千兆网的信号完整性设计

千兆网的信号完整性设计
千兆网的信号完整性设计

16.7.1 PHY Placement Recommendations

Minimizing the amount of space needed for the PHY is important because other interfaces compete for physical space on a motherboard near the connector. The PHY circuits need to be as close as possible to the connector.

The figure below illustrates some basic placement distance guidelines. To simplify the diagram, it shows only two differential pairs, but the layout can be generalized for a

GbE system with four analog pairs. The ideal placement for the PHY (LAN silicon) is approximately one inch behind the magnetics module.

While it is generally a good idea to minimize lengths and distances, this figure also illustrates the need to keep the PHY away from the edge of the board and the

magnetics module for best EMI performance.

Figure https://www.360docs.net/doc/d86540603.html,N Device Placement: At Least One Inch from Chassis Openings or Unsheilded Connectors--Non-Mobile

Note: * this distance is variable and follows the general guidelines.

The PHY, referred to as “LAN Device” in the above figure, must be at least one inch from the I/O back panel. To help reduce EMI, the following recommendations should be followed:

? Minimize the length of the MDI interface. See detail in table below: MDI Routing Summary

? Place the MDI traces no closer than 0.5 inch (1.3 cm) from the board edge.

? The 82579 PHY must be placed greater than 1" away from any hole to the outside

of the chassis larger than 0.125 inches (125 mils) The larger the hole the higher

the probability the EMI and ESD immunity will be negatively affected.

? The 82579 PHY should be placed greater than 250mils from the board edge.

? If the connector or integrated magnetics module is not shielded, the 82579 should

be placed at least one inch from the magnetics (if a LAN switch is not used).

? Placing the 82579 closer than one inch to Unsheilded magnetics or connectors will increase the probability of failed EMI and common mode noise. If the LAN switch is

too far away it will negatively affect IEEE return loss performance.

? The RBIAS trace length must be less than 1"

? Place the crystal less than 0.75 inch (1.9 cm) from the PHY.

16.8 MDI Differential-Pair Trace Routing for LAN Design

Trace routing considerations are important to minimize the effects of crosstalk and propagation delays on sections of the board where high-speed signals exist. Signal

traces should be kept as short as possible to decrease interference from other signals, including those propagated through power and ground planes.

16.9 Signal Trace Geometry

One of the key factors in controlling trace EMI radiation are the trace length and the

ratio of trace-width to trace-height above the reference plane. To minimize trace inductance, high-speed signals and signal layers that are close to a reference or power plane should be as short and wide as practical. Ideally, the trace-width to trace-height above the ground plane ratio is between 1:1 and 3:1. To maintain trace impedance, the width of the trace should be modified when changing from one board layer to another if the two layers are not equidistant from the neighboring planes.

Each pair of signals should have a differential impedance of 100 ±15%.

A set of trace length calculation tools are available from Intel (via the Intel Business

Link (IBL)) to aid with MDI topology design.

When performing a board layout, the automatic router feature of the CAD tool must not route the differential pairs without intervention. In most cases, the differential pairs will require manual routing.

Note: Measuring trace impedance for layout designs targeting 100 often results in lower

actual impedance due to over-etching. Designers should verify actual trace impedance

and adjust the layout accordingly. If the actual impedance is consistently low, a target

of 105 to 110 should compensate for over-etching.

It is necessary to compensate for trace-to-trace edge coupling, which can lower the differential impedance by up to 10 , when the traces within a pair are closer than 30 mils (edge-to-edge).

Table 16-7. MDI Routing Summary

Notes:

1. Pair-to-pair spacing ≥ 3 times the dielectric thickness for a maximum distance of 500 mils from the pin.

2. Board designers should ideally target 100 Ω ±15%. If it’s not feasible (due to board stack-up) it is recommended that board designers use a 95 Ω ±10% target differential impedance for MDI with the

expectation that the center of the impedance is always targeted at 95 Ω. The ±10% tolerance is provided

to allow for board manufacturing process variations and not lower target impedances. The minimum value

of impedance cannot be lower than 85 Ω.

3. Simulation shows 80 Ω differential trace impedances degrade MDI return loss measurements by

approximately 1 dB from that of 90 Ω.

4. Stripline is NOT recommended due to thinner more resistive signal layers.

5. Use a minimum of 21 mil (0.533 mm) pair-to-pair spacing for board designs that use the CRB design stackup. Using dielectrics that are thicker than the CRB stack-up might require larger pair-to-pair spacing.

Table 16-8. Maximum Trace Lengths Based on Trace Geometry and Board Stack-Up

Notes:

1. Longer MDI trace lengths may be achievable, but may make it more difficult to achieve IEEE conformance. Simulations have shown deviations are possible if traces are kept short. Longer traces are possible; use

cost considerations and stack-up tolerance for differential pairs to determine length requirements.

2. Deviations from 100 Ω nominal and/or tolerances greater than 15% decrease the maximum length for IEEE conformance.

Note: Use the MDI Differential Trace Calculator to determine the maximum MDI trace length for your trace geometry and board stack-up. Contact your Intel representative for access.

The following factors can limit the maximum MDI differential trace lengths for IEEE conformance:

? Dielectric thickness

? Dielectric constant

? Nominal differential trace impedance

? Trace impedance tolerance

? Copper trace losses

? Additional devices, such as switches, in the MDI path may impact IEEE

conformance.

Board geometry should also be factored in when setting trace length.

Figure 16-14.MDI Trace Geometry

16.10 Trace Length and Symmetry

The differential traces should be equal in total length to within 10 mils (0.254 mm) per segment within each pair and as symmetrical as possible. Asymmetrical and unequal length traces in the differential pairs contribute to common mode noise. If a choice has to be made between matching lengths and fixing symmetry, more emphasis should be placed on fixing symmetry. Common mode noise can degrade the receive circuit’s performance and contribute to radiated emissions.

The intra-pair length matching on the pairs must be within 10 mils on a segment by segment basis. An MDI segment is defined as any trace within the same layer. For example, transitioning from one layer to another through a via is considered as two separate MDI segments.

The end to end total trace lengths within each differential pair must match as shown in the figure titled MDI Trace Geometry. The end to end trace length is defined as the total MDI length from one component to another regardless of layer transitions.

The pair to pair length matching is not as critical as the intra-pair length matching but it should be within 2 inches.

When using Microstrip, the MDI traces should be at least 7x the thinnest adjacent dielectric away from the edge of an adjacent reference plane. When using stripline, the MDI traces should be at least 6x the thinnest adjacent dielectric away from the edge of an adjacent reference plane.

Figure 16-15.MDI Differential Trace Geometry

16.11 Impedance Discontinuities

Impedance discontinuities cause unwanted signal reflections. Vias (signal through

holes) and other transmission line irregularities should be minimized. If vias must be used, a reasonable budget is four or less per differential trace. Unused pads and stub traces should also be avoided.

16.12 Reducing Circuit Inductance

Traces should be routed over a continuous reference plane with no interruptions. If there are vacant areas on a reference or power plane, the signal conductors should not cross the vacant area. This causes impedance mismatches and associated radiated noise levels.

16.13 Signal Isolation

To maintain best signal integrity, keep digital signals far away from the analog traces. Also, keep the MDI traces away from the edge of an adjacent reference plane by a distance that is at least 7x the thickness of the thinnest adjacent dielectric layer (7x when using Microstrip; 6x when using stripline). If digital signals on other board layers cannot be separated by a ground plane, they should be routed perpendicular to the differential pairs. If there is another LAN controller on the board, the differential pairs from that circuit must be kept away.

Other rules to follow for signal isolation include:

? Separate and group signals by function on separate layers if possible. If possible, maintain at least a gap of 30 mils between all differential pairs (Ethernet) and other nets, but group associated differential pairs together.

? Physically group together all components associated with one clock trace to reduce trace length and radiation.

? Isolate I/O signals from high-speed signals to minimize crosstalk, which can increase EMI emission and susceptibility to EMI from other signals.

? Avoid routing high-speed LAN traces near other high-frequency signals associated with a video controller, cache controller, processor, switching power supplies, or

other similar devices.

16.14 Power and Ground Planes

Good grounding requires minimizing inductance levels in the interconnections and keeping ground returns short, signal loop areas small, and power inputs bypassed to signal return. This will significantly reduce EMI radiation.

The following guidelines help reduce circuit inductance in both backplanes and motherboards:

? Route traces over a continuous plane with no interruptions. Do not route over a

split power or ground plane. If there are vacant areas on a ground or power plane, avoid routing signals over the vacant area. This will increase inductance and EMI radiation levels.

? All ground vias should be connected to every ground plane; and every power via, to all power planes at equal potential. This helps reduce circuit inductance.

? Physically locate grounds between a signal path and its return. This will minimize

the loop area.

? Split the ground plane beneath a magnetics module. The RJ-45 connector side of

the transformer module should have chassis ground beneath it.

Caution: DO NOT do this, if the RJ-45 connector has integrated USB.

Note: All impedance-controlled signals should be routed in reference to a solid plane. If there are plane splits on a reference layer and the signal traces cross those splits then

stitching capacitors should be used within 40 mils of where the crossing occurs. See Figure 1-13.

If signals transition from one reference layer to another reference layer then stitching capacitors or connecting vias should be used based on the following:

If the transition is from power-referenced layer to a ground-referenced layer or from

one voltage-power referenced layer to a different voltage-power referenced layer, then stitching capacitors should be used within 40 mils of the transition.

If the transition is from one ground-referenced layer to another ground-referenced

layer or is from a power-referenced layer to the same net power-referenced layer, then connecting vias should be used within 40 mils of the transition.

铁路信号维修规则(新)

铁运公司铁路信号维修细则 第一章总则 第一条为满足铁路运输生产的需要,确保铁路信号设备的正常运用,加强信号设备的维修管理工作,特制定《铁运公司铁路信号维修细则》。 第二条信号设备维修工作必须坚持“安全第一,预防为主”的方针,贯彻计划修与整修相结合的原则,确保信号设备运用状态良好。要积极采用现代化的技术手段,优化维修作业方式方法,提高维修效率,要全面落实责任制,完善考核制度,提高维修管理水平,保证信号设备符合技术标准,在规定的寿命期内性能良好、质量稳定、安全可靠地运用。 第三条铁路信号设备维修工作应坚持以安全和质量为主的原则,依据设备技术状态变化规律和磨损程度相应地进行月度计表、状态维修、故障修。测试工作是信号设备维修工作的重要内容之一,包含在月度计表、状态维修、故障修之中。 第四条铁路信号设备维修工作应以安全管理为核心,实行安全管理责任制、岗位责任制和质量验收制,建立设备质量、技术、设备、成本管理台账。铁路信号维修工作必须与工务工区实行密切协作的制度,做好各项基础工作。 第二章信号设备维修分类 第五条月度计表(占计划60%) 月度计表是每月对信号设备进行的日常养护和集中检修,通过维修,保持设备性能,预防设备故障,使设备经常处于良好的运用状态。 第六条状态维修(占计划30%) 状态维修是根据设备特性变化状态有针对性地进行维修。状态修要求建立信号设备技术档案,信号值班人员每天通过信号微机软件和设备记录信号设备技术参数,信号技术员通过技术参数分析后随时掌握该设备工作状态及变化趋势,预防可能出现的故障。 第七条故障修(占计划10%) 故障修是当信号设备发生事故或故障时,故障处理人员应严格按故障处理程序处理,

五款信号完整性仿真工具介绍

现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在PCB详细设计前使用此工具,对互连线的不同情况进行仿真,把仿真结果存为拓扑结构模板,在后期详细设计中应用这些模板进行设计。 (2)DF/Signoise工具是信号仿真分析工具,可提供复杂的信号延时和信号畸变分析、IBIS 模型库的设置开发功能。SigNoise是SPECCTRAQUEST SI Expert和SQ Signal Explorer Expert进行分析仿真的仿真引擎,利用SigNoise可以进行反射、串扰、SSN、EMI、源同步及系统级的仿真。 (3)DF/EMC工具——EMC分析控制工具。 (4)DF/Thermax——热分析控制工具。 SPECCTRAQuest中的理想高速PCB设计流程: 由上所示,通过模型的验证、预布局布线的space分析、通过floorplan制定拓朴规则、由规

铁路信号维护规则(最新版)

铁路信号维护规则 第一章总则第1条为满足铁路运输生产的需要,确保铁路信号设备的正常运用, 加强信号设备的维护管理工作,特制定《铁路信号维护规则》。 第2条铁路信号设备是指挥列车运行,保证行车安全,提高运输效率,改善行车组织方式,实现行车指挥现代化的关键设施。电务部门必须贯彻国家有关政策,坚持以运输生产为中心,做好维护管理工作,保证信号设备处于良好运用状态(原为:正常运用)。 第3条铁路信号维护工作是铁路运输安全生产的重要组成部分,直接涉及运输安全。信号工是铁路主要行车工种。信号维护工作必须严格执行铁路有关法规,牢固树立安全生产法制观念,认真执行标准化作业,保证行车、设备及人身安全。 第4条铁路信号设备技术密集、科技含量高,具有点多线长、设置分散、布局成网、不间断运用、结合部多、易受外界影响等特点。其维护工作技术要求高,既相对独立,又相互联系,因此,各级电务部门必须加强对职工的政治思想教育和文化、技术业务知识培训,不断提高电务职工队伍素质。参加信号工作的新职工必须经过专业技能培训和安全纪律培训,考试合格后方能上岗工作。 第5条信号维护工作必须坚持“安全第一,预防为主”的方针,贯彻预防与整修相结合的原则,确保信号设备运用状态良好。要积极采用新技术、新器材、新工艺,提高信号设备的可靠性、可用性和安全性;要积极采用现代化的技术手段,优化维护作业方式方法,推进修程修制改革,提高劳动生产率,要全面落实责任制,完善考核制度,提高维护管理水平。 第6条《铁路信号维护规则》是做好信号维护工作的基本规则,电务及有关部门制定的细则、标准、办法等,必须符合本规则的规定。 第二章管理 第一节通则 (全部内容进行修改、增加) 第7条铁路信号设备维护工作由维修、中修、大修三部分组成,测试工作是信号设备维护工作的重要内容之一,包含在维修、中修、大修之中。 第8条铁路信号设备维护工作应贯彻按期大修、强化中修、确保维修的指导思想,坚持以安全和质量为主的原则,依据设备技术状态变化规律和磨损程度做好大修、中修和维修工作,保证信号设备符合技术标准,在规定的寿命期内性能良好、质量稳定、安全可靠地运用。

于博士信号完整性分析入门-初稿

于博士信号完整性分析入门 于争博士 https://www.360docs.net/doc/d86540603.html, 整理:runnphoenix

什么是信号完整性? 如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。早一天遇到,对你来说是好事。 在过去的低速时代,电平跳变时信号上升时间较长,通常几个ns。器件间的互连线不至于影响电路的功能,没必要关心信号完整性问题。但在今天的高速时代,随着IC输出开关速度的提高,很多都在皮秒级,不管信号周期如何,几乎所有设计都遇到了信号完整性问题。另外,对低功耗追求使得内核电压越来越低,1.2v内核电压已经很常见了。因此系统能容忍的噪声余量越来越小,这也使得信号完整性问题更加突出。 广义上讲,信号完整性是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。主要表现在对时序的影响、信号振铃、信号反射、近端串扰、远端串扰、开关噪声、非单调性、地弹、电源反弹、衰减、容性负载、电磁辐射、电磁干扰等。 信号完整性问题的根源在于信号上升时间的减小。即使布线拓扑结构没有变化,如果采用了信号上升时间很小的IC芯片,现有设计也将处于临界状态或者停止工作。 下面谈谈几种常见的信号完整性问题。 反射: 图1显示了信号反射引起的波形畸变。看起来就像振铃,拿出你制作的电路板,测一测各种信号,比如时钟输出或是高速数据线输出,看看是不是存在这种波形。如果有,那么你该对信号完整性问题有个感性的认识了,对,这就是一种信号完整性问题。 很多硬件工程师都会在时钟输出信号上串接一个小电阻,至于为什么,他们中很多人都说不清楚,他们会说,很多成熟设计上都有,照着做的。或许你知道,可是确实很多人说不清这个小小电阻的作用,包括很多有了三四年经验的硬件工程师,很惊讶么?可这确实是事实,我碰到过很多。其实这个小电阻的作用就是为了解决信号反射问题。而且随着电阻的加大,振铃会消失,但你会发现信号上升沿不再那么陡峭了。这个解决方法叫阻抗匹配,奥,对了,一定要注意阻抗匹配,阻抗在信号完整性问题中占据着极其重要的

华为PCB设计规范标准

华为PCB设计规范 I. 术语 1..1 PCB(Print circuit Board):印刷电路板。 1..2 原理图:电路原理图,用原理图设计工具绘制的、表达硬件电路中各种器件之间的连接关系的图。 1..3 网络表:由原理图设计工具自动生成的、表达元器件电气连接关系的文本文件,一般包含元器件封装、网络列表和属性定义等组成部分。 1..4 布局:PCB设计过程中,按照设计要求,把元器件放置到板上的过程。深圳市华为技术有限公司1999-07-30批准,1999-08-30实施。 1..5 仿真:在器件的IBIS MODEL或SPICE MODEL支持下,利用EDA设计工具对PCB的布局、布线效果进行仿真分析,从而在单板的物理实现之前发现设计中存在的EMC问题、时序问题和信号完整性问题,并找出适当的解决方案。深圳市华为技术有限公司1999-07-30批准,1999-08-30实施。 II. 目的 A. 本规范归定了我司PCB设计的流程和设计原则,主要目的是为PCB设计者提供必须遵循的规则和约定。 B. 提高PCB设计质量和设计效率。 提高PCB的可生产性、可测试、可维护性。 III. 设计任务受理 A. PCB设计申请流程 当硬件项目人员需要进行PCB设计时,须在《PCB设计投板申请表》中提出投板申请,并经其项目经理和计划处批准后,流程状态到达指定的PCB设计部门审批,此时硬件项目人员须准备好以下资料: ⒈经过评审的,完全正确的原理图,包括纸面文件和电子件; ⒉带有MRPII元件编码的正式的BOM; ⒊PCB结构图,应标明外形尺寸、安装孔大小及定位尺寸、接插件定位尺寸、禁止布线区等相关尺寸; ⒋对于新器件,即无MRPII编码的器件,需要提供封装资料; 以上资料经指定的PCB设计部门审批合格并指定PCB设计者后方可开始PCB设

控制网优化设计

控制网优化设计 一、GPS 卫星定位的基本原理 GPS 定位时,把卫星看成是“飞行”的已知控制点,利用测量的距离进行空间后方交会,便得到接收机的位置。卫星的瞬时坐标可以利用卫星的轨道参数计算。 二、在进行载波相位观测时,在不同观测时段,载波可以划分为哪几部分? 首次观测值0 0)(~φ?Fr = 后继量测值)()(~φφ? Fr Int += 通常表示为)()(~0 0φφ?Fr Int N N ++=+=Φ 三、坐标系之间的转换过程 四、GPS 网数据处理的基本过程 1、数据传输 2、建立坐标系统 1)打开TGO 软件,功能—Coordinate System Manager ,进入坐标系统管理器。 2)增加椭球,输入椭球名称、长半轴、扁率 3)增加基准转换(Molodensky ),创建新的基准转换组。 4)增加坐标系统组 5)选择投影方式:横轴墨卡托投影 6)文件保存退出 3 、新建项目 1)新建项目 2)选择模板(Metric 米制单位模板). 3)改变坐标系统,选择需要的坐标系统。 4、导入静态观测数据(*.dat 或RINEX)数据 1)文件/导入 2)修改测站名,天线高度,天线类型,测量方法。 5、处理Timeline 6、处理GPS 基线 7、GPS 网的无约束平差 1)平差—基准—WGS-84,进行无约束平差。 2)查看网平差报告。看迭代平差是否通过;如果不通过,选择“交替的”加权策略 3)再次进行平差,直到通过为止。 8、网的约束平差 1) 平差—基准—当地投影基准。 2)然后点击观测值,加载水准面模型,输入已知点坐标。 3)点击平差,进行网的约束平差。 9、成果输出 五、GPS 控制网优化设计的分类处理方法 零类设计:即控制网的基准设计,是对一个已知图形结构和观测方案的自由GPS 网确

信号完整性分析基础系列之一——眼图测量

信号完整性分析基础系列之一 ——关于眼图测量(上) 汪进进美国力科公司深圳代表处 内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。全分为上、下两篇。上篇包括一、二部分。下篇包括三、四部分。 您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基 于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基 于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是 可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”, 看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然 没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰 对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元 定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两 只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码

安全可靠办公信息系统软硬件集成适配关键技术研发及应用规范书(附件一)

附件一 电子信息产业发展基金招标项目 安全可靠办公信息系统软硬件集成适配 关键技术研发及应用 规范书 中华人民共和国工业和信息化部 二〇一二年三月

目录 1.总则 (3) 1.1一般要求 (4) 1.2建议书要求 (4) 2. 项目的目标和主要内容 (6) 2.1项目的目标 (6) 2.2主要内容 (6) 3.技术要求 (9) 3.1总体要求 (10) 3.2功能要求 (10) 3.3性能要求 (14) 3.4安全性要求 (15) 4、主要经济指标 (17) 5.产业化要求 (17) 6.项目进度考核要求 (17) 7. 资金要求 (18) 8. 附录 (18)

1.总则 基于安全可靠CPU/OS的信息系统是保障国家信息安全,促进信息产业发展的重要基础,具有十分重要的战略意义。目前,安全可靠CPU、整机、操作系统、数据库、中间件及办公套件等已基本实现与国外同比软硬件的功能。但在基于安全可靠CPU/OS的办公信息系统建设过程中,国产软硬件之间尚存在部分兼容性适配问题,表现在整机性能、扩展能力以及系统运行效率、可用性、易用性、稳定性等诸多方面。 电子信息产业发展基金设立《安全可靠办公信息系统软硬件集成适配关键技术研发及应用》项目,着力推动系统集成商与CPU、整机、操作系统、办公软件等基础软硬件企业对面向办公领域应用中急需解决的关键问题进行联合攻关,解决安全可靠CPU/OS平台上的国产基础软硬件间的适配问题,解决混合环境下的应用系统支撑问题,解决Java插件运行环境和Flash应用以及替代技术问题,解决安全可靠环境综合管理工具问题,解决基于安全可靠CPU的主板设计、整机研发问题,保障基于国产CPU/OS办公信息系统的实际应用。 本规范书由项目招标方工业和信息化部编写,用于提出项目的技术和进度等具体要求,供项目投标单位编写项目建议书及报价之用。项目投标方应在建议书中详细提出实现本规范书所描述各项技术要求的技术实现方案,并满足本规范书提出的各项要求。项目招标方保留对本规范书的解释和修改的权利。

D级GPS控制网设计书

北京建筑大学西城校区D级GPS控制网技术设计书 班级: 姓名: 学号:

一、任务概述 由于校园改造,校园实习场原有控制点被破坏,为了保障测绘实践教学,需要重新建立校园控制网。校园首级平面控制拟布设D 级GPS 控制网,首级高程控制拟布设二等水准网。 二、测区状况 测区位于北京市西城区展览馆路1号,占地12.3公顷,总建筑面积为20.2万平方米。校区经过长期建设,故行道树高大,像篮球场北侧道路。高大的树木在很大程度上给GPS 测量工作带来了不便。 校园周边现有北京市C 级GPS 控制点4个,分别为:西直门桥、紫竹桥西、公主坟、复兴门桥。 三、级别和精度要求 δ=22)*(d b a 式中:δ—GPS 基线向量的弦长中误差(mm ),亦即等效距离误差。 a —GPS 接收机标称精度中的固定误差(mm )。 b —GPS 接收机标称精度中的比例误差系数(ppm )。 d —GPS 网中相邻点间的距离(km )。 四、布设原则 1.GPS 网一般应采用独立观测边构成闭合图形,如三角形、多边形或附合线路,以增加检核条件,提高网的可靠性。 2.GPS 网作为测量控制网,其相邻点间基线向量的精度,应分布均匀。 3.GPS 网点应尽量与原有地面控制点相结合。重合点一般不少于3个(不足时应联测),且在网中分布均匀,以可靠地确定GPS 网与地面之间的转换参数。 4.GPS 网点应考虑与水准点重合,而非重合点,一般应根据要求以水准测量(或相当精度的测量方法)进行联测,或在网中布设一定密度的水准联测点。 5.为了便于GPS 的测量观测和水准联测,减少多路径影响,GPS 网点一般应设在视野开阔和交通便利的地方。

铁路信号维护规则(最新版)

铁路信号维护规则 第一章总则第 1条为满足铁路运输生产的需要 , 确保铁路信号设备的正常运用加强信 号设备的维护管理工作 , 特制定《铁路信号维护规则》。 , 第 2条铁路信号设备是指挥列车运行, 保证行车安全, 提高运输效率, 改善行车组织方式 , 实现行车指挥现代化的关键设施。电务部门必须贯彻国家有关政策 , 坚持以运输生产为中 心 , 做好维护管理工作 , 保证信号设备处于良好运用状态(原为:正常运用)。 第 3条铁路信号维护工作是铁路运输安全生产的重要组成部分 号工是铁路主要行车工种。信号维护工作必须严格执行铁路有关法规产法制观念 , 认真执行标准化作业, 保证行车、设备及人身安全。, 直接涉及运输安全。信 , 牢固树立安全生 第 4条铁路信号设备技术密集、科技含量高,具有点多线长、设置分散、布局成网、 不间断运用、结合部多、易受外界影响等特点。其维护工作技术要求高 , 既相对独立 , 又相互联 系 , 因此 , 各级电务部门必须加强对职工的政治思想教育和文化、技术业务知 识培训 , 不断提高电务职工队伍素质。参加信号工作的新职工必须经过专业技能培训和 安全纪律培训 , 考试合格后方能上岗工作。 第 5条信号维护工作必须坚持“安全第一,预防为主”的方针 , 贯彻预防与整修相结合的原则 , 确保信号设备运用状态良好。要积极采用新技术、新器材、新工艺, 提高信号设备的可靠性、可用性和安全性; 要积极采用现代化的技术手段, 优化维护作业方式方法,推进修程修制改革,提高劳动生产率,要全面落实责任制,完善考核制度,提高维护 管理水平。 第 6条《铁路信号维护规则》是做好信号维护工作的基本规则, 电务及有关部门制定的 细则、标准、办法等 , 必须符合本规则的规定。 第二章管理 第一节通则 (全部内容进行修改、增加) 第 7条铁路信号设备维护工作由维修、中修、大修三部分组 成护工作的重要内容之一 , 包含在维修、中修、大修之中。 , 测试工作是信号设备维 第 8条铁路信号设备维护工作应贯彻按期大修、强化中修、确保维修的指导思想 以安全和质量为主的原则, 依据设备技术状态变化规律和磨损程度做好大修、中修和维 修工作,保证信号设备符合技术标准, 在规定的寿命期内性能良好、质量稳定、安全可 靠地运用。 , 坚持

PCB设计与信号完整性仿真

本人技术屌丝一枚,从事PCB相关工作已达8年有余,现供职于世界闻名的首屈一指的芯片设计公司,从苦逼的板厂制板实习,到初入Pcblayout,再到各种仿真的实战,再到今天的销售工作,一步一步一路兢兢业业诚诚恳恳,有一些相关领悟和大家分享。买卖不成也可交流。 1.谈起硬件工作,是原理图,pcb,码农的结合体,如果你开始了苦逼的pcblayout工作,那么将是漫长的迷茫之路,日复一日年复一年,永远搞不完的布局,拉线。眼冒金星不是梦。最多你可以懂得各种模块的不同处理方式,各种高速信号的设计,但永远只能按照别人的意见进行,毫无乐趣。 2.谈起EDA相关软件,形象的说,就普通的PROTEL/AD来说你可能只有3-6K,对于pads 可能你有5-8K,对于ALLEGRO你可能6-10K,你会哀叹做的东西一样,却同工不同酬,没办法这就是市场,我们来不得无意义的抱怨。 3.众所周知,一个PCB从业者最好的后路就是仿真工作,为什么呢?一;你可以懂得各种模块的设计原则,可以优化不准确的部分,可以改善SI/PI可以做很多,这往往是至关重要的,你可以最大化节约成本,减少器件却功效相同;二;从一个pcblayout到仿真算是水到渠成,让路走的更远; 三:现实的说薪资可以到达11-15K or more,却更轻松,更有价值,发言权,你不愿意吗? 现在由于本人已技术转销售,现在就是生意人了哈哈,我也查询过各种仿真资料我发现很少,最多不过是Mentor Graphics 的HyperLynx ,candense的si工具,

但是他们真的太low了,精确度和完整性根本不能保证,最多是定性的能力,无法定量。真正的仿真是完整的die到die的仿真,是完整的系统的,是需要更高级的仿真软件,被收购的xxsigrity,xx ansys,hspicexx,adxx等等,这些软件才是真正的仿真。 本人提供各种软件及实战代码,例子,从基本入门到高级仿真,从电源仿真,到ddr仿真到高速串行仿真,应有尽有,,完全可以使用,想想以后的高薪,这点投入算什么呢?舍不得孩子套不住狼哦。 所有软件全兼容32位和64位系统。 切记本人还提供学习手册,你懂的,完全快速进入仿真领域。你懂的! 希望各位好好斟酌,自己的路是哪个方向,是否想更好的发展,舍得是哲学范畴,投资看得是利润的最大化,学会投资吧,因为他值得拥有,骚年! 注:本人也可提供培训服务,面面俱到,形象具体,包会! 有购买和学习培训兴趣的请联系 QQ:2941392162

于博士信号完整性分析入门(修改)

于博士信号完整性分析入门 于争 博士 https://www.360docs.net/doc/d86540603.html, for more information,please refer to https://www.360docs.net/doc/d86540603.html, 电设计网欢迎您

什么是信号完整性? 如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。早一天遇到,对你来说是好事。 在过去的低速时代,电平跳变时信号上升时间较长,通常几个ns。器件间的互连线不至于影响电路的功能,没必要关心信号完整性问题。但在今天的高速时代,随着IC输出开关速度的提高,很多都在皮秒级,不管信号周期如何,几乎所有设计都遇到了信号完整性问题。另外,对低功耗追求使得内核电压越来越低,1.2v内核电压已经很常见了。因此系统能容忍的噪声余量越来越小,这也使得信号完整性问题更加突出。 广义上讲,信号完整性是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。主要表现在对时序的影响、信号振铃、信号反射、近端串扰、远端串扰、开关噪声、非单调性、地弹、电源反弹、衰减、容性负载、电磁辐射、电磁干扰等。 信号完整性问题的根源在于信号上升时间的减小。即使布线拓扑结构没有变化,如果采用了信号上升时间很小的IC芯片,现有设计也将处于临界状态或者停止工作。 下面谈谈几种常见的信号完整性问题。 反射: 图1显示了信号反射引起的波形畸变。看起来就像振铃,拿出你制作的电路板,测一测各种信号,比如时钟输出或是高速数据线输出,看看是不是存在这种波形。如果有,那么你该对信号完整性问题有个感性的认识了,对,这就是一种信号完整性问题。 很多硬件工程师都会在时钟输出信号上串接一个小电阻,至于为什么,他们中很多人都说不清楚,他们会说,很多成熟设计上都有,照着做的。或许你知道,可是确实很多人说不清这个小小电阻的作用,包括很多有了三四年经验的硬件工程师,很惊讶么?可这确实是事实,我碰到过很多。其实这个小电阻的作用就是为了解决信号反射问题。而且随着电阻的加大,振铃会消失,但你会发现信号上升沿不再那么陡峭了。这个解决方法叫阻抗匹配,奥,对了,一定要注意阻抗匹配,阻抗在信号完整性问题中占据着极其重要的

信号完整性分析基础系列之二十四

信号完整性分析基础系列之二十四——关于抖动(上) 美国力科公司深圳代表处汪进进 写在前面的话 抖动话题是示波器测量的最高境界,也是最风云变换的一个话题,这是因为抖动是示波器测量的诸多功能中最和“数学”相关的。玩数学似乎是需要一定境界的。 “力科示波器是怎么测量抖动的?”,“这台示波器抖动测量准不准?”,“时钟抖动和数据抖动测量方法为什么不一样?”,“总体抖动和峰峰值抖动有什么区别? ”,“余辉方法测量抖动不是最方便吗?”,“抖动和眼图,浴盆曲线之间是什么?”,…… 关于抖动的问题层出不穷。这么多年来,在完成了“关于触发(上)、(下)”和“关于眼图(上)、(下)”,“关于S参数(上)(下)”等三篇拙作后,我一直希望有一篇“关于抖动”的文章问世,但每每下笔又忐忑而止,怕有谬误遗毒。今天,当我鼓起勇气来写关于抖动的时候,我需要特别说明,这是未定稿,恳请斧正。 抖动和波形余辉的关系 有一种比较传统的测量抖动的方法,就是利用余辉来查看信号边沿的变化,然后再用光标测量变化的大小(如图1所示),后来更进了一步,可以利用示波器的“余辉直方图”和相关参数自动测量出余辉的变化范围,这样测量的结果就被称为“抖动”。这个方法是在示波器还没有“测量统计”功能之前的方法,但在90年代初力科发明了测量统计功能之后,这个方法就逐渐被淘汰了。 图1 传统的抖动测量方法 这种传统的方法有下面这些缺点:(1)总会引入触发抖动,因此测量的结果很不准确。(2)只能测量某种参数的抖动,譬如触发上升沿,测量下降沿的余辉变化,反应了宽度的抖动,触发上升沿,测量相邻的上升沿的余辉变化,反应了周期的抖动。显然还有很多类型的抖动特别是最重要的TIE抖动无法测量出来。(3)抖动产生的因果关系的信息也无从得知。 定义抖动的四个维度 和抖动相关的名词非常多:时钟抖动,数据抖动; 周期抖动,TIE抖动,相位抖动,cycle-cycle抖动; 峰峰值抖动(pk-pk jitter),有效值抖动(rms jitter);总体抖动(Tj),随机抖动(Rj),固有抖动(Dj);周期性抖动,DCD抖动,ISI抖动,数据相关性抖动; 定时抖动,基于误码率的抖动; 水平线以上的抖动和水平线以下的抖动…… 这些名词反应了定义抖动的不同维度。 回到“什么是抖动”的定义吧。其实抖动的定义一直没有统一,这可能也是因为需要表达清楚这个概念的维度比较多的原因。目前引用得比较多的定义是: Jitter is defined as the short-term variations of a digital signal’s significant instants from their ideal positions in time. 就是说抖动是信号在电平转换时,其边沿与理想位置之间的偏移量。如图2所示,红色的是表示理想信号,实际信号的边沿和红色信号边沿之间的偏差就是抖动。什么是“理想位置”,“理想位置”是怎么得到的?这是被问到后最不好回答的问题。

信号完整性分析

信号完整性背景 信号完整性问题引起人们的注意,最早起源于一次奇怪的设计失败现象。当时,美国硅谷一家著名的影像探测系统制造商早在7 年前就已经成功设计、制造并上市的产品,却在最近从生产线下线的产品中出现了问题,新产品无法正常运行,这是个20MHz 的系统设计,似乎无须考虑高速设计方面的问题,更为让产品设计工程师们困惑的是新产品没有任何设计上的修改,甚至采用的元器件型号也与原始设计的要求一致,唯一的区别是 IC 制造技术的进步,新采购的电子元器件实现了小型化、快速化。新的器件工艺技术使得新生产的每一个芯片都成为高速器件,也正是这些高速器件应用中的信号完整性问题导致了系统的失败。随着集成电路(IC)开关速度的提高,信号的上升和下降时间迅速缩减,不管信号频率如何,系统都将成为高速系统并且会出现各种各样的信号完整性问题。在高速PCB 系统设计方面信号完整性问题主要体现为:工作频率的提高和信号上升/下降时间的缩短,会使系统的时序余量减小甚至出现时序方面的问题;传输线效应导致信号在传输过程中的噪声容限、单调性甚至逻辑错误;信号间的串扰随着信号沿的时间减少而加剧;以及当信号沿的时间接近0.5ns 及以下时,电源系统的稳定性下降和出现电磁干扰问题。

信号完整性含义 信号完整性(Signal Integrity)简称SI,指信号从驱动端沿传输线到达接收端后波形的完整程度。即信号在电路中以正确的时序和电压作出响应的能力。如果电路中信号能够以要求的时序、持续时间和电压幅度到达IC,则该电路具有较好的信号完整性。反之,当信号不能正常响应时,就出现了信号完整性问题。从广义上讲,信号完整性问题指的是在高速产品中由互连线引起的所有问题,主要表现为五个方面:

信号完整性分析基础之八——抖动的频域分析

在上两篇文章中,我们分别介绍了直方图(统计域分析)和抖动追踪(时域分析)在抖动分析中的应用。从抖动的直方图和抖动追踪波形上我们可以得到抖动的主要构成成分以及抖动参数的变化趋势。如需对抖动的构成做进一步的分析,还需要从频域角度去进一步分析抖动的跟踪波形。 抖动的频谱即是对抖动追踪(jitter track)波形做FFT运算。如下图1所示 为一个时钟周期测量参数的追踪、频谱分析步骤及效果,在抖动频谱图上可以清楚的看出某两个频率值点抖动比较大: 图1 抖动频谱 黄色为实际采集到的时钟波形(C1通道) P1测量C1通道时钟信号的时钟周期 F7函数对P1测量参数进行跟踪 F6对F7进行FFT分析 下图2所示为一典型的串行信号抖动追踪频谱图,从图中可看出各种抖动成分;DDj和Pj为窄带频谱(三角形谱或者谱线)但是DDj和Pj的区别是由于DDj是和码型相关的,其频率fDDJ一般会是数据位率的整数倍,如果Pj的频率fPJ正好等于fDDJ,那么从抖动的频谱图里面是很难将DDj和Pj精确的分开的,所以通常在抖动分解的过程中一般通过时域平均的方法来分解DDj;BUj主要由于串扰等因素引起的,一般分为两种,一种是窄带,但幅度较高,很显然这类BUJ也是很难和PJ区分开的,除非我们知道引起BUJ的源头,知道其频率,所以说我们在抖动测试时得到的PJ一般会包含这类BUJ(所以通常情况下对这类BUJ不加区分,直接算做PJ,而将BUJ分类为PJ和OBUJ,在之前的抖动分类文章中有提及);另外一类是宽带的BUJ(很多时候也叫OBUJ,other bounded uncorrelated jitter),幅度很小,基本会埋没到RJ中去,这类抖动很容易被误算作RJ,目前使用在示波器上的抖动分解软件只有Lecroy最近推出的SDAII(基于NQ-SCALE抖动分解理论)能够较好的将这类抖动从Rj中剥离出来;RJ是 宽带频谱,幅度很小。

一级控制网设计方案

合肥光源工程施工平面控制网 测 量 方 案 编制:卢涛 审核: 2012年6月

1.编制依据 1.1合肥光源平面控制网坐标设计图纸; 2.测量准备 2.1场地准备 本工程施工时基坑开挖已基本结束,现场地势基本平坦,定位测量施工前先进行场地平整、清除障碍物后并可进行测量定位工作。 2.2测量仪器准备 根据本工程的规模、质量要求、施工进度确定所用的测量仪器,所有测量器具必须经专业法定检测部门检验合格后方可使用。使用时应严格遵照工程测量规范(GB50026-93)要求操作、保管及维护,并设立测量设备台帐。 测量仪器配备一览表

3.施测组织 3.1测量人员 根据本工程的总体布署,测量总负责一人,主要负责核定和测量工序的协调。工程的专职测量人员为五人,对一级控制网进行测量和放样。 3.2 技术要求 (1)测量人员必须熟悉原始设计图纸,,学习测量规范,充分掌握尺寸、坐标和现场条件,对各设计图纸的有关尺寸及测设数据应仔细校对,必要时将图纸上主要尺寸摘抄于施测记录本上,以便随时查找使用。 (2)测量人员测量前必须到现场踏勘,全面了解现场情况,复核测量控制点,保证测设工作的正常进行,提前编制施工测量方案。 (3)测量人员必须按照施工进度计划要求,施测方案,测设方法,测设数据计算和绘制测设草图,以此来保证工程各部位按图施工。 (4)必须严格审核测量原始依据的正确性,坚持“现场测量”与“内业测量计算”工作步步校核的工作方法。 (5)发扬团结协作、实事求是、认真负责的工作作风。 4.施工测量方法 4.1 控制点理论设计坐标

控制点设计坐标表

4.2 测量控制网示意图 4.3 测量方法 (1)将激光跟踪仪放置p3、p4、p5和p6四点的中间同时可以看到p1和p2个点,用激光跟踪仪分别测量p1、p2、p3、p4,从而得到四个点的实际平面坐标。 (2)在Metrolog软件输入p1、p2、p3和p4的理论坐标,将p1、p2、p3和p4的理论坐标和实际坐标进行坐标拟合,得到理论坐标和实际坐标的坐标差(Dx 、Dy),再对p1、p2、p3和p4进行调整放样,反复调整直到Dx和Dy的值小于0.02mm为止。 (4)p5和p6两点是地面和坑道的连接点,用激光投点仪将坑道P5和p6点

铁道信号的发展现状及展望

龙源期刊网 https://www.360docs.net/doc/d86540603.html, 铁道信号的发展现状及展望 作者:贺伟 来源:《中国新通信》2013年第14期 【摘要】我国地域广、人口多的特点及现状使得成本低、运量大的铁路运输成为主要的运输方式。而铁路信号则在指挥列车运行,提高运输作业管理效率等方面起着重要的作用,因此铁道信号的及时有效传送是铁路系统安全、高效运行的基础。本文在总结铁路信号发展现状的基础上,结合相关方面的发展,展望了铁路信号新的发展趋势。 【关键词】铁道信号铁路系统智能化铁路建设 一、铁路信号的现状 由于我国近代具体国情,及地方发展的不平衡。我国铁路建设相对落后,并且缺乏科学的总体规划。尤其是各地区以及地区内在铁路信号技术及管理方面存在很多问题;铁路信号技术总体落后,平台化建设缓慢管理不够规范等问题较为突出。 1.1技术方面 由于系统设备的总体落后,我国铁路的调度指挥很大程度上仍旧依赖于人工作业,采用传统的一支笔、一张图、一部电话的调度指挥方式。对地面信号的观察与判断,也任然依赖于司机。随着列车的提速和密度的不断增加,行车调度的指挥工作将会愈发繁忙,这样调度员出现疏略在所难免,这样既降低工作效率,更会影响到列车的安全运行。并且当车速超过一定程度的时候,单单依靠司机的视力很难保证列车的安全。 1.2管理方面 管理方面的问题主要体现在管理分散和管理水平的落后。铁路系统应该是一个整体,在不同的时间和地区的情况差异性较大。现在的铁路虽然装备了各种监测设备,但是由于通信方式的落后,信息处理的速度较慢,使得已有的系统无法真正的发挥作用,无法在整体上将信息进行整合。 1.3人才方面 由于我国通信技术发展想对落后,特别是铁路通信这一块不够重视,投入力度不够大,造成精通铁路信号处理及研发的人才比较匮乏,现在的大部分从事铁路信号方面工作的人员都不是特别专业的,大多是从相似专业或行业转入的。特别是同时精通铁路信号处理和列车调度的人才及其匮乏。 二、铁路信号的发展趋势

控制网设计书

鞍钢新轧—蒂森克虏伯TAGAL2#主厂房工程建筑施工控制网设计书 鞍钢建设集团有限公司 2006年8月7日

一、工程概况 鞍钢新轧—蒂森克虏伯TAGAL2#线主厂房工程位于大连市金州区振鹏工业城,毗邻大连市开发区,工程依1#线相临而建,占地约4万平方米。场地已整平,作业面有限,施工控制网点的埋设选择有一定难度。 二、技术依据 1、《工程测量规范》GB50026—93 2、场地平面布置图 3、工程相关规定 三、工作范围及工作内容 建立能满足所有施工区域范围内工程施工测量需要的平面控制网和高程控制网。 四、仪器设备概述 NIKON全站仪及精密水准仪及其附属设备和施工需要的其他设备和工具五、资料依据 厂区平面布置图,开发区勘察设计院提供的控制点及1#线设备安装控制点。 六、工作基本程序及难点 1、布网的形式的设计 2、控制点位置的选择 3、施测路线的选择和观测实施 4、测量数据的分析处理 七、施测方案 ⑴平面控制网 根据工程特点以及现场的实际情况,初步拟订两种方案: 方案1:以开发区勘察院提供的控制点为起算点,在施工区域布设二级附和导线做为首级控制网,根据施工条件对首级导线进行加密,布设建筑施工方格网,以

满足施工要求。导线的 主要技术要求如下表: 方案2:以1#线原有的设备安装控制点为起算依据,布设建筑方格网,建筑方格网的主要技术要求见下表: 具体控制网方案选择根据设计部门及上级管理部门对厂房的建筑要求确定。 ⑵高程控制网布设方案 以TAGAL1#线设备基础高程控制点为基准点,布设水准网,做为2#线的高程控制网。 八、技术依据及作业方法 1、控制网布设依据 《工程测量规范》GB50026—93 《国家精密导线测量规范》GB/T 15314—1994 《国家三—四等水准测量规范》GB 12898—1991 2、中心标石、水准标石的类型 施工区域表面2米为回填土,下部为风化岩,为了形成稳定坚固的的永久测量控制点,必须采用钻空钢管柱,管内灌浆,每个标桩设三个钢管桩,在桩上埋石。钢管采用∮120钢管,以钢管为中心,用C20砼浇灌成水泥平台(几何尺寸如图),水泥平台要高于自然地面500MM,将加工好的钢预埋件(几何尺寸如附图)埋设在水泥台中,使埋件上表面与水泥台相平。同时在水泥台的四角部插入一根

信号完整性分析基础系列之一__关于眼图测量(全)

信号完整性分析基础系列之一_——关于眼图测量(全) 您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest 的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

相关文档
最新文档