护装置,对旋转整流励磁的发电机宜装设一点接地故障定期检测装置。 一点接地保护带时限动作于信号两点接地保护应带时限动作于停机。 失磁保护 作用:为防大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统

发电机定子接地3W

发电机3W定子接地保护 一、保护原理 保护反应发电机机端和中性点侧三次谐波电压大小和相位,反应发电机中性点向机内20%或100%左右的定子绕组单相接地故障,与发电机3U0定子接地保护联合构成100%的定子接地保护。见图一: 图一发电机定子接地3W保护逻辑 二、一般信息

K1,K2,K3整定方法及试验:开机带负荷整定 2.5投入保护 开启液晶屏的背光电源,在人机界面的主画面中观察此保护是否已投入。(注:该保护投入时其运行指示灯是亮的。)如果该保护的运行指示灯是暗的,在“投退保护”的子画面点击投入该保护。 2.6参数监视 点击进入发电机3W定子接地保护监视界面,可监视保护的整定值、动作量和制动量;待整定动作量和待整定制动量,以及3W保护的自动整定界面。 二、保护动作特性测试 发电机3W定子接地K值整定 附图 ①待发电机并网后,最好带20%~30%的负荷,拔掉3W保护的投退压板;

②中性点先不挂电阻,带20%~30%的负荷,单击“自动计算K1/K2一次”按钮,此时待整 定三次谐波动作量接近于0,点击“设定允许修改定值状态”按钮,改变“禁止修改定值状态”为“允许”,单击“将自动计算K1K2值写入保护装置”按钮,将K1、K2定值写入保护装置; ③带20%~30%的负荷时,在中性点挂上电阻(建议:水电机组1~3K,火电机组3~5K), 单击K3调整按钮(K3下方的四个按钮分别表示增大、减小、粗调、细调),将“待整定三次谐波动作量”调整略大于“待整定三次谐波制动量”,单击“将自动计算K1K2值写入保护装置”按钮,将K3定值写入保护装置; ④注意:此时千万不要按“自动计算K1/K2一次”按钮及调整K1 、K2的值; ⑤撤除电阻,调试完毕。 ⑥如果采用绝对值比较式原理,写入定值K1=1,K2=0;依照步骤三、四和五整定K3 三、动作时间定值测试 在发电机机端TV开口三角电压侧突然加1.5倍三次谐波定值电压,记录动作时间。 四、TV断线闭锁逻辑测试 在发电机机端TV开口三角电压端子侧加入三次谐波电压,并超过整定值,定子接地3W信号亮(一般只发信不跳闸);在发电机机端TV加三相不平衡电压,使发TV断线信号,定子接地3W信号可复归,TV断线信号灯亮。 保护逻辑是否正确(打“√”表示):正确□错误□ 保护出口方式是否正确(打“√”表示):正确□错误□ 保护信号方式是否正确(打“√”表示):正确□错误□

发电机100定子接地保护

发电机100%定子接地保护 发电机定子单相接地后,接地电流经故障点、三相对地电容、三相定子绕组而构成通路。当接地电流较大能在故障点引起电弧时,将使定子绕组的绝缘和定子铁芯烧坏,也容易发展成危害更大的定子绕组相间或匝间短路。 第一部分是基波零序电压式定子接地保护: 保护接入的3Uo电压,取自发电机机端电压互感器开口三角绕组两端和发电机中性点单相电压互感器的二次。零序电压式定子接地保护的交流输入回路如图1所示。 第二部分是利用发电机三次谐波电动势构成的定子接地保护 由于发电机气隙磁通密度的非正旋分布和受铁芯饱和的影响,其定子中的感应电动势除基波外,还含有三、五、七次等高次谐波。因为三次谐波具有零序分量的性质,在线电动势中它们虽然不存在,但在相电动势中亦然存在。 正常运行时,发电机中性点的三次谐波电压总是大于发电机机端的三次谐波电压。而当发电机靠中性点侧0~50%范围内有接地故障时,发电机机端的三次谐波电压大于发电机中性点的三次谐波电压。 根据发电机定子绕组中性点附近接地故障的三次谐波分布特性,保护装置取发电机中性点及机端三次谐波电压,并对其进行大小和相位的矢量比较。三次谐波定子接地保护交流接入回路如图6所示。该保护的动作逻辑图如图7所示。

发电机启停机和误上电保护 1、300MW及以上发电机组,一般都要装设误上电保护,以防止发电机起停机时的误操作。当发电机盘车或转子静止时发生误合闸操作,定子的电流(正序电流)在气隙产生的旋转磁场会在转子本体中感应工频或接近工频的电流,会引起转子过热而损失。 误上电保护原理是将误上电分成两个阶段。以开机为例,第一阶段:从开机到合磁场开关。在这期间,由于无励磁,发电机不可能进行并网操作,因此要求发电机断路器合闸和定子有电流,则必然为误上电,瞬时跳闸;第二阶段:从合磁场开关到并网。在这期间,用阻抗元件来区分并网和误上电,误上电一般可做到0.5s内跳闸,并且误上电情况越严重,跳闸也越快。 误上电保护在发电机并网后自动退出运行,解列后自动投入运行。 保护引入发电机三相电流和主变高压侧或者发电机侧两相电流和两相电压 2、误上电保护:发电机盘车时,未加励磁,断路器误合,造成发电机异步起动。(2)发电机起停过程中,已加励磁,但频率低于一定值,断路器误合。3)发电机起停过程中,已加励磁,但频率大于一定值,断路器误合或非同期。 启停机保护: 发电机启动或停机过程中,配置反应相间故障的保护和定子接地故障的保护。由于发电机启动或停机过程中,定子电压频率很低,因此保护采用了不受频率影响的算法,保证了启停机过程中对发电机的保护。以上的启停机保护的投入可经低频元件闭锁,也可经断路器位置辅助接点闭锁。 发电机起停过程中,已加励磁,但频率大于定值,断路器误合或非同期。采用断路器位置接点,经控制字可以投退。判据延时0.2s投入(考虑断路器分闸时间),延时t1退出其时间应保证跳闸过程的完成。当发电机非同期合闸时,如果发电机断路器两侧电势相差180°附近,非同期合闸电流太大,跳闸易造成断路器损坏,此时闭锁跳断路器出口,先跳灭磁开关,当断路器电流小于定值时再动作于跳出口开关。 发电机起停过程中,已加励磁,但频率低于定值,断路器误合。采用低频判据延时0.2s投入,频率判据延时t1返回,其时间应保证跳闸过程的完成。 1、启停机保护; 有些情况下,由于操作上的失误或其它原因使发电机在启动或停机过程中有励磁电流,而此时发电机正好存在短路或其它故障,由于此时发电机的频率低,许多保护继电器的动作特性受频率影响较大,在这样低的频率下,不能正确工作,有的灵敏度大大降低,有的则根本不能动作。 鉴于上述情况,对于在低转速下可能加励磁电压的发电机通常要装设反应定子接地故障和反应相间短路故障的保护装置。这种保护,一般称为启停机保护。现在一些微机保护装置都有频率自适应(跟踪)功能,保证偏离工频时,特别在发电机在开停机过程(5~65HZ),不影响保护的灵敏度。因此没有必要再装设启停机保护,海盐力源引进美国GE公司的G60微机保护正是如此。 2、误上电保护(盘车状态下误合闸) 发电机在盘车过程中,由于出口开关误合闸,突然加上三相电压,而使发电机异步启动的情况,在国外曾多次出现过,它能在几秒钟内给机组造成损伤。盘车中的发电机突然加电压后,电抗接近Xd'',并在启动过程中基本上不变。计及升压变压器的电抗Xd和系统联接电抗Xs,并且在较小时,流过发电机定绕组的电流可达3~4倍额定值,定子电流所建立的旋转磁场,将在转子中产生差频电流,如果不及时切除电源,流过电流的持续时间过长,则在转子上产生的热效应I22t将超过允许值,引起转子过热而遭到损坏。此外,突然加速,还可能因润滑油压低而使轴瓦遭受损坏。 因此,对这种突然加电压的异常运行状况,应当有相应的保护装置,以迅速切除电源。对于这种工况,逆功率保护、失磁保护、机端全阻抗保护也能反应,但由于需要设置无延时元件;盘车状态,电压互感器和电流互感器都已退出,限制了其兼作突加电压保护的使用。一般来说,设置专用的误合闸保护比较好,不易出现差错,维护方便。 误上电保护实现的原理多种多样,其原理大同小异,主要区别在于发电机停机状态的鉴别元件,有的用低频元件,有的用低电压元件,均辅以开关的辅助触点。

相关文档
最新文档