电容容量及电抗率选取(总结)

电容容量及电抗率选取(总结)
电容容量及电抗率选取(总结)

电容分组方式及电容容量计算

一、 电容分组方式及投切模式

补偿电容器多采用电力电容器,运行中电容器的容性电流抵消系统中的感性电流,使传输元件,如变压器、线路中的无功功率相应减少,因而,不仅降低了由于无功的流动而引起的有功损耗,还减少了电压损耗,提高了功率因数。补偿电容器是 TSC 系统的关键部件,通过投入或切除电容器的方法可动态平衡电感性负载与电容性负载,从而将功率因数维持在较高的理想水准。

1) 分组方式。在很多工业生产实践中,除了就地补偿的大电机外,大量分散的感性负载需要在低压配电室进行集中补偿,这时由于补偿容量是随时间变化的,为不出现过补偿或欠补偿,需要将电容器分成若干组,采用自动投切的方式。电容器分组的具体方法比较灵活,常见的有以下几种:

①等容量制,即把所需补偿的电容平均分为若干份;②1:2:4:8 制,即每单元电容器值按大小倍增式设置,这样可获得 15 级补偿值;③二进制,即采用 N —1 个电容值均为 C 的电容和一个电容值为 C/2 的电容,这样补偿量的调节就有 2N 级。对比上述方法可知,方法①的控制方式最简单,但相对较大的补偿级差限制了精度,而方法②与③虽采用多级差补偿的方法提高了效果,但均为繁琐,不便于自动化控制。相比之下,方法③不乏为一种有益的折中式方案。

2) 投切模式。由于动态无功补偿需要频繁投切电容器,因此为确保电容器的寿命和质量,需要考虑补偿电容的投切模式。常见有下列 2 种模式:①循环投切模式,即将各组电容器按组号排成一个环形列队,然后按序号依次投入电容。如需切除电容,则从已投入的电容队列的尾部切除。这样,随功率因数的变化,已投入的电容队列在环形队列中逆时针移动,各组电容的使用几率均匀,可有效减少电容组的故障率。通常这种方法用于等容量分组。②温度计式投切模式,即将各组电容器按组号排成一个直线队列,投入或切除电容器使已投入的电容队列在直线队列中升高或下降,类似于温度计水银柱的升降。这种方法常用于变容量分组。

3) 接线方式。Tsc 的主电路按照晶闸管和电容器的连接方式,大致可以分为4种类型:星形有中线、星形无中线;角外接法、角内接法。其中前两者统称为星形接法,具体见图。并联电容器与电力网的连接,其额定电压应与电网相符。在三相供电系统中,相电容器的额定电压与电网的电压相同时,在正常情况下,将其接成三角形,可以获得较大的补偿效果。

这是因为:如果改用星形接法,

1

又因2

C U Q X ,所以其无功出将为三角形接法的13

倍。综合考虑成本因数,本项目使用三角形接法。按照晶闸管所处的位置,三角形接法又分为角外接法、角内接法。

①角外接法

晶闸管处于电容器三角形的外部。按照电工理论中的“△一Y ”变换原理,在电容器总容量相等的情况下,角外接法和星形无中线对外电路所表现的特性都是一样的。与角内接法相比,体积小,但不易控制,投切时暂态过程较长。适合于三相平衡负载。

②角内接法

晶闸管处于电容器三角形的内部。该接法对系统无污染,相对另外3种接法,晶闸管电流定额电流小,只有相电流的58%,但晶闸管额定电压定额较大。当有较大不平衡负载时,三角形接法的电容器组也可令各相电容值不等,根据各相负荷大小作分相补偿。三相不平衡

负荷的补偿装置就是使用角内接法的TSC与TCR组合形式。

二、电容容量计算

采用集中补偿方式和分组补偿方式时,总的补偿容量由下式决定::

式中: Pc —由变配电所供电的月最大有功计算负载(kW) ;

βav —月平均负载率,一般可取0. 7~0. 8;

φ1 —补偿前的功率因数角,cosφ1可取最大负载时的值;

φ2 —补偿后的功率因数角,参照电力部门的要求确定,一般可取0. 9~0. 95;

qc —电容器补偿率(kVar/ kW) ,即每千瓦有功负载需要补偿的无功功率, q c =tgφ1- tgφ2。

电容器接法不同时,每相电容器所需容量也是不一样的。

1、电容器组为星形联结时

式中: U - 装设地点电网线电压(V) ;

Ic- 电容器组的线电流(A) ;

Cφ- 每相电容器组的电容量(F) 。

考虑到电网线电压的单位常用kV, Qc 的单位为kVar,则星形联结时每相电容器组的容量为

式中Cy的单位为μF。

2、电容器为三角形联结时

若线电压U的单位为kV,则每相电容器的容量(单位为μF)为

需要注意:若实际运行电压与电容器额定电压不一致,则电容器的实际补偿容量为Qc1:

式中:UNC —电容器的额定电压;

QNC —电容器的额定补偿容量;

UW —电容器实际工作电压。

例:如果已经计算好不要补偿的无功值,如何选择电容器的容量?

如果你计算出的总补偿量是169kvar,接下来要决定分几段投切,例如,你想分成4段投切,则169/4约等于40kvar/每段,则你选择的电容器"输出容量"必须为40kvar。

请注意,我强调了“输出容量”,千万不要直接选用了“额定容量(一般是铭牌上标示的容量)”为40kvar的电容器,因为一般选用电容器时,电容器的额定电压要比系统电压为高,否则电容器会因过电压而烧毁,而电容器的输出容量又和电压的平方成正比,因此,如果你的输出容量要为40kvar,则电容器的额定容量要比40kvar高的多。

举例,400V的系统,如果你选的电容器额定电压是480V,如果你要确保每段电容器要输出40kvar,则你选的电容器额定容量必须为:40kvar*(480/400)^2=57.6kvar,所以你要选择的电容器规格至少480V/58kvar,才能确保每段输出的容量为40kvar,而4段的总输出容量就是160kvar(接近169kvar)。

电抗率的选取

一、电抗率K值的确定(TSC中)

电抗率是指串联电抗器的相感抗XLN占电容器相容抗的XCN的百分比,

1.系统中谐波很少,只是限制合闸涌流时则选K=0.5~1%即可满足要求。它对5次谐波电流放大严重,对3次谐波放大轻微。

2.系统中谐波不可忽视时,应查明供电系统的背景谐波含量,在合理确定K值。电抗率的配置应使电容器接入处谐波阻抗呈感性。电网背景谐波为5次及以上时,应配置K=4.5~6%。通常5次谐波最大,7次谐波次之,3次较小。国内外通常采用K=4.5~6%。配置K=6%的电抗器抑制5次谐波效果好,但明显的放大3次谐波及谐振点为204Hz,与5次谐波的频率250Hz,裕量大。配置4.5%的电抗器对3次谐波轻微放大,因此在抑制5次及以上谐波,同时又要兼顾减小对3次谐波的放大是适宜的。它的谐振点235Hz与5次谐波间距较小。电网背景谐波为3次及以上时应串联K=12%的电抗器。在电抗器电容器串联回路中,电抗器的感抗XLN 与谐波次数正比;电容器容抗XCN与谐波次数成反比。为了抑制5次及以上谐波。则要使5次及以上谐波器串联回路的谐振次数小于5次。这样,对于5次及以上谐波,电杭器电容器串联回路呈感性,消除了并联谐振的产生条件;对于基波,电抗器电容器串联回路呈容性,保持无功补偿作用。

二、串联电抗器的选择

在实际电网中,谐波电流对电容器的破坏影响是不容忽视的。在负载电路中,谐波主要来自两个方面:变压器的磁性畸变,可以引起以5次谐波为主的电压;其次是电网系统中越来越多的非线性负载引起的各次谐波。假设价为电源侧电抗,Xc为电容器电抗,几为电源侧5次电抗,几为电容器5次电抗,凡为电源侧5次谐波电压值,则

此谐波电流和基波电流相叠加,会引起异常的过电流。通常工程上采用串联电抗器来抑制过大的谐波电流。如果令5次谐波电压为2%,电源测电抗为5%的电抗,这时投入阻抗为100%的电容器,5次谐波电流为:

当串入6%的电抗器时,

可见使用电抗器限制谐波电流效果非常明显。串联电抗器前后电流波形的对比。可见当不串联电抗器时,电流波形畸变非常严重。当串联6%的电抗器时,电流波形恢复正常。可见使用电抗器可以限制电流畸变。

串联电抗器后电容器电压升高的情况

有串联电抗器后电容器端电压会升高,其升高的幅值与串联电抗器的百分数有关;百分数高,电容器端电压高,按下表计算。

串联电抗器百分率与电容器电压升高的关系

滤波电容的选型与计算(详解)

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频 率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为

串联电抗器的作用

1电抗器的作用 串联电抗器顾名思义就是指串联在电路中电抗器(电感),无功补偿和谐波治理行业内的串联电抗器主要是指和电容器串联的电抗器,电抗器和电容器串联后构成谐振回路,起到消谐或滤波的作用,而电抗器在谐振回路中起的作用如下: 1.1降低电容器组的涌流倍数和涌流频率。 降低电容器组的涌流倍数和涌流频率,以保护电容器和便于选择配套设备。加装串联电抗器后可以把合闸涌流抑制在1+电抗率倒数的平方根倍以下。国标GB50227-2008要求应将涌流限制在电容器额定电流的20倍以下(通常为10倍左右),为了不发生谐波放大(谐波牵引),要求串联电抗器的伏安特性尽量为线性。网络谐波较小时,采用限制涌流的电抗器;电抗率在0.1%-1%左右即可将涌流限制在额定电流的10倍以下,以减少电抗器的有功损耗,而且电抗器的体积小、占地面积小、便于安装在电容器柜内。采用这种电抗器是即经济,又节能。 1.2与电容器组构成全谐振回路,滤除特征次谐波。 串联滤波电抗器感抗与电容器容抗全调谐后,组成特征次谐波的交流滤波器,滤去某次特征次谐波,从而降低母线上该次谐波的电压畸变,减少线路上特征次谐波电流,提高网络同母线供电的电能质量。 1.3与电容器组构成偏谐振回路,抑制特征次谐波。 先决条件是需要清楚电网的谐波情况,查清周围电力用户有无大型整流设备、电弧炉、轧钢机等能产生谐波的负荷,有无性能不良好的高压变压器及高压电机,尽可能实测一下电网谐波的实际值,再根据实际谐波成分来配置合适的电抗器。 1.4提高短路阻抗,减小短路容量,降低短路电流。 无功补偿支路前置了串联电抗器,当出现电容器故障时,例如电容器极板击穿或对地击穿,系统通过系统阻抗和串联电抗器阻抗提供短路电流,由于串联电抗器阻抗远大于系统阻抗,所以有效降低了电容器短路故障时的短路容量,保证了配电断路器断开短路电流可能,提高了系统的安全、稳定性能。 1.5减少电容器组向故障电容器组的放电电流,保护电力电容器。 当投运的无功补偿电容器组为多个支路时,其中一组电容器出现故障时其它在运行的电容器组会通过故障电容器放电,串联电抗器可以有效减少这种放电涌流,保证保护装置切断故障电容器组的可能性。 1.6减少电容器组的投切涌流,降低涌流暂态过程的幅值,有利于接触器灭弧。 接触器投切电容器的过程中都会产生涌流,串联电抗器可以有效抑制操作电流的暂态过程,有利于接触器触头的断开,避免弧光重燃,引起操作过电压。降低过电压的幅值,保护电容器,避免过电压击穿或绝缘老化。 1.7减小操作电容器组引起的过电压幅值,避免电网过电压保护。 接触器投切电容器的过程中都会产生操作过电压,串联电抗器可以有效抑制接触器触头重击穿现象出现,降低操作过电压的幅值,保护电容器,避免过电压击穿或加速绝缘老化。 随着电力电子技术的广泛应用与发展,供电系统中增加了大量的非线性负载,如低压小容量家用电器和高压大容量的工业用交、直流变换装置,特别是静止变流器的采用,由于它是以开关方式工作的,会引起电网电流、电压波形发生畸变,从而引起电网的谐波“污染”。产生电网谐波“污染”的另一个重要原因是电网接有冲击性、波动性负荷,如电弧炉、大型轧钢机、电力机车等,它们在运行中不仅会产生大量的高次谐波,而且会使电压波动、闪变、三相不平衡日趋严重。这不仅会导致供用电设备本身的安全性降低,而且会严重削弱和干扰电网的经济运行,形成了对电网的“公害”。 电能质量的综合治理应遵循谁污染谁治理,多层治理、分级协调的原则。在地区的配电和变

电容器组电抗率的选择

电容器组电抗率的选择 机械工业第四设计研究院陈才俊 摘要: 文章阐述如何根据背景谐波选择电容器组的电抗率 关键词: 谐波电抗率串联谐波并联谐波 一、什么叫电抗率 非线性元件是产生谐波的根源,非正弦波的周期可利用傅里叶级数予以展开,谐波的危害人人皆知,这些就不在这里叙述。 治理谐波的方法是采用滤波器,滤波器大量吸收系统里由谐波源发生的谐波,抑制了谐波对系统的骚扰。 电容器是提高功率因数的,带电抗器的电容器组在汽车厂广泛应用,所以要串联电抗器,其目的之一是减少电容器组的合闸涌流,另一个目的是将电容器组作为滤波器来治理谐波。 目的不同,所串联电抗器的电抗率(又称相对电抗率),也是不同的。前者电抗率一般为0.1%~1%,由制造厂选配,后者电抗率应由用户根据背景谐波的不同,从制造厂产品样本所示的标准规格选择。

所谓电抗率K ,就是所串联电抗器的感抗(ωL )和电容器容抗( C ω1)的百分比,即K=ω2LC 。此处ω=2πf=314,f 即基波频率50Hz 。 对某次谐波,如n 次,感抗是n ωL ,或称nX L ,容抗是 c n ω1或称 n X c 。 二、利用串联谐振激活谐波 如果略去很多分支回路,某次谐波从谐波源出发,面临2个并联回路,其中一个回路是电网系统,另一个回路是串联电抗器的电容器组。假设系统基波电抗是Xs ,串联电抗器的电容器组的基波电抗是X L —X c 。 既然C L X X K =,那么X L —X C =KX C —X C =X C (K —1)。 系统谐波电抗是nX S ,串联组谐波电抗是nX L — n X c =nKX c - n nK X n X c c 1(- =)。 设谐波源流出的n 次谐波电流为I n ,I n =I ns +I nc ,I ns 为流入系统的n 次谐波电流,I nc 为流入电容器组的n 次谐波电流。 根据定压原理和分流原理可分别得出:

如何选择和计算滤波电容--电容使用详述

如何选择和计算滤波电容?--电容使用详述 嵌入式非其他类中的 2009-05-31 17:32 阅读617 评论1 字号:大中小 问:在电路设计过程中,要用电容来进行滤波.有时要用电解电容,有时要陶瓷电容.有时两种均要用到.我想问一下:用电解电容的作用是什么?用普通陶瓷电容的作用是什么?如何计算其容量的???对于电解电容的耐压 又该如何选择确定? 哪些情况用电解电容,哪些情况下用陶瓷电容,哪些情况下两种均要用? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 答: ----- 滤波电容范围太广了,这里简单说说电源旁路(去藕)电容。 滤波电容的选择要看你是用在局部电源还是全局电源。对局部电源来说就是要起到瞬态供电的作用。为什么要加电容来供电呢?是因为器件对电流的需求随着驱动的需求快速变化(比如DDR controller),而在高频的范围内讨论,电路的分布参数都要进行考虑。由于分布电感的存在,阻碍了电流的剧烈变化,使得在芯片电源脚上电压降低--也就是形成了噪声。而且,现在的反馈式电源都有一个反应时间--也就是要等到电压波动发生了一段时间(通常是ms或者us级)才会做出调整,对于ns 级的电流需求变化来说,这种延迟,也形成了实际的噪声。所以,电容的作用就是要提供一个低感抗(阻抗)的路线,满足电流需 求的快速变化。 基于以上的理论,计算电容量就要按照电容能提供电流变化的能量去计算。选择电容的种类,就需要按照它的寄生电感去考虑--也就是寄生电感要小于电源路径的分布电感。 具体的说明在很多书上都有。提供一个参考书:high speed digital design ch8.2. ------------------------------ 讨论问题必须从本质上出发。首先,可能都知道电容对直流是起隔离作用的,而电感器的作用则相反。所有的都是基于基本原理的。那这时,电容就有了最常见的两个作用。一是用于极间隔离直流,有人也叫作耦合电容,因为它隔离了直流,但要通过交流信号。直流的通路局限在几级间,这样可以简化工作点很复杂的计算,二是滤波。基本上就是这两种。作为耦合,对电容的数值要求不严,只要其阻抗不要太大,从而对信号衰减过大即可。但对于后者,就要求从滤波器的角度出发来考虑,比如输入端的电源滤波,既要求滤除低频(如有工频引起的)噪声,又要滤除高频噪声,故就需要同时使用大电容和小电容。有人会说,有了大电容,还要小的干什么?这是因为大的电容,由于极板和引脚端大,导致电感也大,故对高频不起作用。而小电容则刚好相反。巨细据此可以确定电容量。而对于耐压,任何时候都必须满足,否则,就会爆炸,即使对于非电解电容,有时不爆炸,其性能也有所下降。讲起来,太多了,先谈这么多。 --------------------- 都是滤波的作用,铝电解电容容量比较大,主要用于虑除低频干扰。容量大约为1mA电流对应2~3μf,如过要求高的时候可以1mA对应5~6μf。无极性电容用于虑除高频信号。单独使用的时候大部分是去藕用的。有时可以与电解电容并联使用。陶瓷电容的高频特性比较好,但是在某个频率(大约是6MHz记不 太清了)是容量下降的很快。 ---------- 电容的寄生电感主要包括内部结构决定的电感和引线电感。电解电容的寄生电感主要由内部结构决定。印象中铝电解电容在20~30k以上就表现除明显的电感特性。钽电容在1MHz左右。陶瓷电容的高频特性就好很多。但是陶瓷电容有压电效应,不适于音频放大电路的输入和输出。 --------------- 这是因为大的电容,由于极板和引脚端大,导致电感也大,故对高频不起作用。而小电容则刚好相反。巨

滤波电容的计算方法

关于电压型变频器直流环节滤波电容的计算方法 作者:浙江大学王青松 关键词:整流电路,电压型变频器,纹波 摘要:电压型变频器直流环节并入电容对整流电路的输出进行滤波,理论上电容值越大,电压纹波越小,但是从空间和成本上考虑并不能如此。详细论述了三相输入和单相输入变频器滤波电容的计算方法,为电压型变频器不同功率的负载所需滤波电容的选择提供了理论依据。最后通过实验证明了该算法可行、可靠,不仅保证了产品的性能,更节约了成本。 0 引言 虽然利用整流电路可以将交流电变换成直流电,但是在三相电路中这种直流电压或电流含有频率为电源频率6倍的电压或电流纹波。此外,变频器逆变电路也将因输出和载波频率等原因而产生纹波电压或电流,并反过来影响直流电压或电流的品质。因此,为了保证逆变电路和控制电路能够得到高质量的直流电压或电流,必须对直流电压或电流进行滤波,以减少电压或电流的脉动。 直流环节是指插在直流电源和逆变电路之间的滤波电路,其结构的差异将对变换器的性能产生不同的影响:凡是采用电感式结构,其输入电流纹波较小,类似电流源性质;凡是采用电容式结构,其输入端电压纹波较小,类似电压源性质。 对电压型变频器米说,整流电路的输出为直流电压,直流中间电路则通过大电解电容对该电压进行滤波;而对于电流型变频器米说,整流电路的输出为直流电流,中间电路则通过大电感对该电流进行滤波。 l 三相变频器直流中间电路电解电容的计算 1.1 变频器及直流中间电路结构框图 变频器及直流中间电路结构图如图1所示。

1.2 三相输入及整流后的电压波形 三相输入线电压220V及整流后的电压波形如图2所示。 图2中,Ua、Ub、Uc是三相三线制的三相输入相电压;uc是电容电压,ur是整流之后未加电容时的电压。 1.3 分析过程 1.3.l 整流后电压的计算 对于三相三线制输入线电压为220V系列变频器(以下简称220V系列)来说U=220V;对于440V系列,U=440V。

无功补偿电容器串联电抗器的选用

无功补偿电容器串联电抗器的选用 在高压无功补偿装置中,一般都装有串联电抗器,它的作用主要有两点:1)限制合闸涌流,使其不超过20倍;2)抑制供电系统的高次谐波,用来保护电容器。因此,电抗器在无功补偿装置中的作用非常重要。 然而,串抗与电容器不能随意组合,若不考虑电容装置接入处电网的实际情况,采用“一刀切”的配置方式(如电容器一律配用电抗率为5%~6%的串抗),往往适得其反,招致某次谐波的严重放大甚至发生谐振,危及装置与系统的安全。由于电力谐波存在的普遍性,复杂性和随机性,以及电容装置所在电网结构与特性的差异,使得电容装置的谐波响应及其串抗电抗率的选择成为疑难的问题,也是人们着力研究的课题。电容器组投入串抗后改变了电路的特性,串抗既有其抑制涌流和谐波的优点,又有其额外增加的电能损耗和建设投资与运行费用的缺点。所以对于新扩建的电容装置,或者已经投运的电容装置中的串抗选用方案,进行技术经济比较是很有必要的。虽然现有的成果尚不足为电容装置工程设计中串抗的选用作出量化的规定,但是随着研究工作的深入,实际运行经验的积累,业已提出许多为人共识的见解,或行之有效的措施,或可供借鉴的教训。 下面总结电容器串联电抗器时,电抗率选择的一般规律。 1. 电网谐波中以3次为主 根据《并联电容器装置设计规范》,当电网谐波以3次及以上为主时,一般为12%;也可根据实际情况采用4.5%~6%与12%两种电抗器:(1)3次谐波含量较小,可选择0.5%~1%的串联电抗器,但应验算电容器投入后3次谐波放大量是否超过或接近限值,并有一定裕度。(2)3次谐波含量较大,已经超过或接近限值,可以选用12%或4.5%~6%串联电抗器混合装设。 2. 电网谐波中以3、5次为主 (1)3次谐波含量较小,5次谐波含量较大,选择4.5%~6%的串联电抗器,尽量不使用0.1%~1%的串联电抗器;(2)3次谐波含量略大,5次谐波含量较小,选择0.1%~1%的串联电抗器,但应验算电容器投入后3次谐波放大是否超过或接近限值,并有一定裕度。 3. 电网谐波以5次及以上为主 (1)5次谐波含量较小,应选择4.5%~6%的串联电抗器;(2)5次谐波含量较大,应选择4.5%的串联电抗器。对于采用0.1%~1%的串两电抗器,要防止对5次、7次谐波的严重放大伙谐振。对于采用4.5%~6%的串联电抗器,要防止怼次谐波的严重放大或谐振。当系统中无谐波源时,为防止电容器组投切时产生的过电压和对电容器组正常运行时的静态过电压、无功过补时电容器端的电压升高的情况分析计算,可选用0.5%~1%的电抗器。 根据以上的选择原则,对无功补偿装置中的串联电抗器有以下建议: (1)新建变电所的电容器装置中串联电抗器的选择必须慎重,不能与电容器任意组合,必须考虑电容器装置接入处的谐波背景。 (2)对于已经投运的电容器装置,其串联电抗器选择是否合理须进一步验算,并组织现场实测,了解电网谐波背景的变化。对于电抗率选择合理的电容器装置不得随意增大或减小电容器组的容量。 (3)电容器组容量变化很大时,可选用于电容器同步调整分接头的电抗器或选择电抗

滤波电容的选择

滤波电容起平滑电压的作用;容值大小与输入桥式整流的输入电压无关;一般是越大越好。但要明白它取值的原理:滤波电容的取值与后级电路的突变电流有关。 打个比方:电容就好比一个水桶,输入往这个水桶中倒水,输出(后级电路)从这个水桶中抽水。如果恒定的抽水,只要倒入的水量大于抽水量,那么水桶将永远是满的,所以这个水桶可以不需要(当然这是理想情况)。假如某时刻需要抽出大量的水,大于输入的量,你会怎么办? 你可以准备一个较大的水桶,在这个时刻到来之前,将这个水桶的水灌满;等到了抽水的时刻,水桶中已经有足够的水抽取,就不会出现缺水的情况。 滤波电容就好比这个较大的水桶! 至于它的具体值,你将后级电路的突变电流与电容充、放电系数联系起来考虑,相信你能领悟出合适的计算方法。 滤波电容的作用和大小是怎样的? 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂 滤波电容在电路中作用 滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。 去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。 旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。 容的容抗为1/ωC欧姆(类似电阻,如果是非电类大学以上学历就把它当作电容器的电阻看吧),ω为角频率,ω=2πf,f为频率。容抗与自身容量C和频率ω(或者说f)有关,当C一定时,频率越高,容抗越小,对电流的阻碍作用就越小;频率越低,容抗越大。……人们所说的“电容通高频阻低频,通交流阻直流”是在不同情况下说的,也可以说是在不同容量C的情况下说的,都是正确的。 到此就不必再多说了吧,分析1/ωC就行了。 电路中的电容滤波问题解析

滤波电容的大小的选取

滤波电容的大小的选取 印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须采用RC吸收电路来吸收放电电流。一般R取1~2kΩ,C取2.2~4.7μF 一般的10PF左右的电容用来滤除高频的干扰信号,0.1UF左右的用来滤除低频的纹波干扰,可以起到稳压的作用 滤波电容具体选择什么容值要取决于你PCB上主要的工作频率和可能对系统造成影响的谐波频率,可以查一下相关厂商的电容资料或者参考厂商提供的资料库软件,根据具体的需要选择。至于个数就不一定了,看你的具体需要了,多加一两个也挺好的,暂时没用的可以先不贴,根据实际的调试情况再选择容值。如果你PCB上主要工作频率比较低的话,加两个电容就可以了,一个虑除纹波,一个虑除高频信号。如果会出现比较大的瞬时电流,建议再加一个比较大的钽电容。 其实滤波应该也包含两个方面,也就是各位所说的大容值和小容值的,就是去耦和旁路。原理我就不说了,实用点的,一般数字电路去耦0.1uF即可,用于10M以下;20M以上用1到10个uF,去除高频噪声好些,大概按C=1/f 。旁路一般就比较的小了,一般根据谐振频率一般为0.1或0.01uF 说到电容,各种各样的叫法就会让人头晕目眩,旁路电容,去耦电容,滤波电容等等,其实无论如何称呼,它的原理都是一样的,即利用对交流信号呈现低阻抗的特性,这一点可以通过电容的等效阻抗公式看出来:Xcap=1/2лfC,工作频率越高,电容值越大则电容的阻抗越小.。在电路中,如果电容起的主要作用是给交流信号提供低阻抗的通路,就称为旁路电容;如果主要是为了增加电源和地的交流耦合,减少交流信号对电源的影响,就可以称为去耦电容;如果用于滤波电路中,那么又可以称为滤波电容;除此以外,对于直流电压,电容器还可作为电路储能,利用冲放电起到电池的作用。而实际情况中,往往电容的作用是多方面的,我们大可不必花太多的心思考虑如何定义。本文里,我们统一把这些应用于高速PCB设计中的电容都称为旁路电容. 电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好。 但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路, (还有电容本身的电阻,有时也不可忽略) 这就引入了谐振频率的概念:ω=1/(LC)1/2 在谐振频率以下电容呈容性,谐振频率以上电容呈感性。 因而一般大电容滤低频波,小电容滤高频波。 这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高。

详细解析电源滤波电容的选取与计算

电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。 采用电容滤波设计需要考虑参数: ESR ESL 耐压值 谐振频率

电抗器与电容器匹配问题

将电抗器与电容器串联构成去谐系统可以避免这些谐振现象。去谐系统的自振频率介于最低的谐波频率和基波频率之间,对于高于去谐系统自振频率的谐波而言,去谐系统表现为感性,避免了谐振;对于50Hz的基波频率而言,它呈容性,因而无功功率可以得到补偿。 此串联电抗器不但能抑制合闸时的瞬时涌流,而且可抑制、吸收谐波电流,具有滤波作用,大大提高了电网的运行安全性。 然而,串抗与电容器不能随意组合,若不考虑电容装置接入处电网的实际情况,采用“一刀切”的配置方式(如电容器一律配用电抗率为5%~6%的串抗),往往适得其反,招致某次谐波的严重放大甚至发生谐振,危及装置与系统的安全。由于电力谐波存在的普遍性,复杂性和随机性,以及电容装置所在电网结构与特性的差异,使得电容装置的谐波响应及其串抗电抗率的选择成为疑难的问题,也是人们着力研究的课题。电容器组投入串抗后改变了电路的特性,串抗既有其抑制涌流和谐波的优点,又有其额外增加的电能损耗和建设投资与运行费用的缺点。所以对于新扩建的电容装置,或者已经投运的电容装置中的串抗选用方案,进行技术经济比较是很有必要的。虽然现有的成果尚不足为电容装置工程设计中串抗的选用作出量化的规定,但是随着研究工作的深入,实际运行经验的积累,业已提出许多为人共识的见解,或行之有效的措施,或可供借鉴的教训。 下面总结电容器串联电抗器时,电抗率选择的一般规律。 1.电网谐波中以3次为主 根据《并联电容器装置设计规范》,当电网谐波以3次及以上为主时,一般为12%;也可根据实际情况采用4.5%~6%与12%两种电抗器: (1)3次谐波含量较小,可选择0.5%~1%的串联电抗器,但应验算电容器投入后3次谐波放大量是否超过或接近限值,并有一定裕度。 (2)3次谐波含量较大,已经超过或接近限值,可以选用12%或4.5%~6%串联电抗器混合装设。 2. 电网谐波中以3、5次为主 (1)3次谐波含量较小,5次谐波含量较大,选择4.5%~6%的串联电抗器,尽量不使用0.1%~1%的串联电抗器; (2)3次谐波含量略大,5次谐波含量较小,选择0.1%~1%的串联电抗器,但应验算电容器投入后3次谐波放大是否超过或接近限值,并有一定裕度。 3. 电网谐波以5次及以上为主 (1)5次谐波含量较小,应选择4.5%~6%的串联电抗器; (2)5次谐波含量较大,应选择4.5%的串联电抗器。对于采用0.1%~1%的串两电抗器,要防止对5次、7次谐波的严重放大伙谐振。对于采用4.5%~6%的串联电抗器,要防止怼次谐波的严重放大或谐振。当系统中无谐波源时,为防止电容器组投切时产生的过电压和对电容器组正常运行时的静态过电压、无功过补时电容器端的电压升高的情况分析计算,可选用0.5%~1%的电抗器。 根据以上的选择原则,对无功补偿装置中的串联电抗器有以下建议: (1)新建变电所的电容器装置中串联电抗器的选择必须慎重,不能与电容器任意组合,必须考虑电容器装置接入处的谐波背景。

补偿电容器电抗率选择

抑制谐波串联电抗器的选用 天津市同德兴电气技术有限公司黄缉熙 补偿用并联电容器对谐波电压最为敏感,谐波电压加速电容器老化,缩短使用寿命。谐波电流将使电容器过负荷、出现不允许的温升,特别严重的是当电容器组与系统产生并联谐振时电流急速增加,开关跳闸、熔断器熔断、电容器无法运行。为避免并联谐振的发生,电容器串联电抗器。它的电抗率按背景谐波次数选取。电网的背景谐波为5次及以上时,宜选取4.5% ~ 6%;电网的背景谐波为3次及以上时,宜选取12% 一、电抗率K值的确定 1. 系统中谐波很少,只是限制合闸涌流时则选K=0.5~1%即可满足要求。它对5次谐波电流放大严重,对3次谐波放大轻微。 2. 系统中谐波不可忽视时,应查明供电系统的背景谐波含量,在合理确定K值。电抗率的配置应使电容器接入处谐波阻抗呈感性。电网背景谐波为5次及以上时,应配置K=4.5~6%。通常5次谐波最大,7次谐波次之,3次较小。国内外通常采用K=4.5~6%。配置K=6%的电抗器抑制5次谐波效果好,但明显的放大3次谐波及谐振点为204Hz,与5次谐波的频率250Hz,裕量大。配置4.5%的电抗器对3次谐波轻微放大,因此在抑制5次及以上谐波,同时又要兼顾减小对3次谐波的放大是适宜的。它的谐振点235Hz与5次谐波间距较小。电网背景谐波为3次及以上时应串联K=12%的电抗器。在电抗器电容器串联回路中,电抗器的感抗X LN与谐波次数虚正比;电容器容抗X CN与谐波次数成反比。为了抑制5次及以上谐波。则要使5次及以上谐波器串联回路的谐振次数小于5次。这样,对于5次及以上谐波,电杭器电容器串联回路呈感性,消除了并联谐振的产生条件;对于基波,电抗器电容器串联回路呈容性,保持无功补偿作用。如电抗器电容器串联回路在n次谐波下谐振,则: 式中X CN/X LN为电抗率的倒数,不同的电抗率对应不同的谐振次数或不同的谐振频率,如表1所示。电抗器的电抗率以取6%为宜,可避免因电抗器、电容器的制造误差或运行中参数变化而造成对5次谐波的谐振。若电容器接入处,电网被污染严重,电抗率要另行计算。 表1 电抗率对应的谐振次数或谐波频率

开关电源中如何正确选择滤波电容(

开关电源中如何正确选择滤波电容(2009-05-22 16:00:29)转载标签:开关电源明纬电源开关电源厂杂谈分类:开关电源 滤波电容在开关电源中起着非常重要的作用,如何正确选择滤波电容,尤其是输出滤波电容的选择则是每个工程技术人员都十分关心的问题。 50Hz工频电路中使用的普通电解电容器,其脉动电压频率仅为100Hz,充放电时间是毫秒数量级。为获得更小的脉动系数,所需的电容量高达数十万μF,因此普通低频铝电解电容器的目标是以提高电容量为主,电容器的电容量、损耗角正切值以及漏电流是鉴别其优劣的主要参数。而开关电源中的输出滤波电解电容器,其锯齿波电压频率高达数十kHz,甚至是数十MHz,这时电容量并不是其主要指标,衡量高频铝电解电容优劣的标准是“阻抗-频率”特性,要求在开关电源的工作频率内要有较低的等效阻抗,同时对于半导体器件工作时产生的高频尖峰信号具有良好的滤波作用。 普通的低频电解电容器在10kHz左右便开始呈现感性,无法满足开关电源的使用要求。而开关电源专用的高频铝电解电容器有四个端子,正极铝片的两端分别引出作为电容器的正极,负极铝片的两端也分别引出作为负极。电流从四端电容的一个正端流入,经过电容内部,再从另一个正端流向负载;从负载返回的电流也从电容的一个负端流入,再从另一个负端流向电源负端。由于四端电容具有良好的高频特性,为减小电压的脉动分量以及抑制开关尖峰噪声提供了极为有利的手段。 由于四端电容具有良好的高频特性,为减小电压的脉动分量以及抑制开关尖峰噪声提供了极为有利的手段。高频铝电解电容器还有多芯的形式,即将铝箔分成较短的若干段,用多引出片并联连接以减小容抗中的阻抗成份。并且采用低电阻率的材料作为引出端子,提高了电容器承受大电流的能力。

逆变电源滤波电容的大小计算

逆变电源滤波电容的大小计算 11-06-19 01:19 逆变电源滤波电容的大小计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。 电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联,

并联电容器串联电抗器利与弊

在理性负载两端并联电容器,这是电网最常用的无功补偿办法,也是进步功率因数改善电压质量节能降损的有效措施。为满足电网和用电设备对电压质量的请求,依据无功负荷变化而投切适量的电容量。但是在电容器投运合闸霎时将产生幅值很大,频率很高的合闸涌流。若电容器接入处电网村谐波污染,由于电容器的容性阻抗特性,将对谐波电流起到放大作用。风险的过电流必将对电气设备产生不良影响,严重时常常还会形成设备的损坏。 为防止谐波对补偿安装的影响,则在电容器回路采用串联电抗器的措施,这既不影响电容器的无功补偿作用,又能抑止高次谐波。所以在补偿电容器回路串联电抗器,具有抑止高次谐波,限制合闸涌流的效果。 但是运转理论标明,电容器回路串联电抗器后,在无功补偿安装投运合闸时还可能产生过电压,以及电容器端电压升高和运用寿命缩短等负面影响,现就电容器回路串联电抗器的利和弊做些剖析。 1电容器回路串联电抗器的益处 1.1限制合闸涌流 无功补偿电容器在投运合闸霎时常常会产生冲击性合闸涌流,这是由于初次合闸的电容器处于未充电状态,流入电容器的电流仅受回路阻抗的限制。因该回路接近短路状态,回路阻抗很小,故而会产生很大冲击涌流。 GB50227—95《并联电容器安装设计标准》中合闸涌流的计算式为: 式中: Ie——电容器组额定电流; XC——电容器组一相容抗值 Xs——电容器组与电网间电抚值 Sd——合闸点系统的短路容量 Qc——电容器组容量 合闸涌流倍数

,K值时随合闸点短路容量的增大和电容器组容量的减小而增大,普通为3——10倍。 电容器组回路加装串联电抗器后的合闸涌流倍数为: K值时随母线短路容量的增大,或电抗器感抗占电容器容抗的百分数的增加而大幅度减小,故而串联电抗器后能起到限制合闸涌流的作用。 1.2抑止高次谐波 当补偿电容器接入处电网存在谐波时,电容器对n次谐波的容抗降为XC/n,系统电感对n次谐波的感抗升为nxs。电网存在有n此谐波时,假如nxs=XC/n,则产生n次谐波谐振现象。其n次谐波电流与基波电流迭加后,使流过电容器电流骤增,其过电流将危及电容器的平安。此时,谐波电流在系统阻抗上产生的谐波电压与原电压迭加而产生过电压,此过电压将影响电容器运用寿命。 在补偿电容器回路串联电抗器后,能有效避开谐振区,从而起到抑止高次谐波作用。 当nXs=xc/n而产生n次谐波谐振现象时,其自振频率为: 电网存在高次谐波时,当n>n0时其阻抗呈理性,对等效网络有明显的抑止休博作用。 但在n 运转理论标明,如串联电抗器的主要用处限制合闸涌流,应选择0.2~2%容抗值得电抗器;如是为抑止高次谐波则应选择6%容抗值的电抗器。电抗器应串联在电容器组的电源侧,其抑止谐波效果会更好。 2串联电抗器存在的弊端 2.1电容器投切时产生过电压 在并联电容器组的回路中串联的电抗器,特别是线性电抗器,或是质量因数较高电抗器,在断路器投切电容器时都会产生过电压,因断路器在合闸时的弹跳和分闸时的重燃,均会增加过电压产生的几率和倍数。故而投切电容器的断路器宜选择高性能、无涌流,不发作重燃的开关,以防止操作时产生过电压。

串联电抗器抑制谐波的作用及电抗率的选择

串联电抗器抑制谐波的作用及电抗率的选择 摘要:串联电抗器是高压并联电容器装置的重要组成部分,其主要作用是抑制谐波和限制涌流,因此,在并联电容器的回路中串联电抗器是非常必要的。电抗率是串联电抗器的重要参数,电抗率的大小直接影响着它的作用。文章着重就串联电抗器抑制谐波的作用展开分析,并提出电抗率的选择方法。 关键词:串联电抗器谐波抑制电抗率选择 1 前言 随着电力电子技术的广泛应用与发展,供电系统中增加了大量的非线性负载,如低压小容量家用电器和高压大容量的工业用交、直流变换装置,特别是静止变流器的采用,由于它是以开关方式工作的,会引起电网电流、电压波形发生畸变,从而引起电网的谐波“污染”。产生电网谐波“污染”的另一个重要原因是电网接有冲击性、波动性负荷,如电弧炉、大型轧钢机、电力机车等,它们在运行中不仅会产生大量的高次谐波,而且会使电压波动、闪变、三相不平衡日趋严重。这不仅会导致供用电设备本身的安全性降低,而且会严重削弱和干扰电网的经济运行,形成了对电网的“公害”。 电能质量的综合治理应遵循谁污染谁治理,多层治理、分级协调的原则。在地区的配电和变电系统中,选择主要电能质量污染源和对电能质量敏感的负荷中心设立电能质量控制枢纽点,在这些点进行在线电能质量监测、采取相应的电能质量改善措施显得格外重要。 在并联电容器装置接入母线处的谐波“污染”暂未得到根本整治之前,如果不采取必要的措施,将会产生一定的谐波放大。在并联电容器的回路中串联电抗器是非常有效和可行的方法。串联电抗器的主要作用是抑制高次谐波和限制合闸涌流[1],防止谐波对电容器造成危害,避免电容器装置的接入对电网谐波的过度放大和谐振发生。但是串联电抗器绝不能与电容器组任意组合,更不能不考虑电容器组接入母线处的谐波背景。文章着重就串联电抗器抑制谐波的作用展开分析,并提出电抗率的选择方法。 2 电抗器选择不当的后果 2.1 基本情况介绍 某110kV变电所新装两组容量2400kvar的电容器组,由生产厂家提供成套无功补偿装置,其中配置了电抗率为6%的串联电抗器,容量为144kvar。电容器组投入运行之后,经过实测发现,该110kV变电所的10kV母线的电压总畸变率达到4.33%,超过公用电网谐波电压(相电压)4%的限值[2],其中3次谐波的畸变率达到3.77%,超过公用电网谐波电压(相电压)3.2%的限值[2]。 经过仔细了解和分析,发现该110kV变电所的10kV系统存在大量的非线性负载。即使在电容器组不投入运行的情况下,10kV母线的电压总畸变率也高达4.01%,其中3次谐波的畸变率高达3.48%。在如此谐波背景下,2400kvar电容器组配置电抗率为6%的串联电抗器是否适合?现计算分析如下。 2.2 电抗率的选择分析

如何选择和计算滤波电容

如何选择和计算滤波电容 问:在电路设计过程中,要用电容来进行滤波.有时要用电解电容,有时要陶瓷电容.有时两种均要用到.我想问一下:用电解电容的作用是什么?用普通陶瓷电容的作用是什么?如何计算其容量的???对于电解电容的耐压又该如何选择确定? 哪些情况用电解电容,哪些情况下用陶瓷电容,哪些情况下两种均要用? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 答: ----- 滤波电容范围太广了,这里简单说说电源旁路(去藕)电容。 滤波电容的选择要看你是用在局部电源还是全局电源。对局部电源来说就是要起到瞬态供电的作用。为什么要加电容来供电呢?是因为器件对电流的需求随着驱动的需求快速变化(比如DDR controller),而在高频的范围内讨论,电路的分布参数都要进行考虑。由于分布电感的存在,阻碍了电流的剧烈变化,使得在芯片电源脚上电压降低--也就是形成了噪声。而且,现在的反馈式电源都有一个反应时间--也就是要等到电压波动发生了一段时间(通常是ms或者us级)才会做出调整,对于ns 级的电流需求变化来说,这种延迟,也形成了实际的噪声。所以,电容的作用就是要提供一个低感抗(阻抗)的路线,满足电流需求的快速变化。 基于以上的理论,计算电容量就要按照电容能提供电流变化的能量去计算。选择电容的种类,就需要按照它的寄生电感去考虑--也就是寄生电感要小于电源路径的分布电感。 具体的说明在很多书上都有。提供一个参考书:high speed digital design ch8.2. ------------------------------ 讨论问题必须从本质上出发。首先,可能都知道电容对直流是起隔离作用的,而电感器的作用则相反。所有的都是基于基本原理的。那这时,电容就有了最常见的两个作用。一是用于极间隔离直流,有人也叫作耦合电容,因为它隔离了直流,但要通过交流信号。直流的通路局限在几级间,这样可以简化工作点很复杂的计算,二是滤波。基本上就是这两种。作为耦合,对电容的数值要求不严,只要其阻抗不要太大,从而对信号衰减过大即可。但对于后者,就要求从滤波器的角度出发来考虑,比如输入端的电源滤波,既要求滤除低频(如有工频引起的)噪声,又要滤除高频噪声,故就需要同时使用大电容和小电容。有人会说,有了大电容,还要小的干什么?这是因为大的电容,由于极板和引脚端大,导致电感也大,故对高频不起作用。而小电容则刚好相反。巨细据此可以确定电容量。而对于耐压,任何时候都必须满足,否则,就会爆炸,即使对于非电解电容,有时不爆炸,其性能也有所下降。讲起来,太多了,先谈这么多。 --------------------- 都是滤波的作用,铝电解电容容量比较大,主要用于虑除低频干扰。容量大约为1mA电流对应2~3μf,如过要求高的时候可以1mA对应5~6μf。无极性电容用于虑除高频信号。单独使用的时候大部分是去藕用的。有时可以与电解电容并联使用。陶瓷电容的高频特性比较好,但是在某个频率(大约是6MHz记不太清了)是容量下降的很快。 ---------- 电容的寄生电感主要包括内部结构决定的电感和引线电感。电解电容的寄生电感主要由内部结构决定。印象中铝电解电容在20~30k以上就表现除明显的电感特性。钽电容在1MHz 左右。陶瓷电容的高频特性就好很多。但是陶瓷电容有压电效应,不适于音频放大电路的输入和输出。

电抗器和电容器

问:电抗器定义与作用 答: 电气回路的主要组成部分有电阻、电容和电感.电感具有抑制电流变化的作用,并能使交流电移相.把具有电感作用的绕线式的静止感应装置称为电抗器。 1、电抗器适用于无功功率补偿和谐波的治理系统中,可以改善功率因数,对谐波起滤波作用,以抑制电网电压波形畸变,从而改变电网质量和保证电力系统安全运行。 2、进线电抗器用来限制电网电压突变和操作过电压引起的电流冲击,平滑电源电压中包含的尖峰脉冲,或平滑桥式整流电路换相时产生的电压缺陷,它既能阻止来自电网的干扰,又能减少整流单元产生的谐波电流对电网的污染。 3、直流电抗器(又称平波电抗器)主要用于变流器的直流侧,电抗器中流过的具有交流分量的直流电流。主要用途是将叠加在直流电流上的交流分量限定在某一规定值,保持整流电流连续,减小电流脉动值,改善输入功率因数。 4、输出电抗器的主要作用是补偿长线分布电容的影响,并能抑制输出谐波电流,提高输出高频阻抗,有效抑制dv/dt.减低高频漏电流,起到保护变频器,减小设备噪声的作用。 5、电容器在补偿功率的时候,往往会受到谐波电压和谐波电流的的冲击,造成电容器损坏和功率因数降低,为此,需要在补偿的时候进行谐波治理。 1、电容器的定义 所谓电容器就是能够储存电荷的“容器”。只不过这种“容器”是一种特殊的物质——电荷,而且其所存储的正负电荷等量地分布于两块不直接导通的导体板上。至此,我们就可以描述电容器的基本 结构:两块导体板(通常为金属板)中间隔以电介质,即构成电容器的基本模型。 2、电容器的作用 电容器在电子线路中的作用一般概括为:通交流、阻直流。电容器通常起滤波、旁路、耦合、去耦、转相等电气作用,是电子线路必不可少的组成部分。在集成电路、超大规模集成电路已经大行其道的 今天,电容器作为一种分立式无源元件仍然大量使用于各种功能的电路中,其在电路中所起的重要作用可 见一斑。作贮能元件也是电容器的一个重要应用领域,同电池等储能元件相比,电容器可以瞬时充放电, 并且充放电电流基本上不受限制,可以为熔焊机、闪光灯等设备提供大功率的瞬时脉冲电流。电容器还常 常被用以改善电路的品质因子,如节能灯用电容器。 隔直流:作用是阻止直流通过而让交流通过。 旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。 耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路

相关文档
最新文档