中科院半导体研究所俞育德光互连硅光器件与PIC现状和发展趋势

中科院半导体研究所俞育德光互连硅光器件与PIC现状和发展趋势
中科院半导体研究所俞育德光互连硅光器件与PIC现状和发展趋势

中科院半导体研究所俞育德:光互连硅光器件与PIC现状和发展趋势

中科院半导体研究所俞育德:光互连硅光器件与PIC现状和发展趋势

由中国计算机学会主办,中国软件行业协会数学软件分会协办,中国计算机学会高性

能计算专业委员会、桂林电子科技大学共同承办的2013年全国高性能计算学术年会(HPC China2013)在广西桂林召开。本届盛会围绕着高性能计算技术的研究进

展与发展趋势、高性能计算的重大应用等主题展开,促进信息化与工业化的深度融合,为相关领域的学者提供交流合作、发布最前沿科研成果的平台,推动中国高性能计算的

发展。本次会议邀请了美国HPC Advisory Council的加盟,还邀请国内外知名超算中心主任参加,并举行“云计算”、“大科学工程中的高性能计算”论坛。中科院半导体研究所研究员俞育德在论坛是作题为《光互连用硅基光子

器件与光子集成的现状和发展趋势》报告。中科院半导体研究所研究员俞育德光子学是一门研究光子的产生和运动特性、光子同物质的相互作用及其应用的前沿学科,

硅光子学专门研究硅以及硅基异质结材料(诸如sige/si、soi等)等介质材料中光子的行为和规律,着重研究硅基光子器件的工作原理、结构设计与制造以及在光通信、光计算等领域中的实际应用。《硅光子学》共19章,分别介绍硅基光子学基础、应用和发

展趋势;硅基异质结构和量子结构的物理性质、制备方法;硅基光子器件,包括硅基发光器件、探测器、光波导器件;硅基光子晶体、硅基光电子集成、硅基光互连以及硅基太阳能电池。对于光互联,俞育德说,未来十年的高性能计算机将由电互联技术向光互联技术方向转变,其原因是光互联可以将芯片之间的互联距离拉近,而且具有低延迟、多路信号和低功耗等优势。对于光子集成的要求和发展俞育德提出了四点

趋势。1、传输波长的选择光纤通信的波长是由光纤的传输窗口决定的,光互联的波长则由光波导的波长来优选。因此光波导的材料、结构和特性将在光互联应用中处于决定性的位置。显然,1.55和2.3微米波段具有许多优势。2、超高速的要求目前电互联中电子器件的速率为10Gb/s左右,并行运算的计算机整机的速率已达到千万亿次的高速率。进一步对器件的需求是100Gb/s的高速率。光互联的超高速率目标位:2015年和2022年终的I/O速率将分别达到82Tbit/s和

230Tbit/s.3、低功耗的要求信息网络中,Pb/s量级节点的年耗电量将超过1000亿度,比三峡大坝满负荷发电量还有。为了在足够低的芯片能耗下实现高比特率,要求片外总消耗量~50-170fj/b,器件能量~2-30fj/b,片上总能耗~10-30fj/b,器件能量~2-6fj/b.这些指标比当前的器件水平低3-5个能量数。4、集成技术的途径硅光子学的出现给光子集成带来了希望。成熟的CMOS工艺提供了极好的技术基础,Si、SOI和SiGe等同CMOS兼容,因此应用CMOS工艺制造光子集成回路

是最佳的选择和比由之路。硅基半导体是现代微电子产业的基石,但其发展已接近极限。而光电子技术则正处在高速发展阶段,现在的半导体发光器件多利用化合物材料制备,与硅微电子工艺不兼容,因此,将光子技术和微电子技术集合起来,发展硅基光电子科学和技术意义重大。近年来,硅基光电子的研究在国内外不断取得引人注目的重要突破,世界各发达国家都把硅基光电子作为长远发展目标。随着微处理器性能呈指数增长,以及超大规模集成电路技术日益逼近它的极限,计算机系统内部通信速度和带宽落后于处理器芯片运算速度的趋势日益扩大,铜互连将成为计算机系统整体性能提升的瓶颈。以实现硅基光电集成为目标的硅基光子学的不断成熟有望解决这一难题。在超级计算机之外也存在耗电量将成为大问题的用途。这就是通信网络。虽然其大部分

已在使用光通信,但在实施IP数据包路径控制的路由器内部却进行着“光电或电光间的转换”以及“利用电信号进行IP数据包处理”。据NTT微系统集成研究所介绍,日本通信网络的路由器耗电量目前占日本总耗电量的约1%。

硅光子技术的定位已开始大幅变化。原来的光布线及光路以通过光来接替实施电布线无法实现的长距离数据传输的形式实现实用化。也就是说,光布线的实用化将按照通信网络到服务器机壳间的连接,再到基板间及基板内的顺序推进,而硅光子排在最后,一直

被认为是仅对高性能处理器的芯片内部进行处理的技术。以基于硅光子技术的IC

实用化为契机,研发体制也发生了变化。以往的研发总的来说是以学术机构为中心推进的,而如今正在走向以厂商主导的实用化为目标的真正形式。其中尤其要提到的是意在通过硅光子技术使处理器性能得以飞跃性提高的技术开发,在国家支援体制下,日美欧厂商及研究机构展开了激烈竞争。

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构为特征的固态量子器件和电路的新时代,并极有可能触发新的技术革命。半导体微电子和光电子材料已成为21世纪信息社会的二大支柱高技术产业的基础材料。它的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。 一、几种重要的半导体材料的发展现状与趋势 1.硅单晶材料 硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。那么随着硅单晶材料的进一步发展,还存在着一些问题亟待解决。硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,它有着很好的应用前景。当然还有以硅材料为基础的SOI材料,也就是半导体/氧化物/绝缘体之意,这种材料在空间得到了广泛的应用。总之,从提高集成电路的成品率,降低成本来看的话,增大硅单晶的直径,仍然是一个大趋势;因为,只有材料的直径增大,电路的成本才会下降。我们知道硅技术有个摩尔定律,每隔18个月它的集成度就翻一番,它的价格就掉一半,价格下降是同硅的直径的增大密切相关的。在一个大圆片上跟一个小圆片上,工艺加工条件相同,但出的芯片数量则不同;所以说,增大硅的直径,仍然是硅单晶材料发展的一个大趋势。那我们从提高硅的

中科院半导体所科技成果——基于LED灯光的光学无线控制系统

中科院半导体所科技成果——基于LED灯光的光学无 线控制系统 项目成熟阶段孵化期 项目来源863项目、中科院知识创新重要方向项目 成果简介 该系统集照明、智能控制和通信功能于一体。它利用LED灯,在照明的同时作为光学无线通信的光源,可实现对办公设备、安全防范设备、家用电器、电动益智玩具、传感执行器等控制终端的光学无线智能控制。目前已开发出基于手机的控制软件,可以通过操控手机,借助灯光实现对家用电器等设备的全功能控制。 基于LED灯光的光学无线控制系统应用实景 技术特点 通信无电磁污染,有利于人体健康; 通信私密性强,安全性高;

与照明结合,无处不在、无须新建专用网络、节能和环保; 网络带宽高,可快速下载网上信息; 无需频率许可证。 专利情况已申请6项核心专利 市场分析 1、基于该技术开发的LED照明智能家居系统可以克服传统智能家居系统需要布设控制总线的缺点,也可以克服基于电力载波技术的智能家居控制系统改造电器设备强电部分时会影响电器安全性的缺点,LED照明智能家居系统属于光学无线方式的智能控制,只要灯光照到的地0方就可以自由摆放受控电器,是最新型的控制方式,可定义为新一代的智能家居系统。该技术也可用于智能建筑中,实现对各种自动执行器终端的光学无线控制。 2、其应用的各项技术代表了当今国内外可见光通信的发展水平,可以作为科技展品,应用在科技馆,让观众零距离接触、了解节能减排的LED照明技术以及照明网络与通信网络融合的可见光通信新技术。 3、是LED灯具厂商增加产品功能和提升产品竞争力的好机会。 合作方式技术开发、技术转让、技术服务、技术入股 产业化所需条件 进行LED照明智能家居产品中试,投资开发示范工程项目,最少投资300万元。进行智能控制接口标准制定,与家用电器厂商一起制定行业标准,大概需要2-3年,投资100-200万元。

半导体材料的发展现状与趋势

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构

的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,

半导体的带间光吸收谱曲线

半导体的带间光吸收谱曲线 Xie Meng-xian. (电子科大,成都市) (1)光吸收系数: 半导体吸收光的机理主要有带间跃迁吸收(本征吸收)、载流子吸收、晶格振动吸收等。吸收光的强弱常常采用描述光在半导体中衰减快慢的参量——吸收系数α来表示;若入射光强为I,光进入半导体中的距离为x,则定义: 吸收系数的单位是cm-1。 (2)带间光吸收谱曲线的特点: 对于Si和GaAs的带间跃迁的光吸收,测得其吸收系数a与光子能量hν的关系如图1所示。这种带间光吸收谱曲线的特点是:①吸收系数随光子能量而上升;②各种半导体都存在一个吸收光子能量的下限(或者光吸收长波限——截止波长),并且该能量下限随着温度的升高而减小(即截止波长增长);③GaAs的光吸收谱曲线比Si的陡峭。 为什么半导体的带间光吸收谱曲线具有以上一些特点呢?——与半导体的能带结构有关。 (3)对带间光吸收谱曲线的简单说明: ①因为半导体的带间光吸收是由于价带电子跃迁到导带所引起的,则光吸收系数与价带和导带的能态密度有关。而在价带和导带中的能态密度分布较复杂(在自由电子、球形等能面近似下,能态密度与能量是亚抛物线关系),不过在价带顶和导带底附近的能态密度一般都很小,因此,发生在价带顶和导带底附近之间跃迁的吸收系数也就都很小;随着能量的升高,能态密度增大,故吸收系数就相应地增大,从而使得吸收谱曲线随光子能量而上升。 但是由于实际半导体能带中能态密度分布函数的复杂性,而且电子吸收光的跃迁还必须符合能量守恒、动量守恒和量子力学的跃迁规则——选择定则,所以就导致半导体光吸收谱曲线变得很复杂,可能会出现如图1所示的台阶和多个峰值或谷值。 ②因为价电子要能够从价带跃迁到导带,至少应该吸收禁带宽度Eg大小的能量,这样才能符合能量守恒规律,所以就存在一个最小的光吸收能量——光子能量的下限,该能量下限也就对应于光吸收的长波限——截止波长λg :

2013、14中科院博士入学考试半导体物理教程

一、简答 1、肖特基接触、欧姆接触 2、Pn 结作用、异质PN 结、同质PN 结区别 3、费米能级、判断杂质类型、掺杂浓度 4、PN 结激光器实现粒子数反转 5、光电导 二、Si 、GaAs 、GaN 晶体结构、能带特点、物理性质、应用。 三、霍尔效应,........ 证明R H = 四、Xy 方向自由,z 方向为无限深势阱1,、求本征能量2、能态密度3、如果三个方向都无受到限制,则1、本征能量 2、能态密度改变? 五、GaAs ,次能、最低能谷。。。。有效质量性质和意义,有效质量大小比? 2014 一、简答 1、以GaAs 为例说明几种散射机制?与温度关系? 2、迁移率μ,电导σ,H μ区别 3、PN 结光生伏特效应?光电池?画I-V 曲线? 4、Si 、GaAs 、GaN 晶体结构、能带特点、物理性质、应用。 5、温度太高。破坏晶体结构? 二、导体、半导体、绝缘体能带论 三、掺杂质。。。求E ?已知j p n μμρ,i ,。。。 四、轻空穴、重空穴有效质量及图,等能面为球面,E=(....)m 22 。。。。

一、Si 、GaAs 、GaN 晶体结构、能带特点、物理性质、应用。 1、晶体结构: Si 是金刚石结构,由面心立方中心到顶角引8条对角线,在其中互不相邻的4条对角线上中点放置一个原子,对角线上的4个原子与面心和顶角原子周围情况不同,是单原子复式格子。 GaAs (III-V )闪锌矿结构(立方对称性),与金刚石结构相仿,只是对角线上的原子与面心和顶角上的原子不同,(极性半导体/共价性化合物半导体)。 GaN 是纤锌矿结构(六方对称性,以正四面体为基础) 2、能带特点: Si 的导带极小值在K 空间<1 0 0>方向,能谷中心与 点距离是X 距离的 6 5 ,共有6个等价能谷,形状为旋转椭球。价带在布里渊区中心是简并的,有重空穴、轻空穴、自旋耦合分裂三个能级。导带底和价带顶在K 空间不同点,属于间接禁带半导体。

半导体器件物理4章半导体中的载流子输运现象

第四章半导体中载流子的输运现象 在前几章我们研究了热平衡状态下,半导体导带和价带中的电子浓度和空穴浓度。我们知道电子和空穴的净流动将会产生电流,载流子的运动过程称谓输运。半导体中的载流子存在两种基本的输运现象:一种是载流子的漂移,另一种是载流子的扩散。由电场引起的载流子运动称谓载流子的漂移运动;由载流子浓度梯度引起的运动称谓载流子扩散运动。其后我们会将会看到,漂移运动是由多数载流子(简称多子)参与的运动;扩散运动是有少数载流子(简称少子)参与的运动。载流子的漂移运动和扩散运动都会在半导体內形成电流。此外,温度梯度也会引起载流子的运动,但由于温度梯度小或半导体的特征尺寸变得越来越小,这一效应通常可以忽略。载流子运动形成电流的机制最终会决定半导体器件的电流一电压特性。因此,研究半导体中载流子的输运现象非常必要。 4.1漂移电流密度 如果导带和价带都有未被电子填满的能量状态,那么在外加 作用下使载流子产生的运动称为“漂移运动”。载流子电荷的净 如果电荷密度为P的正方体以速度4运动,则它形成的电流 密度为 ^drf = P U d(°」)

其中°的单伎为C?cm~3, J drf的单位是Acm~2或C/cnr?s。 若体电荷是带正电荷的空穴,则电荷密度p = ep , e为电荷电量^=1.6X10-,9C(^仑),〃为载流子空穴浓度,单位为⑵尸。则空穴的漂移电流密度打场可以写成:丿"爾=⑷)%(4.2) %表示空穴的漂移速度。空穴的漂移速度跟那些因素有关呢? 在电场力的作用下,描述空穴的运动方程为 F = m a = eE(4.3) p £代表电荷电量,d代表在电场力F作用下空穴的加速度,加;代表空穴的有效质量。如果电场恒定,则空穴的加速度恒定,其漂移速度会线性增加。但半导体中的载流子会与电离杂质原子和热振动的晶格原子发生碰撞或散射,这种碰撞或散射改变了带电粒子的速度特性。在电场的作用下,晶体中的空穴获得加速度,速度增加。当载流子同晶体中的原子相碰撞后,载流子会损失大部分或全部能量,使粒子的速度减慢。然后粒子又会获得能量并重新被加速,直到下一次受到碰撞或散射,这一过程不断重复。因此,在整个过程粒子将会有一个平均漂移速度。在弱电场的情况下,平均漂移速度与电场強度成正比(言外之意,在强电场的情况下,平均漂移速度与电场强度不会成正比)。 S—E(4.4) 其中竹咼空穴迁移率,载流子迁移率是一个重要的参数,它描述了粒子在电场作用下的运动情况,迁移率的单位为cnr/V.s.将 式(4.4)带入(4.2),可得出空穴漂移电流密度的表达式:

砷化镓晶片表面损伤层分析 - 中国科学院半导体研究所机构

稀有金属 CHINEXE JOURNAL OF RARE METALS 1999年7月 第23卷 第4期 vol.23 No.4 1999 砷化镓晶片表面损伤层分析 郑红军 卜俊鹏 曹福年 白玉柯 吴让元 惠 峰 何宏家 摘 要: 采用TEM观测与X射线双晶回摆曲线检测化学腐蚀逐层剥离深度相结合的方法,分析了SI-GaAs晶片由切、磨、抛加工所引入的损伤层深度。比较两种方法测量结果上的差异,得出了TEM观测到的只是晶片损伤层厚度,而X射线双晶回摆曲线检测化学腐蚀逐层剥离所得的深度是晶片损伤层及其形成应力区的总厚度的结论。 关键词: 砷化镓 切片 磨片 抛光片 表面损伤层 Analyses of Surface Damage in SI-GaAs Wafers Zheng Hongjun, Bu Junpeng, Cao Funian, Bai Yuke, Wu Rangyuan, Hui Feng and He Hongjia (Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China) Abstract: The surface damage Layer in the SI-GaAs wafer induced by cutting, grining and polishing was analyzed by means of transmission electron microscopy and X-ray rocking curve measurements after the wafer was chemically etched. A method for determining the depth of surface damage layer of SI-GaAs wafer according to the quantitative difference in the results obtained by the two methods is proposed. Key Words: SI-GaAs, Cutting wafer, Grinding wafer, Polishing wafer, Surface damage 许多重要的砷化镓器件及砷化镓高速数字电路、微波单片电路均在砷化镓晶片表面制造, 集成度越高,对表面的要求越严格。所以,材料表面加工的质量直接影响着器件的性能、成品率及寿命等。 半导体材料表面因切、磨、抛加工而引入的损伤层深度一直是人们深入研究的工作。加工后的晶片表面损伤层可能是由非晶层、多晶层、嵌镶块层和弹性畸变层等构成的多层结构[1]。 测定这些表面损伤层厚度的通常方法有恒定化学腐蚀速率法[2,3]、椭圆偏振仪[4]、透射电子显微镜[5]、光背散射[6]以及Knudsen[7]提出的X射线双晶摆动曲线观测腐蚀剥层晶片表面损伤层法。但这些方法都有一定的局限性。本文采用X射线双晶回摆曲线检测化学腐蚀逐层剥离损伤层深度与TEM观测相结合的方法,定量地分析了材料加工过程中 (切、磨、抛) 引入的损伤层深度。根据两种测量结果的差异,得出了TEM观测到的只是晶片损伤层厚度,而X射线双晶回摆曲线检测化学腐蚀逐层剥离损伤层深度是晶片损伤层及其形成应力层的总厚度的结论。

半导体器件物理4章半导体中的载流子输运现象

第四章 半导体中载流子的输运现象 在前几章我们研究了热平衡状态下,半导体导带和价带中的电子浓度和空穴浓度。我们知道电子和空穴的净流动将会产生电流,载流子的运动过程称谓输运。半导体中的载流子存在两种基本的输运现象:一种是载流子的漂移,另一种是载流子的扩散。由电场引起的载流子运动称谓载流子的漂移运动;由载流子浓度梯度引起的运动称谓载流子扩散运动。其后我们会将会看到,漂移运动是由多数载流子(简称多子)参与的运动;扩散运动是有少数载流子(简称少子)参与的运动。载流子的漂移运动和扩散运动都会在半导体内形成电流。此外,温度梯度也会引起载流子的运动,但由于温度梯度小或半导体的特征尺寸变得越来越小,这一效应通常可以忽略。载流子运动形成电流的机制最终会决定半导体器件的电流-电压特性。因此,研究半导体中载流子的输运现象非常必要。 4.1漂移电流密度 如果导带和价带都有未被电子填满的能量状态,那么在外加电场的作用下,电子和空穴将产生净加速度和净移位。电场力的作用下使载流子产生的运动称为“漂移运动”。载流子电荷的净漂移会产生“漂移电流”。 如果电荷密度为ρ的正方体以速度d υ运动,则它形成的电流密度为 ()4.1drf d J ρυ=

其中ρ的单位为3C cm -,drf J 的单位是2Acm -或2/C cm s 。 若体电荷是带正电荷的空穴,则电荷密度ep ρ=,e 为电荷电量191.610(e C -=?库仑),p 为载流子空穴浓度,单位为3cm -。则空穴的漂移电流密度/p drf J 可以写成: ()()/ 4.2p drf dp J ep υ= dp υ表示空穴的漂移速度。空穴的漂移速度跟那些因素有关呢? 在电场力的作用下,描述空穴的运动方程为 ()* 4.3p F m a eE == e 代表电荷电量,a 代表在电场力F 作用下空穴的加速度,*p m 代 表空穴的有效质量。如果电场恒定,则空穴的加速度恒定,其漂移速度会线性增加。但半导体中的载流子会与电离杂质原子和热振动的晶格原子发生碰撞或散射,这种碰撞或散射改变了带电粒子的速度特性。在电场的作用下,晶体中的空穴获得加速度,速度增加。当载流子同晶体中的原子相碰撞后,载流子会损失大部分或全部能量,使粒子的速度减慢。然后粒子又会获得能量并重新被加速,直到下一次受到碰撞或散射,这一过程不断重复。因此,在整个过程粒子将会有一个平均漂移速度。在弱电场的情况下,平均漂移速度与电场强度成正比(言外之意,在强电场的情况下,平均漂移速度与电场强度不会成正比)。 ()4.4dp p E υμ= 其中p μ是空穴迁移率,载流子迁移率是一个重要的参数,它描述了粒子在电场作用下的运动情况,迁移率的单位为2/cm V s 。将

功率半导体器件封装技术的新趋势分析

科学技术创新2019.30 功率半导体器件封装技术的新趋势分析 刘乐 (国家知识产权局专利局电学部, 北京100088)现代功率半导体器件的封装,主要朝着小体积和大功率的方 向不断发展,通过这种技术上的升级, 可以显著减低功率半导体硅片与散热器之间的热阻,保障整个输出功率, 可以达到最大,并对接处的阻抗进行数值分析,全面提高功率半导体器件的通流能力。 1功率半导体封装技术要点 功率半导体在目前的换流电路中, 对一些杂散电感,处理能力较差,提高封装技术的应用效果, 可以显著降低这种杂感电感,从而使得功率半导体的阻断电压得到最充分的利用。 1.1绝缘电压控制 封装技术要满足目前功率半导体运行过程当中,面临的绝缘 电压情况,尽可能的降低功率半导体封装的体积, 实现结构设计上的紧凑性,避免绝缘电压的存在, 影响功率半导体阻断的具体运行情况,延长功率半导体器件的使用寿命, 降低咱电感应现象,对于电路的危害[1]。 1.2skiip 技术应用 这种技术最早是在中等功率的半导体元器件封装当中应用,在目前逐,渐向大功率半导体元器件封装技术当中发展。技术人员可以通过半导体封装当中的铲车和牵引仪器,对于热压力进行整 合分析。并且通过直接连接方式, 应用相关陶瓷基片,对于散热器进行优化升级。(1)通过这种设计形式,可以去除掉封装过程当中 的铜底板,从而进一步的压缩整个元器件封装的体积, 提高结构设计的紧凑性。(2)应用这种技术,还可以对于封装过程当中半导体 元器件的汇流排和辅助连接器件, 进行一体式封压,从而全面提高陶瓷基片的控制功能。(3)运用这种焊接方式, 焊料的浪费可以大大的降低。(4)由于底板的去除,整个功率半导体元器件的热阻会 显著的减少。 1.3损耗分析 半导体元器件封装过程当中,硅的损耗是造成散热器温差控 制效果较差的主要原因,通过这种skiip 控制模块的运行方式, 可以将整个散热器运行的温度,下降3-7℃。(1)这种运行方式可以 显著降低整个半导体元件的热阻效应, 基本上可以降低10%左右。(2)同时,由于体积的减少,底板元件去除, 整个陶瓷基片与半导体元件之间,铜底板的连接焊料也就不复存在。(3)技术人员还可以 通过材料系数的相关调整,对于封装过程当中的膨胀系数,进行定量分析,避免传统的封装方式造成半导体元件的热疲劳现象。 1.4机械应力改进 在铲车之类牵引应用的过程当中,skiip 这种封装技术运行非 常可靠。目前这种技术已经具有了比较标准化的发展结构, 可以通过单元式的连续空留方式,与半导体元件的电路, 以及外壳,进行优化的连接,从而形成一个三相桥结构, 不仅可以驱动标准感应电机连续运行,还可以通过独立交流的方式, 与DBC 陶瓷片的基本元器件,进行组合连接, 形成一个控制模组。通过这种封装方式的改进,每个半导体元件封装过程当中的 半桥电感, 最低只有15nh 。而且运用这种方式,功率半导体封装过程当中各个元件上的电流分布更加的均匀, 也就是说,不必再对电流的额定值,进行差异化分析,就可以完成整个单元的分装作业。 2新一代skiip 技术发展2.1新一代skiip 技术原理 新一代skiip 技术,正在朝着总成本优化设计的角度进行发 展,通过这种散热器温度传感的高度智能化控制, 技术人员可以对功率半导体封装过程当中的相电流和直电流,进行智能传感与压 力控制,通过这种集成驱动方式, 可以很好的保护封装过程当中的相应开关损耗,从而通过脉冲测试等等, 随时了解到半导体元器件运行过程当中的热阻值[2] 。 脉冲数值Q 会随着时间的变化而变化,对硅的散失情况进行系统求和,就可以更好的对脉冲数值进行定量分析。方便进行数据检验与数据校核,全面提高整个功率半导体封装过程当中的安全效应,避免元件损坏,提高整个元器件的使用寿命。 2.2沟槽型原包结构 新一代的skiip 组件模块采用第三代芯片, 这种芯片对于电流密度的调节优化作用非常的显著, 可以通过双单元封装模块,对于功率半导体封装过程当中的电流电压传感器,进行一体化的数据 把控。在这种双单元封装模式之下, 电流的输出水平可以从传统的200安提高到400安,有效数值增加20%,连续传输功率上升70%,设备达到最高电流密度的时间下降150%。 2.3陶瓷材料的优化选择 为了适应这种新型的skiip 组件模块技术,要选择优级的氮化 铝陶瓷材料,这种基本原漆片可以保证skiip 封装过程当中, 三相桥模块运行有效,可以提供强大的驱动力, 保障标准电机的正常运行。对于输出功率进行相应的调节, 通过这种标准化的驱动能力,提升整个基本元件的输出功率,一般来说,密度可以上升70%以 上,这种系统优化改进不仅可以增加单元硅片的有效控制面积, 还可以避免散热器安装过程当中传统难点问题,实现机械层面与电气层面的相应兼容。 2.4成套顶装配双单元组件 在进行封装模块优化的过程当中,可以通过这种双单元封装模块的工艺改造,为最终的设备安装与测试流程提供便利。 第一,通过数据更新,将这种装配与测试环节系统分布下来, 通过精细化的封装驱动器控制,进行磨牙和弹簧压得相应调节。 这种skiip 相应驱动器,可以在不同的元件之间进行转换, 从而全面改善模块的可靠性,并且降低封装技术需要的设备成本。摘要:功率半导体体积较小、输出功率非常大,在现代制造行业当中有着非常广泛的应用, 对其封装技术进行讨论,有利于全面提高功率半导体器件应用的有效性。基于此,本文主要分析功率半导体器件封装当中的关键技术, 并结合具体的器件封装发展情况,分析这种封装技术的新趋势。 关键词:功率半导体;器件封装技术; 新趋势中图分类号:TN305文献标识码:A 文章编号:2096-4390(2019)30-0194-02(转下页) 194--

SiC功率半导体器件技术发展现状及市场前景

SiC功率半导体器件技术发展现状及市场前景 近年来,Si功率器件结构设计和制造工艺日趋完善,已经接近其材料特性决定的理论极限,依靠Si器件继续完善来提高装置与系统性能的潜力十分有限。本文首先介绍了SiC功率半导体器件技术发展现状及市场前景,其次阐述了SiC功率器件发展中存在的问题,最后介绍了SiC功率半导体器件的突破。 SiC功率半导体器件技术发展现状1、碳化硅功率二极管 碳化硅功率二极管有三种类型:肖特基二极管(SBD)、PiN二极管和结势垒控制肖特基二极管(JBS)。由于存在肖特基势垒,SBD具有较低的结势垒高度。因此,SBD具有低正向电压的优势。SiC SBD的出现将SBD的应用范围从250 V提高到了1200 V。同时,其高温特性好,从室温到由管壳限定的175℃,反向漏电流几乎没有增加。在3 kV以上的整流器应用领域,SiC PiN和SiC JBS二极管由于比Si整流器具有更高的击穿电压、更快的开关速度以及更小的体积和更轻的重量而备受关注。 2、单极型功率晶体管,碳化硅功率MOSFET器件 硅功率MOSFET器件具有理想的栅极电阻、高速的开关性能、低导通电阻和高稳定性。在300V以下的功率器件领域,是首选的器件。有文献报道已成功研制出阻断电压10 kV 的SiC MOSFET。研究人员认为,碳化硅MOSFET器件在3kV~5 kV领域将占据优势地位。尽管遇到了不少困难,具有较大的电压电流能力的碳化硅MOSFET器件的研发还是取得了显著进展。 另外,有报道介绍,碳化硅MOSFET栅氧层的可靠性已得到明显提高。在350℃条件下有良好的可靠性。这些研究结果表明栅氧层将有希望不再是碳化硅MOSFET的一个显著的问题。 3、碳化硅绝缘栅双极晶体管(SiC BJT、SiC IGBT)和碳化硅晶闸管(SiC Thyristor) 最近报道了阻断电压12kV的碳化硅P型IGBT器件,并具有良好的正向电流能力。碳化硅IGBT器件的导通电阻可以与单极的碳化硅功率器件相比。与Si双极型晶体管相比,SiC 双极型晶体管具有低20~50倍的开关损耗以及更低的导通压降。SiC BJT主要分为外延发

中科院半导体所科技成果——基于TDLAS技术的气体传感器

中科院半导体所科技成果——基于TDLAS技术的气体 传感器 项目成熟阶段生长期 项目来源公益行业(气象)专项资金 成果简介基于可调谐二极管激光器吸收光谱技术(TDLAS)的气体传感器,是结合光电子学,光谱学,以及微弱信号处理等高新技术的气体传感器系统。该设备与传统的气体传感器装置(电化学法,气象色谱法,吸附法)相比具有更高的灵敏度,更精确的测量数据,更快的响应速度,以及在线实时测量等特点。 通过内建程序及显示屏,可以实时显示当前的待测气体浓度,以及各测量量随时间变化的曲线。标准的RS232通信接口可以方便的向上位机传输实时测量数据。通过光纤和电缆的延伸,可以进行远端在

线测试。通过可更换的气室选择,完成不同环境下的测试任务。并且我们可以根据客户的要求进行定制气体(H2O、NO、CH4、HF)的测试。 技术特点 基于可调谐二极管激光吸收光谱技术,通过向待测气体发射特定波长的激光,并对穿过气体的激光信号进行解调,分析气体的组分和浓度。利用光吸收技术进行气体浓度测试,不会对气体组分造成影响,并且响应速度很快,可以进行实时监测及数据采集。通过延长的光纤和电缆,可以将传感器深入到人身无法达到的地方及环境,进行远程测试。 专利情况 多项专利技术申请中,其中已授权1项。 市场分析

根据我们目前的调研情况,目前能够很容易检测的气体包括H2O、NH3、NO、HF、HBr、HI、CH4,其中H2O和HF的检测灵敏度可以高达100个ppb,是目前同类型传感器中灵敏度最高的检测手段。上述气体都是化工生产、气象监测、特种气体测量(如SF6中的水汽测量、矿井的瓦斯监测等),因此该类传感器具有非常广阔的应用前景。另外,目前国家在环境监控非常重视,其中一些危险气体的检测缺乏体积小、灵敏度高、响应时间快的传感器技术,因此该技术还能在国家安全和环境控制方面发挥重要的作用。 合作方式技术入股 产业化所需条件 企业提供厂房、基础建设、资金、可靠性试验设备、人员配合。

中科院微电子所介绍

招生简介 中国科学院微电子研究所是一所专业从事微电子领域研究与开发的国立研究机构,是中国科学院微电子技术总体和中国科学院EDA中心的依托单位。微电子所本着“惟精惟一、求是求新”的办所精神,面向国家战略需求,积极承担重点科技攻关与产品开发任务,一方面拓展前沿技术与基础研究领域,发展交叉学科方向;同时通过全方位合作积极推进成果的应用开发和产业化,推动产业发展。微电子所致力于打造现代化的高技术研究机构,成为我国IC技术和产业领域一个技术创新基地和高素质高层次人才培养基地,为促进国家微电子技术进步和自主创新,实现产业的可持续发展做出贡献。 微电子研究所是国务院学位委员会批准的博士、硕士学位授予单位,2004年批准建立博士后流动站。现有职工622人,其中中国科学院院士2人,高级研究人员91人,上岗研究生导师74名(其中博士生导师34名),在读研究生近300多人。 主要研究方向:1.硅器件及集成技术;⒉微细加工与新型纳米器件集成;3.微波电路与化合物半导体器件;4.集成电路设计与系统应用(包括专用集成电路与系统、通信与多媒体片上系统芯片、集成电路设计与应用开发、电子封装)。 本专业一级学科为电子科学与技术。作为一门交叉与综合性学科,跨专业学习具有极大的发展前景与潜力,因此微电子所欢迎并鼓励微电子专业及通讯与通信工程类、计算机类、自动化类、软件类、光电技术、物理与应用物理学、材料学等相关专业的同学报考。 除招收普研(学术型)外,我所还计划在电子与通信工程(代码:430109)和集成电路工程(代码:430110)两个领域招收全日制专业学位研究生。我所2011年度研究生招生仍为国家计划内公费。 专业代码: 080903 专业名称:微电子学与固体电子学 学科专业研究方向与导师 w 硅器件及集成技术 该方向为一室、九室、十室研究方向,主要从事CMOS及SOI CMOS器件与集成电路、功率器件与集成电路、高可靠性器件与集成电路、微系统及集成技术研究等的研究、设计、制造及测试。这些研究室一直致力于硅基器件与集成电路主流工艺技术的研究, 曾先后完成“VDMOS功率器件”、“0.8微米CMOS工艺”、“亚微米SOI CMOS电路的研究”、“0.35微米CMOS集成电路关键技术”、“0.1微米级CMOS FET”等国家重点攻关项目的研究,具有很强的硅器件、电路与工艺技术研发能力,并在诸多技术方面一直保持着国内领先地位。目前正在致力于下一代纳米级的 CMOS新结构器件与电路、新工艺技术、高可靠性集成电路设计技术与新型MEMS器件与集成,以及先进电子封装技术的研究。 导师简介 韩郑生男 1962年出生研究员博士生导师 杜寰男 1963年出生副研究员硕士生导师 欧毅男 1975年出生副研究员硕士生导师 罗家俊男 1973年出生副研究员硕士生导师 孙宝刚男 1969年出生副研究员硕士生导师 李多力男 1977年出生副研究员硕士生导师 朱阳军男 1980年出生副研究员硕士生导师 万里兮男 1955年出生研究员博士生导师 曹立强男 1974年出生研究员硕士生导师 陈大鹏男 1968年出生研究员博士生导师 王文武男 1973年出生研究员博士生导师

中科院所有研究所

北京市 数学与系统科学研究院 力学研究所 物理研究所 高能物理研究所 声学研究所 理论物理研究所 国家天文台 渗流流体力学研究所 自然科学史研究所 理化技术研究所 化学研究所 过程工程研究所 生态环境研究中心 古脊椎动物与古人类研究所大气物理研究所 地理科学与资源研究所 遥感应用研究所 空间科学与应用研究中心 对地观测与数字地球科学中心地质与地球物理研究所 数学科学学院 物理学院 化学与化工学院 地球科学学院 资源与环境学院 生命科学学院 计算机与控制学院 管理学院 人文学院

外语系 工程管理与信息技术学院 材料科学与光电技术学院 电子电气与通信工程学院 华大教育中心 动物研究所 植物研究所 生物物理研究所 微生物研究所 遗传与发育生物学研究所 心理研究所 计算技术研究所 工程热物理研究所 半导体研究所 电子学研究所 自动化研究所 电工研究所 软件研究所 国家科学图书馆 微电子研究所 计算机网络信息中心 科技政策与管理科学研究所 北京基因组研究所 青藏高原研究所 光电研究院 国家纳米科学中心 信息工程研究所 空间应用工程与技术中心(筹)天津市 天津工业生物技术研究所

河北省 渗流流体力学研究所 遗传与发育生物学研究所农业资源研究中心山西省 山西煤炭化学研究所 辽宁省 大连化学物理研究所 沈阳应用生态研究所 沈阳计算技术研究所 金属研究所 沈阳自动化研究所 吉林省 长春人造卫星观测站 长春应用化学研究所 东北地理与农业生态研究所 长春光学精密机械与物理研究所 上海市 上海应用物理研究所 上海天文台 声学研究所东海研究站 上海有机化学研究所 上海硅酸盐研究所 上海生命科学研究院 上海药物研究所 上海微系统与信息技术研究所 上海光学精密机械研究所 上海技术物理研究所 上海巴斯德研究所

中科院各大研究所

中国科学院数学与系统科学研究院 *中国科学院数学研究所 *中国科学院应用数学研究所 *中国科学院系统科学研究所 *中国科学院计算数学与科学工程计算研究所 中国科学院物理研究所 中国科学院理论物理研究所 中国科学院高能物理研究所 中国科学院力学研究所 中国科学院声学研究所 中国科学院理化技术研究所 中国科学院化学研究所 中国科学院生态环境研究中心 中国科学院过程工程研究所 中国科学院地理科学与资源研究所 中国科学院国家天文台 *中国科学院云南天文台 *中国科学院乌鲁木齐天文工作站 *中国科学院长春人造卫星观测站 *中国科学院南京天文光学技术研究所 中国科学院遥感应用研究所 中国科学院地质与地球物理研究所 中国科学院古脊椎动物与古人类研究所 中国科学院大气物理研究所 中国科学院植物研究所 中国科学院动物研究所 中国科学院心理研究所 中国科学院微生物研究所 中国科学院生物物理研究所 中国科学院遗传与发育生物学研究所 *中国科学院遗传与发育生物学研究所农业资源研究中心(原中国科学院石家庄农业资源研究所) 中国科学院计算技术研究所 中国科学院软件研究所 中国科学院半导体研究所 中国科学院微电子研究所 中国科学院电子学研究所 中国科学院自动化研究所 中国科学院电工研究所 中国科学院工程热物理研究所 中国科学院空间科学与应用研究中心 中国科学院自然科学史研究所 中国科学院科技政策与管理科学研究所

中国科学院光电研究院 北京基因组研究所 中国科学院青藏高原研究所 国家纳米科学中心 院直属事业单位(京外) 中国科学院山西煤炭化学研究所 中国科学院沈阳分院 中国科学院大连化学物理研究所 中国科学院金属研究所 中国科学院沈阳应用生态研究所 中国科学院沈阳自动化研究所 中国科学院海洋研究所 青岛生物能源与过程研究所(筹) 烟台海岸带可持续发展研究所(筹) 中国科学院长春分院 中国科学院长春光学精密机械与物理研究所 中国科学院长春应用化学研究所 中国科学院东北地理与农业生态研究所 *中国科学院东北地理与农业生态研究所农业技术中心(原中国科学院黑龙江农业现代化研究所) 中国科学院上海分院 中国科学院上海微系统与信息技术研究所 中国科学院上海技术物理研究所 中国科学院上海光学精密机械研究所 中国科学院上海硅酸盐研究所 中国科学院上海有机化学研究所 中国科学院上海应用物理研究所(原子核研究所) 中国科学院上海天文台 中国科学院上海生命科学院 *生物化学与细胞生物学研究所 *神经科学研究所 *药物研究所 *植物生理生态研究所 *国家基因研究中心 *健康科学研究中心 *中国科学院上海生命科学信息中心 *营养科学研究所 *中国科学院上海生物工程研究中心 中国科学院上海巴斯德研究所(筹) 中国科学院福建物质结构研究所 中国科学院城市环境研究所 中国科学院宁波材料技术与工程研究所(筹) 中国科学院南京分院

半导体研究所关于人才引进的几项具体措施

中国科学院半导体研究所文件 半发人教字[2006]10号 半导体研究所关于人才引进的几项具体措施 所属各单位: 为贯彻落实《半导体研究所知识创新三期方案》和《半导体研究 所关于知识创新(三期)人员聘用等工作的指导意见》(半发人教字[2006]7号),有效引进高素质科技人才,以建立适应研究所三期创新 任务的科研团队,达到创新三期的科技队伍建设目标,现将研究所为 引进“百人计划”等人才采取的措施明确如下: 一、科研经费及补贴 对以“百人计划”方式引进的人才,由研究所和引进人才的实体 共同提供相应的科研经费。并每月发给补贴。 被引进人才申请到院“百人计划”择优支持后,按照院规定执行。 二、科研条件 研究所现有技术手段、平台均可为引进人才的科研工作提供所需 要的服务。 三、队伍配备、研究生培养 为引进人才配备相应的科研团组,并为其招录硕、博士研究生提

供帮助(协助申请导师资格)。 四、配偶的工作、子女入学 积极向有关方面、单位推荐引进人才的配偶,协助其落实工作单位。 帮助引进人才的子女联系就读学校。 五、住房 (一)可视具体情况通过购买研究所经济适用房、租赁研究所周 转房、领取住房补贴等方式解决住房问题。 (二)“百人计划”引进人才未获得院择优期间,由所提供周转房。超过期限未能得到院择优支持的,比照研究所内同类人员的住房 政策执行。 (三)“百人计划”引进人才获得院择优及基本建设费支持后,可 以选择以下方式之一: 1、由研究所无偿提供在“百人计划”执行期间的住房,“百人计划”执行期结束离所时搬出; 如被所继续聘用,在聘用关系存续期间,可由研究所继续提供免 费住房。 2、购买所内经济适用房,在附加“百人计划”执行期结束后在所 工作年限等其他限制条件后,按照院拨基本建设费额的一定比例发给 补贴; 3、自行解决住房,在附加“百人计划”执行期结束后在所工作年 限等其他限制条件后,按照院拨基本建设费的若干倍发给补贴。

半导体器件的发展趋势

龙源期刊网 https://www.360docs.net/doc/d52589681.html, 半导体器件的发展趋势 作者:张川 来源:《科技传播》2012年第06期 社会发展快速发展,一些传统的功能材料很单一,已经不能够满足人们的需求,所以就出现了具有半导体特性的有机材料,比如塑料、高分子聚合物,这些有机半导体材料有可能会取代传统的由Si和GaAs来制作的材料。有机半导体材料具有独特的优势,它的原料很容易得到,而且原料的重量轻、成本低,制作的工艺简易,还有就是具有良好的环境稳定性。有机半导体材料所制作的器件属于可回收利用的器件,能做到有效环保。根据传统的知识体系来讲,有机体是不能够导电的,所以都是被作为绝缘材料。上个世纪70年代,科学家发现了如果对聚乙炔分子掺杂,就可以成为良性的导体,之后,半导体技术就开始被深入研究,并且取得了很大的成绩。上个世纪80年代,有机半导体研究领域迅速扩张,很多世界知名的企业都使用半导体技术,比如IBM通用、柯达等等;还有剑桥大学和普林斯顿大学也都设立了半导体的研究院。开发出了能够改善半导体稳定性以及特性的新技术以及新型的材料,这些新技术以及新型材料被广泛应用到各行各业当中,大大提高了有机电子器件的性能,比如有机发光二极管、有机传感器、有机场效应晶体管以及有机光伏电池等等。有机半导体器件正在越来越多的应用到各个行业当中,市场份额也在逐年快速增长。 在大家的不懈努力下,有机半导体技术和材料都取得了很大的发展,这个学科集合了材料学、物理和化学等等很多学科,是一个交叉学科,半导体技术正在不断发展,将来还会以更快的速度发展。一些专家认为,有机半导体材料开发出的各种器件正在改变未来高科技的发展。 1 有机太阳电池 传统的太阳电池是化合物薄膜太阳电池,而新型的太阳电池要采用新型的技术,有机太阳电池将作为一种新型产物摆在大家的面前,有机太阳电池的生产流程很简单,而且可以通过讲解来减少对环境的污染,由于这些优点符合当代社会的需要,所以有机太阳电池越来越受到大家的关注。如此廉价的太阳电池会让世界的能源发生巨大的改变。有机太阳电池比传统的电池更薄,重量更轻,受光面积在不断增加,所以可以大大提高光电的使用效率,在电脑等小型设备当中可以当作电源来用。可以使用有机太阳电池作为OLED屏幕的电源,可以大大减少重量。虽然太阳电池很薄、很轻,也很有柔性,但是它的效率不高,而且寿命也比较短,通过研究,改变太阳电池的缺点,使得效率达到10%,寿命也可以超过5年。 2 有机半导体晶体管 有机半导体材料的晶体管是有机电子器件当中很重要的一种器件,比如OFET。当前OFET的技术主要有聚合物、小分子蒸发或者是小分子溶液铸模等等。OFET的优点是成本低、柔性大等等,有很好的发展前景。OFET的发展很迅速,无论是材料还是制备工艺方面都有了突破,它可以使OLED发光,形成逻辑电路,发光场效应晶体管以及单晶场效应晶体管等

相关文档
最新文档