五轴联动数控加工中心仿真系统开发应用

五轴联动数控加工中心仿真系统开发应用
五轴联动数控加工中心仿真系统开发应用

五轴联动数控加工中心仿真系统开发应用

摘要:本文所涉及的数控加工系统是基于 CATIA V5 的功能模块建立的,通过对动龙门五轴联动的实体测量、建模、组装和整机模拟,实现数控加工过程的仿真。同时根据本行业实际生产技术需要,结合 VER- ICUTR 软件零件切削过程仿真验证优势,建立 CATIA 与 VERICUT 两软件平台之间的宏联结,实现将机床运行数控程序过程中的过切、干涉、碰撞和欠切等错误消除在设计阶段的目的,提高数控加工过程的可靠性。

目前大型数控五轴联动在科研生产过程中,主要用于进行大型复杂航空零部件与工艺装备制造加工,因空间结构复杂,外形体积大,常出现零件首件过切,未加工到位,机床与零件或工装干涉,模锻件装夹定位不准确和加工超行程等问题,仅凭借数控编程技术人员个人经验,工作量庞大且复杂,难以克服。

针对五坐标数控加工机床控制系统不具有数控加工过程的动态模拟仿真功能,笔者结合虚拟制造技术,在计算机辅助制造软件(VERICUT 5.4)平台基础上,开发了数控加工机床仿真系统模块。该仿真系统可以在NC代码的驱动下运行,用以观察数控机床部件运动和零件的加工成形过程中空间运动状况,验证加工程序G 代码的正确性,防止实际加工过程中干涉和碰撞等故障发生。

该系统旨在以五坐标数控机床为验证工作机,研究FIDIA C20控制系统的驱动工作原理,建立数控加工中心仿真工作平台,进行典型回转曲轮轴和蒙皮钣金工艺装备五轴联动铣切的加工过程模拟。涉及到仿真工作环境下的大型工艺装备装夹定位,确定数控参数库,模拟数控加工程序的运行过程等。

一、开发研究过程

1.五坐标数控加工中心加工仿真系统技术研究

比较同类型仿真系统现状,目前技术能力可以建立几何仿真系统,模拟计算刀具切削速度、切削量和切削时间等。

(1)软件系统研究方案制定与基础工作调试准备。

①方案制定:首先将 VERICUT 与 CATIA 软件功能模块测试验证联接;然后建立五轴联动数控加工中心机床结构与运动关系分析;最后生成五轴联动数控加工中心模拟系统。

②基础工作调试准备。首先建立 VERICUT 与 CATIA 机床模拟器软件模块数据转换接口,在CATIA V5R15“加工模拟” 环境模块内建立宏编辑器,文本文件如下:

{' Entry point for CATIA V5

Sub CatMain() CATIA.SystemService.ExecuteBackgroundProcessus

"C:\cgtech54\windows\commands\CATV.bat"

End Sub)}

运行宏与 VERICUT 数控仿真平台联接,其中“Design”表示加工元素数模,“Stock”表示毛坯数模(包括复杂模段件),而“Fixtures”表示夹具数模联接

至 VERICUT 数控仿真系统。

(2)建立机床主结构框架模型装配结构。

机床模型的构建要依据以下几个步骤:

① 通过测量真实部件的尺寸来获得相应尺寸;

② 根据尺寸对机床各个部件进行实体造型;

③ 根据所建立的机床部件实体在 NC 机床构建模块里进行组装;

④ 进行机床模型运动参数的设置。

以CATIA V5的“NC机器工具构建模块”为基础,进行复杂几何实体造型,弥补VERICUT 5.4 系统几何造型设计功能不足问题,建立机床框架模型装配主结构。机床框架主结构模型建立说明如图1 所示。

以工作台上顶面几何中心为设计基准,建立工作台(Base)尺寸

(6000mm×2500mm×400mm)。带双侧导轨、X轴部件、Y轴部件、Z轴部件、C轴

部件、A轴部件、主轴部件和电主轴存储箱,所有这些机床机构部件构成机床装配结构,机床各部件的三维数模文件分别单独保存。

机床框架模型主结构模型装配关系为:以上顶面端面轴中心为数学模型基准原点,保证其与A轴旋转中心距为230mm(机床手册查取后现场测量验证)。其中,X 轴部件、Y 轴部件和Z 轴部件为线性运动,C 轴部件为旋转运动,A 轴部件为±110°摆动,工作台和主轴存储箱为固定基准主体。

(3)机床主机构模型文件联接导入 VERICUT 系统环境。

以机床工作台(Base)主参考体测量,按(图2) 结构树顺序采用相对运动约束关系,建立机床原点静止装配数据模型,完善后转化为*.STL文件。数据分别联接入“Component tree”仿真控制系统结构树,形成五轴联动机构(图3)。

编制数控控制指令系统文件(fidia20.ctl 文件)与数控机床构造文件

(FOREST-LINE.mch文件),模拟FIDIA C20 数控指令系统,翻译识别检查FIDIA C20系统(GM)指令,驱动结构树内X轴部件、Y 轴部件、Z轴部件(线性运动)、C 轴部件(旋转运动)和A轴部件(摆动)同步联合运动。

(4)机床主机构模型运动关系设置。

机床框架主结构模型运动关系说明:以工作台和主轴存储箱为固定基准,其中X 轴部件、Y轴部件和Z轴部件为线性运动,C轴部件为旋转运动±360°,A 轴部件为±110° 摆动,建立运动约束关系。同时按编制的FOREST-LINE五坐标数控机床文件(FOREST-LINE.mch 文件),模拟机床实体机构运动过程,机床的空间运行状态同步显示如图4。

设置机床仿真系统工作行程软边界:X 轴、Y 轴、Z 轴、C 轴和 A 轴工作行程的上下边界如图 5 所示。

其中,图5所示为在执行蒙皮成型工艺装备五轴联动划线时,Z向超过行程,则仿真系统显示机床 Z 向运动机构为红色报警。执行蒙皮五轴联动划线和钻孔加工时,工艺实施要考虑到空间位置的 X 轴、Y 轴和 Z 轴,包括 A 轴和 C 轴的角度运动行程状态,此时仿真系统可显示机床 X 轴、Y 轴、Z 轴、A 轴和 C 轴中任意运动机构过行程红色报警提示。

(5)零件模型、模锻件模型与夹具模型定位仿真加工。

在仿真控制系统结构树内填加夹具(Fixture)和毛坯(Stock)联接树结构接口,分别定义空间位置并进行位置装配约束,进行调用拼装组合夹具定位(图6) 或模锻件定位(图7)加工。

应用说明:夹具(Fixture)联接结构树接口可以直接读取,其中专用工装夹具可以与公司产品相应工艺装备文件连接。标准组合夹具可以直接调用拼装夹具标准件库,然后在仿真系统内组合装配应用。

(6)机床附件数学模型定义。

在刀具库(图8) 当中建立读入功能,这样有利于多人模板化应用,从而经过积累形成刀具参数库(GYTOOL.tls 文件),仿真系统内存有的刀具参数库需按实际刀具几何特征添加。刀具的分类一般按功能定义:铣刀、中心钻、钻和镗刀。仿真加工中心刀具数据参数库可以按加工工件材料和刀具几何结构功能特征分类,采用数据库优化管理所使用的刀具。

2.五坐标数控仿真系统技术应用研究

(1)五坐标数控加工G代码程序与数控控制系统连接设置调试。

由于实际数控机床选用的是FIDIA20数控指令系统,因此五轴联动加工过程中为便于系统空间几何运算,采用绝对坐标和刀具中心端点为转心的模式进行后置处理程序G代码指令的过程模拟,FIDIA20数控指令系统的设置应与机床控制系统选项匹配。

(2)五坐标数控仿真系统应用测试。

图9所示为蒙皮零件成型工装五轴联动加工投产前,在五坐标数控仿真系统内模拟应用。该零件的工艺装备最大外形10 500mm×2 535mm×545mm,其中成型面

为复杂双曲面,采用长度方向两侧局部拼接加工。在五轴联动加工时,边界为:X-2 227.081,Y 679.116,Z553.417。位置主轴角度为:A -16.333°, C-173.124°,工装定位未超出机床工作行程。通过仿真系统分析两次定位模拟加工,显示零件加工过程的直观状态,C 轴部件和 A 轴部件大角度联动空间状态可以在不同视角观测,以验证工艺过程合理性,避免装夹定位不准确导致超程重复工作。

模拟调用五轴联动加工数控程序如下。

N1 G96 G90

N2 G00 X0.0 Y0.0 Z100.0 A0 C0

N3 G40 M08

N4 T0M06

N5 G00 X2947.902 Y1068.768 Z506.928 A9.599 C6.887 S70 M03

N6 G01 X2951.861 Y1078.168 Z508.439 A9.761 C6.881 F1000

N7 X2955.135 Y1087.657 Z510.006 A9.928 C6.875

N8 X2957.726 Y1097.173 Z511.619 A10.098 C6.868

N9 X2959.657 Y1106.654 Z513.269 A10.271 C6.861

N10 X2960.957 Y1116.051 Z514.945 A10.446 C6.854

N11 X2961.652 Y1125.324 Z516.642 A10.621 C6.847

N12 X2961.751 Y1134.44 Z518.351 A10.798 C6.84

N13 X2961.188 Y1145.135 Z520.41 A11.009 C6.832

N14 X2959.884 Y1155.53 Z522.468 A11.218 C6.825

N15 X2957.918 Y1165.602 Z524.517 A11.425 C6.82

N16 X2955.336 Y1175.335 Z526.55 A11.628 C6.815

N17 X2952.165 Y1184.713 Z528.561 A11.828 C6.812

N18 X2948.428 Y1193.717 Z530.543 A12.025

N19 X2944.203 Y1202.356 Z532.493 A12.218

N20 X2939.488 Y1210.611 Z534.404 A12.408 C6.814 N21 X2933.417 Y1219.752 Z536.579 A12.625 C6.818 N22 X2927.727 Y1227.143 Z538.387 A12.806 C6.823 N23 X2921.653 Y1234.148 Z540.145 A12.982 C6.829 N24 X2914.075 Y1241.802 Z542.12 A13.181 C6.837 N25 X2907.149 Y1247.876 Z543.736 A13.345 C6.845 N26 X2899.895 Y1253.546 Z545.286 A13.504 C6.852 N27 X2890.995 Y1259.597 Z546.996 A13.68 C6.861 N28 X2882.992 Y1264.256 Z548.362 A13.821 C6.868 N29 X2874.69 Y1268.464 Z549.64 A13.952 C6.873

N30 X2866.079 Y1272.173 Z550.816 A14.073 C6.878 N31 X2857.17 Y1275.354 Z551.88 A14.182 C6.882

N32 X2847.984 Y1278.009 Z552.827 A14.278 C6.886 N33 X2838.53 Y1280.104 Z553.648 A14.362 C6.888 N34 X2828.82 Y1281.598 Z554.328 A14.431 C6.89

N35 X2818.873 Y1282.453 Z554.854 A14.485

N36 X2808.713 Y1282.648 Z555.22 A14.523

N37 X2798.364 Y1282.143 Z555.411 A14.544

N38 X1954.551 Y1183.258 Z555.976 A14.738 C6.776 N39 X238.175 Y981.947 Z556.221 A15.351 C6.705

N40 M05

N41 M02

二、试验件加工验证

仿真系统可以根据零件加工程序驱动机床运动,计算模拟零件、刀具系统、夹具系统和机床系统的切削工作过程。当程序执行时,仿真系统模拟出所加工零件的即时状态,准确反映出机构干涉发生位置和相应程序位置。数控程序执行结束后,系统将准确直观地显示零件切削结果和毛坯切削残留状况,同时计算模拟出零件过切或未切到位量,并生成模拟数值报表。

在图10所示的实际测试切削应用过程中,拼装夹具装夹结构略有变动,装夹方式一致,圆柱曲面导向槽五轴联动加工按轮轴曲线槽数据检测,符合设计要求。

三、结论

通过上述研究试用的证明,利用该系统可以有效预防首件过切、未加工到位、机床与零件干涉、模锻件装夹定位,以及由于加工超行程和毛坯定义不准等因素带来的加工余量不均匀、空行程,以及打刀等问题,提高加工效率,保证数控编程质量,减少数控技术人员与操作人员的工作量和劳动强度,提高五坐标数控编程制造加工一次成功率,缩短产品设计和加工周期,提高生产效率。(end) 文章内容仅供参考 () ()(2011-1-16)

立式铣削五轴五联动加工中心设计

目录 第一章概述-------------------------------- 1.1 课题研究内容---------------------- 1.2 国内外相关技术现状---------------- 1.3 课题分工及简介--------------------- 第二章技术支持及其发展趋势---------------- 2.1 虚拟制造的应用及发展------------- 2.2 相关软件介绍--------------------- 第三章具体设计方案 3.1 设计参数计算--------------------- 3.2 造型设计------------------------- 第四章装配及其仿真 4.1 零件的装配----------------------- 4.2 装配仿真------------------------- 第五章设计结论及参考文献-------------------

第一章概述 1.1 课题研究内容: 本次设计的主要任务是立式铣削五轴五联动加工中心,它具有较强的数控功能,可以加工各种复杂轮廓表面的工件。可作铣、镗、钻孔等加工,广泛应用于机械制造业。它可以实现五轴控制、五轴联动。主轴电机采用交流伺服驱动系统,可实现主轴的自动无级变速。它采用了自动液压拉松刀结构,使刀具交换方便快捷。这一部分主要是主轴头的设计,主轴头可沿X、Y、Z三个方向移动,并可绕A(B)、C轴作旋转运动,具有很大的灵活性,且加工性能好。安装专用刀杆及附件,可以加工平面,斜面、螺旋面、沟槽、花键、弧形槽等等。通过转动的主轴头,机床可实现铣削空间前半球任意角度的加工它采用精密同步带传递主传动,采用伺服电机实现摆动,该主轴头具有较高刚度,主轴转速变换范围宽。主轴电机为28KW,采用高速钢或硬质合金刀具可进行高速度的强力切削,主轴头与滑枕作成分离式,便于用户安装拆卸。主传动采用变六变频的无级调速,便于用户选用适合的切削转速和参数。 这次设计的数据参数来源于桂林机床厂,主要参数见下:主轴锥孔40 GB3838.1-83 主轴转速级数无级 主轴转速范围0~10000rpm 主轴转数级数无级 主电机功率28KW 加工中心其它部分参数如下

进口五轴联动立式加工中心生产企业大全

进口五轴联动立式加工中心生产企业大全 五轴联动立式加工中心是立式加工中心大类里比较高端的机型;立式加工中心正在向五轴联动、六轴联动方向发展,目前德国、瑞士、意大利、西班牙、台湾、日本的立式加工中心机都已发展成为五轴联动立式加工中心或六轴联动立式加工中心,其特点是转速高、精度高,可加工复杂工件。 下面介绍一些进口五轴立式加工中心的生产企业: 一、瑞士进口的五轴联动立式加工中心 1、瑞士FEHLMANN费尔曼五轴联动立式加工中心 2、瑞士威力铭?马黛尔WILLEMIN MACODEL 五轴联动立式加工中心 3、瑞士REIDEN雷登五轴联动立式加工中心

4、瑞士阿奇夏米尔五轴联动立式加工中心 二、德国进口的五轴联动立式加工中心 1、德国斯宾纳SPINNER五轴联动立式加工中心 2、德国巨浪Chiron五轴联动立式加工中心 3、德国wemas威马斯五轴联动立式加工中心 4、德国ALZMETALL奥美特五轴联动立式加工中心 5、德国Fooke福科五轴联动立式加工中心 6、德国STAMA斯塔玛五轴联动立式加工中心 7、德国matec马泰克立式五轴加工中心 8、德国handtmann海德曼五轴联动立式加工中心 9、德国ACROLOC阿卡罗科五轴立式加工中心

10、德国KEPPLER凯普乐六轴联动立式加工中心 11、德国EDEL易代尔五轴/六轴联动立式加工中心 12、德国HEDELIUS赫德鲁斯五轴立式加工中心 13、德国PRIMACON普里马康高速立式五轴加工中心 三、意大利进口的五轴联动立式加工中心 1、意大利FIDIA菲迪亚立式五轴联动加工中心 2、意大利parpas帕尔帕斯立式五轴联动加工中心 3、意大利MECOF美卡福五轴联动立式加工中心 4、意大利皮特卡纳基立式车铣复合五轴加工中心 四、西班牙进口的五轴联动立式加工中心 1、西班牙MTE梅特五轴联动立式加工中心

宇龙数控车床仿真软件的操作

第18章宇龙数控车床仿真软件的操作 本章将主要介绍宇龙数控仿真软件车床的基本操作,在这一章节中主要以FANUC 0I和SIEMENS 802S数控系统为例来说明车床操控面板按钮功能、MDA键盘使用和数控加工操作区的设置。通过本章的学习将使大家熟悉在宇龙仿真软件中以上两个数控系统的基本操作,掌握机床操作的基本原理,具备宇龙仿真软件中其它数控车床的自学能力。 就机床操作本身而言,数控车床和铣床之间并没有本质的区别。因此如果大家真正搞清楚编程和机床操作的的一些基本理论,就完全可以将机床操作和编程统一起来,而不必过分区分是什么数控系统、什么类型的机床。 在编程中一个非常重要的理论就是在编程时采用工件坐标值进行编程,而不会采用机床坐标系编程,原因有二:其一机床原点虽然客观存在,但编程如果采用机床坐标值编程,刀位点在机床坐标系中的坐标无法计算;其二即使能得到刀位点在机床坐标系的坐标,进而采用机床坐标值进行编程,程序是非常具有局限性的,因为如果工件装夹的位置和上次的位置不同,程序就失效了。实际的做法是为了编程方便计算刀位点的坐标,在工件上选择一个已知点,将这个点作为计算刀位点的坐标基准,称为工件坐标系原点。但数控机床最终控制加工位置是通过机床坐标位置来实现的,因为机床原点是固定不变的,编程原点的位置是可变的。如果告诉一个坐标,而且这个是机床坐标,那么这个坐标表示的空间位置永远是同一个点,与编程原点的位置、操作机床的人都没有任何关系;相反如果这个坐标是工件坐标值,那么它的位置与编程原点位置有关,要确定该点的位置就必须先确定编程原点的位置,没有编程原点,工件坐标值没有任何意义。编程原点变化,这个坐标值所表示的空间位置也变化了,这在机床位置控制中是肯定不行的,所以在数控机床中是通过机床坐标值来控制位置。为了编程方便程序中采用了工件坐标值,为了加工位置的控制需要机床坐标值,因此需要将程序中的工件坐标转换成对应点的机床坐标值,而前提条件就是知道编程原点在机床中的位置,有了编程原点在机床坐标系中的坐标,就可以将工件坐标值转换成机床坐标值完成加工位置的控制,解决的方法就是通过对刀计算出编程原点在机床坐标系中的坐标。程序执行时实际上做了一个后台的工作,就是根据编程原点的机床坐标和刀位点在工件坐标系中的坐标计算出对应的机床坐标,然后才加工到对应的机床位置。 这是关于编程的最基本理论,所有轮廓加工的数控机床在编程时都采用这样的理论,无论铣床、车床、加工中心等类型的机床,还是FANUC、SIEMENS、华中数控、数控等数控系统,数控机床都必须要对刀,原理都是完全相同的,而对刀设置工件坐标系或刀补则是机床操作中的核心容,如果大家搞清楚这些理论对机床操作将十分具有指导意义。 18.1 实训目的 本章主要使大家了解宇龙仿真软件车床的基本操作,熟悉并掌握FANUC 0I数控车床的操作界面,在此基础上过渡并熟悉SIEMENS 802S数控车床的界面和操作。 18.2 FANUC 0i数控车床

2020年数控仿真编程论文:数控加工仿真系统在数控教学中的应用参照模板

数控仿真编程论文:数控加工仿真系统在数控教学中的 应用 【摘要】在数控工种的实践教学中,数控加工仿真软件的应用,弥补了目前实践教学中设备不足,学生操作时间不足的缺点;改善了目前数控实习教学中效果不理想、效率低、资源消耗大的现象;避免了由于操作不熟练造成的设备损坏;提高了学生数控编程能力、机床操作能力;使实践教学达到事半功倍的效果。 【关键词】数控实习;数控仿真;编程;模拟加工AbstractNC simulation software is applied in numericalcontrolled practice.Making up the equipmentinsufficiencyandtheinsufficiencyofthestudentoperatin gtimewhiletheypracticedintheteachingprocess,It has enhanced the unideal result,lowefficiencyandmoreresourcesconsumptioninthepractices ectorintheteachingofnumericalcontrolledcourseandhasavoidedeq uipmentdamageinthecase of the operation has not skilled;It has alsoimprovedstudentscapabilitytoprogramnumericalcontrolando peratemachine;thus,Itmakingpracticeteaching twice the result with half the effort. Key wordsNC practice;NC simulation;program;Simulationprocessing

简介五轴联动数控机床

五轴联动数控机床是一种科技含量高、精密度高专门用于加工复杂曲面的机床,这种机床系统对一个国家的航空、航天、军事、科研、精密器械、高精医疗设备等等行业有着举足轻重的影响力。 简介 装备制造业是一国工业之基石,它为新技术、新产品的开发和现代工业生产提供重要的手段,是不可或缺的战略性产业。即使是发达工业化国家,也无不高度重视。近年来,随着我国国民经济迅速发展和国防建设的 需要,对高档的数控机床提出了迫切的大量需求。机床是一个国家制造业水平的象征。而代表机床制造业最高境界的是五轴联动数控机床系统,从某种意义上说,它反映了一个国家的工业发展水平状况。长期以来,以美国为首的西方工业发达国家,一直把五轴联动数控机床系统作为重要的战略物资,实行出口许可证制度。特别是冷战时期,对中国、前苏联等社会主义阵营实行封锁禁运。爱好军事的朋友可能知道著名的“东芝事件”:上世纪末,日本东芝公司卖给前苏联几台五轴联动的数控铣床,结果让前苏联用于制造潜艇的推进螺旋桨,上了几个档次,使美国间谍船的声纳监听不到潜艇的声音了,所以美国以东芝公司违反了战略物资禁运政策,要惩处东芝公司。 五轴机床的种类 有摇篮式、立式、卧式、NC工作台+NC分度头、NC工作台+90°B轴、NC工作台+45°B 轴、NC工作台+ A轴°、二轴NC 主轴等。 A轴和C轴最小分度值一般为0.001度,这样又可以把工件细分成任意角度,加工出倾斜面、倾斜孔等。A轴和C轴如与XYZ三直线轴实现联动,就可加工出复杂的空间曲面,当然这需要高档的数控系统、伺服系统以及软件的支持。这种设置方式的优点是主轴的结构比较简单,主轴刚性非常好,制造成本比较低。但一般工作台不能设计太大,承重也较小,特别是当A轴回转大于等于90度时,工件切削时会对工作台带来很大的承载力矩。另一种是依靠立式主轴头的回转。主轴前端是一个回转头,能自行环绕Z轴360度,成为C轴,回转头上还有带可环绕X轴旋转的A轴,一般可达±90度以上,实现上述同样的功能。这种设置方式的优点是主轴加工非常灵活,工作台也可以设计的非常大,客机庞大的机身、巨大的发动机壳都可以在这类加工中心上加工。这种设计还有一大优点:我们在使用球面铣刀加工曲面时,当刀具中心线垂直于加工面时,由于球面铣刀的顶点线速度为零,顶点切出的工件表面质量会很差,采用主轴回转的设计,令主轴相对工件转过一个角度,使球面铣刀避开顶点切削,保证有一定的线速度,可提高表面加工质量。这种结构非常受模具高精度曲面加工的欢迎,这是工作台回转式加工中心难以做到的。为了达到回转的高精度,高档的回转轴还配置了圆光栅尺反馈,分度精度都在几秒以内,当然这类主轴的回转结构比较复杂,制造成本也较高。 国外五轴联动数控机床是为适应多面体和曲面零件加工而出现的。随着机床复合化技术的新发展,在数控车床的基础上,又很快生产出了能进行铣削加工的车铣中心。五轴联动数控机床的加工效率相当于两台三轴机床,有时甚至可以完全省去某些大型自动化生产线的投资,大大节约了占地空间和工作在不同制造单元之间的周转运输时间及费用。市场的需求推动了我国五轴联动数控机床的发展,CIMT99 展览会上国产五轴联动数控机床第一次登上机床市场的舞台。自江苏多棱数控机床股份有限公司展出第一台五轴联动龙门加工中心以来,北京机电研究院、北京第一机床厂、桂林机床股份有限公司、济南二机床集团有限公司等企业也相继开发出五轴联动数控机床。 当前,国产五轴联动数控机床在品种上已经拥有立式、卧式、龙门式和落地式的加工中心,适应不同大小尺寸的杂零件加工,加上五轴联动铣床和大型镗铣床以及车铣中心等的开发,基本涵盖了国内市场的需求。精度上,北京机床研究所的高精度加工中心、宁江机械集

五轴精密加工中心的详细讲解

五轴精密加工中心的详细讲解 五轴加工中心分为两类:一类是立式的,另一类是卧式的。 深圳凯福精密制造的黄教授首先谈一下立式五轴加工中心是怎么实现精密铝合金零件加工的 这类加工中心的回转轴有两种方式,一种是工作台回转轴。设置在床身上的工作台可以环绕X轴回转,定义为A轴,A轴一般工作范围+30度至-120度。工作台的中间还设有一个回转台,在图示的位置上环绕Z轴回转,定义为C轴,C轴都是360度回转。这样通过A 轴与C轴的组合,固定在工作台上的工件除了底面之外,其余的五个面都可以由立式主轴进行加工。A轴和C轴最小分度值一般为0.001度,这样又可以把工件细分成任意角度,加工出倾斜面、倾斜孔等。A轴和C轴如与XYZ三直线轴实现联动,就可加工出复杂的空间曲面,当然这需要高档的数控系统、伺服系统以及软件的支持。这种设置方式的优点是主轴的结构比较简单,主轴刚性非常好,制造成本比较低。但一般工作台不能设计太大,承重也较小,特别是当A轴回转大于等于90度时,工件切削时会对工作台带来很大的承载力矩。 另一种是依靠立式主轴头的回转。主轴前端是一个回转头,能自行环绕Z轴360度,成为C轴,回转头上还带可环绕X轴旋转的A轴,一般可达±90度以上,实现上述同样的功能。这种设置方式的优点是主轴加工非常灵活,工作台也可以设计的非常大,客机庞大的机身、巨大的发动机壳都可以在这类加工中心上加工。这种设计还有一大优点:我们在使用球面铣刀加工曲面时,当刀具中心线垂直于加工面时,由于球面铣刀的顶点线速度为零,顶点切出的工件表面质量会很差,采用主轴回转的设计,令主轴相对工件转过一个角度,使球面铣刀避开顶点切削,保证有一定的线速度,可提高表面加工质量。这种结构非常受模具高精度曲面加工的欢迎,这是工作台回转式加工中心难以做到的。为了达到回转的高精度,高档的回转轴还配置了圆光栅尺反馈,分度精度都在几秒以内,当然这类主轴的回转结构比较复杂,制造成本也较高。 立式加工中心的主轴重力向下,轴承高速空运转的径向受力是均等的,回转特性很好,因此可提高转速,一般高速可达1,2000r/min以上,实用的最高转速已达到4,0000转。主轴系统都配有循环冷却装置,循环冷却油带走高速回转产生的热量,通过制冷器降到合适的温度,再流回主轴系统。X、Y、Z三直线轴也可采用直线光栅尺反馈,双向定位精度在微米级以内。由于快速进给达到40~60m/min以上,X、Y、Z轴的滚珠丝杠大多采用中心式冷却,同主轴系统一样,由经过制冷的循环油流过滚珠丝杠的中心,带走热量。 卧式五轴加工中心,它是怎么实现精密铝合金零件加工的呢? 此类加工中心的回转轴也有两种方式,一种是卧式主轴摆动作为一个回转轴,再加上工作台的一个回转轴,实现五轴联动加工。这种设置方式简便灵活,如需要主轴立、卧转换,工作台只需分度定位,即可简单地配置为立、卧转换的三轴加工中心。由主轴立、卧转换配合工作台分度,对工件实现五面体加工,制造成本降低,又非常实用。也可对工作台设置数控轴,最小分度值0.001度,但不作联动,成为立、卧转换的四轴加工中心,适应不同加工要求,价格非常具有竞争力。 另一种为传统的工作台回转轴,设置在床身上的工作台A轴一般工作范围+20度至-100度。工作台的中间也设有一个回转台B轴,B轴可双向360度回转。这种卧式五轴加工中心的联动特性比第一种方式好,常用于加工大型叶轮的复杂曲面。回转轴也可配置圆光栅尺反馈,分度精度达到几秒,当然这种回转轴结构比较复杂,价格也昂贵。 目前卧式加工中心工作台可以做到大于1.25m2,对第一种五轴设置方式没有什么影响。但是第二种五轴设置方式比较困难,因为1.25m2的工作台做A轴的回转,还要与工作台中间的B轴回转台联动确实勉为其难。卧式加工中心的主轴转速一般在10,000rpm以上,由于

上海宇龙数控加工仿真软件操作

上海宇龙仿真操作2009.5 一、软件开启。 双击桌面图标,或者右键单击图标打开,或点开始——程序——数控仿真系统。 二、选择机床。 (1)点左上角图标。 (2)点机床选项下拉菜单“选择机床”。 出现图004 依次点选“控制系统”“系统型号”“机床类型”“机床标准”最后点“确定”三、定义毛坯 (1)点左上角图标 (2)点零件下拉菜单“定义毛坯”。 出现图007

毛坯名字一般不用改;材料默认低碳钢,可以点右面的下拉箭头选择各种材料;圆柱形状即为上图所示为棒料,横向150为长度,纵向100为直径;U形形状下图008为带孔棒料,上面150为棒料长度,左面100为棒料直径,下面50为内孔深度,右面50为孔径,所有数字左键单击即可修改;所有选项点选完毕后,点“确定”即可完成“定义毛坯” 四、放置毛坯 (一)点击左上角图标。 (二)点击零件下拉菜单放置零件。出现图011

左键单击刚才所设的“毛坯1”内容变蓝,再单击“安装零件”即可安装,并进入“移动零件”状态。 五、移动零件 (一)安装零件后的默认状态。图012 (二)点击零件下拉菜单,移动零件。会出012图示。 “—”号为缩进,“+”号为伸出,中间旋转符号为“调头” 六、选择刀具 (一)点击图标 (二)点击机床下拉菜单“选择刀具” 出现图016刀具选择选项。

首先,1234号刀具选框选中会变黄,其次,选择刀片样式(16类),选中样式后会有刀片规格(角度刀长刀尖角),最后,选择刀柄(内外左右等),再选择刀柄规格(长度)。总结为一把刀点五下。所有刀具选择完毕后点“确定”。 以下为推荐选择。1号刀“定制”“菱形刀片”“35度11刃长刀尖半径0”“右偏93度或90度” 2号刀切槽刀 3号螺纹刀 七、视图选择

VHT系列五轴联动立式车铣复合加工中心的设计

万方数据

2010年第1l期?工艺与装备? 床的x、y、z三个坐标的丝杠制成中心通孔,通人冷 却水,并对冷却水实施温度控制,使其在额定的温升 范围内变化。中空丝杠冷却技术可以降低丝杠在切 削受力变形及快速移动过程中的热变形,保证机床 处于高精度运转状态。同时配合使用高精度闭环控 制光栅尺,进一步提高了定位精度。 2.3双边重心驱动技术 该系列立式车铣复合加工中心的y轴为双驱动 结构,z轴为单驱动结构。相对于y轴而言z轴滑 板质量较小且驱动力作用在中心位置,因此运动较 平稳;而在运动过程中l,轴需承载z轴的重量,故其 重心随Z轴的运动而不断地变化;若Y轴为单驱动 结构,在驱动力的作用下将会产生俯仰力矩和偏转 1.1,轴直线导轨2.立柱3.A轴刀架滑板装置4.A轴车铣7J塔力矩,在这两个力矩作用下,滑板在运动过程中将会5-中空滚珠丝杠副6?机内螺旋排屑装置7.【ⅡJ转工作台8?x轴转出现不可预知的变形和振动。为了减小这种不确定台底座9?底座 的振动对加T的影响,基于重心驱动理论,采取了双 图1立式车铣复合,Jn3-中心的总体结构图 边驱动结构(图4)。双边驱动的特点是在立柱的两 2关键技术侧对称施加驱动力,以便尽可能地减少驱动力臂产2.1轻量化设计生的影响。应用双边重心驱动技术,提高了机床运为达到立式车铣复合加工中心高速移动部件的速动鬯速度黧塑速度:篓短了加!时间,擎善了毒募加度和加速度,并兼顾系统的高刚度和轻质量要求,对体 工质量和轮廓加工精度,延长了刀具的使用寿命心1。积大、驱动要求高的运动部件一立柱单元,以结构强度、 刚度、固有频率等为约束,进行有限元分析及拓扑优化 设计(见图2,图3),使结构在满足高刚度要求的前提 下尽可能减轻移动的重量,以便减轻电机、液压系统、 丝杠、滑台等驱动部件的功率、强度要求。优化设计后 的立柱变形量减少20%,重量减少220Kg。 图2立柱有限元分析结果 图3立柱拓扑优化前后的内部结构图 2.2滚珠丝杠中空冷却技术 在直线驱动轴上采用循环冷却技术的中空滚珠丝杠,使丝杠温升得到有效控制。基本原理是将机 图4Y轴双边重心驱动结构 2.4双功能车铣转台 工作台采用力矩电机直接驱动的双功能车铣转台,这种转台可以连续回转、实现立式车削功能,也可实现分度定位、铣削插补等功能。力矩电机直接驱动负载,省去了减速传动齿轮,把机床进给传动链的长度缩短为零,使其具有扭矩大、旋转平稳、转速高、效率高、结构简单、可靠性高等特点。由于直驱力矩电动机本身就是高发热元件,如果散热不好,极易形成热量累积,导致自身和关联部件的温升,引起机床的热变形。因此必须设计出高效的冷却系统将热量及时导出,否则将直接影响机床的加工精度、电机推力,甚至会烧毁电机。车铣转台的另一热源产生于轴承和电机转子的高速旋转。根据发热源和部件的热敏感性,在定子和转台本体之间设置了水冷循环系统,并在轴承附近安装了温度传感器,即可保持电机长时间工作温度变化小,从而保证转台的大 力矩和高精度。万方数据

数控机床虚拟仿真系统

产品需求及技术规范 一、建设目标: 项目建成后,为数控技术专业提供现代化数控技术类专业的学习平台、学生学习数控机床操作的实训仿真平台和考核平台,建成后将达到以下应用目标: 1、建立数控技术专业教学仿真实训软件平台,该平台能完成数控机床仿真实训操作; 2、建设一个资源丰富的专业教学学习平台; 3、建设一个能完成学生课程考核系统平台; 4、建设一个能管理学生教学过程的管理平台。 二、项目组成 项目主要包括三个部分:数控技术专业教学仿真实训软件平台建设、数控机床仿真终端设备开发集成系统、仿真平台教学资源开发。 (一)数控技术专业仿真实训软件平台建设 系统平台建设主要包括:实训系统开发和考核系统开发等。 (二)数控机床仿真终端设备开发集成 数控机床仿真终端设备主要包括:基于安卓系统的平板触摸式仿真数控机床终端操作面板的开发。 (三)仿真平台教学资源开发 开发基于工作过程的课程教材,适用于虚拟仿真平台的教学使用;开发基于网页的教学学习资源。 三、系统功能需求说明 (一)数控技术专业仿真实训软件平台包括5部分:工厂及车间虚拟场景系统、数控机床虚拟仿真系统、教学考核系统、积分管理系统、管理功能。各子系统的主要功能如下: (1)工厂及车间虚拟场景系统 能提供工厂厂区平面图; 能在制作的工厂环境中漫游; 工厂由若干个车间组成,每个车间大小可以定制; 能在制作的车间环境中漫游,能在车间虚拟环境中完成着装、领取工具、刀

具、量具等职业行为动作。 漫游中提供多个人物角色,分男和女,各种人物角色有不同形象。 车间环境是小组团队实训学习的虚拟实训环境,在该环境中,有完整清晰的标示线,指明各个区域的作用,并在各个区域中完成相关职业活动学习任务、实训任务和实际的工作任务; 车间虚拟环境中能在规定区域中由教师或者学生自由摆放数控机床、钻床等设备和工具车、材料车等辅助设备; 车间虚拟环境提供的设备种类包括:数控车床、数控铣床(3轴);提供是辅助设备包括:工具车、材料车、钳工台。 提供进入其他模块的入口功能。 (2)数控机床虚拟仿真系统 能完成以下系统的仿真操作功能: a、加工中心:华中22m、法那科oi MD b、数控车床:华中世纪星、广数系统; 能完成刀具选择,毛坯选择和装夹功能; 能完成程序仿真; 能完成零件的仿真加工; 能完成加工产品的测量; 能完成加工产品测量数据的填写,并能发回服务器提供给老师,并能通过系统进行自动评分; 能独立完成数控车床、数控铣床学习任务; 能采用团队合作的方式完成数控车铣复合学习任务; 提供任务导向的教学工作任务; (3)教学考核系统 能提供理论考核和实训考核; 能提供理论试题录入功能; 能提供实训任务录入功能,并提供工艺表书写功能; 能自动组卷,并通过网络的方式传递到每个学生界面; 能自动阅卷和手工阅卷模式; 能自动将成绩录入;

五轴加工中心简介(有用)

五轴加工中心简介 立式(三轴)最有效的加工面仅为工件的顶面,卧式加工中心借助回转工作台,也只能完成工件的四面加工。目前高档的加工中心正朝着五轴(以及五轴以上)控制的方向发展,工件一次装夹就可完成五面体的加工。如配置上五轴联动的高档数控系统,还可以对复杂的空间曲面进行高精度加工。 这类加工中心的回转轴有两种方式,一种是工作台回转轴。设置在床身上的工作台可以环绕X轴回转,定义为A轴,A轴一般工作范围+30度至-120度。工作台的中间还设有一个回转台,在图示的位置上环绕Z轴回转,定义为C轴,C 轴都是360度回转。这样通过A轴与C轴的组合,固定在工作台上的工件除了底面之外,其余的五个面都可以由立式主轴进行加工。A轴和C轴最小分度值一般为0.001度,这样又可以把工件细分成任意角度,加工出倾斜面、倾斜孔等。A 轴和C轴如与XYZ三直线轴实现联动,就可加工出复杂的空间曲面,当然这需要高档的数控系统、伺服系统以及软件的支持。这种设置方式的优点是主轴的结构比较简单,主轴刚性非常好,制造成本比较低。但一般工作台不能设计太大,承重也较小,特别是当A轴回转大于等于90度时,工件切削时会对工作台带来很大的承载力矩。 另一种是依靠立式主轴头的回转。主轴前端是一个回转头,能自行环绕Z 轴360度,成为C轴,回转头上还带可环绕X轴旋转的A轴,一般可达±90度以上,实现上述同样的功能。这种设置方式的优点是主轴加工非常灵活,工作台也可以设计的非常大,客机庞大的机身、巨大的发动机壳都可以在这类加工中心上加工。这种设计还有一大优点:我们在使用球面加工曲面时,当中心线垂直于加工面时,由于球面铣刀的顶点线速度为零,顶点切出的工件表面质量会很差,采用主轴回转的设计,令主轴相对工件转过一个角度,使球面铣刀避开顶点切削,保证有一定的线速度,可提高表面加工质量。这种结构非常受高精度曲面加工的欢迎,这是工作台回转式加工中心难以做到的。为了达到回转的高精度,高档的回转轴还配置了圆光栅尺反馈,分度精度都在几秒以内,当然这类主轴的回转结构比较复杂,制造成本也较高。

五轴联动数控机床加工中心基本知识介绍

五轴联动数控机床加工中心基本知识介绍 几十年来,人们普遍认为五轴数控加工技术是加工连续、平滑、复杂曲面的惟一手段。一旦人们在设计、制造复杂曲面遇到无法解决的难题,就会求助五轴加工技术。早在20世纪60年代,国外航空工业生产中就开始采用五轴数控铣床。目前五轴数控机床的应用仍然局限于航空、航天及其相关工业。 五轴联动数控是数控技术中难度最大、应用范围最广的技术,它集计算机控制、高性能伺服驱动和精密加工技术于一体,应用于复杂曲面的高效、精密、自动化加工。国际上把五轴联动数控技术作为一个国家生产设备自动化水平的标志。由于其特殊的地位,特别是对于航空、航天、军事工业的重要影响,以及技术上的复杂性,西方工业发达国家一直把五轴数控系统作为战略物资实行出口许可证制度,对我国实行禁运。因而,研究五轴数控加工技术对国家科技力量和综合国力的提高有重要意义。 符合数控机床发展的新方向 近几年国际、国内机床展表明,数控机床正朝着高速度、高精度、复合化的方向发展。复合化的目标是在一台机床上利用一次装夹完成大部分或全部切削加工,以保证工件的位置精度,提高加工效率。国外数控镗铣床、加工中心为适应多面体和曲面零件加工,均采用多轴加工技术,包括五轴联动功能。在加工中心上扩展五轴联动功能,可大大提高加工中心的加工能力,便于系统的进一步集成化。最近国际机床业出现了一个新概念,即万能加工,数控机床既能车削又能进行五轴铣削加工。五轴数控机床在国内外的实际应用表明,其加工效率相当于两台三轴机床,甚至可以完全省去某些大型自动化生产流水线的投资,大大节约了占地空间和工件在不同制造单元之间的周转运输的时间和花费。 发展和推广的难点及阻力何在 显然,人们早已认识到五轴数控技术的优越性和重要性。但到目前为止,五轴数控技术的应用仍然局限于少数资金雄厚的部门,并且仍然存在尚未解决的难题。五轴数控技术为何久久未能得以广泛普及?五轴数控加工由于干涉和刀具在加工空间的位姿控制,其数控编程、数控系统和机床结构远比三轴机床复杂得多。目前,五轴数控技术在全球范围内普遍存在以下问题。 五轴数控编程抽象、操作困难 这是每一个传统数控编程人员都深感头疼的问题。三轴机床只有直线坐标轴,而五轴数控机床结构形式多样;同一段NC代码可以在不同的三轴数控机床上获得同样的加工效果,但某一种五轴机床的NC代码却不能适用于所有类型的五轴机床。数控编程除了直线运动之外,还要协调旋转运动的相关计算,如旋转角度行程检验、非线性误差校核、刀具旋转运动计算等,处理的信息量很大,数控编程极其抽象。

宇龙数控加工仿真系统说明书

宇龙数控加工仿真系统实验指导书 主要内容 ?基于FANUC 0i数控加工仿真系统的基本操作方法 ?基于FANUC 0i数控车床的仿真加工操作 ?基于FANUC 0i数控铣床的仿真加工操作 ? FANUC 0i数控加工仿真实验 1 宇龙数控加工仿真系统基本操作方法 1.1 界面及菜单介绍 1.1.1 进入数控加工仿真系统 进入宇龙数控加工仿真系统3.7版要分2步启动,首先启动加密锁管理程序,然后启动数控加工仿真系统,过程如下: 鼠标左键点击“开始”按钮,找到“程序”文件夹中弹出的“数控加工仿真系统”应用程序文件夹,在接着弹出的下级子目录中,点击“加密锁管理程序”,如图1.1(a)所示。 (a) 启动加密锁管理程序(b) 启动数控加工仿真系统(c) 数控加工仿真系统登录界面 图1.1 启动宇龙数控加工仿真系统3.7版 加密锁程序启动后,屏幕右下方工具栏中出现的图表,此时重复上面的步骤,在二级子目录中点击数控加工仿真系统,如图1.1(b)所示,系统弹出“用户登录”界面,如图1.1(c)所示。 点击“快速登录”按钮或输入用户名和密码,再点击“登录”按钮,即可进入数控加工仿真系统。 1.1.2 机床台面菜单操作 用户登录后的界面,如图1.2所示。图示为FANUC 0i车床系统仿真界面,由四大部分构成,分别为:系统菜单或图标、LCD/MDI面板、机床操作面板、仿真加工工作区。 1 选择机床类型

图1.2 宇龙数控加工仿真系统3.7版FANUC 0i 车床仿真加工系统界面 打开菜单“机床/选择机床…”,或单击机床图标菜单,如图1.3(a )鼠标箭头所示,单击弹出“选择机床”对话框,界面如图1.3(b )所示。选择数控系统FANUC0i 和相应的机床,这里假设选择铣床,通常选择标准类型,按确定按钮,系统即可切换到铣床仿真加工界面,如图1.4所示。 (a) 选择机床菜单 (b) 选择机床及数控系统界面 图1.3 选择机床及系统操作 图1.4 宇龙数控加工仿真系统3.7版FANUC 0i 铣床仿真加工系统界面 系统菜单或图标 机床操作面板

数控加工仿真系统操作说明

数控加工仿真实验指导书

数控编程仿真实验要求 一、实验目的 “数控机床加工程序编制”(简称数控编程)课程,是机械和机电等各类专业本、专科教学计划中开设的一门应用性和实践性很强的专业课程。学好本课程,不仅要掌握数控编程的基本理论知识和编程方法,更重要的是要通过一定的实践教学,在实践教学中运用所掌握的机械加工工艺知识、数控编程的理论知识、数控编程的方法编制零件加工程序,并完成对零件的数控加工。采用仿真软件在计算机上进行模拟加工,是完成这一实践教学的有效手段。因此,在各专业本、专科“数控编程”课程的教学计划中均设有“仿真实验”这一实践教学环节。其实验的目的是: 1. 熟悉并学会运用计算机仿真技术,模拟数控车床、数控铣床完成零件加工的全过程; 2. 为后续的“数控编程实训”,实地操作数控机床进行数控加工,积累和打下操作技能训练的基础。 二、实验要求 1. 熟悉并掌握FANUC 0i系统仿真软件面板操作过程; 2. 按给定车削零件图样,编制加工程序,在计算机上运用仿真软件,进行模拟加工; 3. 按给定铣削零件图样,编制加工程序,在计算机上运用仿真软件,进行模拟加工; 4. 按实验内容,编写实验报告。 三、课时安排 四、实验报告编程内容 1. 简要叙述FANUC 0i系统仿真软件面板操作过程; 2. 按给定零件图样,编制的车削加工程序; 3. 按给定零件图样,编制的铣削加工程序。 五、指导书及联系题: 1. 数控加工仿真FANUC 0i系统面板操作简介 2. 仿真加工零件图样 2010年9月修订

宇龙数控加工仿真系统实验指导书 主要内容 ?基于FANUC 0i数控加工仿真系统的基本操作方法 ?基于FANUC 0i数控车床的仿真加工操作 ?基于FANUC 0i数控铣床的仿真加工操作 ? FANUC 0i数控加工仿真实验 1 宇龙数控加工仿真系统基本操作方法 1.1 界面及菜单介绍 1.1.1 进入数控加工仿真系统 进入宇龙数控加工仿真系统3.7版要分2步启动,首先启动加密锁管理程序,然后启动数控加工仿真系统,过程如下: 鼠标左键点击“开始”按钮,找到“程序”文件夹中弹出的“数控加工仿真系统”应用程序文件夹,在接着弹出的下级子目录中,点击“加密锁管理程序”,如图1.1(a)所示。 (a) 启动加密锁管理程序(b) 启动数控加工仿真系统(c) 数控加工仿真系统登录界面 图1.1 启动宇龙数控加工仿真系统3.7版 加密锁程序启动后,屏幕右下方工具栏中出现的图表,此时重复上面的步骤,在二级子目录中点击数控加工仿真系统,如图1.1(b)所示,系统弹出“用户登录”界面,如图1.1(c)所示。 点击“快速登录”按钮或输入用户名和密码,再点击“登录”按钮,即可进入数控加工仿真系统。 1.1.2 机床台面菜单操作 用户登录后的界面,如图1.2所示。图示为FANUC 0i车床系统仿真界面,由四大部分构成,分别为:系统菜单或图标、LCD/MDI面板、机床操作面板、仿真加工工作区。 1 选择机床类型

五轴联动数控加工中心的结构

1五轴联动数控加工中心的结构 五轴联动加工中心大多是3+2的结构,即x,y,z三个直线运动轴加上分别围绕x,y,z轴旋转的a,b,c三个旋转轴中的两个旋转轴组成。这样,从大的方面分类,就有x,y,z,a,b;x,y,z,a,c;x,y,z,b,c三种形式;由二个旋转轴的组合形式来分,大体上有双转台式、转台加上摆头式和双摆头式三种形式。这三种结构形式由于物理上的原因,分别决定了机床的规格大小和加工对象的范围。其中,双转台结构的五轴联动机床由于在加工工件时工件需要在两个旋转方向运动,所以只适合加工小型零件,如小型整体涡轮、叶轮、小型精密模具等,由于结构最为简单,所以相对价格较为低廉,就应用来讲,这是数量最多的一类五轴联动数控机床(图1)。 图1双转台式五轴联动机床加工(汽车大灯)模具 转台加上摆头式结构的五轴联动机床由于转台可以是a轴、b轴或c轴,摆头也是一样,可以分别是a轴、b轴或c轴,所以转台加上摆头式结构的五轴联动机床可以有各种不同的组合,以适应不同的加工对象,如加工汽轮发电机的叶片,需要a轴加上b轴,其中a轴需要用尾座顶尖配合顶住工件,如果工件较长同时直径又细,则需要两头夹住并且拉伸工件来进行加工,当然这里一个必要条件是两个转台必须严格同步旋转;再如加工如图2所示零件,采用c轴加上b轴,由于工件仅在c轴上旋转运动,所以工件可以很小,也可以较大,直径范围可由几十毫米至数千毫米,c轴转台的直径也可以从100~200mm至2~3m,机床的规格、质量也从几吨至十几吨甚至数十吨。这也是一类应用十分广泛的五轴联动数控机床,其价格居中,随机器规格大小、精度和性能的不同相差很大。双摆头式结构的五轴联动机床如图3所示,由于结构本身的原因:摆头中间一般有一个带有松拉刀结构的电主轴,所以双摆头自身的尺寸不容易做小,一般在400~500mm

数控机床仿真模拟加工实验报告

数控机床仿真模拟加工实验报告 实验目的 1、熟悉典型数控加工仿真软件——宇龙数控加工仿真软件的特点及其应用; 2、通过软件系统仿真操作和编程模拟加工,进一步熟悉实际数控机床操作,提高编写和调试数控加工程序的能力。 3、了解如何应用数控加工仿真软件进行加工过程预测,以及验证数控加工程序的可靠性、防止干涉和碰撞的发生。 实验基本原理 宇龙数控加工仿真软件是模拟实际数控机床加工环境及其工作状态的计算机仿真加工系统;应用该软件,可以基于虚拟现实技术,模拟实际的数控机床操作和数控加工全过程。本实验在熟悉软件的用户界面及使用方法的基础上,针对典型零件进行机床仿真操作运行和零件数控编程模拟加工,从而预测加工过程,验证数控加工程序的可靠性、防止干涉和碰撞的发生。 实验内容及过程 本实验通过指导老师讲解和自己的实际操作练习,分两个阶段完成实验任务;具体如下: 一、初步熟悉数控加工仿真软件的用户界面及基本使用方法: 通过实际练习,了解应用宇龙数控加工仿真软件系统进行仿真加工操作的基本方法,包括: 如何选择机床类型; 如何定义毛坯、使用夹具、放置零件; 如何选择刀具; FANUC 0i 数控系统的键盘操作方法; 汉川机床厂XH715D加工中心仿真操作方法等。 二、针对汉川机床厂XH715D数控加工中心,应用宇龙数控加工仿真软件对凸轮零件进行机床仿真操作运行和数控编程模拟加工: 凸轮零件图如下所示:

机床仿真操作运行和数控编程模拟加工过程如下: 1、机床开启 启动数控铣系统前必须仔细检查以下各项:1.所有开关应处于非工作的安全位置;2.机床的润滑系统及冷却系统应处于良好的工作状态;3.检查工作台区域有无搁放其他杂物,确保运转畅通。之后打开数控机床的电器总开关,启动数控车床。 2、机床回参考点 启动数控铣系统后,首先应手动操作使机床回参考点。将工作方式旋钮置于“手动”,按下“回参考点”按键,健内指示灯亮之后,按“+X”健及“+Z”键,刀架移动回到机床参考点 3、设置毛坯,并使用夹具放置毛坯 通过三爪卡盘将工件夹紧。 4、选择刀具并安装

完整word版,五轴联动加工中心

五轴联动数控机床 百科名片 五轴联运数控机床 五轴联动数控机床是一种科技含量高、精密度高专门用于加工复杂曲面的机床,这种机床系统对一个国家的航空、航天、军事、科研、精密器械、高精医疗设备等等行业有着举足轻重的影响力。目前,五轴联动数控机床系统是解决叶轮、叶片、船用螺旋桨、重型发电机转子、汽轮机转子、大型柴油机曲轴等等加工的唯一手段。 目录 简介 五轴机床的种类 五轴联动加工中心 国外五轴联动数控机历史及现状 五轴联动数控机床系统 编辑本段 简介 装备制造业是一国工业之基石,它为新技术、新产品的开发和现代工业生产提供重要的手段,是不可或缺的战略性产业。即使是发达工业化国家,也无不高度重视。近年来,随着我国国民经济迅速发展和国防建设的需要,对高档的数控机床提出了迫切的大量需求。机床是一个国家制造业水平的象征。而代表机床制造业最高境界的是五轴联动数控机床系统,从某种意义上说,它反映了一个国家的工业发展水平状况。长期以来,以美国为首的西方工业发达国家,一直把五轴联动数控机床系统作为重要的战略物资,实行出口许可证制度。特别是冷战时期,对中国、前苏联等社会主义阵营实行封锁禁运。爱好军事的朋友可能知道著名的“东芝事件”:上世纪末,日本东芝公司卖给前苏联几台五轴联动的数控铣床,结果让前苏联用于制造潜艇的推进螺旋桨,上了几个档次,使美国间谍船的声纳监听不到潜艇的声音了,所以美国以东芝公

司违反了战略物资禁运政策,要惩处东芝公司。 编辑本段 五轴机床的种类 有摇篮式、立式、卧式、NC工作台+NC分度头、NC工作台+90°B轴、NC工作台+45°B轴、NC工作台+ 通用卧式五轴联动数控机床 [1] A轴°、二轴NC 主轴等。 编辑本段 五轴联动加工中心 五轴联动加工中心有高效率、高精度的特点,工件一次装夹就可完成五面体的加工。若配以五轴联动的高档数控系统,还可以对复杂的空间曲面进行高精度加工,更能够适应像汽车零部件、飞机结构件等现代模具的加工。立式五轴加工中心的回转轴有两种方式,一种是工作台回转轴,设置在床身上的工作台可以环绕X轴回转,定义为A轴,A轴一般工作范围+30度至-120度。工作台的中间还设有一个回转台,在图示的位置上环绕Z轴回转,定义为C轴,C轴都是360度回转。这样通过A轴与C 轴的组合,固定在工作台上的工件除了底面之外,其余的五个面都可以由立式主轴进行加工。A轴和C轴最小分度值一般为0.001度,这样又可以把工件细分成任意角度,加工出倾斜面、倾斜孔等。A轴和C轴如与XYZ三直线轴实现联动,就可加工出复杂的空间曲面,当然这需要高档的数控系统、伺服系统以及软件的支持。这种设置方式的优点是主轴的结构比较简单,主轴刚性非常好,制造成本比较低。但一般工作台不能设计太大,承重也较小,特别是当A轴回转大于等于90度时,工件切削时会对工作台带来很大的承载力矩。另一种是依靠立式主轴头的回转。主轴前端是一个回转头,能自行环绕Z轴360度,成为C轴,回转头上还有带可环绕X轴旋转的A轴,一般可达±90度以上,实现上述同样的功能。这种设置方式的优点是主轴加工非常灵

数控车床仿真软件实习教程

一、数控加工仿真系统的运行 单击【开始】按钮,在【程序】中选择【数控加工仿真系统】,在弹出的子菜单中单击【加密锁管理程序】,如图1所示。 图1 单击【加密锁管理程序】,WINDOWS XP右下角任务栏会出现如图2所示的电话形状图标。 图2 再次进入【程序】菜单中的【数控加工仿真系统】,在弹出的子菜单中单击【数控加工仿真系统】,如图3所示。

图3 单击【数控加工仿真系统】弹出系统登陆界面,如图4所示。直接单击【快速登陆】按钮进入系统。 图4

二、数控加工仿真系统的基本用户界面 1.选择机床 在主界面下,单击下拉菜单中的【机床】,在弹出的下拉子菜单中单击【选择机床】;或者单击图标 菜单中的图标,如图5所示,系统将会弹出选择机床子界面,将【控制系统】选为【FANUC】,然后在选择【FANUC OI Mate】【机床类型】【选车床】然后在选择机床的生产厂家【南京第二机床厂】选项,然后单击确定,如图6。 图5

图6

机械操作面板 图7 图5所示为数控加工仿真系统的主界面,用户可以通过操作鼠标或键盘来完成数控机床的仿真操作。它包括下拉菜单;图标菜单;机械操作面板;机床操作面板和数控机床动画仿真五部分组成。 2.图标菜单 3.机械操作面板 数控仿真加工系统的机械操作面板即为真实机床操作面板上的操作区,其各键名称功能见图7。

模式旋钮上的功能: 为编辑模式,在此模式下才可以进行程序的输入和修改 . 为手动模式在此模式下可以进行手动操作. 为微米模式,指针对准1则为1微米模式,对准10为10微米模式,以此类推,同时在微米模式下激活手轮旋钮.手轮共有100个小格,指针对准哪个数字则每个小格单位为多少微米。 模式旋钮 主轴正转 倍率开关 主轴反转

相关文档
最新文档