量子、信息与生命课程

量子、信息与生命课程
量子、信息与生命课程

量子、信息与生命课程详细信息

量子力学教程课后习题答案

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=h v , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学知识点总结(精.选)

1光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 2光电效应有两个突出的特点:①存在临界频率ν0 :只有当光的频率大于一定值v 0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。 3爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= h ν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子 4康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律:射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ;波长增量Δλ=λ-λ随散射角增大而增大 5戴维逊-革末实验证明了德布罗意波的存在 6波函数的物理意义:某时刻t 在空间某一点(x,y,z)波函数模的平方与该时刻t 该地点(x,y,z)附近单位体积内发现粒子的几率密度(通常称为几率)dw(x,y,z,t)成正比。按照这种解释,描写粒子的波是几率波 7波函数的归一化条件 1),,,( 2 ?∞=ψτd t z y x 8定态:微观体系处于具有确定的能量值的状态称为定态。定

态波函数:描述定态的波函数称为定态波函定态的性质:⑴由定态波函数给出的几率密度不随时间改变。⑵粒子几率流密度不随时间改变。⑶任何不显含时间变量的力学量的平均值不随时间改变 9算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。 10厄密算符的定义:如果算符 F ?满足下列等式() ? ?dx F dx F φψφψ**??=,则称F ?为厄密算符。式中ψ和φ为任意波函数,x 代表所有的变量,积分范围是所有变量变化的整个区域。 推论:量子力学中表示力学量的算符都是厄密算符。 11厄密算符的性质:厄密算符的本征值必是实数。厄密算符的属于不同本征值的两个本征函数相互正交。 12简并:对应于一个本征值有一个以上本征函数的情况。简并度:对应于同一个本征值的本征函数的数目。 13量子力学中力学量运动守恒定律形式是: 01=??????+??=H F i t F dt F d ?,?η 量子力学中的能量守恒定律形式是01=??????=H H i dt H d ?,??η 14 15斯特恩-革拉赫实验证明电子存在自旋理由 16黑体辐射揭示了经典物理学的局限性。 17玻尔的量子化条件:在量子理论中,角动量必须是h 的整数 的近似求解方法。 求出,由求出微扰论:由n n n n E E ψψ)0()0(

量子力学学习计划.docx

量子力学总结 量子力学研究对象:微观粒子运动规律 第一章 一、经典物理学的困难 1、黑体辐射问题 2、光电效应问题 3、原子的线状光谱和原子结构问题 4、固体在低温下的比热问题 二、量子力学的两个发展阶段 1、旧量子论( 1900-1924)以普朗克、爱因斯坦、玻尔为代表 2、新量子论( 1924年建立)以德布罗意、薛定谔、玻恩、海森堡、狄拉克为代表 三 .光的波动性 典型的实验: 1802年的杨氏干涉实验和后来的单缝、双缝衍射实验。 四 .黑体辐射 如果一个物体能全部吸收投射到它上面的辐射而无反射,这种物体为绝对黑体(简称黑体),它是一种理想化模型。 五、光电效应 1、在光的作用下,电子从金属表面逸出的现象,称为光电效应。 2、自 1887年 Hertz 起,到 1904 年 Milikan 为止,光电效应的实验规律被逐步揭露出来。其中,无法为经典物理学所 解释的有: ( 1)对一定的金属,照射光存在一个临界频率,低于此频率时,不发生光电效应。(不论光照多么强,被照射的金属都不发射电子) ( 2)光电子的动能与照射光的频率成正比(),而与光的强度无关。 ( 3)光电效应是瞬时效应() 六、康普顿效应 定义:短波电磁辐射(如 X 射线,伽玛射线)射入物质而被散射后,除了出现与入射波同样波长的散射外,还出现波长向长波方向移动的散射现象公式推导: 公式是又康普顿提出的,有康普顿和吴有训用实验证实的。 七:玻尔理论的两个基本假设

( 1)量子条件:(且存在定) ( 2)率条件:,有(1)、(2)可得 量子化通:n=1, 2, 3??玻理不能解多子原子 和的度。玻理是半典半量子的理。 八、德布意假 德布意 1924 年提出:微粒子也具有波粒二象性。 德布意关系式: 种表示自由粒子的平面波称德布意波或“物波”。 九、平面波方程 或 种波(自由粒子的平面波)称德布意波。 十、德布意波的 1.子的衍射 1927 年美国科学家戴( Davisson)和革末( Germer)用了德布意波的正确性。后来,姆又用子通金箔得到了子的衍射。 2.子的干涉 3.它是由江希太特和杜开在1954 年作出。后来又由法盖特和特在1956 年做出。 4.其他表面:一切微粒子都具有波粒二象性 5.物波的用 子微(分辨率的普遍表达式) 第二章 一、典力学点的描述(坐和量) 律: 二、自由粒子的波函数(德布意假) 三、波函数的解 Born 首先提出了波函数意的解:波函数在空某点的度(振幅的平方)和在点找到粒子的几率成比例,即描写粒子 的波可以是几率波。 四、波函数的性 1. 表示:在 t 刻 ,在 r 点,在 d τ= dxdydz 体内,找到由波函数Ψ(r,t)描写的粒子的几率是。 2.几率密度:

量子力学知识总结

量子力学基础知识总结 一.微观粒子的运动特征 1.黑体辐射和能量量子化 黑体:一种能全部吸收照射到它上面的各种波长辐射的物体 普朗克提出能量量子化假设:定温下黑体辐射能量只与辐射频率有关,频率为ν的能量,其数值是不连续的,只能是hν的整数倍,称为能量量子化。 2.光电效应与光子学说 爱因斯坦将能量量子化概念用于电磁辐射,并用以解释光电效应。其提出了光子学说,圆满解释了光电效应。 光子学说内容: ①光是一束光子流,每一种频率的的光的能量都有一个最小单位,称为光子 光子能量ε=hν/c ②光子质量m=hν/c2 ③光子动量p=mc=hν/c= h/λ ④光的强度取决于单位体积内光子的数目,即光子密度。光电效应: hν= W+E K =hν +2 1 mv2,W为脱出功,E k 为光电子的动能。 3.实物微粒的波粒二象性 德布罗意提出实物微粒也具有波性:E=hν p=h/λ 德布罗意波长:λ=h/p=h/(mv) 4. 测不准原理:?x?x p≥h?y?p y ≥h?z?p y ≥h?tE≥h 二、量子力学基本假设 1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x,y,z,t)来描述,它包括体系的全部信息。这一函数称为波函数或态函数,简称态。 不含时间的波函数ψ(x,y,z)称为定态波函数。在本课程中主要讨论定态波函数。 由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于ψ*ψ,所以通常将用波函数ψ描述的波称为几率波。在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将ψ*ψ称为几率密度,它就是通常所说的电子云;ψ*ψdτ为空间某点附近体积元dτ中电子出现的几率。 对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born)统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。 波函数ψ可以是复函数, 合格(品优)波函数:单值、连续、平方可积。 2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。 算符:作用对象是函数,作用后函数变为新的函数。

量子物理课程教学大纲

量子物理课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:量子物理 所属专业:材料物理 课程性质:专业基础课 学分:4 (二)课程简介、目标与任务; 课程简介: 量子理论和相对论是20世纪物理学取得的两个最伟大的进展之一,以研究微观物质运动规律为基本出发点建立的量子理论开辟了人类认识客观 世界运动规律的新途径,开创了物理学的新时代。 本课程着重介绍非相对论量子力学的基本概念、基本原理和基本方法。 首先从量子力学发展简史、黑体辐射实验等出发,讲述量子力学Schrodinger 方程和一维定态问题,着重讲述周期场和Bloch定理、能带结构。在此基础 上讲述量子力学的基本原理,包括波函数统计解释、线性厄米算符、本征值 问题、测不准关系、力学量完全集、Heisenberg方程等。中心力场部分主 要讲电磁场相互作用下氢原子的能级结构。矩阵力学主要讲力学量算符的矩 阵表示和本征值问题。定态微扰论和量子跃迁主要讲原子的几个效应和量子 系统在外场微扰情况下的光的吸收和辐射。最后讲多粒子全同性问题。 课程目标与任务: 1. 掌握微观粒子运动规律、量子力学的基本假设、基本原理和基本方 法。 2.掌握量子力学的基本近似方法及其对相关物理问题的处理。 3.掌握电子在周期势场情况下的运动规律,为学习固体物理打好基础。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 本课程需要学生先修《电磁学》、《光学》、《原子物理》、《数学物理方法》和《线性代数》等课程。《电磁学》和《光学》中的麦克斯韦理论最终统一了 光学和电磁学;揭示了任意温度物体都向外辐射电磁波的机制,它是19世纪 末人们研究黑体辐射的基本出发点,对理解本课程中的黑体辐射实验及紫外 灾难由于一定的帮助。《原子物理》中所学习的关于原子结构的经典与半经典 理论及其解释相关实验的困难是导致量子力学发展的主要动机之一。《数学物 理方法》中所学习的复变函数论和微分方程的解法都在量子力学中有广泛的 应用。《线性代数》中的线性空间结构的概念是量子力学希尔伯特空间的理论 基础,对理解本课程中的矩阵力学和表象变换都很有助益。 (四)教材与主要参考书。 [1] 钱伯初, 《理论力学教程》, 高等教育出版社; (教材) [2] 曾谨言,《量子力学》I,第四版,科学出版社, 2006年 [3] L. D. Landau and E. M. Lifshitz, Non-relativistic Quantum Mechanics; [4] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press 1958; 二、课程内容与安排 第一章绪论 第一节量子论发展简史 第二节黑体辐射实验与Plank常数的量纲分析,原子物理中的量纲结构(一)教学方法与学时分配:课堂讲授;4学时 (二)内容及基本要求 主要内容:主要介绍量子力学的发展简史、研究对象和微观粒子的基本特性及其量纲分析。 【重点掌握】: 1.量子力学的实验基础:黑体辐射;光电效应;康普顿散射实验;电子晶体衍射 实验;

量子力学知识点总结

量子力学期末复习完美总结 一、 填空题 1.玻尔-索末菲的量子化条件为: pdq nh =?,(n=1,2,3,....), 2.德布罗意关系为:h E h p k γωλ == = =; 。 3.用来解释光电效应的爱因斯坦公式为: 21 2 mV h A υ=-, 4.波函数的统计解释:()2 r t ψ ,代表t 时刻,粒子在 空间r 处单位体积中出现的概率,又称为概率密度。这 是量子力学的基本原理之一。波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波。 5.波函数的标准条件为:连续性,有限性,单值性 。 6. , 为单位矩阵,则算符 的本征值为: 1± 。 7.力学量算符应满足的两个性质是 实数性和正交完备性 。 8.厄密算符的本征函数具有: 正交性,它们可以组成正交归一性。即 ()m n mn d d λλφφτδφφτδλλ**''==-??或 。 9.设 为归一化的动量表象下的波函数,则 的物理意义为:表示在()r t ψ,所描写 的态中测量粒子动量所得结果在p p dp →+范围内的几率。 10. i ; ?x i L ; 0。 11.如两力学量算符 有共同本征函数完全系,则 _0__。 12.坐标和动量的测不准关系是: () () 2 2 2 4 x x p ??≥ 。 自由粒子体系,_动量_守恒;中心力场中运动的粒子__角动量__守恒 13.量子力学中的守恒量A 是指:?A 不显含时间而且与?H 对易,守恒量在一切状态中的平均值和概率分布都不随时间改变。 14.隧道效应是指:量子力学中粒子在能量E 小于势垒高度时仍能贯穿势垒的现象称为隧道效应。 15. 为氢原子的波函数, 的取值范围分别为:n=1,2,3,… ;l=0,1,…,n -1;m=-l,-l+1,…,0,1,…l 。 16.对氢原子,不考虑电子的自旋,能级的简并为: 2 n ,考虑自旋但不考虑自旋与轨道角动量的 耦合时,能级的简并度为 22n ,如再考虑自旋与轨道角动量的耦合,能级的简并度为 12+j 。 17.设体系的状态波函数为 ,如在该状态下测量 力学量 有确定的值 ,则力学量算符 与态矢量 的关系为:?F ψλψ =。 18.力学量算符 在态 下的平均值可写 为 的条件为:力学量算符的本征 值组成分立谱,并且()r ψ是归一化波函数。 19.希尔伯特空间:量子力学中Q 的本质函数有无限多 个,所以态矢量所在的空间是无限维的函数空间。 20.设粒子处于态 , 为 归一化波函数, 为球谐函数,则系数c 的取值为: 1 6 , 的可能值为: 13 , 本征值为 出现 的几率为: 1 2 。

量子力学的数学准备

量子力学的数学准备(暑期读物) 写在前面的话 06光信、电科的同学们: 暑假开学后我将和你们一起学习量子力学这门课程。由于教学计划调整,量子力学的学时由周五学时缩减为周四学时,加之学期缩短(由18-19周缩短为16-17周),实际教学时间缩减近三分之一。无论是从学校的要求还是从将来同学们学习后续课程或考研的要求来看,都不允许减少教学内容。为此我编写了一个暑期读物,以期同学们利用暑假在不涉及量子力学的基本原理和有关概念的前提下,能够对量子力学课程中用到的一些数学知识做一个复习和预习,以便开学后在课堂上可适度减少对数学的讲解。我知道大家暑假都很忙,要回家与亲人团聚尽享天伦之乐,要孝敬父母帮着做一些事情,要游览大好河山感受大自然的美,要准备考托考吉考这考那,要准备科技创新、电子大赛,等等等等。但我还是希望大家能拨冗看一下这个读物,此处所说的看决不是指“Look ”,而是指“Read, Deduce and Consider ”,即阅读、推导、思考。为此,带上数学物理方法和线性代数的课本回家是有必要的。 有人说19世纪是机器的世纪,20世纪是信息的世纪,而21世纪将是量子的世纪。让我们为迎接量子世纪的到来做好准备吧! 刘骥 谨此 I. 一个积分的计算 计算积分?+∞ ∞ --≡ dx e I x 2 ??+-+∞ ∞ --+∞ ∞--=≡ e dy e dx e I x y x (2 22 2 θπ = +∞-? ? 020 2 r dr rd e π=∴I 由此我们可以得到积分公式: πn x n n dx e x 2 ! )!12(2 2-=?+∞ ∞ -- 02 21221222! )!12(2)32)(12(212212212 22 I n I n n I n dx e x n de x dx e x I n n n x n x n x n n -==--=-= -=-=≡ --∞ ∞ ---∞ ∞---+∞ ∞ --???Λ 问题:对于积分?--≡1 1 2 dx e J x 可以仿照上述方法计算吗?为什么?如果不能,该如何计算其近似值?

北京大学物理学院量子力学系列教学大纲

北京大学物理学院量子力学系列教学大纲 课程号: 00432214 新课号: PHY-1-044 课程名称:量子力学 开课学期:春、秋季 学分: 3 先修课程:普通物理(PHY-0-04*以上)、理论力学(PHY-1-051)、电动力学(PHY-1-043)基本目的:使得同学掌握量子力学的基本原理和初步的计算方法,适合于非物理类专业的同学选修。 内容提要: 1.量子力学基本原理:实验基础、Hilbert空间、波函数、薛定谔方程、算符、表象变换、对称性与守恒律 2.一维定态问题:一般讨论、自由粒子、一维方势阱、谐振子、一维势垒3.轨道角动量与中心势场定态问题:角动量对易关系、本征函数、中心势、三维方势阱、三维谐振子、氢原子 4. 量子力学中的近似方法:定态微扰论、跃迁、散射。 5.全同粒子与自旋:全同性原理、自旋的表述、自旋与统计的关系、两个自旋的耦合、磁场与自旋的相互作用 教学方式:课堂讲授 教材与参考书: 曾谨言,《量子力学教程》,北京大学出版社, 1999. 学生成绩评定方法:作业10%、笔试90% 课程号: 00432214 新课号: PHY-1-054 课程名称:量子力学I 开课学期:春、秋季 学分: 4 先修课程:普通物理(PHY-0-04*以上)、高等数学、数学物理方法(PHY-1-011或以上)基本目的: 使得同学掌握量子力学的基本理论框架和计算方法。适合物理学院各类型同学以及非物理类的相关专业同学选修。 内容提要: 1.量子力学基本原理:实验基础、Hilbert空间、波函数、薛定谔方程、算符、表象变换、对称性与守恒律 2.一维定态问题:一般讨论、自由粒子、一维方势阱、谐振子、一维势垒3.轨道角动量与中心势场定态问题:角动量对易关系、本征函数、中心势、

《量子力学》课程教学大纲

《量子力学》课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:量子力学 所属专业:物理学专业 课程性质:专业基础课 学分:4 (二)课程简介、目标与任务; 课程简介: 量子理论是20世纪物理学取得的两个(相对论和量子理论)最伟大的进展之一,以研究微观物质运动规律为基本出发点建立的量子理论开辟了人 类认识客观世界运动规律的新途径,开创了物理学的新时代。 本课程着重介绍《量子力学》(非相对论)的基本概念、基本原理和基本方法。课程分为两大部分:第一部分主要是讲述量子力学的基本原理(公 设)及表述形式。在此基础上,逐步深入地让学生认识表述原理的数学结构, 如薛定谔波动力学、海森堡矩阵力学以及抽象表述的希尔伯特空间的代数结 构。本部分的主要内容包括:量子状态的描述、力学量的算符、量子力学中 的测量、运动方程和守恒律、量子力学的表述形式、多粒子体系的全同性原 理。第二部分主要是讲述量子力学的基本方法及其应用。在分析清楚各类基 本应用问题的物理内容基础上,掌握量子力学对一些基本问题的处理方法。 本篇主要内容包括:一维定态问题、氢原子问题、微扰方法对外场中的定态 问题和量子跃迁的处理以及弹性散射问题。 课程目标与任务: 1. 掌握微观粒子运动规律、量子力学的基本假设、基本原理和基本方 法。 2.掌握量子力学的基本近似方法及其对相关物理问题的处理。 3.了解量子力学所揭示的互补性认识论及其对人类认识论的贡献。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 本课程需要学生先修《电磁学》、《光学》、《原子物理》、《数学物理方法》和《线性代数》等课程。《电磁学》和《光学》中的麦克斯韦理论最终统一 了光学和电磁学;揭示了任意温度物体都向外辐射电磁波的机制,它是19 世纪末人们研究黑体辐射的基本出发点,对理解本课程中的黑体辐射实验及 紫外灾难由于一定的帮助。《原子物理》中所学习的关于原子结构的经典与 半经典理论及其解释相关实验的困难是导致量子力学发展的主要动机之一。 《数学物理方法》中所学习的复变函数论和微分方程的解法都在量子力学中 有广泛的应用。《线性代数》中的线性空间结构的概念是量子力学希尔伯特 空间的理论基础,对理解本课程中的矩阵力学和表象变换都很有助益。 (四)教材与主要参考书。 [1] 钱伯初, 《理论力学教程》, 高等教育出版社; (教材) [2] 苏汝铿, 《量子力学》, 高等教育出版社; [3] L. D. Landau and E. M. Lifshitz, Non-relativistic Quantum Mechanics; [4] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press 1958; 二、课程内容与安排 第一章微观粒子状态的描述 第一节光的波粒二象性 第二节原子结构的玻尔理论 第三节微观粒子的波粒二象性 第四节量子力学的第一公设:波函数 (一)教学方法与学时分配:课堂讲授;6学时 (二)内容及基本要求 主要内容:主要介绍量子力学的实验基础、研究对象和微观粒子的基本特性及其状态描述。 【重点掌握】: 1.量子力学的实验基础:黑体辐射;光电效应;康普顿散射实验;电子晶体衍射

量子力学期末考试知识点+计算题证明题

1. 你认为Bohr 的量子理论有哪些成功之处?有哪些不成功的地方?试举一例说明。 (简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?) 答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件。首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。 2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子。爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的。(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。 3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态。这就是量子力学中的态叠加原理。态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ。它反映了微观粒子的波粒二象性矛盾的统一。量子力学中这种态的叠加导致在叠加态下观测结果的不确定性。 4. 什么是定态?定态有什么性质? 答:体系处于某个波函数()()[]exp r t r iEt ψψ=-,所描写的状态时,能量具有确定值。这种状态称为定态。定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化。 5. 简述力学量与力学量算符的关系? 答:算符是指作用在一个波函数上得出另一个函数的运算符号。量子力学中采用算符来表示微观粒子的力学量。如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学量的算符?F 由经典表示式F (r,p )中将p 换为算符?p 而得出的,即:

量子力学知识点小结(良心出品必属精品)

第一章 ⒈玻尔的量子化条件,索末菲的量子化条件。 ⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 ⒎普朗克量子假说: 表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。 表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=hν。 表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。 ⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 ⒐光电效应有两个突出的特点: ①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。 ②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。 ⒑爱因斯坦光量子假说: 光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出

现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子。爱因斯坦方程 ⒒光电效应机理: 当光射到金属表面上时,能量为 E= h ν 的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。 ⒓解释光电效应的两个典型特点: ①存在临界频率v 0:由上式明显看出,当h ν- W 0 ≤0时,即ν≤ν0 = W 0 / h 时,电子不能脱出金属表面,从而没有光电子产生。 ②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。 ⒔康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律: ①散射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ; ②波长增量Δλ=λ-λ随散射角增大而增大。 ⒖量子现象凡是普朗克常数h 在其中起重要作用的现象 ⒗光具有微粒和波动的双重性质,这种性质称为光的波粒二象性 ⒘与运动粒子相联系的波称为德布罗意波或物质波。 ???? ? ???? ======n k h k n h P h E λππλων2 ,2

原子物理学课程教学大纲

原子物理学课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:原子物理学 所属专业:物理学专业 课程性质:基础课 学分:4 (二)课程简介、目标与任务; 原子物理学是物理类专业本科生的专业必修课,以物质结构的第一个微观层次(原子)为研究对象,是联接经典物理和近代物理的一门承上启下的课程。在理论方法上,该课程揭露经典理论在原子这一微观层次遭遇到的困难,并且为了解决这些困难而引入量子力学,学生将在本课程中较为系统地学习到量子力学的基本概念、基本原理、基本思想和方法。在应用实践上,通过本课程的学习,学生将系统性地了解和掌握原子物理学的发展历史,获得有关原子的电子结构、性质及其与外场相互作用的系统性知识,为以后从事相关的科学研究、生产应用和教学工作打下良好的基础。 (三)先修课程要求,与先修课之间的逻辑关系和内容衔接; 先修课程:《高等数学》、《数学物理方法》、《力学》、《理论力学》、《热学》、《电磁学》、《光学》 关系:《高等数学》和《数学物理方法》是学习原子物理学的数学基础。《力学》、《理论力学》、《热学》、《电磁学》和《光学》包含了学生在学习原子物理学之前需要掌握的必要的经典物理知识。有了这些准备知识才能理解为何不能用经典理论来研究原子体系,从而必须引入量子力学。 (四)教材与主要参考书; 选用教材:杨福家, 《原子物理学》第四版, 高等教育出版社, 2010 主要参考书:

1, C. J. Foot,《Atomic Physics》, Oxford University Press, 2005 2, H. Friedrich,《Theoretical Atomic Physics》, Springer, 2006 3, 褚圣麟,《原子物理学》,高等教育出版社, 1987 4, 曾谨言,《量子力学》,科学出版社, 2000 5, 卢希庭,《原子核物理》,原子能出版社, 1981 二、课程内容与安排 绪论原子物理学的发展历史(2学时)【了解】 第一章原子的组成和结构(5学时) 第一节原子的质量和大小【掌握】 第二节电子的发现【了解】 第三节原子结构模型【了解】 第四节原子的核式结构,卢瑟福散理论【重点掌握】【难点】 第五节卢瑟福理论的成功和不足【掌握】 第二章原子的量子态,玻尔理论(8学时) 第一节背景知识:黑体辐射、光电效应和氢原子光谱【掌握】 第二节玻尔的氢原子理论【重点掌握】【难点】 第三节玻尔理论的实验验证【掌握】 第四节玻尔理论的推广:椭圆轨道理论和碱金属原子光谱【重点掌握】 第五节玻尔理论的成功与缺陷【掌握】 第三章量子力学导论(18学时)【重点掌握】【难点】 第一节波粒二象性 第二节不确定关系 第三节波函数及其统计解释 第四节态叠加原理 第五节薛定谔方程 第六节薛定谔方程应用举例 第七节平均值和算符 第八节量子力学总结 第九节氢原子/类氢离子的量子力学解法 第十节爱因斯坦关于辐射和吸收的唯象理论 第十一节量子跃迁理论,含时微扰论

量子力学教程-周世勋-课程教案(轻松学量子力学)

量子力学讲义

一、量子力学是什么? 量子力学是反映微观粒子(分子、原子、原子核、基本粒子等)运动规律的理论。 研究对象:微观粒子,大致分子数量级,如分子、原子、原子核、基本粒子等。 二、量子力学的基础与逻辑框架 1.实验基础 ——微观粒子的波粒二象性: 光原本是波 ——现在发现它有粒子性; 电子等等原本是粒子 ——现在发现它有波动性。 2.(由实验得出的)基本图象 —— de Broglie 关系与波粒二象性 Einstein 关系(对波动):E h ν=,h p λ = de Broglie 关系(对粒子): E =ω, p k = 总之,),(),(k p E ω? 3.(派生出的)三大基本特征: 几率幅描述 ——(,)r t ψ 量子化现象 —— ,,,321E E E E = 不确定性关系 ——2 ≥ ???p x 4.(归纳为)逻辑结构 ——五大公设 (1)、第一公设 ——波函数公设:状态由波函数表示;波函数的概率诠释;对波函数性质的要求。 (2)、第二公设 ——算符公设 (3)、第三公设 ——测量公设 ?=r d r A r A )(?)(* ψψ (4)、第四公设 ——微观体系动力学演化公设,或薛定谔方程公设 (5)、第五公设 ——微观粒子全同性原理公设 三、作用 四、课程教学的基本要求 教 材:《量子力学教程》周世勋, 高等教育出版社 参考书:1. 《量子力学》,曾谨言,2. 《量子力学》苏汝铿, 复旦大学出版社 3. 《量子力学习题精选与剖析》钱伯初,曾谨言, 科学出版社

第一章 绪论 §1.1 辐射的微粒性 1.黑体辐射 所有落到(或照射到)某物体上的辐射完全被吸收,则称该物体为黑体。G. Kirchhoff (基尔霍夫)证明,对任何一个物体,辐射本领)T ,(E ν与吸收率)T ,(A ν之比是一个与组成物体的物质无关的普适函数,即 )T ,(f )T ,(A )T ,(E ν=νν (f 与物质无关)。 辐射本领:单位时间内从辐射体表面的单位面积上发射出的辐射能量的频率分布,以)T ,(E ν表示。在t ?时间,从s ?面积上发射出频率在 ν?+ν-ν 范围内的能量为: ν???νs t )T ,(E )T ,(E ν的单位为2 /米焦耳;可以证明,辐射本领与辐射体的能量密度分布的关系为 )T ,(u 4 c )T ,(E ν=ν ()T ,(u ν单位为秒米 焦耳3 ) 吸收率:照到物体上的辐射能量分布被吸收的份额。由于黑体的吸收率为1,所以它的辐射本领 )T ,(f )T ,(E ν=ν 就等于普适函数(与物质无关)。所以黑体辐射本领研究清楚了,就把普适函数(对物质而言)弄清楚了。我们也可以以)T ,(E λ来描述。 ????λ λ ν=λλλν=λλ νν=ννd c )T ,(E d d c d ) T ,(E d d d ) T ,(E d )T ,(E 2 )T ,(E c )T ,(E 2 νν = λ (秒米焦耳?3 ) A. 黑体的辐射本领 实验测得黑体辐射本领 T ,(E λ与λ的变化关系在理论上, ① 维恩(Wein )根据热力学第二定律及用一模型可得出辐射本领 h 32 e c h 2)T ,(E ν-νπ= ν ?? ?=π=k h c c h 2c 22 1(k 为Boltzmann 常数:K 1038.123 焦耳-?)

量子力学主要知识点复习资料全

大学量子力学主要知识点复习资料,填空及问答部分 1能量量子化 辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量 的整数倍εεεεεn ,,4,3,2,??? 对频率为 的谐振子, 最小能量为: νh =ε 2.波粒二象性 波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在经典力学中,研究对象总是被明确区分为两类:波和粒子。前者的典型例子是光,后者则组成了我们常说的“物质”。1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。 德布罗意公式h νmc E ==2 λ h m p ==v 3.波函数及其物理意义 在量子力学中,引入一个物理量:波函数 ,来描述粒子所具有的波粒二象性。波函数满足薛定格波动方程 0),()](2[),(22=-?+??t r r V m t r t i ψψ 粒子的波动性可以用波函数来表示,其 中,振幅 表示波动在空间一点(x ,y,z )上的强弱。所以, 应该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。从这个意义出发,可将粒子的波函数称为概率波。 自由粒子的波函数)](exp[Et r p i A k -?=ψ=ψ 波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义 常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。 相位不定性如果常数 ,则 和 对粒子在点(x,y,z ) 2 (,,)x y z ψ(,,) c x y z ψαi e C =(,,)i e x y z αψ(,,)x y z ψ

兰州大学量子力学教学大纲

量子力学教学大纲 教学基本内容及学时分配(72学时) 第一章绪论(4学时) 1、课程的发展和改革状况;教材评介 2、量子理论发展简史 3、黑体辐射定律与普朗克常数 4、光子 5、玻尔量子论 6、德布罗意“物质波”假设 7、原子物理中的特征量(结合量纲分析法) 第二章波函数和薛定谔方程(8学时) 1、薛定谔方程 2、波函数的统计诠释;连续性方程 3、定态;有关一维束缚态的若干定理 4、一维平底势阱中的粒子(包括无限深势阱,有限深势阱, 势阱) 5、一维谐振子(微分方程解法) 6、势垒贯穿 第三章量子力学基本原理(16学时) 1、波函数和算符 2、态叠加原理 3、线性算符;常用力学量的算符表示 4、波函数的普遍诠释(力学量的取值及概率假设);平均值公式 5、动量(连续谱,箱归一化);连续谱一般的理论 6、力学量算符的对易关系 7、两个力学量算符的共同本征态 8、不确定关系(测不准关系) 9、波函数随时间的变化;演化算符

10、力学量随时间的变化;薛定谔图象和海森伯图象;守恒量;宇称 11、对称性和守恒定律 12、海尔曼—费曼定理和位力定理 第四章表象理论(8学时) 1、狄拉克态矢量概念;矢量空间 2、量子力学公式的矩阵表示 3、坐标表象;波函数 4、动量表象 5、能量表象;求和规则 6、谐振子(升降算符解法);相干态 7、角动量(升降算符解法) 第五章中心力场(7学时) 1、中心力场的一般概念 2、轨道角动量的本征函数 3、自由粒子波函数 4、球形势阱中的粒子;氘核 5、粒子在库仑场中的运动(束缚态);类氢离子;氢原子;与玻尔量子 论的比较 6、三维各向同性谐振子 7、二维中心力场 第六章扰论与变分法(6学时) 1、非简并态微扰论;应用举例 2、简并态微扰论;一级近似 3、氢原子能级在电场中的分裂 4、变分法;应用举例 第七章自旋(9学时)

《量子力学》考试知识点(精心整理)

《量子力学》考试知识点 第一章:绪论―经典物理学的困难 考核知识点: (一)、经典物理学困难的实例 (二)、微观粒子波-粒二象性 考核要求: (一)、经典物理困难的实例 1.识记:紫外灾难、能量子、光电效应、康普顿效应。 2.领会:微观粒子的波-粒二象性、德布罗意波。 第二章:波函数和薛定谔方程 考核知识点: (一)、波函数及波函数的统计解释 (二)、含时薛定谔方程 (三)、不含时薛定谔方程 考核要求: (一)、波函数及波函数的统计解释 1.识记:波函数、波函数的自然条件、自由粒子平面波 2.领会:微观粒子状态的描述、Born几率解释、几率波、态叠加原理(二)、含时薛定谔方程 1.领会:薛定谔方程的建立、几率流密度,粒子数守恒定理 2.简明应用:量子力学的初值问题 (三)、不含时薛定谔方程 1. 领会:定态、定态性质 2. 简明应用:定态薛定谔方程 第三章:一维定态问题

一、考核知识点: (一)、一维定态的一般性质 (二)、实例 二、考核要求: 1.领会:一维定态问题的一般性质、束缚态、波函数的连续性条件、反射系数、透射系数、完全透射、势垒贯穿、共振 2.简明应用:定态薛定谔方程的求解、 第四章量子力学中的力学量 一、考核知识点: (一)、表示力学量算符的性质 (二)、厄密算符的本征值和本征函数 (三)、连续谱本征函数“归一化” (四)、算符的共同本征函数 (五)、力学量的平均值随时间的变化 二、考核要求: (一)、表示力学量算符的性质 1.识记:算符、力学量算符、对易关系 2.领会:算符的运算规则、算符的厄密共厄、厄密算符、厄密算符的性质、基本力学量算符的对易关系 (二)、厄密算符的本征值和本征函数 1.识记:本征方程、本征值、本征函数、正交归一完备性 2.领会:厄密算符的本征值和本征函数性质、坐标算符和动量算符的本征值问题、力学量可取值及测量几率、几率振幅。 (三)、连续谱本征函数“归一化” 1.领会:连续谱的归一化、箱归一化、本征函数的封闭性关系

量子力学总结

量子力学总结 第一部分 量子力学基础(概念) 量子概念 所谓“量子”英文的解释为:a fixed amount (一份份、不连续),即量子力学是用不连续物理量来描述微观粒子在微观尺度下运动的力学,量子力学的特征简单的说就是不连续性。 描述对象:微观粒子 微观特征量 以原子中电子的特征量为例估算如下: ○1“精细结构常数”(电磁作用常数), 1371~ 10297.73 2-?==c e α ○ 2原子的电子能级 eV a e me c e mc E 27~~02242 2 2==??? ? ?? 即:数10eV 数量级 ○ 3原子尺寸:玻尔半径: 53.0~2 2 0me a =?,一般原子的半径1?

○4速率:26 ~~ 2.210/137 e c V c m s c ?-? ○5时间:原子中外层电子沿玻尔轨道的“运行”周期 秒 160 0105.1~2~-?v a t π 秒 角频率16 102.4~~?a v c ω, 即每秒绕轨道转1016圈 (电影胶片21张/S ,日光灯频率50次/S ) ○6角动量: =??2 2 20~~e m me mv a J 基本概念: 1、光电效应 2、康普顿效应 3、原子结构的波尔理论 波尔2个假设: 定态轨道 定态跃迁 4、物质波及德布洛意假设(德布洛意关系)

“任何物体的运动伴随着波,而且不可能将物质的运动和波的传播分开”,认为物体若以大小为P 的动量运动时,则伴随有波长为λ的波动。 P h =λ,h 为普朗克常数 同时满足关系ω ==hv E 因为任何物质的运动都伴随这种波动,所以称这种波动为物质波(或德布罗意波)。 称P h h E v ==λ 德布罗意波关系 例题:设一个粒子的质量与人的质量相当,约为50kg ,并以12秒的百米速度作直线运动,求粒子相应的德布罗意波长。说明其物理意义。 答:动量v p μ= 波长m v h p h 3634101.1)1250/(1063.6)/(/--?=??===μλ 晶体的晶格常数约为10-10m ,所以,题中的粒子对应的德布罗意波长<<晶体的晶格常数,因此,无法观测到衍射现象。 5、波粒二象性 (1)电子衍射实验 1926年戴维逊(C ·J ·Davisson )和革末(L ·H ·Gevmer )第一个观察到了电子在镍单晶表面的衍射现象,证实了电子的波动性,求出电子的波长λ

相关文档
最新文档