气体流量计的工作原理及其校准方法

气体流量计的工作原理及其校准方法
气体流量计的工作原理及其校准方法

气体流量计的工作原理及其校准方法

作者:气体流量计文章来源:https://www.360docs.net/doc/d87521602.html,/

现在市面上有很多气体流量计类型,不同类型的流量计其使用范围也不一样。当然,其工作原理和方法也各不相同。气体流量计在工作过程中是遵循一定的原理的,如果在使用过程中出现了故障也有其独特的校准方法。这里以湿式气体流量计为例,看看它的工作原理和校准方法是怎样的:

一湿式气体流量计的计量原理与结构

(一) 结构原理

湿式气体流量计约在十九世纪初在英国诞生,经多次技术改进和原理完善变成现在的样式(见图1)。它是一个圆形封闭的壳体,后面有进气管,上面是出气管,进气和出气以水或油封闭隔离(下面以水为例说明,油也同理)。上面安装有水平仪和测量温度与压力的连接孔,后下侧有放水阀,侧面有一个控制液面的溢水阀口,底部是3个可调底脚,可调整使整机呈水平状态,前面是大圆盘的指针计数器和5位数字式计数器,它的内部结构如图2所示。湿式气体流量计的容积是被叶片和转筒分成4(或5)个螺旋状隔离腔的小计量室,滚筒平卧在壳内的水中(一半以上浸水),靠横轴支撑,转动灵活。原则上当一个计量室在充气时,至少有另外一个计量室在排气。一个计量室充满气体后,必须进入排气位置,所以一个计量室的排气口的起点和充气口的封闭点一定要同步地在液位线上。实际运行时,充气侧的液位线低于排气侧的液位线,排气口的起点比充气口的封闭点滞后一点。

(二) 水平及液位调整

湿式气体流量计的计量容积主要是靠液位调节器控制,当安装到位并调整到水平(调整底脚螺柱)状态后,要求湿式气体流量计上的横向及纵向的水平仪的气泡必须在零位。拧开溢水阀,从上进水口灌注一定量的纯净水,当水满(壳内外水平面呈同一水平状态)时会从溢水阀溢出,等不再溢出后,关闭溢水阀就可以进行检测。这项工作很重要,溢水阀的位置高

低在出厂检定时已经调节好,一般无需改动。根据需要,湿式表中的水也可换成白油(5号)。由于湿式表中只有一根中轴转动,机械摩擦小,湿式表的压力损失很低(一般只有几百帕),波动极小。它的规格通常有0.5L、1.5L、l0L、20L等,工作压力一般不高于1500Pa,计量范围内准确度等级可达0.5级、0.2级。

图1 湿式气体流量计

图2 湿式气体流量计侧面视图

液位是决定湿式气体流量计计量准确度的主要因素之一,直接影响计量准确度。使用湿式气体流量计要确认液位线的正确位置。液位计的类型如下:

1 液面透明箱式

如图3所示,具有液面清晰优点,但是计量员容易产生目测液面位置的不准确的错误。

图3 液面透明箱式液位计

2 溢流式

溢流式液位计调整方法简单,加入液体直到溢出为止,要关闭阀门,才能正常使用。但是由于液体表面张力的原因,溢流管的边缘状态变化,会产生偏差。

3 针尖反射式

利用液面针尖反射成像的原理,清楚地观察到液位的变化,任何计量员都可以很容易地对准液位,这是目前较科学的一种方法。如图4所示。

图4 针尖反射式液位计

湿式气体流量计很少用于现场燃气的计量,由于它的使用条件要求较高,如水平面必须校准,必须经常检查液面高度,必须安放在没有振动的室内、保持恒温,要求被测气体的气质干净,工作压力又不能太高,使用起来较麻烦,但是由于它的计量准确度可以做到很高(优于0.2级),压力损失小,是一种受被测气体密度和动力黏度影响小的容积式流量计,量程比很宽(100:1),所以常用于实验室中,或作为标准表来校验膜式燃气表等小流量类的气体流量计,它也可以同时串联检测多台膜式燃气表,作为膜式表的生产制造商的标准表,可提高生产检测效率。(但是同时串联检测多台膜式燃气表时一定要注意进行压力补偿计算,否则检定结果错误。)

流量计的绝对误差可用下式表示:

------------------

(1)

式中:V1——流量计示值(L);

V ——流经流量计的实际值(L)。

为便于比较,流量计的误差常用相对误差表示,有

-------------------

(2)

在流量计的工作过程中,其测量元件之间,测量元件与壳体之间会相继地出现“计量室”,而且在正确计量的情况下,要求气体充满整个“计量室”。只要知道所构成的“计量室”的容积、测量元件动作一次所构成“计量室”的次数以及测量元件动作的次数,就能知道流经流量计的体积流量。若把“计量室”的容积记作V’,把构成“计量室”的次数记作N,则经N次“计量室”计量的体积流量V为

----------------------

(3)

另外,测量元件在动作过程中所构成的N个“计量室”是通过一系列齿轮传动机构的变换,最终以数字的形式指示出来,若把N个“计量室”计量后的、在流量计上显示的值记作V1,则N与V1之间的关系可用下式表示:

---------------------

(4)

式中:α——是由传输N个“计量室”值的齿轮比和旋转一圈的刻度值所决定的常数,称作传输系数。

将式(4)代入式(3),可得

----------------

(5)

将式(5)代入式(1),可以得到流量计的误差

--------------------------

(6)

式(6)就是流量计的误差特性,很显然,这一误差特性完全由流量计中所构成的“计量室”容积V’和齿轮传输系数α的比值所决定的,是直接与流量计的工作原理、结构形式、齿轮传输方式有关,与流体的形状和流动状态无关。这是流量计的重要特性之一。从公式(6)不难看出,当传输系数α大于“计量室”容积V’时,出现正偏差,表示指示值大于实际流过的量

但这仅仅是一种理想的情况,实际上这种流量计还会受到各种因素的影响,例如漏气量的影响;压力损失影响;流体粘度和密度的影响等。所以实际情况下,流量计的误差曲线不可能是一条与流量大小无关的直线。

使用注意事项:要考虑到密封液体与被检测气体有无化学物理反应,如氨气易溶解于水,所以测量氨气时,水就不能做密封液体。或者其它化学气体与水反应结合生成另外物质的情况应该注意。

湿式气体流量计的检定一般采用更高准确度等级的钟罩式气体流量标准装置,活塞式气体流量标准装置,或标准表装置做标准。检测qmax和0.2qmax两流量点。试验时,各流量点的实际流量与规定检定流量偏差不超过5%。每一流量点至少试验2次。

二校准和典型应用

LM系列湿式气体流量计是实验室常用的仪表之一。在测量气体体积总量时,其准确度较高,特别是小流量时,它的误差小。可直接用于测量气体流量,也可用来作标准仪器检定其它流量计。

湿式气体流量计每个气室的有效体积是由预先注入流量计的水面控制的,所以在使用时必须检查水面是否达到预定的位置,安装时,仪表必须保持水平。

LM系列湿式气体流量计主要分两种型号:

普通型,采用黄铜材料,一般在无腐蚀气体范围内使用。

防腐型,采用不锈钢材质,可测量腐蚀性气体。

1、湿式气体流量计选型

型号LML-1(普通)、LML-2(普通)、LMF-1(防腐)、LMF-2(防腐)

2、基本参数

鼓轮每转流量(m3) 0.002 0.005

额定流量(m3/h) 0.2 0.5

最高流量记录(m3) 100 100

超额流量(m3/h) 0.3 0.75

最小刻度值(m3) 0.1×10-4 0.25×10-4

正常压力值(Pa) 1000 1000

额定流量时准确度达到1级或者0.5级.

3、使用方法

(1) 将仪表摆放在工作台上,调整地脚螺钉使水准器水泡位于中心,并在使用中要长期保持。

(2) 打开水位控制器密封螺帽,拉出内部的毛线绳。

(3) 在温度计或压力计的插孔内,向仪表内注入蒸馏水,待蒸馏水从水位控制器孔内流出时即停止注入蒸馏水,当多余的蒸馏水从水位控制器孔内顺着毛线绳流干净(约5~10分钟流出一滴时即为流干净),将毛线绳收入水位控制器密封螺帽内,并且拧紧密封螺帽。

(4) 装好温度计和压力计。(每一小格10Pa)

(5) 按进出气方向连接好气路,并且保持密封。

4、注意事项

(1) 使用过程中,要经常注意仪表内水位保持,否则将影响测量准确性。

(2) 使用中,温度应保持在15~25℃之间,气温与室温相同,其温差应≤2℃。

(3) 最好在仪表指针运转数周后再进行读数。

(4) 当被测气体的压力超过正常压力值1~6倍(1~6)kPa时,仪器仍然可以进行工作,此时应将压力计取下,用无孔橡皮塞堵住压力计安装孔。

(5) 当被测气体的流量超过额定流量至超额流量范围内使用时,仪器仍然可以进行工作,但此时测量的精度会有所降低。

(6) 仪表在长期不使用时,应将仪表内的蒸馏水放干净,排放时先使用放水阀,然后将表头向下,再将出气管向下,这样反复几次,才能将鼓轮内的水放净。

(7) 仪表不宜置于过冷室内安装,以免内部结冰。

(8)在正常使用情况下,至少每年检验一次。

5、湿式气体流量计的校准调整方法:

(1) 检定前准备工作:加液、恒温、整机水平调整、液位调整、吹管排液干净,每一个步骤都不能少。

(2) 选择合适读数方式:对于机械表头类的流量计最好采用光电转换的方式采样,自动读数,实现自动化检测,否则流量计重复性不能实现。

(3) 超差液位调整后需重新检定。

6、校准时注意事项:

(1) 进口湿式气体流量计(表针不动,或不稳一般气管内进液了,要排尽液体)

(2) 国产湿式气体流量计(背后有机械调整的螺母,用尖嘴钳调整,液位的线要放在液口里。)

(3) 湿式气体流量计表前压力要注意观察记录,如果压力差异大一定要查找原因。

流量计的分类和工作原理

流量计的分类和工作原理 一.流量计的分类 按测量原理分有:力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等。 按流量计的结构原理进行分类,即分为:容积式流量计、压差式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计、质量流量计和插入式流量计、探针式流量计。 二.常用流量计的工作原理及应用 1.压差式流量计 差压式流量计是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的集合尺寸来计算流量的仪表。 应用:差压式流量计应用范围特别广泛,在封闭管道的流量测量中各种对象都有应用,如流体方面:单相、混相、洁净、脏污、粘性流等;工作方面:常压、高压、真空、常温、高温、低温等;管径方面:从几毫米到几米;流动方面:亚音速、音速、脉动流等。它在各工业部门的用量约占流量计全部用量的1/4~1/3。 2.浮子流量计 浮子流量计又称转子流量计,是变面积式流量计的一种,在一根由下向上扩大的垂直锥管中,圆形横截面的浮子的重力式由液体动力承受的,从而使浮子可以在锥管内自由地上升和下降。 应用:浮子流量计是仅次于差压式流量计应用范围最宽广的一类流量计,特别在小、微流量方面有举足轻重的作用 3.容积式流量计

容积式流量计,又称定排量流量计,简称PD流量计,在流量仪表中是精度最高的一类,它利用机械测量元件把流体连续不断地分割成单个已知的体积部分,根据测量室逐次重复地充满和排放该体积部分流体的次数来测量流体体积总量。 应用:容积式流量计与差压式流量计、浮子流量计并列为三类使用量最大的流量计,常应用于昂贵介质(油品、天然气等)的总量测量。 4.涡轮流量计 涡轮流量计是速度式流量计中的主要种类,它采用多叶片的转子(涡轮)感受流体平均流速,从而且推导出流量或总量的仪表。一般它由传感器和显示仪器两部分组成,也可做成整体式。 应用:涡轮流量计在测量石油、有机液体、无机液、液化气、天然气和低温流体获得广泛应用。 5.电磁流量计 电磁流量计是根据法拉第电磁感应定律制成的一种测量导电性液体的仪表。 应用:电磁流量计有一系列优良特性,可以解决其它流量计不易应用的问题,如脏污流、腐蚀流的测量。电磁流量计应用领域广泛,大口径仪表较多应用于给排水工程;中小口径常用于高要求或难测场合,如钢铁工业高炉风口冷却水控制,造纸工业测量纸浆和黑液,化学工业的强腐蚀液,有色冶金工业的矿浆;小口径、微小口径常用于医药工业、食品工业、生物化学等有卫生要求的场所。 6.涡街流量计 涡街流量计是在流体中安放一根非流线型游涡发生体,流体在发生体两侧交替地分离释放出两串规则地交错排列的游涡的仪表。当通过流截面一定时,流速与导容积流量成正比。因此,测量振荡频率即可测得流量。

气体流量标准装置期间核查

实验室内部比对实施气体流量标准装置期间核查 期间核查是实验室自身对其测量设备或参考标准、基准、传递标准或工作标准以及标准物质(参考物质)在相邻两次检定(或校准)期间内进行核查,以保持其检定(或校准)状态的置信度,使测量过程处于受控状态,确保检定、校准结果的质量。 气体流量标准装置结构复杂,影响计量结果准确性的因素很多,且检定周期较长,一般为(3~5)年,期间核查是保证其量值可靠的重要手段。按照技术规范建议要求等级较高的标准装置应该达到每月实施一次核查,而国内气体流量标准装置通常使用流量计进行期间核查,通过校准流量计的计量特性参数(如脉冲系数)并记录其变化量以考察装置量值的稳定性。但一直以来,气体流量标准装置期间核查开展的并不是很普遍,其主要原因是缺少稳定可靠的核查标准,与量块、砝码等实物量具不同,气体流量计通常为相对复杂的机电一体化仪表,容易受影响量因素的影响,如温度、压力、湿度变化引起的电子器件的漂移和脉冲采集硬件的老化等等,其长期稳定性难以保证。比对是检查量值统一及可靠的有效手段。由于气体流量计的不断更新发展,测量范围不断扩大,实验室通常建立更新不同种类的标准装置,不同的标准装置对于量值的传递能力一般存在重叠的测量区间,利用这个测量能力区间实施实验室内部比对,可有效验证气体流量标准装置的可靠性。 1 核查标准选择 新疆计量测试研究院2套气体流量标准装置工作原理为负压法临界流文丘里喷嘴气体流量标准装置,扩展不确定度分别为U=%,k=2与U=%,k=2,测量范围分别为(~2000)m3/h、(~15000)m3/h,两套气体流量标准装置技术指标如表1所示。 表1 气体流量标准装置技术指标 由表1可知,可利用2套标准装置测量范围存在(~2000)m3/h流量重叠区域开展实验室内部比对,选择的核查标准组件由1台DN50的气体罗茨流量计及其配套管路和脉冲采集器组成,如图2所示。

超声波流量计工作原理及常见问题概述

超声波流量计工作原理及常见问题概述 一、工作原理 1、概述 超声流量计是一个测量仪表,它利用声学原理来测定流过管道的流体的流速。在气体的测量现场主要的检测元件包括一对或几对超声传感器。这些传感器都安装在管壁上,每一组传感器的表面都彼此具有规定的几何关系。 由一个传感器发射的超声脉冲由同一组内另一个传感器接收,反过来也如此。Q.Sonic-3 采用了一个单反射声道的方案,在对面的管壁处声脉冲有一次反射。此方案使声道的总长度增加,从而能改善分辨率(灵敏度)并拓宽流量计的范围度,如图2-1所示。 图2-1 信号反射路径 2 、流速的测量 超声脉冲穿过管道从一个传感器到达另一个传感器,就像一个渡船的船夫在横渡一条河。当气体不流动时,声脉冲以相同的速度(声速,C)在两个方向上传播。如果管道中的气体有一定流速V(该流速不等于零),则顺着流动方向的声脉冲会传输得快些,而逆着流动方向的声脉冲会传输得慢些。这样,顺流传输时间tD 会短些,而逆流传输时间tU会长些。这里所说的长些或短些都是与气体不流动时的传输时间相比而言;这样就有: L tD = ——————— -------------- (2.1) C + V ? cos 和 L tU = ——————— -------------- (2.2) C — V ? cos 式中,L代表两个传感器之间声道的直线长度,可按下式确定L: L D —— = ———— -------------- (2.3) 2 sin ^ 采用电子学手段来测量此传输时间。根据时间倒数的差,可按下式计算流速V ^ L 1 1 V = ————(—————)-------(2.4)

浮子流量计的工作原理

浮子流量计的工作原理 1、浮子流量计简述 浮子流量计又称转子流量计,是将浮子垂直放在一个竖直的锥管内,流体在锥管内自下而上流过,使浮子在平衡位置上静止下来,按其平衡位置的高度来进行流量的测量。浮子流量计在测量过程中始终保持浮子前后的压降不变,通过改变流通面积来进行流量的测量,故它又被称为面积流量计或变面积流量计或恒压降流量计。 浮子流量计按其制造材料的不同,可分为玻璃管浮子流量计和金属管浮子流量计两大类。玻璃管浮子流量计结构简单,浮子的位置清晰可见,刻度直观,成本低廉,通常只用于常温常压下透明介质的流量测量。这种流量计一般只有就地指示,不能远传流量信号。金属管浮子流量计由于采用金属锥管,流量计工作时无法看到浮子的位置和工作情况,需要用间接的方法给出浮子的位置,因此按其传输信号的不同,又可分为远传型(电远传和气远传)和就地指示型两种。这种流量计常用于高温、高压、不透明及腐蚀性介质的流量测量,由于其具有很高的可靠性,因此常用于工业过程控制领域。 2、工作原理 浮子流量计的流量检测元件是由一只自下而上扩大的垂直锥形管和一个沿着锥管轴线上下移动的浮子所组成。工作原理如图所示,被测流体从下向上经过锥管和浮子形成环形流通面积(以下简称环通面积)时,浮子上下两端产生的压差形成浮子上升的力,当浮子所受上升力大于浸在流体中浮子的重量时,浮子便上升,环通面积随之增大,环通面积处流体流速下降,浮子上下两端压差降低,作用于浮子的上升力也随之减小,直到上升力等于浸在流体中浮子的重量时,浮子便稳

定在某一高度。浮子在锥管中的高度和通过的流量有一一对应的关系。浮子流量计的体积流量公式为 式中,α——浮子流量计的流量系数﹔ Df——零刻度处锥管的内径﹔ h———浮子高度﹔ φ——锥管的锥角﹔ Vf-—浮子的体积,m3; ρf———流体的密度,kg/ m3; ρf——浮子密度,kg/m3; Af--—浮子最大迎流面积,m2 流量qv,与浮子高度h之间为一一对应的近似线性关系。在进行稍大流量测量时,为达到必要的环通面积,减少φ角,势必要增加锥管的长度。因此,早期的金属管浮子流量计口径、长度不一,口径越大,长度也越大,达到500~600mm 长,非常笨重,制造和使用都不方便。现在已有多种方式进行线性化处理,各口径的金属管浮子流量计大都已统一制造成250mm长度的短管型流量计。 对于玻璃管浮子流量计,h-qv的对应关系直接刻度在流量计的锥管上。为使刻度均匀,制造时也将锥管的锥角减小一些,长度增大一些。 3、刻度换算 从上式可知,对于不同的流体,由于密度ρ不同,所以qv与h之间的对应关系也将不同,原来的流量刻度将不再适用。原则上浮子流量计应该用实际流体介质进行标定。但是,对于浮子流量计的制造厂家来说,由于受到标定设备的限制,不可能对所有的浮子流量计都根据用户的要求进行实际流体标定,所以浮子流量计用来测量非标定流体时,应该对浮子流量计的读数进行修正,这就是浮子流量计的刻度换算。这--过程可以由生产厂家按用户要求换算完成后直接刻度在浮子流量计的刻度盘上或玻璃锥管上。对于远传型浮子流量计,其远传信号也进行同样的刻度换算。

气体流量测定与流量计标定

实验二气体流量测定与流量计标定 一、实验目的 气体属于可压缩流体。气体流量的测量,虽然有一些与用于不可压缩流体相同的测量仪表但也有不少专用于气体的测量仪表,在测量方法和检定方法上也有一些特殊之处。显然,气体流量的测量与液体一样,在工业生产上和科学研究中,都是十分重要的。尤其是在近代,工业生产规摸的大型化和科学实验的微型化,往往这些流量、温度、压力等的检测仪表就成为关键问题。 目前,工业用有LZB系列转子流量计,实验室用有LZW系列微型转子流量计,可供选用。对于市售定型仪表,若流体种类和使用条件都按照规格规定,则读出刻度就能知道流量。但从精度上考虑,仍有必要重新进行校正。转子流量计自制是有困难的,因锥形玻璃管的锥度手工难于制作。但是,在科学研究中或其它某种场合,有时,不免还要根据某种特殊需要,创制一些新型测量仪表和自制一些简易的流量计。不论是市售的标准系列产品还是自制的简易仪表,使用前,尤其是使用一段时间后,都需要进行校正,这样才能保证计量的准确、可靠。 气体流量计的标定,一般采用容积法,用标准容量瓶量体积,或者用校准过的流量计作比较标定。在实验室里,一般采用湿式气体流量计作为标准计量器。它属于容积式仪表,事先应经标准容量瓶校准。实验用的湿式流量计的额定流量,一般有 0.2m3·h—1和0.5m3·h—1两种。若要标定更大流量的仪表,一般采用气柜计量体积。实验室往往又需用微型流量计,现时一般采用皂膜流量计来标定。 本实验采用标准系列中的转子流量计和自制的毛细管流量计来测量空气流量。并用经标准容量瓶直接校准好的湿式流量作为标准,用比较法对上述两种流量计进行检定,标定出流量曲线.,对毛细管流量计标定。通过本实验学习气体流量的测量方法,以及气体流量计的原理、使用方法和检定方法。同时,这些知识和实验方法对学习者在进行以下各项实验时,肯定会有帮助,尤其时对今后所从事的各种实验研究工作,也是有益处的。 二、实验原理 1.湿式气体流量计 该仪器属于容积式流量计。它是实验室常用的一种仪器,其构造主要由圆鼓形壳

各种化工流量计工作原理

流量计是工业生产的眼睛,与国民经济、国防建设、科学研究有着密切的关系,在国民经济中占据重要地位与作用,可用于气体、液体、蒸汽等介质流量的测量。为了更好的展示流量计测量原理,小编采用动画演示的方法来给大家介绍流量计的工作原理! 1. 孔板流量计 孔板流量计 工作原理:流体充满管道,流经管道内的节流装置时,流束会出现局部收缩,从而使流速增加,静压力低,于是在节流件前后便产生了压力降,即压差,介质流动的流量越大,在节流件前后产生的压差就越大,所以孔板流量计可以通过测量压差来衡量流体流量的大小。这种测量方法是以能量守衡定律和流动连续性定律为基准的。

工作特点:①节流装置结构简单、牢固,性能稳定可靠,使用期限长,价格低廉;②应用范围广,全部单相流皆可测量,部分混相流亦可应用;③标准型节流装置无须实流校准,即可投用;④一体型孔板安装更简单,无须引压管,可直接接差压变送器和压力变送器。 2. 电磁流量计 电磁流量计

工作原理:基于法拉第电磁感应定律。在电磁流量计中,测量管内的导电介质相当于法拉第试验中的导电金属杆,上下两端的两个电磁线圈产生恒定磁常当有导电介质流过时,则会产生感应电压。管道内部的两个电极测量产生的感应电压。测量管道通过不导电的内衬(橡胶,特氟隆等)实现与流体和测量电极的电磁隔离。 工作特点:①具有双向测量系统;②传感器所需的直管段较短,长度为5倍的管道直径。③压力损失小④测量不受流体密度、粘度、温度、压力和电导率变化的影响⑤主要应用于污水处理方面。 3. 涡轮流量计 涡轮流量计 工作原理:在一定的流量范围内,涡轮的转速与流体的流速成正比。流体流动带动涡轮转动,涡轮的转速转换成电脉冲,用二次表显示出数据,反应流体流速。

转子流量计的原理及计算【最新版】

转子流量计的原理及计算 1概述 转子流量计(Rotometer),又称浮子流量计(FloatTypeFlowmeter),在工业中得到广泛的应用。它可测量液体、气体和蒸气的流量,宜测中小管径(DN4~250)的流量。压力损失小且恒定,测量范围比较宽,量程比1:10,工作可靠且刻度线性,使用维修方便,对仪表前后直管段长度要求不高。其测量精确度为±2%左右,受被测液体的密度、粘度、纯净度以及温度、压力的影响,也受安装垂直度的影响。玻璃管浮子流量计结构简单,成本低,易制成防腐蚀性仪表,但其强度低。金属管浮子流量计可输出标准信号,耐高压,能实现流量的指示、积算、记录、控制和报警等多种功能。 1.1 原理及结构 1.1.1 冲量定理及应用 设一物体的质量为m,作用其上的力为F,实际上流体的速度v,物体变化路程为L。那么根据冲量定理可推出 (1)

1.1.2 测量原理及结构 如果将阻挡体置于直立且具有锥度(上大下小)的管道中,就形成转子式的流量计,它的工作原理如图1所示。 当流量增加时,转子接受流体自下而上的冲力将增加,因而被冲向上方,一到达上面,由于流通截面增加,流速减小,冲力也随之减小。当冲力和差压对转子截面构成的作用力以及粘滞摩擦力等的合力与转子本身在流体中重量相等时,转子即处于一平衡状态,不再上升或下降,这个位置就表示新的流量值。 1.2 计算公式 设转子的显示重量为Wf(N),流体对转子的作用力为F(N),锥形管与转子间环形截面为Sa(m2),转子处最大截面积为Sf(m2),转子体积Vf(m3),转子密度为ρf(Kg/m3),转子长度为L(m),流体介质的密

简述各种流量计原理及特点

简述各种流量计原理及特点(1) 1. 简述 目前工程实际中,流量测量方法及流量仪表的种类繁多,至今为止,可供工业用的流量仪表种类多达数十余种。在流量仪表的家族中,每种产品都有它特定的适用性及使用局限性。按测量对象划分就有封闭管道和明渠两大类:按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。 本文简要介绍目前最常用流量计分类法,主要有:差压式流量计、容积式流量计、差压式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计质量流量计等分别简述各种流量计的原理及特点。 2. 差压式流量计 差压式流量计是通过安装于是工业管道中流量检测元件产生的差压,将已知流体条件和检测件与管道的几何尺寸来计差压式流量计算流量计。 差压式流量计由一次检测件及二次仪表(差压转换器或变送器和流量显示仪表)组成。以检测件形式划分差压式流量计分类,有孔板流量计、文丘里流量计、均速管流量计等。二次仪表为各种机械、电子、机电一体式差压式流量计、差压变送器及流量显示仪表。差压式流量仪表是流量仪表大家族中应用最广泛的一中流量仪表,目前国内外已系列化、通用化、标准化,差压式流量计既可单独测量流量参数,也可测量其它参数(压力、物位、密度)等。差压式流量计的检测件按其作用原理可分为:节流装置、水利阻力、动压头式、动压头增益及射流式、以及离心式等几大类。 检测件有标准化型式或非标准两大类。标准型检测元件是以标准文件设计、制造、安装和使用,无需经实流标定即可确定其流量值和估算测量误差。而非标型检测元件一般尚未列入国际标准中检测元件。差压式流量计也是应用最广泛的一种流量仪表,在各种流量计使用量中占据首位。 主要优点是:(1)应用最多的孔板式流量计结构牢固,性能稳定可靠,使用寿命长;(2)应用范围广泛,至今尚无任何一流量计可与之比拟;(3)检测件与变送器、显示仪表分别由不同厂家生产,便于规模经济生产。 主要缺点是:(1)测量精度普遍偏低:(2)范围度窄,一般仅3:1~4:1; (3)现场安装条件要求高;(4)压损大(指孔板、喷嘴等)。

电磁流量计的工作原理

电磁流量计的工作原理 电磁流量计(Eletromagnetic Flowmeters,简称EMF)是20世纪50~60年代随着电子技术的发展而迅速发展起来的新型流量测量仪表。电磁流量计是根据法拉第电磁感应定律制成的,电磁流量计用来测量导电液体体积流量的仪表。由于其独特的优点,电磁流量计目前已广泛地被应用于工业过程中各种导电液体的流量测量,如各种酸、碱、盐等腐蚀性介质;电磁流量计各种浆液流量测量,形成了独特的应用领域。 在结构上,电磁流量计由电磁流量传感器和转换器两部分组成。传感器安装在工业过程管道上,它的作用是将流进管道内的液体体积流量值线性地变换成感生电势信号,并通过传输线将此信号送到转换器。转换器安装在离传感器不太远的地方,它将传感器送来的流量信号进行放大,并转换成流量信号成正比的标准电信号输出,以进行显示,累积和调节控制。电磁流量计的基本原理 一、测量原理 根据法拉第电磁感应定律,当一导体在磁场中运动切割磁力线时,在导体的两端即产生感生电势e,其方向由右手定则确定,其大小与磁场的磁感应强度B,导体在磁场内的长度L及导体的运动速度u成正比,如果B, L,u三者互相垂直,则e=Blu。与此相仿,在磁感应强度为B的均匀磁场中,垂直于磁场方向放一个内径为D的不导磁管道,当导电液体在管道中以流速u流动时,导电流体就切割磁力线.如果在管道截面上垂直于磁场的直径两端安装一对电极,则可以证明,只要管道内流速分布为轴对称分布,两电极之间也特产生感生电动势:e=BD。式中,为管道截面上的平均流速.由此可得管道的体积流量为:qv=πDUˉ。由上式可见,体积流量qv与感应电动势e和测量管内径D成线性关系,与磁场的磁感应强度B成反比,与其它物理参数无关.这就是电磁流量计的测量原理。需要说明的是,要使式qv=πDUˉ严格成立,必须使测量条件满足下列假定: ①磁场是均匀分布的恒定磁场; ②被测流体的流速轴对称分布; ③被测液体是非磁性的; ④被测液体的电导率均匀且各向同性。 二、励磁方式 励磁方式即产生磁场的方式。由前述可知,为使式qv=πDUˉ严格成立,第一个必须满足的条件就是要有一个均匀恒定的磁场.为此,就需要选择一种合适的励磁方式。目前,一般有三种励碰方式,即直流励磁、交流励磁和低频方波励磁。现分别予以介绍。 1.直流励磁 直流励磁方式用直流电产生磁场或采用永久磁铁,它能产生一个恒定的均匀磁场。这种直流励磁变送器的最大优点是受交流电磁场干扰影响很小,因而可以忽略液体中的自感现象的影响。但是,使用直流磁场易使通过测量管道的电解质液体被极化,即电解质在电场中被电解,产生正负离子。在电场力的作用下,负离子跑向正极,正离子跑向负极。这样,将导致正负电极分别被相反极性的离子所包围,严重影响电磁流量计的正常工作。所以,直流励磁一般只用于测量非电解质液体,如液态金属等。 2.交流励磁 目前,工业上使用的电磁流量计,大都采用工频50Hz电源交流励磁方式,即它的磁场是由正弦交变电流产生的,所以产生的磁场也是一个交变磁场。交变磁场变送器的主要优点是消除了电极表面的极化于扰。另外,由于磁场是交变的,所以输出信号也是交变信号,放大和转换低电平的交流信号要比直流信号容易得多。

转子流量计工作原理

转子流量计工作原理集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

转子流量计工作原理 转子流量计又称浮子流量计,是变面积式流量计的一种,它是由一个锥形管和一个置于锥形管内可以上下自由移动的转子(也称浮子)构成。转子流量计本体可以用两端法兰、螺纹或软管与测量管道连接,垂直安装在测量管道上。当流体自下而上流入锥管时,被转子截流,这样在转子上、下游之间产生压力差,转子在压力差的作用下上升,这时作用在转子上的力有三个:流体对转子的动压力(向上)、转子在流体中的浮力(向上)和转子自身的重力(向下)。 流量计垂直安装时,转子重心与锥管管轴会相重合,作用在转子上的三个力都平行于管轴。当这三个力达到平衡时,转子就平稳地浮在锥管内某一位置上。此时,重力=动压力+浮力。对于给定的转子流量计,转子大小和形状己经确定,因此它在流体中的浮力和自身重力都是已知的常量,唯有流体对浮子的动压力是随来流流速的大小而变化的。因此当来流流速变大或变小时,转子将作向上或向下的移动,相应位置的流动截面积也发生变化,直到流速变成平衡时对应的速度,转子就在新的位置上稳定。对于一台给定的转子流量计,转子在锥管中的位置与流体流经锥管的流量的大小成一一对应关系。这就是转子流童计的计量原理。 转子稳定时公式: ()t f V g P A ρρ-=?? (1-1) 其中:t ρ为转子的密度;f ρ为流体的密度;V 为转子的体积;P ?为转子前后的压差(P ?是一常数);A 为转子的最大截面积。 图1 转子流量计测量原理 其具体工作过程为:流量增加→浮子节流作用产生的压差力也增加→浮子上升→浮子与锥形管壁间的环形流通面积增大→流过此环隙的流速降低→压差力随之下降,直到

气体流量计检定系统软件的设计

气体流量计检定系统软件的设计 摘要:流量仪表是过程自动化仪表与装置中的大类仪表之一,它被广泛用于化工、石油、轻纺、食品、医药、环境保护及人民日常生活等国民经济各个领域,是发展工农业生产,节约能源,改进产品质量,提高经济效益和管理水平的重要工具,在国民经济中占有重要的地位。因此对其准确性的检验也成为计量检定部门及仪表生产厂家的重要工作之一。 关键词:气体流量计;软件;设计 Abstract: the flow meter is one of the categories of instruments for process automation instrument and apparatus, it is widely used in chemical, petroleum, textile, food, medicine, environmental protection and the People?s Daily life and so on various fields of national economy, is the development of industrial and agricultural production, save energy, improve the quality of our products and improve the economic benefit and management level of the important tools, occupies an important position in national economy. So the accuracy of the inspection also become metrological verification department and instrumentation manufacturers one of the important work. Key words: gas meter; Software; design 一、前言: 流量仪表是过程自动化仪表与装置中的大类仪表之一,它被广泛用于化工、石油、轻纺、食品、医药、环境保护及人民日常生活等国民经济各个领域,是发展工农业生产,节约能源,改进产品质量,提高经济效益和管理水平的重要工具,在国民经济中占有重要的地位。因此对其准确性的检验也成为计量检定部门及仪表生产厂家的重要工作之一。 流量计检定系统则为流量仪表的出厂检定,周期性检定及计量争议检定提供了检测手段。流量计检定系统按其使用介质及被检仪表使用环境的不同可分为气体流量计检定系统、液体流量系统及蒸汽流量系统。 二、概述: 软件使用Borlan公司的C++Bilder编写,用以实现对气体流量计检定过程的控制和监视,同时将采集到得温度,压力,流量等信号跟据国家相应检定规程计算,以得出被检流量计的误差,重复性,精确度等级等结论,并形成报表以供察看打印之需,同时将原始记录存入数据库以备查询。 三、气体流量计检定原理: 目前对于气体流量计的检定主要有PV/T,钟罩,音速喷嘴几种方式,其中

电磁流量计的工作原理及组成

电磁流量计的工作原理及组成 1、工作原理 电磁流量计的测量原理如图1 所示。根据法拉第电磁感应定律,导电液体在磁场中流动会产生电动势E,它与磁感应强度B、导电液体平均流速v 成一定比例关系:E =KBDv 式中: E———导电流体在磁场中产生的电动势,V; K———比例系数,在管道内径D 和磁感应强度 B 不变的情况下,K 为常数,1; B———磁感应强度,T; D———测量管内径,m; v———导电液体平均流速,m/s。 电磁流量计利用上述函数关系推导出v = E /( KBD) ,实际测得的是液体流速v,再通过被测介质的体积流量QV = πD2 v /4,计算导电流体介质的流量。 2、计量系统组成 电磁流量计主要由两部分组成: 流量传感器和信号变送器,如图2 所示。传感器上的励磁线圈接受变送器传输来的励磁电流产生磁场,输出感应电动势信号; 信号变送器则将感应电动势信号转换为流量信号或模拟量信号送至控制系统。电磁流量计按组成方式分为一体式和分体式。 电磁流量计稳定工作另外一个重要条件是接地。当流体流动穿过磁场

时,以导电流体本身作为参考电位,在测量管一侧电极产生正电势,另一侧产生负电势,形成电势差。但此电动势信号一般只有几毫伏,易受外界干扰。为防止干扰,将参考电位接入大地作为零电位,保证传感器输出精确稳定的信号。传感器和转换器的接地端必须与被测介质同电位,才能构成对称的输入输出回路。 3、系统特性 电磁流量计的主要特点如下: ①不同于差压式、容积式流量计,电磁流量计测量管内无阻流部件,压损很小,适用于大口径管道; ②不受测量介质的温度、压力、密度、黏度参数变化影响,不需要进行修正和补偿,仅仅要求测量介质的电导率σ>5 μS /cm;③量程比宽,输出信号和流量成线性关系; ④测量精度高,可达到±( 0.1%~0.5%) ; ⑤安装要求低,前后直管段要求低,一般满足前直管段管径D前≥5D,后直管段管径D后≥2D 即可; ⑥性价比较高,使用范围广,合理选用衬里材料和电极材质可以测量各种腐蚀性介质的流量。需要注意的是,电磁流量计不能测量非导电介质的流量,也不适用于测量含有气体的介质,这样会引起测量数据的大幅波动。

电磁流量计工作原理

电磁流量计工作原理 电磁流量计(ElectromagneticFlowmeters,简称EMF)是20世纪50~60年代随着电子技术的发展而迅速发展起来的新型流量测量仪表,目前,这种仪表多应用在自来水、生活用水、污水等方面,在我们的生活中发挥着巨大作用。那么,电磁流量计是怎样安装使用的呢?电磁流量计安装规范有哪些呢?今天我就在此为大家介绍电磁流量计安装及规范的相关知识,希望能够帮助到有这方面需求的朋友们! 【电磁流量计工作原理】 电磁流量计是根据法拉第电磁感应定律进行流量测量的流量计。电磁流量计的优点是压损极小,可测流量范围大。最大流量与最小流量的比值一般为20:1以上,适用的工业管径范围宽,最大可达3m,输出信号和被测流量成线性,精确度较高,可测量电导率≥5μs/cm 的酸、碱、盐溶液、水、污水、腐蚀性液体以及泥浆、矿浆、纸浆等的流体流量。但它不能测量气体、蒸汽以及纯净水的流量。 当导体在磁场中作切割磁力线运动时,在导体中会产生感应电势,感应电势的大小与导体在磁场中的有效长度及导体在磁场中作垂直于磁场方向运动的速度成正比。同理,导电流体在磁场中作垂直方向流动而切割磁感应力线时,也会在管道两边的电极上产生感应电势。感应电势的方向由右手定则判定,感应电势的大小由下式确定: Ex=BDv-----------------式(1) 式中Ex—感应电势,V; B—磁感应强度,T D—管道内径,m v—液体的平均流速,m/s 然而体积流量qv等于流体的流速v与管道截面积(πD2)/4的乘积,将式(1)代入该式得: Qv=(πD/4B)*Ex---------式(2) 由上式可知,在管道直径D己定且保持磁感应强度B不变时,被测体积流量与感应电势呈线性关系。若在管道两侧各插入一根电极,就可引入感应电势Ex,测量此电势的大小,就可求得体积流量。 据法拉第电磁感应原理,在与测量管轴线和磁力线相垂直的管壁上安装了一对检测电极,当导电液体沿测量管轴线运动时,导电液体切割磁力线产生感应电势,此感应电势由两个检测电极检出,数值大小与流速成正比例,其值为:

转子流量计原理介绍

转子流量计的原理介绍 简介 转子流量计又称浮子流量计,通过量测设在直流管道内的转动部件的(位置 )来推算流量的装置。它可以测量液体、气体、蒸汽的流量,宜测中小管径4-250mm 的流量。压力损失小,且恒定,测量范围比较宽,量程比1:10,工作可靠且刻度线性,使用维修方便,对仪表前后直管段的长度要求不高,其测量精度±2%左右,受被测的液体的密度、粘度、纯净度以及温度、压力的影响,也受安装垂直度的影响。 工作原理: 转子流量计由两个部件组成,转子流量计一件是从下向上逐渐扩大的锥形管;转子流量计另一件是置于锥形管中且可以沿管的中心线上下自由移动的转子。转子流量计当测量流体的流量时,被测流体从锥形管下端流入,流体的流动冲击着转子,并对它产生一个作用力(这个力的大小随流量大小而变化);当流量足够大时,所产生的作用力将转子托起,并使之升高。同时,被测流体流经转子与锥形管壁间的环形断面,这时作用在转子上的力有三个:流体对转子的动压力、转子在流体中的浮力和转子自身的重力。流量计垂直安装时,转子重心与锥管管轴会相重合,作用在转子上的三个力都沿平行于管轴的方向。当这三个力达到平衡时,转子就平稳地浮在锥管内某一位置上。对于给定的转子流量计,转子大小和形状己经确定,因此它在流体中的浮力和自身重力都是已知是常量,唯有流体对浮子的动压力是随来流流速的大小而变化的。因此当来流流速变大或变小时,转子将作向上或向下的移动,相应位置的流动截面积也发生变化,直到流速变成平衡时对应的速度,转子就在新的位置上稳定。对于一台给定的转子流量计,转子在锥管中的位置与流体流经锥管的流量的大小成一一对应关系。 为了使转子在在锥形管的中心线上下移动时不碰到管壁,通常采用两种方法:一种是在转子中心装有一根导向芯棒,以保持转子在锥形管的中心线作上下运动,另一种是在转子圆盘边缘开有一道道斜槽,当流体自下而上流过转子时,一面绕过转子,同时又穿过斜槽产生一反推力,使转子绕中心线不停地旋转,就可保持转子在工作时不致碰到管壁。转子流量计的转子材料可用不锈钢、铝、青铜等制

气体流量计的干式检定

气体流量计的干式检定 荷兰G.de,Boer等 摘要:目前,大多数欧洲国家用于财务核算和贸易输送计量的气体涡轮流量计和新型的气体超声流量计通常是在测试装置上对照计量标准或标准流量计进行检定。由于在标准装置上进行检定存在实际操作上的缺点,检定成本高且只有少数几个标准装置可以利用,因此流量计检定的另一种方法具有一定优势。对孔板流量计,干式检定的实践早已很好地确定,即孔板流量计的检定可基于对孔板几何尺寸和安装条件的检验以及对二次表(显示)仪表功能的检验。虽然气体涡轮流量计的实流检定还是必要的,但气体超声流量计却可以像孔板那样采用干式检定。本文介绍了有关变量相对于流量计精度的敏感度分析,它可以作为采用气体超声流量计干式检定方法的基础。文中还介绍了进一步的测试结果,表明了气体超声流量计干式检定方法的可行性。 一、概述 气体超声流量计,特别是多声道的气体超声流量计,在天然气贸易输送计量中已愈来愈多地为人门所接受。对于这些应用场合,对流量仪表的校准或检定通常是一种法制要求,或是根据买卖双方之间合同而提出的一种要求。在理想情况下,这种检定或校准是将流量计与一个计量标准或参考标准进行比对,所采用的标准对国家或国际标准溯源性是必要的先决条件。 遗憾的是,那种能对大流量气体进行控制并且可利用标准流量计进行精确测量的装置实在是太少了,其运行费用也很昂贵。为了进行校准或检定,必须将流量计从管道上拆下来,然后再送往标准装置,这对于操作者来说是一件很麻烦的事。在检定费用本身已经很高的情况下,操作者还必须面对拆卸、运输这些流量计以及生产装置停车等许多附加开支。特别是大口径气体流量计的检定测试装置的能力可能对其大流量的测试有所限制,在一年中很短的时间(比如几个月)内进行。在标准装置上检定流量计的优点在于流量计所有者能得到详细说明流量计准确度的计量合格证书,并能对流量计进行调整,以减少其相对于检定装置的校准测量误差或偏差。 然而,如果考虑巨额的代价及操作上的缺点,那种不要求把流量计送往检定装置就能进行校准或检定的想法是极具吸引力的。对于孔板流量计就已很好地确立了类似的实践方法,孔板流量计的检定就是根据对其几何尺寸和安装条件的检查及对变送器及显示仪表功能的检查而进行的。这种方法已得到了世界范围的认可。 二、气体超声流量计的原理 气体超声流量计的原理如图1所示。

容积流量计原理

容积式流量计原理和构造 4-1.腰轮流量计 腰轮流量计又叫罗茨流量计,其原理图如图4-1所示,其结构特征为:在流量计的壳体内有一个测量室,测量室内有一对或两对可以相切旋转的腰轮(由此得名为腰轮流量计),在计量室壳体的外面与两个腰轮同轴各安装了一个传动齿轮,它们相互啮合联动。 流量计的工作原理是利用测量元件两个腰轮,把流体连续不断的分割成单个的体积部分,利用驱动齿轮和计数指示机构以计量出流体总体积量。流量计工作过程具体如下:在图4-1中由腰轮O1的外侧壁、壳体的内侧壁以及腰轮两端盖板之间,形成一封闭间(即计量室),空间内的流体即为由测量元件将连续流体分割成的单个体积。从流入口流入流体时,下面的腰轮虽然受到流入流体的压力,但不产生旋转力,而上面的腰轮受到流体流入的压力后沿箭头方向旋转。当旋转成(2)的状态时,两个腰轮都产生了沿箭头方向的旋转力,使旋转到(3)的状态。此时与(1)的状态相反,下面的腰轮产生旋转力继续旋转,又变成了(1)的状态,从而腰轮连续不断地进行转动。两个腰轮各旋转一周,完成从(1)到下一个(1)以前的运转过程,便排出四个计量室的体积量,并将流体从流入口送到流出口。只要知道计量室空间的容积和腰轮转动的转数,就可得到被计量流体的体积量。设计量室的容积为V1,流体流过时,腰轮的转数为N,则在N次动作的时间内流过流量计的流体体积V为: V = NV (4-1) 1 流量计有立式和卧式两种结构形式,立式流量计结构紧凑,能有效的利用空间,减少占地面积。 图4-1 腰轮工作原理 流量计由壳体、腰轮转子组件(即内部测量元件)、驱动齿轮与计数指示组件等构成。腰轮的组成有两种,一种是只有一对腰轮,此种为普通腰轮流量计。另一种

各种流量计工作原理结构图

第一节节流式流量检测 如果在管道中安置一个固定的阻力件,它的中间是一个比管道截面小的孔,当流体流过该阻力件的小孔时,由于流体流束的收缩而使流速加快、静压力降低,其结果是在阻力件前后产生一个较大的压力差。它与流量(流速)的大小有关,流量愈大,差压也愈大,因此只要测出差压就可以推算出流量。把流体流过阻力件流束的收缩造成压力变化的过程称节流过程,其中的阻力件称为节流件。 作为流量检测用的节流件有标准的和特殊的两种。标准节流件包括标准孔板、标准喷嘴和标准文丘里管,如图9.1所示。对于标准化的节流件,在设计计算时都有统一标准的规定要求和计算所需的有关数据、图及程序;可直接按照标准制造、安装和使用,不必进行标定。 标准节流装置9.1 图 圆缺喷特殊节流件也称非标准节流件,如双重孔板、偏心孔板、圆缺孔板、1/4嘴等,他们可以利用已有实验数据进行估算,但必须用实验方法单独标定。特殊节流件主要用于特殊;介质或特殊工况条件的流量检测。目前最常见的节流件是标准孔板,所以在以下的讨论中将主要以标 准孔板为例介绍节测式流量检测的原理、设计以及实现方法等。一、检测原理

设稳定流动的流体沿水平管流经节流件,如刚在节流件前后将产生压力和速度的变化,流在截面 1处流体未受节流件影响,所示。9.2,流体静压力为p,束充满管道,管道截面为A11?是经节,流体密度为平均流速为v2。截面11,A流件后流束收缩的最小截面,其截面积为2?。图,流体密度为,平均流速为压力为Pv222中的压力曲线用点划线代表管道中心处静9.2流体的静压力压力,实线代表管壁处静压力。充分地反映和流速在节流件前后的变化情况,流体向中心在节流件前,了能量形式的转换。. 9.2 流体流经节流件时压力和流速变化情况图处,流束截面收缩到最小,流速达到最大,静压力最低。然后流束扩加速,至截面2处。由于涡流区的存在,导致流体能量张,流速逐渐降低,静压力升高,直到截面3?。P不等于原先静压力p,而产生永久的压力损 失损失,因此在截面3处的静压力13p设流体为不可压缩的理想流体,在流经节流件时,流体不 对外作功,和外界没有热 处沿管中心的流线、2能交换,流体本身也没有温度变化,则根据伯努利方程,对于截面1 有以下能量关系:22ppvv10201020???(9-1) ??2221?????。由于流速分布的不均匀,因为是不可压缩流体,则2处平均流速与截面1、21管中心的流速有以下关系:vCv,v?v?C) ( 9-222110120处流速分布不均匀的修正系数。1、2式中C,C为截面2112??v为能 量其损失的能量为,考虑到实际流体有粘性,在流动时必然会产生摩擦力,22损失系数。处的能量关系可写成:在考虑上述因素后,截面1、222?ppCC222102021v?v?v??) (9-3 212??222根据流体的连续性方程,有??vAvA? 9-4)(2211?,(9-2)-A 。/A ,收缩系数联解式=A/。又设节流件的开孔面积为A 定义开口截面比m=A 0210)可得式(9-421??p?pv?9-5)(20210?2222??mC?C?12的位置随流速而变,而实际取压点的位置是固定的;另外实际取2因为流束最小截面 压是在管壁取的,所测得的压力是管壁处的静压力。考虑到上述因素,设实际取压点处取??p

流量计综述

流量计综述 流量测量方法和仪表的种类繁多,分类方法也很多。至今为止,可供工业用的流量仪表种类达 60 种之多。品种如此之多的原因就在于至今还没找到一种对任何流体、任何量程、任何流动状态以及任何使用条件都适用的流量仪表。 这 60 多种流量仪表,每种产品都有它特定的适用性,也都有它的局限性。按测量对象划分就有封闭管道和明渠两大类;按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。 总量表测量一段时间内流过管道的流量,是以短暂时间内流过的总量除以该时间的商来表示,实际上流量计通常亦备有累积流量装置,做总量表使用,而总量表亦备有流量发讯装置。因此,以严格意义来分流量计和总量表已无实际意义。 按测量原理分有力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等 目前最流行、最广泛的分类法,即分为:容积式流量计、差压式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计、质量流量计和插入式流量计来分别阐述各种流量计的原理、特点、应用概况及国内外的发展情况。 1.1 差压式流量计 差压式流量计是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的几何尺寸来计算流量的仪表。 差压式流量计由一次装置(检测件)和二次装置(差压转换和流量显示仪表)组成。通常以检测件形式对差压式流量计分类,如孔板流量计、文丘里流量计、均速管流量计等。 二次装置为各种机械、电子、机电一体式差压计,差压变送器及流量显示仪表。它已发展为三化(系列化、通用化及标准化)程度很高的、种类规格庞杂的一大类仪表,它既可测量流量参数,也可测量其它参数(如压力、物位、密度等)。 差压式流量计的检测件按其作用原理可分为:节流装置、水力阻力式、离心式、动压头式、动压头增益式及射流式几大类。 检测件又可按其标准化程度分为二大类:标准的和非标准的。 所谓标准检测件是只要按照标准文件设计、制造、安装和使用,无须经实流标定即可确定其流量值和估算测量误差。 非标准检测件是成熟程度较差的,尚未列入国际标准中的检测件。 差压式流量计是一类应用最广泛的流量计,在各类流量仪表中其使用量占居首位。近年来,由于各种新型流量计的问世,它的使用量百分数逐渐下降,但目前仍是最重要的一类流量计。 优点: (1)应用最多的孔板式流量计结构牢固,性能稳定可靠,使用寿命长;

气体腰轮流量计工作原理

气体腰轮流量计工作原理 一、仪表结构 流量计由罗茨流量传感器和附件组成。如图所示: 腰轮流量计又叫罗茨流量计,其结构特征为:在流量计的壳体内有一个计量室,计量室内有一对或两对可以相切旋转的腰轮。在流量计壳体外面与两个搜轮同轴安装了一对传动齿轮,它们相互啮合使两个腰轮可以相互联动。 腰轮流量计的工作原理可以从图2一1中的4个过程来分析。首先在结构上,由腰轮的外轮脚和流量计壳体的内壁面可以组成其有一定容积的“斗”空间.我们称为“计量室”。当有流体通过流量计时,在流量计进出口流体差压的作用下.两腰轮将按正方向旋转。在图2一1(1)中,由腰轮Q1和壳体形成一封闭的计量室。该计量室内所充满的流体是腰轮从进口连续流体中分隔而成的单个体积。从接轮受力分析可以看出,此时腰轮Q1为主动轮.而Q2所受流体压力相互平衡. 不产生旋转力.所以为从动轮。由Q1带动Q2旋转到图2一1(2)所示位置时,将计量室中的流体排向流量计出口。从腰轮受力分析可以看出.此时两个腰轮上都产生沿图中箭头方向的旋转力.使两腰轮旋转到图2一1(3)的位置。此时与(1)的状态相反.由腰轮Q2与和壳体形成一封闭的计量室.该计量室内所充满的流体是腰轮从进口连续流体中分隔而成的另一单个体积。而且.从腰轮受力分析可以看出,此时腰轮Q2为主动轮,而Q1所受流体压力相互平衡.不产生旋转力,所以为从动轮。由Q2带动以旋转到图2一1(4)所示位工时.将计量室中的流体又排向流盆计出口。与((2)的状态一样,此时两个腰轮上都产生沿图中箭头方向的旋转力,使两眼轮继续旋转到图2一1(1) https://www.360docs.net/doc/d87521602.html,的位置。到此时.两接轮转子共旋转了180'.有两个计量室的流体一被排向流量计出口.

相关文档
最新文档