催化剂载体-活性氧化铝的制备实验

催化剂载体-活性氧化铝的制备实验
催化剂载体-活性氧化铝的制备实验

催化剂载体-活性氧化铝的制备实验

一、实验目的

1、通过铝盐与碱性沉淀剂的沉淀反应,掌握氧化铝催化剂和催化剂载体的制备过程。

2、了解制备氧化铝水合物的技术和原理。

3、掌握活性氧化铝的成型方法。

二、实验内容

1、通过铝盐与碱性沉淀剂反应,制备氧化铝催化剂。

三、实验原理

催化剂或催化剂载体用的氧化铝,在物性和结构方面都有一定要求。最基本的是比表面积、孔结构、晶体结构等。例如,重整催化剂是将贵重金属铂、

铼载在γ—Al

2O

3

或η—Al

2

O

3

上。氧化铝的结构对反应活性影响极大,载于其

他形态的氧化铝上,其活性是很低的,如烃类脱氢催化剂,若将Cr—K载在γ—Al2O3或η—Al2O3上,活性较好,而载在其他形态氧化铝上,活性很差。这说明它不仅起载体作用,而且也起到了活性组分的作用,因此,也称这种

氧化铝为活性氧化铝。α—Al

2O

3

在反应中是惰性物质,只能作载体使用。制

备活性氧化铝的方法不同,得到的产品结构亦不相同,其活性的差异颇大,因此制备中应严格掌握每一步骤的条件,不应混入杂质,尽管制备方法和路线很多,但无论哪种路线都必须制成氧化铝水合物(氢氧化铝),再经高温脱水生成氧化铝。自然界存在的氧化铝或氢氧化铝脱水生成的氧化铝,不能作载体或催化剂使用,这不仅因杂质多,主要是难以得到所要求的结构和催化

活性。为此,必须经过重新处理,可见制备氧化铝水合物是制活性Al

2O

3

的基

础。

氧化铝水合物经X射线分析,可知有多种形态,通常分为结晶态和非结晶态。结晶态中有一水和三水化物两类形体;非结晶态则含有无定形和结晶度很低的水化物两种形体,它们都是凝胶态。可总括为下述表达形式:

无定形水合氧化铝,尤其假一水铝石,在制备中能通过控制溶液PH值或

温度,向一水氧化铝转变。经老化后大部分变成α—Al

2O

3

·H

2

O,而这种形态

是生成γ—Al

2O

3

的唯一路线。上述α—Al

2

O

3

·H

2

O凝胶是针状聚集体,难以洗

涤过滤。β—Al

2O

3

·3H

2

O是球形颗粒,紧密排列,易于洗涤过滤。

氧化铝水合物是非稳定态,加热会脱水,随着脱水气氛和脱水温度的不同可生成各种晶形的氧化铝。当受热到1200℃时,各种晶形的氧化铝都将变成α—Al2O3(亦称刚玉)。α—Al2O3具有最小的表面积和孔容积。水合物受热后晶型变化情况如下:

氧化铝水合物加热变化

可见不论获得何种晶型的氧化铝都要首先制成氢氧化铝。氢氧化铝也是制陶瓷和无机阻燃剂及阻燃添加剂的重要原料。

制备水合氧化铝的方法很多,其中有以铝盐、偏铝酸钠、烷基铝、金属铝、拜耳氢氧化铝等为原料,并控制温度、pH值、反应时间、反应浓度等操作,得到均一的相态和不同的物性。通常有以下几种方法:

1、以铝盐为原料

用AlCl

3·6H

2

O,Al

2

(SO

4

)

3

·18H

2

O,Al(NO

3

)

3

Cl

3

·9H

2

O,KAl (SO

4

)

4

·24H

2

O

等的水溶液与沉淀剂—氨水、NaOH、Na

2CO

3

等溶液作用生成氧化铝水合物。

球状活性氧化铝以三氯化铝为原料有较好的成型性能。实验多使用该法制备水合氧化铝。

2、以偏铝酸钠为原料

偏铝酸钠可在酸性溶液作用下分解沉淀析出氢氧化铝。此原料在工业生产上较经济,是常用的生产活性氧化铝的路线,但常因混有不易脱除的Na+ ,

故常用通入CO

2的方法制各种晶型的Al(OH)

3

制备过程中有Al3+ 和OH—存在是必要的,其他离子可经水洗被除掉。

另外还有许多方法,它们都是为制取特殊要求的催化剂或载体而采用的。制备催化剂或载体时,都要求除去S、P、As、Cl等有害杂质,否则催化活性较差。

本实验采用铝盐与氨水沉淀法。将沉淀物在pH=8~9范围内老化一定时间,使之变成α—水铝石,再洗涤至无氯离子。将滤饼用酸胶溶成流动性能较好的溶胶,用滴加法滴入油氨柱内,在油中受表面张力作用收缩成球,再进入氨水中,经中和和老化后形成较硬的凝胶球状物(直径在1~3mm之间),经水洗油氨后进行干燥。也可将酸化的溶胶喷雾到干燥机内,生成40~80μm的微

球氢氧化铝。上述过程可用框图表示。

沉淀是制成一定活性和物性的关键,对滤饼洗涤难易有直接影响。其操作条件决定了颗粒大小、粒子排列和结晶完整程度。加料顺序、浓度和速度也有影响,沉淀中pH值不同,得到的水化物则不同。例如:

当Al3+ 倾倒于碱液中时,pH值由大于10向小于7转变。产物有各种形态水化物,不易得到均一形体。如果反向投料,若pH不超过10,只有两种形体,经老化也会趋于一种形体。为此,并流接触并维持稳定pH值,可得到均一的形体。

老化是使沉淀形成不再发生可逆结晶变化的过程;同时使一次粒子再结晶、纯化和生长;另外也使胶粒之间进一步粘结,胶体粒子得以增大。这一过程随温度升高而加快,常常在较高温度下进行。

洗涤是为了除去杂质。若杂质以相反离子形式吸附在胶粒周围而不易进入水中时,则需用水再搅拌情况下把滤饼打散成浆状物再过滤,多次反复操作

才能洗净。若有SO

42—存在则难以完全洗净。当pH近于7时,Al(OH)

3

会随水

流失,一般应维持pH>7。

酸化胶溶是为成型需要设置的。这个过程是在胶溶剂存在下,使凝胶这种

暂时凝集起来的分散相重新变成溶胶。当向Al(OH)

3中加入少量HNO

3

时发生

如下反应:

生成的Al3+ 在水中电离并吸附在Al(OH)

3表面上,NO

3

—为反离子,从而形

成胶团的双电层,仅有少量HNO

3

就足以使凝胶态的滤饼全部发生胶溶,以致变成流动性很好的溶胶体。当Cl—或Na+或其他离子存在时,溶胶的流动性和稳定性变差。应尽可能避免杂质存在,否则会影响催化剂的活性。利用溶胶在适当pH和适当介质中能溶胶化的原理,可把溶胶以小滴形式滴入油层,这是由于表面张力而形成球滴,球滴下降中遇碱性介质形成凝胶化小球,以制

备Al

2O

3

小球催化剂。

四、实验装置基本情况:

1、实验装置流程图(如图1所示):

图1 实验装置流程图

1-加热器、2-冷凝管、3-热水泵、4-玻璃反应器、5-搅拌桨、6-加料口、7-搅拌电机、8-温度计、9-恒温槽、10-过滤储槽、11-过滤介质、12-收集瓶、14-真空表、14-调节阀、15-缓冲罐、16-真空泵、17-干燥箱、18-成型槽。

2、实验装置面板图(如图2所示):

图2 实验装置面板图

五、实验步骤:

1、溶液配制:

1.1、取570ml蒸馏水放入1000ml烧杯内,在粗天平上称量30克无水三氯化铝(要求快速称量,否则因吸湿而不准确),分次投入水中,搅拌后澄清。

溶液。

如果有不溶物或颗粒杂质,可用漏斗过滤,最终配成5% AlCl

3

1.2、取浓氨水(25%)50ml,用水稀释一倍待用。

2、水合氧化铝的制备:

2.1、将三氯化铝溶液放入玻璃反应器内,开启搅拌电机,升温至40℃,在搅拌下快速倒入氨水(按理论量80%),观察搅拌桨叶的转动情况。若溶液变粘稠,再加少许氨水,沉淀的胶体变稀,用玻璃棒沾取沉淀胶体滴入pH试纸上,测定pH在8~9之间则合格,停止加氨水,继续搅拌30分钟,随时测pH值,如有下降再补加氨水。

2.2、30分钟后把温度升至70℃,停止搅拌,将其静止老化1小时。

2.3、将老化的凝胶倒入抽滤漏斗内过滤。第一次过滤速度较快,随着洗涤次数的增加,过滤速度逐渐减慢。

2.4、取出过滤抽干的滤饼,此操作称为打浆。全部变成浆状物后,再次

过滤,通常至少洗涤5次,最后用硝酸银溶液滴定滤液,若不产生白色沉淀即为无氯离子。取少量凝胶在显微镜下观察。

2.5、将洗好的滤饼放在500ml烧杯内,称重,待酸化使用。

3、成型操作:

3.1、在成型槽内放300ml的12.5%氨水和50ml变压器油,再加少量“平平加”表面剂。由此构成简易油氨柱。

3.2、加入12M的硝酸溶液,用量为滤饼的2~3%(重量剂)。用玻璃棒强烈搅动,滤饼逐渐变成乳状的Al(OH)

3

溶胶(流动很好),之后再用力搅动一定时间,将块状凝胶全部打碎。用50ml针筒取浆液,装上针头。

3.3、针尖向下,往油氨柱滴加溶液。溶胶在油层中收缩成球穿过油层后进入氨水中变成球状凝胶体。在氨水中老化30分钟。

3.4、吸出油层和氨水,倒出凝胶球状物,用蒸馏水洗油和氨水。洗涤时可加少量洗净剂或平平加等。

3.5、干燥及灼烧:

洗净后的球状氢氧化铝凝胶,在室温下风干24小时,然后放于烘干箱中

105℃下干燥6小时,再置于高温炉中500℃下灼烧4小时,最后生成γ—Al

2O 3

(当操作条件不当会混有η—Al

2O

3)。

六、实验注意事项:

1、浓氨水有刺激性气味和腐蚀性最好戴口罩和手套。

2、抽滤过程中要放少量的抽滤液一点一点添加。

3、实验结束后保持设备清洁,可以用无水乙醇擦拭。

催化剂常用制备方法

催化剂常用制备方法 固体催化剂的构成 ●载体(Al2O3 ) ●主催化剂(合成NH3中的Fe) ●助催化剂(合成NH3中的K2O) ●共催化剂(石油裂解SiO2-Al2O3 催化剂制备的要点 ●多种化学组成的匹配 –各组分一起协调作用的多功能催化剂 ●一定物理结构的控制 –粒度、比表面、孔体积 基本制备方法: ?浸渍法(impregnating) ?沉淀法(depositing) ?沥滤法(leaching) ?热熔融法(melting) ?电解法(electrolyzing) ?离子交换法(ion exchanging) ?其它方法 固体催化剂的孔结构 (1)比表面积Sg 比表面积:每克催化剂或吸附剂的总面积。 测定方法:根据多层吸附理论和BET方程进行测定和计算 注意:测定的是总表面积,而具有催化活性的表面积(活性中心)只占总表面的很少一部分。 内表面积越大,活性位越多,反应面越大。 (2)催化剂的孔结构参数 密度:堆密度、真密度、颗粒密度、视密度 比孔容(Vg):1克催化剂中颗粒内部细孔的总体积. 孔隙率(θ):颗粒内细孔的体积占颗粒总体积的分数. (一) 浸渍法 ?通常是将载体浸入可溶性而又易热分解的盐溶液(如硝酸盐、醋酸盐或铵盐等)中进 行浸渍,然后干燥和焙烧。 ?由于盐类的分解和还原,沉积在载体上的就是催化剂的活性组分。 浸渍法的原理 ●活性组份在载体表面上的吸附

●毛细管压力使液体渗透到载体空隙内部 ●提高浸渍量(可抽真空或提高浸渍液温度) ●活性组份在载体上的不均匀分布 浸渍法的优点 ?第一,可使用现成的有一定外型和尺寸的载体材料,省去成型过程。(如氧化铝,氧 化硅,活性炭,浮石,活性白土等) ?第二,可选择合适的载体以提供催化剂所需的物理结构待性.如比表面、孔径和强 度等。 ?第三,由于所浸渍的组分全部分布在载体表面,用量可减小,利用率较高,这对贵 稀材料尤为重要。 ?第四,所负载的量可直接由制备条件计算而得。 浸渍的方法 ?过量浸渍法 ?等量浸渍法 ?喷涂浸渍法 ?流动浸渍法 1.1、过量浸渍法 ?即将载体泡入过量的浸渍液中,待吸附平衡后,过滤、干燥及焙烧后即成。 ?通常借调节浸渍液浓度和体积来控制负载量。 1.2、等量浸渍法 ?将载体与它可吸收体积相应的浸渍液相混合,达到恰如其分的湿润状态。只要混合 均匀和干燥后,活性组分即可均匀地分布在载体表面上,可省却过滤和母液回收之累。但浸渍液的体积多少,必须事先经过试验确定。 ?对于负载量较大的催化剂,由于溶解度所限,一次不能满足要求;或者多组分催化 剂,为了防止竞争吸附所引起的不均匀,都可以来用分步多次浸渍来达到目的。 1.3.多次浸渍法 ●重复多次的浸渍、干燥、焙烧可制得活性物质含量较高的催化剂 ●可避免多组分浸渍化合物各组分竞争吸附 1.4浸渍沉淀法 将浸渍溶液渗透到载体的空隙,然后加入沉淀剂使活性组分沉淀于载体的内孔和表面 (二) 沉淀法 ?借助于沉淀反应。用沉淀剂将可溶性的催化剂组分转变为难溶化合物。经过分离、 洗涤、干燥和焙烧成型或还原等步骤制成催化剂。这也是常用于制备高含量非贵金属、金属氧化物、金属盐催化剂的一种方法。 ?共沉淀、均匀沉淀和分步沉淀 2.1、共沉淀方法 将催化剂所需的两个或两个以上的组分同时沉淀的一个方法,可以一次同时获得几个活性组分且分布较为均匀。为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质

HGT工业活性氧化铝

HG/T 3927-2007 工业活性氧化铝 1 范围 本标准规定了工业活性氧化铝的要求、试验方法、检验规则、标志、标签、包装、运输和贮存。 本标准适用于工业活性氧化铝。该产品用于炼油、化肥、石化、天然气、制氧和化工等行业,主要用作气体和液体吸附剂、吸氟剂、干燥剂、和催化剂载体等。 分子式:Al 2O 3 ?nH 2 O(n<1) 3 分类 工业活性氧化铝分为六类: 吸附剂——通用型,用于各种烃类气体、天然气、石油裂解气等的吸附、脱水等。 除氟型——用于饮用水、工业水除氟。 再生剂——用于蒽醌法生产双氧水。 脱氯剂——用于各种气体及黏性树脂等液体的脱氯。 催化剂载体——用作各种催化剂载体。 空分干燥剂——空分专用干燥剂。 4 要求 外观:白色球状或柱状。

工业活性氧化铝应符合表1要求。 表1 要求

5 试验方法 安全提示 本试验方法中使用的部分试剂具有腐蚀性,操作时须小心谨慎!如贱到皮肤上应立即用水冲洗,严重者应立即治疗。 一般规定 本标准所用试剂和水在没有注明其他要求时,均指分析纯试剂和GB/T

6682一1992中规定的三级水。试验中所用标准滴定溶液、制剂及制品,在没有注明其他要求时,均按HG/T 的规定制备。 外观判别 在自然光条件下,用目视法判别。 三氧化二铝含量的测定 方法提要 铝离子与已知过量的乙二胺四乙酸二钠标准溶(EDTA)进行络合,形成稳定的A1-EDTA络合物,过剩的EDTA在pH=5条件下,以二甲酚橙做指示剂,用氯化锌标准滴定溶液回滴至终点。 试剂 六次甲基四胺。 硫酸溶液:1+1。 盐酸溶液:1+4。 氨水溶液:1+9。 乙二胺四乙酸二钠标准滴定溶液:c(EDTA)≈L。 )≈L。 氯化锌标准滴定溶液:c(ZnCl 2 二甲酚橙指示剂.2g/L。 分析步骤 试验溶液的制备 称取已研细并经(250±100)℃烘干2h的约试样,精确至,置于150mL 烧杯中。慢慢加入少量水,搅拌至糊状。再加入10mL硫酸溶液,移至电炉上加热溶解至透明,取下冷却。移入100mL容量瓶中,用水稀释至刻度,

催化剂制备方法大全

催化剂制备方法简介 1、催化剂制备常规方法 (1)浸渍法 a过量浸渍法 b等量浸渍法(多次浸渍以防止竞争吸附) (2)沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂加到盐溶液为正,反之为倒加) a单组分沉淀法 b多组分共沉淀法 c均匀沉淀法(沉淀剂:尿素) d超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) e浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 f导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝

光沸石、Y型、X型分子筛。 (3)共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬酐的水溶液和少许石墨)然后送入压片机制成圆柱形,在100 o C烘2h即可。 (4)热分解法 硝酸盐、碳酸盐、甲酸盐、草酸盐或乙酸盐。 (5)沥滤法 制备骨架金属催化剂的方法,Raney 镍、铜、钴、铁等。 (6)热熔融法 合成氨催化剂Fe-K2O-Al2O3;用磁铁矿Fe3O4、KNO3和Al2O3高温熔融而得。 (7)电解法 用于甲醇氧化脱氢制甲醛的银催化剂,通常用电解法制备。该法以纯银为阳极和阴极,硝酸银为电解液,在一定电流密度下电解,银粒在阴极析出,经洗涤、干燥和活化后即可使用。

器外再生催化剂(氧化铝载体)

器外再生催化剂(氧化铝载体) 1范围 标准规定了器外再生催化剂的质量、检验、包装、运输及贮存的要求。 本标准适用于以下催化剂的器外再生和利用:(1)精炼石油产品制造行业中加氢精制、加氢裂化、催化重整过程产生的废催化剂;(2)基础化学原料制造行业中乙苯脱氢、烷基化反应(歧化)过程产生的废催化剂。 2规范性引用文件 本标准内容引用下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 GB190危险货物包装标志 GB5085.7危险废物鉴别标准通则 GB34330固体废物鉴别标准通则 GB/T191包装储运图示标志 GB/T9969工业产品使用说明书总则 GB/T27611再生利用品和再制造品通用要求及标识 GB/T6679-2003固体化工产品采样通则 HJ1091固体废物再生利用污染防治技术导则 GB/T5816催化剂和吸附剂表面积测定法 Q/SHFRiPP040023加氢精制催化剂侧压强度测定法 NB/SH/T0656石油产品及润滑剂中碳、氢、氮的测定元素分析仪法 ASTM D5453用紫外荧光法测定轻质烃,发动机燃料和油中总的硫含量标准试验方法3要求 表1器外再生催化剂性能指标 项目指标 碳%≤0.5 硫%

4.2硫 按ASTM D5453的规定进行测定。 4.3比表面积 按GB/T5816的规定进行测定。 4.4孔容 按GB/T5816的规定进行测定。 4.5侧压强度 按Q/SHFRiPP040023的规定进行测定。 5检验规则 5.1出厂检测 5.1.1每批次产品经质检合格(附检测报告)后方可出厂。 5.1.2出厂检验项目为表1中所要求指标。 5.2抽样方法 每批次样品按GB/T6679-2003规定进行产品采集。 5.3型式检验: 产品每年应进行一次型式检验,有下列情况之一时,亦可进行型式检验。 a)产品定型时; b)原料来源或工艺条件改变,可能影响产品质量时; c)停产三个月恢复生产时; d)出厂检验结果与上次型式检验结果有较大差异时: e)国家质量监督部门提出要求时。 5.4判定规则 检验结果中如有一项指标不符合本标准规定,判定该产品不合格。 6标志、包装、运输和贮存 6.1标志 器外再生催化剂说明书、外包装、标识和运输包装图示应符合GB/T9969、GB/T191和GB/T 27611中要求。 6.2包装 包装桶为方桶和圆桶,碳钢材质,内衬聚乙烯塑料袋。 包装袋为吨袋,内衬聚乙烯塑料内衬袋。 6.3运输 3

活性氧化铝的制备

活性氧化铝的制备 一、实验目的 1、通过铝盐与碱性沉淀剂的沉淀反应,掌握氧化铝催化剂和催化剂载体的制备过程。 2、了解制备氧化铝水合物的技术和原理。 3、掌握活性氧化铝的成型方法。 二、实验原理 活性氧化铝(γ-A l2O3)是一种多孔性,高分散度的固体物料,具有表面积大、吸咐性能好、表面酸性、热稳定性良好的特点,可作为多种化学反应的催化剂及催化剂载体。除此之外,它还广泛用于石油、国防、化肥、医药、卫生等部门。学习有关γ-A l2O3的制备方法,对掌握催化剂制备有重要意义。 催化剂或催化剂载体用的氧化铝,在物性和结构方面都有一定要求。最基本的是比表面积、孔结构、晶体结构等。例如,重整催化剂是将贵重金属铂、铼载在γ—Al2O3或η—Al2O3上。氧化铝的结构对反应活性影响极大,载于其他形态的氧化铝上,其活性是很低的,如烃类脱氢催化剂,若将Cr—K载在γ—Al2O3或η—Al2O3上,活性较好,而载在其他形态氧化铝上,活性很差。这说明它不仅起载体作用,而且也起到了活性组分的作用,因此,也称这种氧化铝为活性氧化铝。α—Al2O3在反应中是惰性物质,只能作载体使用。制备活性氧化铝的方法不同,得到的产品结构亦不相同,其活性的差异颇大,因此制备中应严格掌握每一步骤的条件,不应混入杂质,尽管制备方法和路线很多,但无论哪种路线都必须制成氧化铝水合物(氢氧化铝),再经高温脱水生成氧化铝。自然界存在的氧化铝或氢氧化铝脱水生成的氧化铝,不能作载体或催化剂使用,这不仅因杂质多,主要是难以得到所要求的结构和催化活性。为此,必须经过重新处理,可见制备氧化铝水合物是制活性Al2O3的基础。 氧化铝水合物经X射线分析,可知有多种形态,通常分为结晶态和非结晶态。结晶态中有一水和三水化物两类形体;非结晶态则含有无定形和结晶度很低的水化物两种形体,它们都是凝胶态。可总括为下述表达形式:

不同扩孔方法对催化剂载体氧化铝孔结构的影响

- - 不同扩孔方法对催化剂载体氧化铝孔结构的影响 李广慈,赵会吉,赵瑞玉,刘晨光 (中国石油大学重质油国家重点实验室 CNPC 催化重点实验室, 青岛 266555)收稿日期:2009-05-15;修改稿收到日期:2009-07-30。 作者简介:李广慈,博士生,主要从事重质油加氢催化剂制备的研究工作。基金项目:重质油国家重点实验室应用基础研究资助项目。 1 前 言 加氢精制是石油加工的重要过程之一,利用加氢精制催化剂可以降低原料油中的杂质含量,改善油品质量及减少对环境的污染[1]。活性氧化铝是加氢精制催化剂最常用的载体,它对催化剂的活性、选择性和稳定性有着很重要的影响。它能增加催化剂有效表面并提供适合特定反应的孔结构,从而提高催化剂的活性和选择性。并能使活性组分分散性增加,提高催化剂的稳定性。随着原油重质化的日趋严重[2-3],传统的小孔氧化铝已无法满足生产要求,人们越来越重视介孔和大孔活性氧化铝的生产。大的孔径可以降低有机大分子堵孔和在外表面沉积的可能性[4],使大部分杂质可以进入催化剂内部,从而增强催化剂的催化性能。同时,大的孔体积可以提高杂质在催化剂内部的沉积量,从而延长催化剂的使用寿命。 氧化铝扩孔的方法很多[5],主要有扩孔剂法、助剂(或烧结剂)法、水热处理法等。胡大为等[6]通过在拟薄水铝石中加入不同的烧结剂,制得了可几孔径大于14 nm 、孔体积为0.8~0.9 mL/g 的大孔径氧化铝载体。并且认为,在载体焙烧过程中有杂质离子进入到Al —O 键形成的网络中,打断了Al —O 键,形成断网,从而降低了载体的表面张力,使孔壁塌陷导致孔径增大。康小洪等[7]用炭黑粉作扩孔剂,考察不同的炭黑粉对氧化铝孔分布的影响。结果表明,炭黑粉可以使氧化铝的孔径分布更集中,孔径和孔体积随着炭黑粉用量的 增加而增加。通过调变炭黑粉的用量可以得到具有双孔分布的氧化铝。本课题分别采用扩孔剂法和水热处理法对氧化铝载体进行扩孔改性来增大其孔体积和孔径,通过改变扩孔剂配方、加入量和水热处理时间,详细考察了不同方法对氧化铝孔结构的影响,并制备了具有较大孔径和孔体积的活性氧化铝。2 实 验 2.1 物理扩孔法 采用湿法混捏,将50 g 拟薄水铝石(烟台恒辉化工公司生产)、2 g 田菁粉、一定量的扩孔剂(均为分析纯)和质量分数为20%的乙酸水溶液混合,混捏,挤条成型。自然晾干后,在110 ℃干燥6 h ,然后放入马弗炉中,在空气气氛下保持升温速率5 ℃/min ,800 ℃下焙烧4 h ,得到系列载体。 2.2 NH 4HCO 3法 将5 g 拟薄水铝石置入内衬聚四氟乙烯的高压釜中,加入pH 值为10.5的碳酸氢铵水溶液,控 制n (HCO - )/n (Al 3+)=0.75。 搅拌均匀,在室温下老化48 h ,分别在90 ℃和150 ℃下保持12 h 后取出,110 ℃干燥6 h ,在空气气氛下保持升温速率5 ℃/min ,600 ℃焙烧4 h , 得到活性氧化铝。摘要 分别采用扩孔剂法和水热处理法对氧化铝载体进行处理, 考察不同扩孔方法对氧化铝载体孔结构的影响。结果表明,采用不同的扩孔剂对氧化铝孔结构影响不同。扩孔剂聚丙烯酰胺加入量(w )为15%、800 ℃焙烧后可得到平均孔径为14.3 nm 的氧化铝载体;加入一定量的扩孔 剂NH 4HCO 3,控制n (HCO -)/n (Al 3+ )=0.75, 经高温焙烧后可制得平均孔径为10 nm 的介孔氧化铝;在140 ℃下对氧化铝进行水热处理,发现不同的水热处理时间对氧化铝孔结构有显著影响;同时孔结构随焙烧温度的不同呈规律性的变化。关键词:氧化铝载体 扩孔剂 水热处理 孔结构 33

氧化铝催化剂

综述 1荧光粉原料的氧化铝的制备 氧化铝是固相法合成铝酸盐基质荧光粉,如:PDP蓝色和绿色荧光粉的主要原料,其物理特性不仅直接影响荧光粉的颗粒及形貌,而且还对荧光粉的光学性能、稳定性及光衰等特性影响很大。作为荧光粉原料的氧化铝,除了要求其纯度高外,还要求其具有结晶良好、粒径较小且分布均匀、颗粒形貌较好、比表面积小等特性。目前,该类氧化铝主要由硫酸铝铵或碳酸铝铵热分解法、改良的#$%$& 法或醇盐水解等方法制备,但生产出来的氧化铝粉一般为无定型硬团聚颗粒,粒径分布宽、比表面积过大且反应活性低,以此为原料烧制的荧光粉颗粒大小和形貌不易控制,而且存在发光效率较差、光衰性能不佳等问题。因此,改善氧化铝的粒径及形貌等特性,制备出优良的荧光粉原料,对提高铝酸盐基质荧光粉的品质具有重要意义。 采用化学沉淀法制备碳酸铝铵前驱体,高温煅烧分解制得了α-Al2O3。通过严格控制沉淀条件,获得了结晶碳酸铝铵沉淀,成功克服了常规制备方法中容易产生的胶状沉淀现象,煅烧后得到超细分散的α-Al2O3粉末。同时,通过添加晶体生长促进剂的方法,成功控制了氧化铝颗粒的大小和形貌。通过调节晶体生长促进剂的加入量,获得了从300nm直至8μm以上近似六角形的α-Al2O3分散颗粒,可以满足不同粒径荧光粉的要求。 2高比表面积窄孔分布氧化铝的制备 氧化铝用作催化剂和催化剂载体,因其具有特殊的结构和优良的性能,使之在许多催化领域,特别是在石油的催化转化过程中得到了广泛的应用. 因此,人们对氧化铝的制备、结构和性能等方面的研究也日益深入. 在石油的催化转化方面,近年来由于重渣油加工技术的开发,对加工过程中的催化剂载体氧化铝又提出了许多新的要求. 例如,渣油的加氢脱硫和脱金属要求适中的表面积及一定比例的大孔和小孔分布;加氢脱氮催化剂则要求能均匀负载高金属含量的高比表面积、大孔体积及适当比例的中、小孔结构,并提出集中孔的观点. 但是,如何获得这种性能好又有实用价值的氧化铝载体,研究报道较少. 本文采用pH 摆动法制备了这种氧化铝,考察了沉淀剂、沉淀温度及沉淀时酸侧pH值对氧化铝物性的影响,并对pH 摆动法与等pH 沉淀法的结果进行了比较. 氧化铝的孔结构决定于其前身拟薄水铝石的形貌、粒子大小和聚集状态. 因此,要获得孔径相对集中的氧化铝载体,沉淀的拟薄水铝石粒子的大小必须均匀. 然而,在传统的制备

_氧化铝载体合成的研究

第32卷第6期辽 宁 化 工Vol.32,No.6 2003年6月Liaoning Chemical Industry June,2003 -氧化铝载体合成的研究 彭绍忠,王继锋 (抚顺石油化工研究院,辽宁抚顺113001) 摘 要: 对以氯化铝和氨水为原料制备氧化铝的过程进行了考察,着重考察中和的温度、pH值、 反应物浓度和老化条件对 -Al 2O 3 对氧化铝孔结构的影响。在试验范围内,氯化铝浓度对氧化铝孔容 和比表面积影响不大,提高中和温度,氧化铝的孔容和比表面积增加高,高p H有利于提高孔容和比表面积;老化时间和温度对氧化铝孔结构没有明显的影响。 关 键 词: 氧化铝;中和;载体 中图分类号: TQ426.65 文献标识码: A 文章编号: 10040935(2003)06024103 活性氧化铝是最重要的催化剂载体之一,在石油加工催化剂领域应用广泛。迄今已知氧化铝有8种晶态,其中 -Al2O3具有较高的孔容、比表面积和热稳定性,因此得到广泛的应用。催化剂载体的重要性质之一是它的孔结构特征,它的孔结构决定催化剂的孔结构。对催化剂载体孔结构的要求首先是提供尽可能大的反应接触面积,提高活性组分的分散度,其次是孔径,孔径过大,载体的比表面积就会减小,孔径过小,给反应物的扩散带来不利的影响,从而影响催化剂的活性。因此,孔结构适宜的 -Al2O3成为催化剂开发的重要课题之一。针对这个问题,抚顺石油化工研究院开展 -Al2O3合成的研究工作。 -Al2O3可以通过拟薄水铝石脱水制备,拟薄水铝石合成方法主要有以下3种,即铝盐与氨水中和、强酸或强酸的铝盐中和铝酸钠以及烷基铝水解。强酸或强酸的铝盐中和铝酸钠制备氧化铝,生产效率高,环境污染小,但是用于中和的2种物料是强酸和强碱,因此反应体系稳定性差,容易造成产品质量波动,当局部碱性过强时,易生成三水氧化铝;烷基铝水解制备氧化铝可以得到纯度非常高的氧化铝,但是该方法生产的氧化铝成本较高;以氯化铝和氨水为原料,产品质量稳定,杂质脱出容易,不易生成三水氧化铝,在相同制备条件下,晶粒完整、晶粒较大,因此本文针对以氯化铝和氨水为原料制备氧化铝的过程进行了考察。利用中和方法制备氧化铝,由于反应体系非常复杂,反应种类繁多,在制备过程中任何环节发生细微的变化都可能影响最终产品的结构,可以说几乎氧化铝制备的各个方面因素都或多或少地影响氧化铝的孔结构。影响氧化铝孔结构的主要因素有:反应物浓度、中和的温度、pH值、以及老化条件等,本文着重论述这几个因素对 -Al2O3孔结构的影响。 1 实 验 1.1 试剂和仪器 氯化铝溶液(工业用氯化铝溶液配制);氨水(分析纯,沈阳化学试剂厂);孔结构采用美国ASAP2400低温氮吸附仪测定。 1.2 试验方法 采用连续罐成胶方式中和,制备主要流程如下: 氨 水 氯化铝溶液 连续成胶老化压滤洗涤 干燥粉碎ALO(OH)干胶粉 其中,助剂在中和过程中加入AlO(OH)干胶粉焙烧后分析孔结构。 收稿日期: 2003-03-17 作者简介: 彭绍忠(1969-),男,工程师。

实验讲义-活性氧化铝的制备

实验1 催化剂载体——活性氧化铝的制备 一、目的与要求 1.通过铝盐与碱性沉淀剂的沉淀反应,掌握氧化铝催化剂载体的制备过程。 2.了解制备氧化铝水合物的技术和原理。 3.掌握活性氧化铝的成型方法。 二、实验原理 活性氧化铝(Al2O3)是一种具有优异性能的无机物质,不仅能作脱水吸附剂、色谱吸附剂,更重要的是作催化剂和催化剂载体,并广泛用于石油化工领域,涉及重整、加氢、脱氢、脱水、脱卤、歧化、异构化等各种反应。它之所以能如此广泛地被采用,主要原因是它在结构上有多种形态及物理性质和化学性质的千差万别。学习有关Al2O3的制备方法,对掌握催化剂的制备有重要意义。 催化剂或催化剂载体用的氧化铝,在物理性质和结构方面都有一定要求。最基本的是比表面积、孔结构、晶体结构等。例如,重整催化剂是将贵重金属铂、铼载在γ-Al2O3或η-Al2O3上。氧化铝的结构对反应活性影响极大。载于其他形态的氧化铝上,其活性是很低的,如烃类脱氢催化剂,若将Cr-K载在γ-Al2O3或η-Al2O3上,活性较好,而载在其他形态氧化铝上,活性很差。这说明它不仅起载体作用,而且也起到了活性组分的作用,因此,也称这种氧化铝为活性氧化铝。α-Al2O3在反应中是情性物质,只能作载体使用。制备活性氧化铝的方法不同,得到的产品结构亦不相同,其活性的差异也很大,因此制备中应严格掌握每一步骤的条件,并且不应混入杂质。尽管制备方法和路线很多,但无论哪种路线都必须制成氧化铝水合物(氢氧化铝),再经高温脱水生成氧化铝。自然界存在的氧化铝或氢氧化铝脱水生成的氧化铝,不能作载体或催化剂使用。这不仅是杂质多,主要是难以得到所要求的结构和催化活性。为此,必须经过重新处理。可见制备氧化铝水合物是制备活性Al2O3的基础。 氧化铝水合物经X射线分析,可知有多种形态,通常分为结晶态和非结晶态。结晶态中含有一水和三水化物2类形体;非结晶态则含有无定形和结晶度很低的水化物2种形体,它们都是凝胶态。可总括为下述表达形式: -Al2O3·H2O,一软水铝石 -Al2O3·H2O,一硬水铝石 -Al2O3·3H2O,α三水铝石 -Al2O3·3H2O,β三水铝石 β-Al2O3·3H2O,新β三水铝石 2 O3≥3 2 O/Al2O3≈1.5~2.0 水合氧化铝

常见氧化铝晶型结构及其应用

不同的工艺条件下可制备不同晶型的氧化铝产品。不同晶型的氧化铝物化性质各有差异,应用有所不同,本文将为大家简单介绍一下常见氧化铝晶型结构及其特点。 1、α-Al2O3 α-Al2O3属三方晶系,在铝的氧化物中是最稳定的相,具有熔点高、硬度大、耐磨性好、机械强度高、电绝缘性好、耐腐蚀等性能,是制造纯铝系列陶瓷、磨料、磨具及耐火材料的理想原料。 刚玉坩埚及刚玉研磨球 绝缘电子陶瓷 2、β-Al2O3 β-Al2O3并非氧化铝的异构体,而是一种铝酸盐。通式为M2O·x Al2O3,M为一价阳离子,也可被二价或三价阳离子置换。β-Al2O3属六方晶系,具有密度大、气孔率低、机械强度高、耐热冲击性能好、离子导电率高、粒度分布均匀且细、晶界阻力小等特点。

它可用作钠硫(Na/S)蓄电池中的固体电解质薄膜陶瓷隔板,既作为离子导电体,又具有隔离钠阴极和多硫钠阳极的双重作用;还可用于室温电池,钠热敏元件,制作玻璃、耐火材料和陶瓷的原料等。 硫钠电池结构简图及充放电示意图 工作原理:钠硫电池是当前开发的一种高能蓄电池,该电池以固体电解质β"-Al2O3(Na+离子导体,β氧化铝族有两种晶体结构)为电解质隔膜,熔融硫(熔点119℃)和钠(熔点98℃)分别作阴阳极,固体电解质将两个液体电极隔开,Na+离子穿过固体电解质和硫反应从而传递电流。 3、γ- Al2O3 γ- Al2O3是由一水软铝石在低温(500~750℃)煅烧得到,γ-Al2O3属立方晶系,为多孔性、高分散度的固体物料,具有很大的比表面积,活性大,吸附性能好。 它广泛应用于各种行业中的吸附剂和脱水剂、汽车尾气净化剂;制备航天航空、兵器、电子、特种陶瓷等尖端材料的原料,石油化工和化学工业中用作催化剂(炼制石油)或载体(使石油氢化)。 纳米γ- Al2O3 CMP (化学机械抛光)浆料可用于集成电路生产过程中层间钨、铝、铜等金属布线材料及薄膜材料的表面平坦化,以及高级光学玻璃、石英晶体及各种宝石的化学机械抛光。

催化剂制备方法大全

催 化 剂 的 制 备 方 法 与 成 型 技 术 总 结 应用化学系1202班 王宏颖 2012080201

催化剂的制备方法与成型技术 一、固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 二、催化剂传统制备方法 1、浸渍法 (1)过量浸渍法 (2)等量浸渍法(多次浸渍以防止竞争吸附) 2、沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂 加到盐溶液为正,反之为倒加) (1)单组分沉淀法 (2)多组分共沉淀法 (3)均匀沉淀法(沉淀剂:尿素) (4)超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) (5)浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 (6)导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 3、共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬

催化剂纳米三氧化二铝简单介绍

催化剂纳米三氧化二铝的简单介绍 来源:万景纳米导报 三氧化二铝用作催化剂和催化剂载体,因其具有特殊的结构和优良的性能,使之在许多催化领域,特别是在石油的催化转化过程中得到了广泛的应用. 因此,人们对氧化铝的制备、结构和性能等方面的研究也日益深入. 在石油的催化转化方面,近年来由于重渣油加工技术的开发,对加工过程中的催化剂载体氧化铝又提出了许多新的要求. 例如,渣油的加氢脱硫和脱金属要求适中的表面积及一定比例的大孔和小孔分布;加氢脱氮催化剂则要求能均匀负载高金属含量的高比表面积、大孔体积及适当比例的中、小孔结构 三氧化二铝作为催化剂或载体主要是利用三氧化二铝良好的孔径分布、较大的孔容和比表面积以及多种晶型的不同性能。随着石油炼制、石油化工的发展,金属氧化物大量用作固体催化剂,特别是70年代后,三氧化二铝在化工中的作用显得特别突出,广泛用于石油精炼、汽车尾气处理、氮氧化物的除去、加氢催化剂、重整反应、光催化等。 传统的三氧化二铝以各种晶相形式存在,适合作为工业催化剂、催化剂载体、吸附剂和离子交换剂,其中γ-A12O3和β-A1203是最重要的固体酸催化剂。但由于某些缺陷(如:孔径分布较宽等),传统三氧化二铝的应用受到了一定的限制。介孔三氧化二铝(VK-L20Y)则由于其孔道形状和大小可以调节等优越的性能有望能更加广泛地应用于催化剂及其载体领域。以多孔三氧化二铝(VK-L20Y)为代表的无机膜以其优异的机械性能以及对溶液pH值、氧化和温度的超强耐受性,在污染防治、资源利用和污水处理领域受到了人们的广泛关注。NiinaLaitine年等研究了用三氧化二铝(VK-L20Y)膜处理生物处理后的水,获得了比较理想的效果。此外,采用多孔A12O3膜分离钢铁工业废水、油田采出水、生活污水均取得了较满意的结果在α型氧化铝(VK-L30)的晶格中,氧离子为六方紧密堆积,Al3+对称地分布在氧离子围成的八面体配位中心,晶格能很大,故熔点、沸点很高.α型氧化铝不溶于水和酸,工业上也称铝氧,是制金属铝的基本原料;也用于制各种耐火砖、耐火坩埚、耐火管、耐高温实验仪器;还可作研磨剂、阻燃剂、填充料等;高纯的α型氧化铝(VK-L30)还是生产人造刚玉、人造红宝石和蓝宝石的原料;还用于生产现代大规模集成电路的板基 同传统的A12O3比较,三氧化二铝(VK-L20Y)具有孔隙率高、孔径分布窄、比表面积高的结构特点,具有良好的吸附性能、表面酸性及热稳定性,有望成为优良的

关于催化剂三氧化二铝的简单概述

关于催化剂三氧化二铝的简单概述 摘要本文主要简述三氧化二铝的催化原理和他的结构、组成。简述其制备的方法和表征以及其使用情况。总的说来,三氧化二铝的制备分别有以下几中方法:碱法生产三氧化二铝;酸法生产三氧化二铝;电热法生产三氧化二铝。三氧化二铝的性质,包括比表面积、孔结构、晶体结构和形貌等,主要由其制备方法决定.。氧化铝包括了α型氧化铝和γ氧化铝 关键词三氧化二铝,催化原理,制备,表征,球花型介孔A12O3,X-射线衍射 (XRD),Pt/A12O3的制备 一组成 1 活性组分:三氧化二铝 2载体:负载型催化剂 3助催化剂: α-A12O3,γ- A12O3 二结构 在α型氧化铝的晶格中,氧离子为六方紧密堆积,铝离子对称地分布在氧离子围成的八面体配位中心 三催化原理 具有良好的孔径分布、较大的孔容和比表面积以及多种晶型的不同性能 四制备 (l)碱法生产A12O3 碱法的基本原理是使矿石中的A12O3与碱在一定条件下生成铝酸钠进入溶液,从而与二氧化硅和氧化铁等杂质分离,然后再使纯净的铝酸钠溶液分解析出Al(oH)3,经高温锻烧制得成品A12O3。 碱法生产A12O3又可分为拜耳法、烧结法、联合法。 (2)酸法生产A1203 酸法是用适当的无机酸处理矿石使产生的相应铝盐(如AIC13、 A12(S04)3、Al 州03)3)进入溶液中,矿石中的氧化硅不与酸作用而残留于渣中;将铝盐进一步净化除铁后,使之分解得到Ab03。该法需要昂贵的耐酸设备,且所使用的酸回收十分困难,所以难以 用于大规模的工业化生产 (3)电热法生产A12O3

电热法用来处理高铁铝矿,将矿与炭还原剂配成炉料在电弧炉内高温(2000℃)下进行还原熔炼,矿石中的氧化硅和氧化铁被还原成硅铁合金,而A12O3则呈熔状态的铝酸钙渣上浮,由于比重不同而分层,所得A12O3:渣再用碱法处理,从中提取A12O3,所得硅铁合金为成品,目前还处于研究阶段。 (4) Pt/A12O3的制备:利用上述合成的介孔A12O3为载体,以浓度为7.72x10—2mol/L的H_2PtC1_6溶液为R前驱体,采用“等体积浸渍法”制备Pt/Al_2O_3催化剂。合成的催化剂经干燥后分别于450℃和550℃焙烧5h。所得催化剂根据CS用量不同分别记为Pt/Al_2O_3(0.5)和Pt/A12O3(1.0),pt含量为5.0(wt)%。 五表征 用X-射线衍射(XRD),氮吸附等温线,透视电镜(TEM),红外光谱,差热分析及粒度分析等实验手段对其进行了结构表征。 (l)XRD:以Cu靶,波长入=1.5406nm,电压为40kV,电流为100mA,DS狭缝:1/2,RS狭缝:0.3mm,SS狭缝:1/2,扫描速度2/min,对介孔氧化铝(介观结构)和介孔氧化铝进行X射线衍射测试。 (2)氮吸附等温线:样品的N_2吸附一脱附等温线用Beekman Coulter SA3100系统在液氮(77K)下测定。样品的比表面积使用相对压力p/p从0.05到0.25的吸附数据,按BTE方程计算得出,在压力区间内BTE方程具有很好的线性相关性。采用等温线的吸附分支数据,按BJH( Banett--Joyner—Halenda )模型计算样品的孔径分布。 (3)透视电镜(TEM):取少部分样品用去离子水配制成0.%1的混悬液,超声振荡10min,铜网制样,进行透射电镜观测样品形貌、孔径及孔径分布。 (4)TFIR:将介孔氧化铝(介观结构)和介孔氧化铝分别在KBr粉末中研磨、压片,用Nexus--8710(Nicolet,America)红外光谱仪进行红外分析,测试范围为 400--4000cm,分辨率为4cm,测试温度为25℃。 (5)DS:C以升温速率5℃/min,测温范围50℃一800℃,对介孔氧化铝(介观结构)进行DCS测试。 (6)粒度分析:以蒸馏水为介质在BT一9300H型激光粒度分布仪上对所制介孔氧化铝进行粒度分析。 (7) 为了进一步考察球花型介孔A12O3的孔道有序性,并确定其晶型结构,对其做了小角和广角XRD表征。图4--7a为样品的小角XRI图,其中没有出现任何小角特征衍射峰,表明合成的球花型介孔A12O3的孔道为无序结构,这与图4--2b中TEM 的表征结果一致。从图4--7b可见,球花型介孔A12O3在5~75’的广角范围内没有

氧化铝对银催化剂及其载体性能的影响

? 226 ? 石油化工 PETROCHEMICAL TECHNOLOGY2018年第47卷第3期 D O I :10.3969/j.issn.l000-8144.2018.03.003氧化铝对银催化剂及其载体性能的影响 王辉,魏会娟,廉括,李金兵,代武军,汤之强 (中国石化北京北化院燕山分院,北京102500) [摘要]在银催化剂的ct-氧化铝载体的制备过程中添加了氧化铝粉末,采用SEM、压汞法和X PS等方法对制备的氧化铝粉 末、a-氧化铝载体和银催化剂进行了表征,在微型固定床反应器中评价了银催化剂的乙烯环氧化性能,研究了添加氧化铝粉 末对银催化剂及氧化铝载体性能的影响。实验结果表明,添加氧化铝粉末能改善a-氧化铝载体的孔结构和形貌,载体的 ?L径分布向较大孔径方向移动,平均孔径和中值孔径增大,氧化铝片层变小、变厚,逐渐向块状形貌转变;添加氧化铝粉末 还能增强银颗粒与载体之间的作用力,改善银颗粒在载体表面的分散性,提高银催化剂的活性和稳定性,延长催化剂的使用 [关键词]氧化铝;银催化剂;载体;乙烯环氧化 [文章编号]1000 - 8144 ( 2018 ) 03 - 0226 - 06 [中图分类号]TQ 426 [文献标志码]A Effect of alumina on the properties of silver catalyst and its carrier W angH ui, Wei H uijuan, Lian K u o, L i Jinbin, D a i Wujun, Tang Zhiqiang (Sinopec Beijing Research Institute of C hemical Industry Yanshan Branch, Beijing 102500, China) [Abstract ] a-Alumina carriers of silver catalyst were prepared by adding alumina powder. The effect of alumina powder on silver catalyst and a-alumina carrier was studied. The prepared alumina powder, a-alumina carriers and silver catalysts were characterized by XRD, mercury penetration method and XPS. The catalytic performances of the silver catalysts in ethylene epoxidation were evaluated in a micro fixed bed reactor. The results indicated that the addition of alumina powder improved the pore structure and morphology of carrier. The pore size distribution of the carrier moved to the larger aperture and the average pore diameter and the median pore diameter increased. The alumina layer became smaller and thicker, and gradually changed to the bulk shape. The dispersion of silver particles on the surface of the carrier was improved. The forces between silver particles and carrier was enhanced, and further the catalytic performance of the silver catalyst was improved, including activity, stability and life. [Keywords] alumina;silver catalyst;carrier;ethylene epoxidation 银催化剂目前仍是工业上乙烯环氧化生产环 氧乙烷的唯一有效催化剂[1]。银催化剂除了含有活 性组分银外,通常还含有一种或多种与银共同沉积 在载体上用来提高催化性能的其他元素,银催化剂 的载体通常是耐高温、具有合适比表面积的(X-氧 化铝。银催化剂的性能除了与催化剂的组成及制备 方法有关[2-7],还与载体的制备方法和性能有关[8-9]。制备

活性氧化铝的制备及除氟性能研究

活性氧化铝的制备及除氟性能研究 时海平1,王东田1,2,田美玲1 (1.苏州科技学院环境科学与工程学院,江苏苏州215011;2.苏州科技学院化学与生物学院,江苏苏州215009) 摘要:采用溶胶-凝胶法制备出多孔活性氧化铝,采用XRD 表征手段对其和参比成品活性氧化铝的晶相进行分析。XRD 测定表明实验条件下制得的活性氧化铝为非晶态的γ-Al 2O 3,成品活性氧化铝为结晶完整的γ-Al 2O 3。用静态吸附法比较了制备的活性氧化铝、成品氧化铝对氟离子的吸附性能,结果表明:实验制得的活性氧化铝对氟离子的吸附性能较好。 关键词:溶胶-凝胶法;活性氧化铝;晶相;吸附 中图分类号:O643文献标识码:A 文章编号:1672-0679(2010)03-0023-04 氟是人体必需的微量元素,适量的氟能增加骨骼的坚固性,有一定的防治龋齿病的功效[1]。但过量摄入会引起慢性氟中毒,引发氟斑牙与氟骨症等[1,2]。目前去除水体中的氟主要有两种方法[3~6]:化学沉淀法与吸附法。吸附法是除氟的重要方法,除氟效果十分显著。白色颗粒状活性氧化铝是目前广泛应用的除氟吸附剂,其孔隙结构发达、比表面积较大、吸附容量大且化学稳定性好。 溶胶-凝胶技术能够通过低温化学手段在微观层次上裁剪和控制材料的显微结构,使材料的均匀性达到亚微米级、纳米级甚至分子级的水平[7],因此近年来在合成陶瓷、氧化物涂层、高温超导材料、复杂氧化物材料等方面取得了广泛的应用。目前国内外主要以醇铝水解制备大孔体积、低密度γ-Al 2O 3,该法环境污染小,产品纯度高,物化性能好,但成本较高;且通过溶胶-凝胶法所制取的活性氧化铝以薄膜及纳米级的分体为主,应用于催化剂及载体上较多,对于通过溶胶-凝胶法制取中孔的氧化铝颗粒适用于除氟方面的较为少见。本文以分析纯AlCl 3·6H 2O 为原料,通过溶胶-凝胶法制备了勃姆石(γ-AlOOH )的铝凝胶,通过干燥、煅烧制备了γ-Al 2O 3的粉体;通过浸渍法制备了γ-Al 2O 3的薄膜;并应用XRD 现代分析技术对所制得的粉体的晶相进行表征;同时对制备出来的活性氧化铝进行除氟性能研究。 1实验材料与方法 1.1材料与仪器 分析纯氯化铝(AlCl 3·6H 2O )、分析纯氨水(NH 3·H 2O )、分析纯盐酸(HCl ),实验所用水为去离子水。参比活性氧化铝为苏州宏鹏吸附剂厂生产的球形活性氧化铝,其各项物理指标如表1所示(厂家提供)。D8-FO -CUS XRD 衍射仪(德国BRUCKER 公司) 1.2勃姆石γ-AlOOH 凝胶的配制 以AlCl 3·6H 2O 为原料,在高速搅拌下将一定量的NH 3·H 2O 逐步滴加到不同浓度的AlCl 3·6H 2O 溶液中,形成γ-AlOOH 沉 淀凝胶,将一部分沉淀凝胶在一定温度下再加入一定浓度的 HCl 作为胶溶剂在高速搅拌作用下回溶,使之形成透明、稳定的 勃姆石γ-AlOOH 水溶胶。 1.3γ-Al 2O 3粉末的制备 将制得的γ-AlOOH 沉淀凝胶和γ-AlOOH 水溶胶置于烘 —————————————————— —[收稿日期]2010-03-25 [作者简介]时海平(1983-),女,江苏连云港人,硕士研究生。 第23卷 第3期苏州科技学院学报(工程技术版)Vol.23No.32010年9月Journal of Suzhou University of Science and Technology (Engineering and Technology ) Sep .20 10

相关文档
最新文档