多波束关键技术——波束形成原理

多波束关键技术——波束形成原理
多波束关键技术——波束形成原理

★★世纪期刊网-专业期刊论文原文服务网站★★【关于我们】

世纪期刊网专业提供中文期刊及学术论文、会议论文的原文传递及下载服务。

【版权申明】

世纪期刊网提供的电子版文件版权均归属原版权所有人,世纪期刊网不承担版权问题,仅供您个人参考。

【联系方式】

电子邮件 support@https://www.360docs.net/doc/d615021400.html,

【网站地址】

世纪期刊网https://www.360docs.net/doc/d615021400.html,

【网上购书推荐商家】

当当网卓越网读书人网

京东IT数码商城

本次文章生成时间:2010-10-19 10:35:48

文章内容从第二页开始!

请将本站向您的朋友传递及介绍!

数字波束形成与智能天线_1

南京理工大学电光学院通信工程系 Nanjing University of Science and Technology Department of Communication Engineering 数字波束形成与智能天线 盛卫星 南京理工大学电光学院通信工程系 Nanjing University of Science and Technology Department of Communication Engineering 数字波束形成与智能天线 第一章引言 DBF and Smart Antennas Nanjing University of Science & Technology Sheng Wei Xing 2004.03.03引言 1.1 数字波束形成与智能天线发展的简史 1.2 移动通信中与雷达中的智能天线的异同 DBF and Smart Antennas Nanjing University of Science & Technology Sheng Wei Xing 2004.03.03 1.1 数字波束形成与智能天线发展的简史 数字波束形成与智能天线的概念来源于军事上雷达和声纳所采用的自适应阵列天线,目的是为了自适应地控制天线波束的主瓣使其对准目标,控制天线波束的零陷,使其对准干扰源,从而可以在强干扰环境下有效地发现和探测目标。 自适应天线阵列的概念自1959年由Van Atta 提出以来,到目前已经经历了四十多年的发展历程,大体上可划分为四个阶段: 第一个十年的研究集中在自适应波束控制上(六十年代)。如:自适应相控阵列天线,自适应波束控制天线等 z 50年代,美国出于卫星通信增强信号的需要,开始研究最初意义上的自适应天线。 z 1964年5月,IEEE Trans. on AP 第一次出版自适应天线专辑,总结了主波束自适应控制阶段的发展。 1.1 数字波束形成与智能天线发展的简史 第三个十年的研究主要集中在空间谱估计上(八十年代)。如:最大似然谱估计,最大熵谱估计,特征空间正交谱估计等 z 1986年3月,IEEE Trans. on AP 第三次出版自适应天线专辑,总结了DOA 估计的空间谱估计阶段的发展。 z 在八十年代,自适应天线阵从理论研究进入了广泛应用阶段,但主要限于雷达和声纳领域。 第二个十年研究集中在自适应零陷控制上(七十年代)。 如:自适应滤波,自适应调零与旁瓣对消,自适应杂波控制等。 z 1976年9月,IEEE Trans. on AP 第二次出版自适应天线专辑,总结了零向自适应控制阶段的发展。 1.1 数字波束形成与智能天线发展的简史 最近十年的研究主要集中在: z 1. 结合移动通信的智能天线的实现技术上(九十年代至今) 时隙、频率资源复用,码分多址导致同频干扰,成为制约通信容量的重要因素。现在的移动通信系统中采用的天线是全向天线,主要是为了确保与各个方向的用户都能通信。智能天线能根据信号的来波方向,自适应地调整天线方向图,形成一个窄的主波束对准用户,其它方向副瓣很低。这样可以增强用户信号,抑制干扰,提高信干比,增加通信系统容量。同时还可以降低发射功率,提高通信覆盖范围。同时多波束时,又称SDMA , 空分多址,大大增加通信系统容量。 移动通信得到了迅猛的发展,一方面,用户数量急剧增加,另一方面,移动业务主要由原来窄带的话音业务,向宽带的多媒体业务扩展。导致无线频谱资源日趋紧张,现在应用的多址方式包括: TDMA(时隙上错开) FDMA (载波频率上错开), CDMA (码分多址)。

多波束形成技术研究

多波束形成技术研究 陈晓萍 (中国西南电子技术研究所,四川成都610036) 摘要:讨论了跟踪与数据中继卫星系统(TDRSS)中关于多波束形成的算法,优选的有LMS自适应方式和相位调整自适应方式;并简单介绍了波束控制和波束形成的实现。 关键词:TDRSS;多波束形成;LMS自适应算法;相位调整自适应算法 一、前言 随着航天技术的发展,要求测控通信站能高覆盖地对飞船等多个目标进行测控通信。要解决这个问题靠现有地面测控网和业务接收站已不能满足要求,需要建立天基测控通信系统,即跟踪与数据中继卫星系统(TDRSS)。 TDRSS把测控通信站搬移到天上同步定点轨道的中继星上,从上向下观测中低轨卫星、飞船、航天飞机等空间飞行器,从而提高了覆盖率。为了减轻中继星的复杂性和负担,将中继卫星观测到的数据和信息传到地面,由地面中心站进行处理。TDRSS中继星相控阵天线同时与多个用户航天器保持跟踪,地面站到航天器的正向通讯为时分多波束,反向通讯为码分和同时多波束。为了减轻中继星的负担,中继星上只装有形成正向天线波束扫描所需的电调移相器,由地面终端计算并发出指令,调节星上移相器相位,让天线波束以时分方式扫描对准各用户航天器,在对准期间完成正向数传。多个用户航天器送到中继星的反向数传信号在星上进行多波束形成会大大增加中继星的复杂性,反向信号经星上阵列天线接收和变换,各阵元收到的信号用频分多路方式相互隔离送往地面,由地面接收前端将频分多路还原成同频多路阵元输出,交由终端进行相控阵多波束形成处理。所谓波束形成, 就是利用开环控制或闭环自适应跟踪方法,对不同反向到达的信号用不同的权系数矢量对各阵元输出进行幅度和相位加权, 使各阵元收到的同一用户信号在合成器中得以同相相加, 输出信号最大, 干扰和噪声最小。当存在多个目标时, 地面终端利用码分多址方法和利用多个波束形成器并行地完成各目标的波束合成处理完成各用户的数传与测控。 二、多波束形成算法 数据中继卫星系统在多址方式下,服务对象一般分布在较低的地球轨道上,当用户星离地面的轨道高度在3 000 km以下时,中继星各阵元波束宽度只要26°就可覆盖地球周围的所有用户星。 当用户星以最大速度10 km/s运动,用户星穿过3.5°宽的合成波束所需的时间最短为205 s,所以中继星跟踪用户星所需的波束移动角速度是很小的。假定波束移动步进量为阵合成波束宽度3.5°的5%即0.175°,波束步进间隔时间长达10.5 s。只要计算机能在10.5 s 内依据用户星位置更新相控阵的相位加权系数,就会使合成波束移动并时刻对准目标。 按照目标的捕获与跟踪过程,多波束形成应有3种工作方式:主波束控制方式(开环)、扫描方式(开环)及自跟踪方式(闭环)。 当有先验信息如根据目标的轨道方程计算出目标在空中的当前位置时,可采用开环的主波束控制方式, 由用户星的实时俯仰角和方位角,计算机算出加权系数矢量,送到多波束处理器完成波束加权合成。用户星相对中继星来说角度移动缓慢,随着用户星的移动,计算机实时逐点计算出权系数矢量,可维持主波束的开环跟踪。主波束控制方式一般用于目标的初始捕获,完成后进入自动跟踪状态。 如果没有先验信息不知道目标的起始位置,可以采用波束扫描方式,根据事先制定的空

波束形成基础原理总结

波束赋形算法研究包括以下几个方面: 1.常规的波束赋形算法研究。即研究如何加强感兴趣信号,提高信道处理增益,研究的是一 般的波束赋形问题。 2.鲁棒性波束赋形算法研究。研究在智能天线阵列非理想情况下,即当阵元存在位置偏差、 角度估计误差、各阵元到达基带通路的不一致性、天线校准误差等情况下,如何保证智能天线波束赋形算法的有效性问题。 3.零陷算法研究。研究在恶劣的通信环境下,即当存在强干扰情况下,如何保证对感兴趣信 号增益不变,而在强干扰源方向形成零陷,从而消除干扰,达到有效地估计出感兴趣信号的目的。 阵列天线基本概念(见《基站天线波束赋形及其应用研究_ 白晓平》) 阵列天线(又称天线阵)是由若干离散的具有不同的振幅和相位的辐射单元按一定规律排列并相互连接在一起构成的天线系统。利用电磁波的干扰与叠加,阵列天线可以加强在所需方向的辐射信号,并减少在非期望方向的电磁波干扰,因此它具有较强的辐射方向性。组成天线阵的辐射单元称为天线元或阵元。相邻天线元间的距离称为阵间距。按照天线元的排列方式,天线阵可分为直线阵,平面阵和立体阵。 阵列天线的方向性理论主要包括阵列方向性分析和阵列方向性综合。前者是指在已知阵元排列方式、阵元数目、阵间距、阵元电流的幅度、相位分布的情况下分析得出天线阵方向性的过程;后者是指定预期的阵列方向图,通过算法寻求对应于该方向图的阵元个数、阵间距、阵元电流分布规律等。对于无源阵,一般来说分析和综合是可逆的。 阵列天线分析方法 天线的远区场特性是通常所说的天线辐射特性。天线的近、远区场的划分比较复杂,一般而言,以场源为中心,在三个波长范围内的区域,通常称为近区场,也可称为感应场;在以场源为中心,半径为三个波长之外的空间范围称为远区场,也可称为辐射场。因此,在分析天线辐射特性时观察点距离应远大于天线总尺寸及三倍的工作波长。阵列天线的辐射特性取决于阵元因素和阵列因素。阵元因素包括阵元的激励电流幅度相位、电压驻波比、增益、方

波束形成技术

LOW C OST PHASED ARRAY ANTENNA TRANSCEIVER FOR WPAN APPLICATIONS Introduction WPAN (Wireless Personal Area Network) transceivers are being designed to operate in the 60 GHz frequency band and will mainly be used for home environment radio links. So far, three basic technologies have been developed for implementing these WPAN devices: 1. Transceivers with a fixed antenna beam and wide aperture: have limited RF performance and no user-tracking ability. 2. MIMO (Multi Input Multi Output): have potential user-tracking ability, but also have marginal RF performance due to high losses that affect waves at 60 GHz reflected by the walls which cancels the potential advantage. 3. Digital Active Phased Array Antenna systems (APAA): have user-tracking ability and good RF power density. In principle digital APAA can handle both compressed as well as uncompressed signals. Digital beam forming is performed by dividing the baseband signal power in as many parts as there are antenna array elements. Then, the bit stream corresponding to each antenna element is digitally phased accordingly with the requested phase value. Now the phased bit streams are used for modulating the RF carrier in one or more steps. At last the modulated carriers are radiated by the antenna array. The baseband processor is complex and expensive; the related conventional RF subsystem is complex and expensive as well. The digital APAA system becomes even more complex when the bit stream is not directly available: this happens when the signal is still compressed. In this case, the baseband processor must first perform a decompression function in order to make available the bit stream. This additional function can significantly increase the cost of the digital APAA. Moreover, if multiple radiated channels are required, the above process and its complications will be multiplied by the number of contemporary channels that are to be handled. We could conclude that ANALOG APAA should be the best technical solution. In fact, analog APAA can handle compressed and uncompressed signals because the signal

数字波束形成

摘要 随着高速、超高速信号采集、传输及处理技术的发展,数字阵列雷达已成为当代雷达技术发展的一个重要趋势。数字波束形成(DBF)技术采用先进的数字信号处理技术对阵列天线接收到的信号进行处理,能够极大地提高雷达系统的抗干扰能力,是新一代军用雷达提高目标检测性能的关键技术之一。并且是无线通信智能天线中的核心技术。 本文介绍了数字波束形成技术的原理,对波束形成的信号模型进行了详细的推导,并且用matlab仿真了三种计算准则下的数字波束形成算法,理论分析和仿真结果表明以上三种算法都可以实现波束形成,并对三种算法进行了比较。同时研究了窄带信号的自适应波束形成的经典算法。研究并仿真了基于最小均方误差准则的LMS算法、RLS算法和MVDR自适应算法,并且做了一些比较。 关键词:数字波束形成、自适应波束形成、智能天线、最小均方误差、最大信噪比、最小方差

ABSTRACT With the development of high-speed, ultra high-speed signal acquisition, transmission and processing technology, digital array radar has became an important trend in the development of modern radar technology. Digital beamforming (DBF) technology uses advanced digital signal processing technology to process the signal received by antenna array. It can improve the anti-jamming ability of radar system greatly and it is one of the key technology。It is the core of the smart antenna technology in wireless communication too。 This paper introduces the principle of digital beam forming technology, the signal model of beam forming was presented, And the digital beam forming algorithm under the three calculation criterion was simulated by MATLAB, theoretical analysis and simulation results show that the three algorithms can achieve beamforming, and made some comparison between the three algorithms. At the same time, made some study about the adaptive narrow-band signal beam forming algorithm. Learned and Simulateded the LMS algorithm base on minimum mean square error criterion and RLS algorithm and MVDR algorithm, and do some comparison Key Words:DBF, ADBF, Smart antenna, The minimum mean square error, The maximum signal to noise ratio

多波束数据

Processing of High-Frequency Multibeam Echo Sounder Data for Seafloor Characterization Laurent Hellequin,Jean-Marc Boucher ,Member,IEEE ,and Xavier Lurton Abstract—Processing simultaneous bathymetry and backscatter data,multibeam echosounders (MBESs)show promising abilities for remote seafloor characterization.High-frequency MBESs pro-vide a good horizontal resolution,making it possible to distinguish fine details at the water–seafloor interface.However,in order to accurately measure the seafloor influence on the backscattered en-ergy,the recorded sonar data must first be processed and cleared of various artifacts generated by the sonar system itself.Such a preprocessing correction procedure along with the assessment of its validity limits is presented here and applied to a 95-kHz MBES (Simrad EM1000)data set.Beam pattern effects,uneven array sen-sitivities,and inaccurate normalization of the ensonified area are removed to make possible further quantitative analysis of the cor-rected backscatter images.Unlike low-frequency data where the average backscattered energy proves to be the only relevant fea-ture for discriminating the nature of the seafloor,high-frequency MBES backscatter images exhibit visible texture patterns.This ad-ditional information involves different statistical distributions of the backscattered amplitudes obtained from various seafloor types.Non-Rayleigh statistics such as -distributions are shown to fit correctly the skewed distributions of experimental high-frequency data.Apart from the effect of the seafloor micro-roughness,a sta-tistical model makes clear a correlation between the amplitude sta-tistical distributions and the signal incidence angle made available by MBES bathymetric abilities.Moreover,the model enhances the effect of the first derivative of the seafloor backscattering strength upon statistical distributions near the nadir and at high incidence angles.The whole correction and analysis process is finally applied to a Simrad EM 1000data set. Index Terms—Backscatter model,-distribution,multibeam echo sounder (MBES),seafloor classification. I.I NTRODUCTION M ANY marine activities (marine geology,commercial fishing,offshore oil prospecting and drilling,cable and pipeline laying and maintenance,and underwater warfare)need tools and methods to remotely characterize the seafloor.Modern swath-mapping sonars are well designed for this task;they have quickly evolved upwards over the last 40years and nowadays are beginning to meet most of the requirements needed to reliably characterize the seafloor.Among the ex-isting acoustical mapping systems,multibeam echo sounders (MBESs)are currently the main focus of attention because of their ability to provide both a bathymetric map and a backscatter image of the surveyed area. Manuscript received February 5,2001;revised June 11,2002. L.Hellequin and X.Lurton are with IFREMER,TMSI/AS,Technop?le Iroise,BP 70,29280Plouzané,France. J.-M.Boucher is with ENST Bretagne,BP 832,29285Brest Cedex,France.Digital Object Identifier 10.1109/JOE.2002.808205 Usually installed under a ship’s hull,an MBES transmits a sound pulse inside a wide across-track and narrow along-track angular sector;then a beamforming process simultaneously cre-ates numerous receiving beams steered at different across-track directions.This spatial filtering allows us to pick up echoes coming from adjacent seafloor portions independently.One sounding is accurately computed inside each beam by simulta-neously measuring the beam steering angle and the echo travel time,according to various estimation methods based on either amplitude or phase.A high density of sounding points is thus generated along the survey swath,and new “pings”are trans-mitted as the ship proceeds on her way.Taking into account the ship’s navigation and attitude,the data from successive pings are finally gridded together in order to create an accurately georeferenced digital terrain model (DTM). In addition to measuring the echo travel times and angles for bathymetry,an MBES also records the echo amplitudes con-taining information about the nature and geoacoustical proper-ties of the seafloor.The echo amplitude is typically remapped to a color or gray scale and forms a coregistered backscatter image.The short pulse length provides the high resolution needed for imaging seafloor backscatter with a sufficient amount of details.For low-resolution MBESs (working in deep water at lower frequencies,typically 12kHz [1]),it seems that the mean backscattering strength (BS),recorded as a function of the incident angle,is the only measured parameter usable to characterize the interface acoustical properties [2].However,for MBESs with better resolution (designed for shallow depths with higher frequencies,typically 100kHz [3]),more infor-mation is available from the backscattered signals for a better seafloor characterization. A typical example of a BS image with a good resolution (Fig.1)shows various textures and spatial organizations of pixels that are clearly related to variations in the nature of the seafloor.In addition to its average level,the BS variability within subareas makes it possible to improve seafloor character-ization using statistical techniques [4],[5].Better classification results are expected when the MBES characteristics (frequency,beamwidth,and incidence angle)and an appropriate BS model are used to refine the analyses. Analyzing a backscatter image in detail reveals several arti-facts that degrade the image and corrupt BS measurements.The strong specular echo,causing a high-level line under the ship’s track,is linked to the backscattering physics and is not to be considered,properly speaking,as an artifact;however,it is a pe-nalizing feature,quite difficult to erase from sonar images.The main artifact comes from the directivity patterns of arrays used for the signal transmission and reception,that are usually not 0364-9059/03$17.00?2003IEEE

波束形成

3.5 两种特殊的波束形成技术 3.5.1协方差矩阵对角加载波束形成技术 常规波束形成算法中,在计算自适应权值时用XX R ∧ 代替其中的X X R 。由于采样快拍数是有限的,则通过估计过程得到的协方差矩阵会产生一定误差,这样会引起特征值扩散。从特征值分解方向来看,自适应波束畸变的原因是协方差矩阵的噪声特征值扩散。自适应波束可以认为是从静态波束图中减去特征向量对应的 特征波束图,即:m in 1 ()()( )()(()())N i V V iv iv V i i G Q E E Q λλθθθθθλ* =-=-∑,其中()V G θ是 是自适应波束图,()V Q θ是静态波束图,即没有来波干扰信号而只有内部白噪声时的波束状态。i λ是矩阵X X R 的特征值。()iv E θ是对应i λ的特征波束图。 由于X X R 是 Hermite 矩阵,则所有的特征值均为实数,并且其特征向量正交,特征向量对应的特征波束正交。而最优权值的求解表达其中的X X R 是通过采样数据估计得到的,当采样快拍数很少时,对协方差矩阵的估计存在误差,小特征值及对应的特征向量扰动都参与了自适应权值的计算,结果导致自适应波束整体性能的下降。鉴于项目中的阵列形式,相对的阵元数较少,采样数据比较少,很容易在估计协方差矩阵的时候产生大的扰动,导致波束的性能下降,所以采用对角加载技术来保持波束性能的稳定及降低波束的旁瓣有比较好的效果。 (1)对角加载常数λ 当采样数据很少时,自适应波束副瓣很高,SINR 性能降低。对因采样快拍数较少引起自相关矩阵估计误差而导致的波束方向图畸变,可以采用对角加载技术对采样协方差矩阵进行修正。修正后的协方差矩阵为:XX XX R R I λ∧ =+ 。 自适应旁瓣抬高的主要原因是对阵列天线噪声估计不足,造成协方差矩阵特征值分散。通过对角加载,选择合适对角加载λ ,则对于强干扰的大特征值不会受到很大影响,而与噪声相对应的小特征值加大并压缩在λ附近,于是可以得到很好的旁瓣抑制效果。对于以上介绍的通过 LCMV 准则求得的权值o p t w 经过对角加载后的最优权值为:111()(())H opt XX XX w R I A A R I A f λλ---=++ (2)广义线性组合加载技术 对角加载常数λ 来修正采样协方差矩阵,能够有效实现波束旁瓣降低的同时提高波束的稳健性。但是对加载值λ 的确定有一定难度,目前还是使用经验值较多。于是,来考虑另外一种能够有效实现协方差矩阵的修正,而且组合参数

多波束勘测系统工作基础学习知识原理及其结构

第二章多波束勘测系统工作原理及结构 多波束系统是70年代兴起、80年代中、末期又得到飞速发展的一项全新的海底地形精密勘测技术。它是当前兴趣的焦点,因为它既有条带测深数据,又同时可获取反映底质属性的回波强度数据(Laurent Hellequin et al.,2003)。该技术采取广角度定向发射和多通道信息接收,获得水下高密度具有上百个波束的条幅式海底地形数据,彻底改变了传统测深技术概念,使测深原理、勘测方法、外围设备和数据处理技术诸方面都发生了巨大变化,大大提高了海底地形勘测的精度、分辨率和工作效率,实现了测深技术史上的一次革命性突破(李家彪等,2000)。多波束系统的工作原理与传统的单波束回声测深仪工作原理类似,都是根据声波在水下往返传播的时间与声速的乘积得到距离,从而得到水深。不同的是单波束测深仪一般采用较宽的发射波束(8°左右)向船底垂直发射,声传播路径不会发生弯曲,来回的路径最短,能量衰减很小,通过对回声信号的幅度检测确定信号往返传播的时间,再根据声波在水介质中的平均传播速度计算测量水深。在多波束系统中,换能器配置有一个或者多个换能器单元的阵列,通过控制不同单元的相位,形成多个具有不同指向角的波束,通常只发射一个波束而在接收时形成多个波束。除换能器天底波束外,外缘波束随着入射角的增加,波束在倾斜穿过水层时会发生折射,同时由于多波束沿航迹方向采用较窄的波束角而在垂直航迹方向采用较宽的覆盖角,要获得整个测幅上精确的水深和位置,必须要精确地知道测量区域水柱的声速剖面和波束在发射和接收时船的姿态和船艏向。因此,多波束测深在系统组成和测量时比单波束测深仪要复杂得多(周兴华等,1999)。 §2.1 多波束勘测系统的工作原理 2.1.1 单波束的形成 2.1.1.1 发射阵和波束的形成 一个单波束在水中发射后,是球形等幅度传播,所以方向上的声能相等。这种均匀传播称为各向同性传播(isotropic expansion),发射阵也叫各向同性源(isotropic source)。例如,一个小石头扔进池塘时就是这种情况,如图2.7所示。

阵列雷达数字波束形成技术仿真与研究

阵列雷达数字波束形成技术仿真与研究 【摘要】本文首先介绍了数字波束形成的基本原理,随后对普通波束形成及基于LCMV准则和MVDR准则的单多波束自适应形成技术分别进行了原理介绍和仿真分析。仿真结果表明,基于自适应技术的数字波束形成能有效提取有用信号,并在干扰方向上形成零陷,有效的抑制噪声和干扰,大大提高了阵列雷达的天线性能。 【关键词】阵列雷达;波束形成;自适应 1.引言 波束形成(Beam Forming,BF)[1]是指将一定几何形状排列的多元阵列各阵元的输出经过加权、时延、求和等处理,形成具有空间指向性波束的方法。BF技术的广泛应用赋予了雷达、通信系统诸如多波束形成、快速、灵活调整方向图综合等许多优点。阵列天线的波束形成可以采用模拟方式,也可以采用数字方式,采用数字方式在基带实现滤波的技术称为数字波束形成(Digital Beaming Forming,DBF),它是天线波束形成原理与数字信号处理技术结合的产物,是对传统滤波技术的空域拓展,在通信领域中也称为智能天线技术。 2.普通波束形成 2.1 普通波束形成的基本原理 要研究数字波束形成技术,首先要建立阵列信号的表示形式。假设接收天线为N元均匀线阵,阵元间的间隔为d,各阵元的加权矢量为W=[w1,w2,…,wN],假设信号为窄带信号S(t),信号波长为,来波方向为,经过加权控制的阵列天线示意图如图1所示[2]。 图1 阵列天线波束形成示意图 若以阵元1为参考点,则各阵元接收信号可以写成: (1) (2) 将上式写成矢量形式,得: (3) 称为为方向矢量或导向矢量。在窄带条件下,它只依赖于阵列的几何结构和波的传播方向,因此,均匀线阵的导向矢量可表示为:

多波束形成方法

多波束形成技术研究 摘要:讨论了跟踪与数据中继卫星系统(TDRSS)中关于多波束形成的算法,优选的有LMS自适应方式和相位调整自适应方式;并简单介绍了波束控制和波束形成的实现。 关键词:TDRSS;多波束形成;LMS自适应算法;相位调整自适应算法 一、前言 随着航天技术的发展,要求测控通信站能高覆盖地对飞船等多个目标进行测控通信。要解决这个问题靠现有地面测控网和业务接收站已不能满足要求,需要建立天基测控通信系统,即跟踪与数据中继卫星系统(TDRSS)。 TDRSS把测控通信站搬移到天上同步定点轨道的中继星上,从上向下观测中低轨卫星、飞船、航天飞机等空间飞行器,从而提高了覆盖率。为了减轻中继星的复杂性和负担,将中继卫星观测到的数据和信息传到地面,由地面中心站进行处理。TDRSS中继星相控阵天线同时与多个用户航天器保持跟踪,地面站到航天器的正向通讯为时分多波束,反向通讯为码分和同时多波束。为了减轻中继星的负担,中继星上只装有形成正向天线波束扫描所需的电调移相器,由地面终端计算并发出指令,调节星上移相器相位,让天线波束以时分方式扫描对准各用户航天器,在对准期间完成正向数传。多个用户航天器送到中继星的反向数传信号在星上进行多波束形成会大大增加中继星的复杂性,反向信号经星上阵列天线接收和变换,各阵元收到的信号用频分多路方式相互隔离送往地面,由地面接收前端将频分多路还原成同频多路阵元输出,交由终端进行相控阵多波束形成处理。所谓波束形成, 就是利用开环控制或闭环自适应跟踪方法,对不同反向到达的信号用不同的权系数矢量对各阵元输出进行幅度和相位加权, 使各阵元收到的同一用户信号在合成器中得以同相相加, 输出信号最大, 干扰和噪声最小。当存在多个目标时, 地面终端利用码分多址方法和利用多个波束形成器并行地完成各目标的波束合成处理完成各用户的数传与测控。 二、多波束形成算法 数据中继卫星系统在多址方式下,服务对象一般分布在较低的地球轨道上,当用户星离地面的轨道高度在3 000 km以下时,中继星各阵元波束宽度只要26°就可覆盖地球周围的所有用户星。 当用户星以最大速度10 km/s运动,用户星穿过3.5°宽的合成波束所需的时间最短为205 s,所以中继星跟踪用户星所需的波束移动角速度是很小的。假定波束移动步进量为阵合成波束宽度3.5°的5%即0.175°,波束步进间隔时间长达10.5 s。只要计算机能在10.5 s 内依据用户星位置更新相控阵的相位加权系数,就会使合成波束移动并时刻对准目标。 按照目标的捕获与跟踪过程,多波束形成应有3种工作方式:主波束控制方式(开环)、扫描方式(开环)及自跟踪方式(闭环)。 当有先验信息如根据目标的轨道方程计算出目标在空中的当前位置时,可采用开环的主波束控制方式, 由用户星的实时俯仰角和方位角,计算机算出加权系数矢量,送到多波束处理器完成波束加权合成。用户星相对中继星来说角度移动缓慢,随着用户星的移动,计算机实时逐点计算出权系数矢量,可维持主波束的开环跟踪。主波束控制方式一般用于目标的初始捕获,完成后进入自动跟踪状态。 如果没有先验信息不知道目标的起始位置,可以采用波束扫描方式,根据事先制定的空间角度扫描轨迹图形,顺序调出各角度位置的加权矢量,形成波束的空中扫描,当波束扫到目标时,波束合成器输出最大信号并给出目标捕获指示,完成目标初始捕获,随即进入波束

多波束天线

多波束天线综述 多波束天线(MBA———Multiple Beam Antenna)由于其能够高增益地覆盖较大的地面区域而且又能根据需要调整波束形状而得到深入研究和广泛于卫星通信系统。多波束天线是能够同时产生多个子波束(点波束),从而覆盖地面上所关心的区域的天线系统,根据不同的通信需要,子波束和总波束的关系大致可分为几种情况:固定区域点波束覆盖,非固定区域点波束覆盖和赋形束覆盖。多波束天线与传统天线不同,它只在指定的区域有较高的增益值,而在其他地方增益很低,所以能减少覆盖区域外地面站对多波束系统造成的干扰,提高系统的频谱利用率和信道容量,提供有效全辐射功率和接收系统品质因素G/T值,并使卫星地面站终端设备得到简化和降低成本。另一方面,由于地球的曲率,卫星覆盖下的区域到达卫星的路径并不相等,星下点路径最短,远离星下点的区域路径较远,这就引起了远近效应的问题对于通信卫星系统而言,等通量覆盖是保证系统性能稳定的关键因素之一而这恰恰是多波束天线的优势因为多波束天线是通过几个高增益的窄波束合成一个等效的高增益宽波束,所以可以通过调整每个波束的增益大小,实现对地面的等通量覆盖。 (1)固定区域点波束覆盖: 固定区域点波束覆盖是指所有的点波束彼此独立地照射地面上不同的固定区域,总的波束则覆盖有关国家和地区,这种点波束方式往往用于同步卫星通信系统,近年来也应用于同步卫星通信系统,称为所谓“凝视天线”。这种系统,当卫星移动时,天线始终照射着某一固定区域并保持波束覆盖图不变,直到该区域边缘的仰角小于最小仰角。 (2)赋形束覆盖 赋形束覆盖是指点波束在地面上相互迭加,得到的辐射方向图形成所需要的图形─赋形束,这种方式也往往用于同步卫星通信系统.赋形束的概念在二十多年前就提出来了,其天线由反射面和单个馈元或由少量的馈元组成的馈元阵组成(后者可以看成多波束天线).任何形状的方向图都可以通过设计反射面的形状,在光学口面产生所需的振幅和相位分布来实现,而

相关文档
最新文档