概率论悖论(11):帕斯卡赌注

概率论悖论(11):帕斯卡赌注
概率论悖论(11):帕斯卡赌注

概率论悖论(11):帕斯卡赌注

M:著名的十七世纪数学家布莱斯·帕斯卡把中立原理应用于基督徒的忠诚上。帕斯卡:一个人无法决定他是接受还是拒绝教堂的教义。教义也许是真实的,也可能是骗人的。这有点象抛硬币,两种可能性均等。可报应是什么呢?帕斯卡:假定这个人拒绝了教堂的教义。如果教义是骗人的,则他什么也没有损失。可是,如果教义是真实的,那他将会面临在地狱遭受无穷苦难的未来。帕斯卡:假定这个人接受了教堂的宣传。如果教义是骗人的,他就什么也得不到。可是,如果教义是真实的,他将能进入天堂享受无穷的至福。M:帕斯卡确信,对这一决策游戏的报应无限有利于把宝押在教义是真的这一态度之上。哲学家们自那以后一直在对帕斯卡的赌注进行争论。你的看法如何?十七世纪的法国数学家和哲学家布莱斯·帕斯卡是概率论的奠基者之一。在第一图里所画出的是他提出的一个被称之为“帕斯卡三角”的著名的数字结构。帕斯卡不是这个三角的发明者,但他是第一个对此作了彻底研究的人。这个图形的结构具有许多精美的组合性质,从而使它成为解答初等概率问题的一个有用工具。

在哲学上,帕斯卡三角最富戏剧性的应用是帕斯卡《随感录》中第233个想法。帕斯卡认为,由于我们无法确定教

堂的教义是真还是假,我们就应该把这两种情况当作具有同等的可能性。就像抛掷硬币的结果一样。然而如果我们接受教堂的说教,报答是无限有益;如果我们拒绝它,就会无限受报。因此,他主张接受是最上策。

课堂讨论帕斯卡赌注很快就能引导学生深入到各种具有深刻挑战性的问题。例如:

1.中立原理是合法地应用于帕斯卡的论断之中吗?

2.对于法国哲学家丹尼斯·林德罗提出的这样一个异议你作何回答?世界上还有很多其他的影响很大的宗教,例如伊斯兰教,它们也提出接受该宗教是得到拯救的条件。帕斯卡赌注也适用于所有这些宗教吗?如果这样的话,一个人难道能成为每个宗教的信徒吗?

3.你对威尔斯的看法有何见解?我们并不知道世界在经历一场原子大战之后是否会保留下来。可是,你的生活和所作所为应该表现得好象你确信世界能够经历这场劫难而保存下来那样,这是因为“如果在末了,你的乐观看法不能证实,你也总是快乐的”。

[1][2][3][4][5][6][7][8][9][10][11]

概率论第一章小测试

第一章小测试 一、选择题 1.设A 、B 、C 为三个事件,则A 、B 、C 不全发生可表示为( ) A. ABC B. ABC C. C B A D. C B A 2.设事件A 和B 互为对立事件,则下列各式不成立的是( ) A. ()0P AB = B. ()0P AB = C. ()1P A B = D.()1P B A = 3.将一枚均匀硬币抛掷3次,则至少有2次出现币值面朝上的概率是( ) A. 18 B. 38 C. 12 D. 58 4.盒内有6个产品,其中正品4个次品2个,不放回地一个一个往外取产品,则第二次才取到次品的概率与第二次取产品时取到次品的概率分别为( ) A. 41153, B. 441515, C. 1133 , D. 14315, 5.设两个事件A 和B 相互独立,且()0.5P A =,()0.4P B =, 则()P A B 的值是( ) A. 0.9 B. 0.8 C. 0.7 D. 0.6 6.对于任意事件A,B,若A B ?,则下列各等式不成立的是( ) A. B B A = B. φ=B -A C. B B A = D. φ=B A 7.设A,B 为任意两个概率不为0的互斥事件,则下列结论中一定正确的是( ) A. ()()P A B P A = B. ()()()P A B P A P B -=- C. ()()()P AB P A P B = D.()()P A B P A -= 8.将一枚均匀硬币抛掷3次,则恰有一次出现币值面朝上的概率是( ) A. 38 B. 18 C. 58 D. 12 9. 已知在10只电子元件中,有2只是次品,从其中取两次,每次随机地取一只,作不放回抽取,则第二次取出的是次品的概率是( ) A. 145 B. 15 C. 1645 D. 845 10.设两个事件A 和B 相互独立,且()0.6P A =,()0.3P B =, 则()P A B 的值是( ) A. 0.3 B. 0.7 C. 0.72 D. 0.9 11.事件A 、B 、C 中恰有一个事件发生的事件是( ) A .ABC B . C AB C .C B A D .C B A C B A C B A ++ 12.设A 和B 是两个随机事件,则下列关系式中成立的是( )

《概率论与随机过程》第1章习题

《概率论与随机过程》第一章习题 1. 写出下列随机试验的样本空间。 (1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。 (2) 同时掷三颗骰子,记录三颗骰子点数之和。 (3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录 抽取的次数。 (4) 生产产品直到得到10件正品,记录生产产品的总件数。 (5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选 举的结果。 (6) 甲乙二人下棋一局,观察棋赛的结果。 (7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 (8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次 品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察 装球的情况。 (10) 测量一汽车通过给定点的速度。 (11) 将一尺之棰折成三段,观察各段的长度。 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1) A 发生,B 与C 不发生。 (2) A 与B 都发生,而C 不发生。 (3) A ,B ,C 都发生。 (4) A ,B ,C 中至少有一个发生。 (5) A ,B ,C 都不发生。 (6) A ,B ,C 中至多于一个发生。 (7) A ,B ,C 中至多于二个发生。 (8) A ,B ,C 中至少有二个发生。 3. 设{}10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 (2)B A ?。 (3)B A 。 (4) BC A 。 (5))(C B A ?。 4. 设{}20≤≤=x x S ,??????≤<=121x x A ,? ?????<≤=234 1x x B ,具体写出下列各式。 (1)B A ?。 (2)B A ?。 (3)B A 。 (4) B A 。 5. 设A ,B ,C 是三事件,且41)()()(===C P B P A P ,0)()(==CB P AB P ,81)(=AC P ,求A , B , C 至少有一个发生的概率。 6. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1) 求恰有90个次品的概率。 (2) 至少有2个次品的概率。 7.(1)在房间里有500个人,问至少有一个人的生日是10月1日的概率是多少(设一年以365天计算)? (2)在房间里有4个人,问至少有二个人的生日在同一个月的概率是多少?

概率论习题试题集

11. 将8本书任意放到书架上,求其中3本数学书恰排在一起的概率。 12. 某人买了大小相同的新鲜鸭蛋,其中有a只青壳的,b只白壳的,他准备将青壳蛋加工成咸蛋,故将鸭 蛋一只只从箱中摸出进行分类,求第k次摸出的是青壳蛋的概率。 13. 某油漆公司发出17桶油漆,其中白漆10桶,黑漆4桶,红漆3桶,在搬运中所有标签脱落,交货人随 意将这些油漆发给顾客。问一个订货为4桶白漆、3桶黑漆,2桶红漆的顾客,能按所定颜色如数得到订货的概率是多少? 14. 将12名新技工随机地平均分配到三个车间去,其中3名女技工,求: (1)每个车间各分配到一名女技工的概率;(2)3名女技工分配到同一车间的概率。 15.从6双不同的手套中任取4只,求其中恰有两只配对的概率。 16.从0,1,2,......,9十个数中随机地有放回的接连取三个数字,并按其出现的先后排成一列,求下列事件的概率:(1)三个数字排成一奇数;(2)三个数字中0至多出现一次; (3)三个数字中8至少出现一次;(4)三个数字之和等于6。 (利用事件的关系求随机事件的概率) 17. 在1~1000的整数中随机地取一个数,问取到的整数既不能被4整除,又不能被6整除的概率是多少? 18. 甲、乙两人先后从52张牌中各抽取13张, (1)若甲抽后将牌放回乙再抽,问甲或乙拿到四张A的概率; (2)若甲抽后不放回乙再抽,问甲或乙拿到四张A的概率。 19. 在某城市中发行三种报纸A,B,C,经调查,订阅A报的有45%,订阅B报的有35%,订阅C报的有30%,同时订阅A及B的有10%,同时订阅A及C的有8%,同时订阅B及C的有5%,同时订阅A,B,C 的有3%。试求下列事件的概率: (1)只订A报的;(2)只订A及B报的;(3)恰好订两种报纸。

《概率论与数理统计》第一章知识小结

附加知识: 排列组合知识小结: 一、计数原理 1.加法原理:分类计数。 2.乘法原理:分步计数。 二、排列组合 1.排列数(与顺序有关): )(),1()2)(1(n m m n n n n A m n ≤+---=Λ !n A n n =,n A A n n ==10,1 如:25203456757=????=A ,12012345!5=????= 2.组合数(与顺序无关): !m A C m n m n =,m n n m n C C -= 如:3512344567!447 4 7 =??????==A C ,211 2672757757=??===-C C C 3.例题:(1)从1,2,3,4,5这五个数字中,任取3个数字,组成一个没有重复的3位数,共有___6034535=??=A ____种取法。 (2)从0,1,2,3,4这五个数字中,任取3个数字,组成一个没 有重复的3位数,共有___483442 414 =??=A A ____种取法。 (3)有5名同学照毕业照,共有__1201234555=????=A _种排法。 (4)有5名同学照毕业照,其中有两人要排在一起,那么共有 _48)1234()12(4422=?????=A A ___种排法。 (5)袋子里有8个球,从中任意取出3个,共有___38C ____种取法。 (6)袋子里有8个球,5个白球,3个红球。从中任意取出3个, 取到2个白球1个红球的方法有___1 325C C ____种。

38876 56321 C ??= =?? 第一章、基础知识小结 一、随机事件的关系与运算 1.事件的包含 设A ,B 为两个事件,若A 发生必然导致B 发生,则称事件B 包含于A ,记作B A ?。 2.和事件 事件“A,B 中至少有一个发生”为事件A 与B 的和事件,记作B A Y 或B A +。 性质:(1)B A B B A A Y Y ?? , ; (2)若B A ?,则B B A =Y 3.积事件:事件A,B 同时发生,为事件A 与事件B 的积事件,记作B A I 或AB 。 性质:(1),AB A AB B ??; (2)若B A ?,则A AB = 4.差事件:事件A 发生而B 不发生为事件A 与B 事件的差事件,记作()A B AB -。 性质:(1)A B A ?-; (2)若B A ?,则φ=-B A 5.互不相容事件:若事件A 与事件B 不能同时发生,即AB Φ=,则称事件A 与事件B 是互不相容的两个事件,简称A 与B 互不相容(或互斥)。 6.对立事件:称事件A 不发生为事件A 的对立事件,记作A 。 性质:(1)A A =; (2)Ω==Ωφφ,; (3)AB A B A B A -==- 设事件A,B ,若AB=Φ,A+B=?,则称A 与B 相互对立.记作 。

概率论1.1概率论随机事件及其运算

《概率论》课后练习(一) 第一章§1-1随机事件与概率 班级 姓名 座号 成绩 一.填空题(每空1.6分,共计8分) 1.一份试卷上有6道题。某学生在解答时由于粗心随机地犯了4处不同的错误。现观察该学生做完试卷他答对的题数,则样本空间=Ω____________________。 2.十件产品中三件次品,每次从中取1件(不放回抽样)直到将三件次品都取出,记录抽取到的正品数;则样本空间=Ω_______________ 。 3. 一口袋中有许多红色、白色、蓝色的乒乓球,在其中任取出4 只,观察它们具有颜色的种数。则样本空间=Ω______________________。 4..设某人向靶子射击3次,用 i A 表示“第i 次射击击中靶子” )3,2,1(=i ,试用语言描述下列事件:(1)— ——321A A A (2) 21A A 二. 单项选择题(每小题2,共计8分) 1. 射击3次,事件i A 表示第i 次命中目标)3,2,1(=i ,则表示至少命中一次的是 ( ) )(A 321A A A )(B 321A A A -Ω )(D A A A A A A A A A 21321321 )(D 321A A A 2. 以A 表示事件“甲种产品畅销或乙种产品滞销”,则其对立事件A 表示( )。 )(A “甲种产品滞销,乙种产品畅销” )(B “甲、乙两种产品均畅销” )(C “甲种产品滞销” )(D “甲种产品滞销或乙种产品畅销” 3. 对于任意事件A 和B ,则与B B A =+不等价的是( )。 )(A B A ? )(B A B ? )(C φ=B A )(D φ=B A 4. 对于事件A ,C B ,,则下列等式不成立的是( )。 )(A B B A A -+=)( )(B ))(()(C A B A AB A ++=+ )(C 如果AB A =,则B A ? )(D )(C B A C B A +-=-- 三.下列说法是否正确?(必须说明理由 )(每小题2分,共计4分) (1)若Ω=+B A ,则B A ,互为对立事件。 (2) 若φ=ABC ,则C B A ,,两两互斥。

《概率论与随机过程》第1章习题

《概率论与随机过程》第一章习题 1.写出下列随机试验的样本空间。 (1)记录一个小班一次数学考试的平均分数(设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数。 (4)生产产品直到得到10件正品,记录生产产品的总件数。 (5)一个小组有A,B,C,D,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选举的结果。 (6)甲乙二人下棋一局,观察棋赛的结果。 (7)一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 (8)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (9)有A,B,C三只盒子,a,b,c三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察装球的情况。 (10)测量一汽车通过给定点的速度。 (11)将一尺之棰折成三段,观察各段的长度。 2.设A,B,C为三事件,用A,B,C的运算关系表示下列事件。 (1)A发生,B与C不发生。 (2)A与B都发生,而C不发生。 (3)A,B,C都发生。 (4)A,B,C中至少有一个发生。 (5)A,B,C都不发生。 (6)A,B,C中至多于一个发生。 (7)A,B,C中至多于二个发生。 (8)A,B,C中至少有二个发生。

3. 设{ }10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 (2)B A ?。 (3)B A 。 (4) BC A 。 (5))(C B A ?。 4. 设{}20≤≤=x x S ,?????? ≤<=121x x A ,? ?????<≤=2341x x B ,具体写出下列各式。 (1)B A ?。 (2)B A ?。 (3)B A 。 (4) B A 。 5. 设A ,B ,C 是三事件,且41)()()(===C P B P A P ,0)()(==CB P AB P ,1)(=AC P ,求A ,B , C 至少有一个发生的概率。 6. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1) 求恰有90个次品的概率。 (2) 至少有2个次品的概率。 7.(1)在房间里有500个人,问至少有一个人的生日是10月1日的概率是多少(设一年以365天计算) (2)在房间里有4个人,问至少有二个人的生日在同一个月的概率是多少 8. 一盒子中有4只次品晶体管,6只正品晶体管,随机地抽取一只测试,直到4只次品管子都找到为止。求 第4只次品管子在下列情况发现的概率。 (1) 在第5次测试发现。 (2) 在第10次测试发现。 9. 甲、乙位于二个城市,考察这二个城市六月份下雨的情况。以A ,B 分别表示甲,乙二城市出现雨天这一 事件。根据以往的气象记录已知4.0)()(==B P A P ,28.0)(=AB P ,求)/(B A P ,)/(A B P 及)(B A P ?。 10. 已知在10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概 率。 (1) 二只都是正品。 (2) 二只都是次品。 (3) 一只是正品,一只是次品。 (4) 第二次取出的是次品。 11. 某人忘记了电话号码的最后一个数字,因而随意地拨号,求他拨号不超过三次而接通所需的电话的概率

概率论期末测试

2008-2009年度第二学期概率论与数理统计测试题 1.根据以往的考试结果分析,努力学习的学生中有90%的可能考试及格,不努力学习的学生中有90%的可能考试不及格.据调查,学生中有90%的人是努力学习的,试问: ⑴ 考试及格的学生中有多大可能是不努力学习的人?(5分) ⑵ 考试不及格的学生中有多大可能是努力学习的人?(5分) 2. 设随机变量X 服从区间)6,1(上的均匀分布,求一元二次方程012=++t X t 有实根的概率;(10分) 3.设X 与Y 是独立同分布的随机变量,它们都服从均匀分布(0,1)U 。试求 Z X Y =-的分布函数与概率密度函数;(10分) 4.设X 的密度函数为),(,21)(∞+-∞∈=-x e x f x ① 求X 的数学期望EX 和方差DX ;(10分) ② 求X 与X 的协方差和相关系数,并讨论X 与X 是否相关?(10分) ③ 问X 与X 是否相互独立?说明理由。(10分) 5. 一食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一只蛋糕的价格是`一个随机变量,它取1元、1.2元、1.5元各个值的概率分别为0.3、0.2、0.5。某天售出300只蛋糕。求收入至少400元的概率;(10分) 6.设总体X 的概率密度为(1)01()0x x f x θ θ?+<<=??其它,其中1θ>-是未知参数,12,,,n X X X 为一个样本,试求参数θ的矩估计量和最大似然估计量。 7.已知X 的概率分辨为 21012320.132i X p a a a a a -- ,试求: (1)常数a ;(2分) (2)21Y X =-的概率分布。(5分)

2020年智慧树知道网课《概率论》课后章节测试满分答案

第一章测试 1 【单选题】(10分) 设样本空间Ω={1,2,10},事件A={2,3,4},B={3,4,5},C={5,6,7},则事件=()。 A. {1,2,5,6,7,9,10} B. {1,2,5,6,7,8,9,10} C. {1,2,4,5,6,7,8,9,10} D. {1,2,3,5,6,7,8,9,10} 2 【单选题】(10分) 同时掷3枚均匀的硬币,恰好有两枚正面向上的概率为()。 A. 0.325 B. 0.125 C. 0.375 D. 0.25

3 【单选题】(10分) 假设任意的随机事件A与B,则下列一定有()。 A. B. C. D. 4 【单选题】(10分) 设A,B为任意两个事件,则下式成立的为()。 A. B. C.

D. 5 【单选题】(10分) 设则=()。 A. 0.48 B. 0.24 C. 0.32 D. 0.30 6 【单选题】(10分) 设A与B互不相容,则结论肯定正确的是()。 A. B.

C. D. 与互不相容 7 【单选题】(10分) 已知随机事件A,B满足条件,且,则()。 A. 0.7 B. 0.4 C. 0.3 D. 0.6 8 【单选题】(10分)

若事件相互独立,且,则()。 A. 0.665 B. 0.875 C. 0.775 D. 0.95 9 【单选题】(5分) A. B. C. D.

10 【判断题】(5分) 不可能事件的概率一定为0。() A. 对 B. 错 11 【判断题】(5分) A. 错 B. 对 12 【判断题】(5分) 贝叶斯公式计算的是非条件概率。()

概率论与数理统计第一章测试题

第一章 随机事件和概率 一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.设随机事件A 与B 互不相容,且()(),P A p P B q ==,则A 与B 中恰有一个发生的概率等于( ) .A p q + .B p q pq +- .C ()()11p q -- .D ()()11p q q p -+- 6.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 7.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 8.设()0.6,()0.8,()0.8P A P B P B A ===,则下列结论中正确的是( ) .A 事件A 、B 互不相容 .B 事件A 、B 互逆

概率论练习册

第一章 概率论的基本概念 §1.1 -1.2 一、选择题 1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( ) A 、甲种产品滞销,乙种产品畅销 B 、甲乙两种产品均畅销 C 、甲种产品滞销 D 、甲种产品滞销或乙种产品畅销 2.设必然事件123456{,,,,,}ωωωωωωΩ=其中(1,2,3,4,5,6)i i ω=是基本事件,事件 1235{,,,}A ωωωω=,24{,}B ωω=,123{,,}C ωωω=,则下列选项正确的是( ) A 、A B ? B 、B A = C 、A C -与B C -互斥 D 、A C -与B 逆 二、填空题 1.同时掷两颗骰子,记录两颗骰子的电数之和,则样本空间Ω= . 2.上题中,设事件A 表示“点数之和为偶数”,事件B 表示“点数之和大于7” 事件C 表示“点数之和为小于5的偶数”,则A B ?= ,A B -= , AB = ,A B C ??= 。 三、设事件A 、B 、C 分别表示某运动员参加的三个项目,用A 、B 、C 的运算关系表示下列事件: (1)该运动员只参加A 项目,不参加B 、C 项目; (2)该运动员参加A 、B 两项目,不参加C 项目; (3)该运动员参加全部三个项目; (4)该运动员三个项目都不参加; (5)该运动员仅参加一项; (6)该运动员至少参加一项; (7)该运动员至多参加一项; (8)该运动员至少参加两项.

§1.3 一、从5双不同的鞋中任取4只,求其中恰有一双配对以及其中至少有两只配对的概率. 二、将n只球随机地放入() N N n ≥个盒子中去,试求每个盒子最多有一只球的概率. 三、随机的向由 1 01, 2 y x <<<所围成的正方形内掷一点,点落在该正方形内任何 区域的概率与区域面积成正比,求原点与该点的连线与x轴的夹角小于3 4 π的概率. 四、将三个球随机地放入4个杯子中去,求杯子中球的最多个数分别为1,2,3的概率.

(精选)概率论与数理统计第一章

第一章测试题 一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 6.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 7.设A 、B 、C 为三个事件,已知()()0.6,0.4P B A P C AB ==,则()P BC A =( ) .A 0.3 .B 0.24 .C 0.5 .D 0.21 8.设A ,B 是两个随机事件,且00,)|()|(A B P A B P =,则必有 ( )

《概率论与数理统计》第一章知识小结

附加知识: 排列组合知识小结: 一、计数原理 1.加法原理:分类计数。 2.乘法原理:分步计数。 二、排列组合 1.排列数(与顺序有关): )(),1()2)(1(n m m n n n n A m n ≤+---= !n A n n =,n A A n n ==10,1 如:25203456757=????=A ,12012345!5=????= 2.组合数(与顺序无关): !m A C m n m n =,m n n m n C C -= 如:3512344567!447 4 7 =??????==A C ,211 2672757757=??===-C C C 3.例题:(1)从1,2,3,4,5这五个数字中,任取3个数字,组成一个没有重复的3位数,共有___6034535=??=A ____种取法。 (2)从0,1,2,3,4这五个数字中,任取3个数字,组成一 个没有重复的3位数,共有___483442 414 =??=A A ____种取法。 (3)有5名同学照毕业照,共有__1201234555=????=A _种排 法。 (4)有5名同学照毕业照,其中有两人要排在一起,那么共有_48)1234()12(4422=?????=A A ___种排法。 (5)袋子里有8个球,从中任意取出3个,共有___38C ____种取法。

(6)袋子里有8个球,5个白球,3个红球。从中任意取出3 个,取到2个白球1个红球的方法有___1 325C C ____种。 3 8876 56321 C ??= =?? 第一章、基础知识小结 一、随机事件的关系与运算 1.事件的包含 设A ,B 为两个事件,若A 发生必然导致B 发生,则称事件B 包含于A ,记作B A ?。 2.和事件 事件“A,B 中至少有一个发生”为事件A 与B 的和事件,记作B A 或B A +。 性质:(1)B A B B A A ?? , ; (2)若B A ?,则B B A = 3.积事件:事件A,B 同时发生,为事件A 与事件B 的积事件,记作B A 或AB 。 性质:(1),AB A AB B ??; (2)若B A ?,则A AB = 4.差事件:事件A 发生而B 不发生为事件A 与B 事件的差事件,记作()A B AB -。 性质:(1)A B A ?-; (2)若B A ?,则φ=-B A 5.互不相容事件:若事件A 与事件B 不能同时发生,即 AB Φ=,则称事件A 与事件B 是互不相容的两个事件,简称A 与B 互不相容(或互斥)。 6.对立事件:称事件A 不发生为事件A 的对立事件,记作A 。

概率论第一章随机事件及其概率答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第一章 随机事件及其概率(一) 一.选择题 1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ] (A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件 2.下面各组事件中,互为对立事件的有 [ B ] (A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品} (B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品} (C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个} (D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品} 3.下列事件与事件A B -不等价的是 [ C ] (A )A AB - (B )()A B B ?- (C )AB (D )AB 4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ?表示 [ C ] (A )二人都没射中 (B )二人都射中 (C )二人没有都射着 (D )至少一个射中 5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D ] (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销 6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则AB 表示 [ A ] (A ){|01}x x ≤< (B ){|01}x x << (C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<

概率统计第一章测验

第一章章节小测验 一、填空题(每题2分,共20分) 1.盒中有水性签字笔7只,其中红色4只,黑色3只,从中任取2只,则此两只笔颜色不同的概率为___________. 2. 某学生和朋友约定:在他参加的3门不同的考试中如果有一门过了95分就要开香槟庆祝,已知他这3门功课过95分的概率分别为1/2,1/4,1/5,则他们开香槟庆祝的概率为 3. 已知()1()()4P A P B P C ===,()0P AB =,()()18 P AC P BC ==,则事件A 、B 、C 全不发生的概率为 4. 已知P (A )=0.8,P (A-B )=0.5,且A 和B 独立,则P (B )=_____________. 5. 一个袋中装有5个白球4个黑球。从中随机取2个(不放回),则取出的球依次为白、黑两球的概率为 ,取出第二个为白球的概率为 ,如果已知第二次取出的为白球,则第一次取出的为黑球的概率为 6. 设,A B 为随机事件,()()0.7P A P B +=,()0.3P AB =,则()()P AB P AB += 7.设,A B 为随机事件,()0.9P A =,()0.36P AB =,则()P AB = 8. 设在3次独立试验中,事件A 出现的概率均相等且至少出现1次的概率为 2719,则在1次试验中事件A 出现的概率为____________ 9. 加工一种另年经三道独立的工序,各工序的废品率分别123,,p p p ,则加工该种零件的成品率为________ 10. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一 球,取后不放回,甲先取,则乙取得黄球的概率为________. 二、选择题(每题2分,共20分) 1、A ,B ,C 是3 个事件,则ABC 表示:( ) A 、 A , B , C 三事件同时发生 B 、 A ,B ,C 三事件同时不发生 C 、 A ,B ,C 三事件不同时发生 D 、 A ,B ,C 三事件至少有一个发生 2 A ,B ,C 是 3 个事件,则A+B+C 表示:( ) A 、A , B , C 三事件同时发生 B 、A ,B ,C 三事件同时不发生 C 、A ,B ,C 三事件不同时发生 D 、A ,B ,C 三事件至少有一个发生 3、设A 、B 表示事件,则B A =( ) A 、 B A B 、B A C 、B A D 、B A 4、设A 、B 、C 是三个随机事件,A 、B 、C 中恰好出现一个的事件为( ) A 、A+B+C B 、AB +A C +BC C 、ABC D 、ABC ABC ABC ++

高中数学概率统计

第八讲 概率统计 【考点透视】 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 【例题解析】 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =n m ; 等可能事件概率的计算步骤: ① 计算一次试验的基本事件总数n ; ② 设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n =求值; ④ 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”:

① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [考查目的]本题主要考查概率的概念和等可能性事件的概率求法. [解答过程]0.3提示:1 33 5 C 33.54C 10 2 P ===? 例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 . [考查目的]本题主要考查用样本分析总体的简单随机抽样方式,同时考查概率的概念和等可能性事件的概率求法. 用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法. [解答过程]1.20 提示:51.10020P == 例3从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ): 492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499 根据的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g 之间的概率约为__________. [考查目的]本题主要考查用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法.

概率论第一章单元测试

西南财经大学《 概率论与数理统计》第一章单元测试 满分100分 考试时间 120分钟 一、选择题(每题2分,共20分) 1.事件A ,B 为对立事件,则( )不成立。 (A) 0)(=AB P ; (B) A P (B )=0; (C) )(B A P Y =1; (D) P (B A Y )=1 2.对于任意两个事件A 与B ,则有)(B A P -为( ) (A) )()(B P A P -; (B) )()()(AB P B P A P +-; (C))()(AB P A P -; (D) )()(AB P A P + 3.设 B A ,相互独立,7.0)(=A P ,88.0)(=B A P Y ,则 ).()(=-B A P (A )0.10; (B) 0.52; (C) 0.42; (D) 0.28 4.设A ,B 为随机事件,0)(>B P ,1)|(=B A P ,则必有( )。 A. )()(A P B A P =? B. B A ? C. )()(B P A P = D. )()(A P AB P = 5.某人连续向一目标射击,每次命中目标的概率为43,他连续射击直到命中为止,则射击次数为3的概率是( )。 A. 343)( B. 41432?)( C. 43412?)( D. 2244 1C )( 6.已知A 、B 、C 为三个随机事件,则A 、B 、C 不都发生的事件为( )。 A. C B A B. ABC C. A +B +C D. ABC 7.若随机事件A 与B 相互独立,则)(B A P +=( )。 A. )()(B P A P + B. )()()()(B P A P B P A P -+ C. )()(B P A P D. )()(B P A P + 8.设随机事件A 、B 互不相容,q B P p A P ==)( ,)(,则)(B A P =( )。

概率统计第一章习题

第一章 概率论的基本概念 基础训练I 一、选择题 1、以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为:( ) A )甲种产品滞销,乙种产品畅销; B )甲乙产品均畅销; C )甲种产品滞销; D )甲产品滞销或乙种产品畅销。 2、设事件B A ,是两个概率不为零的互不相容事件,则下列结论正确的是( ) A ),A B 互不相容; B )A 与B 相容; C ))()()(B P A P AB P =; D ))()(A P B A P =-。 3、对于任意事件B A ,,有=-)(B A P ( ) A ))()( B P A P -; B ))()()(AB P B P A P +-; C ))()(AB P A P -; D ))()()(AB P B P A P -+。 4、已知5个人进行不放回抽签测试,袋中5道试题(3道易题,2道难题),问第3个人抽中易题的概率是( ) A ) 53; B )43; C )42 ; D )10 3. 5、设()0.8P A =,()0.7P B =,(|)0.8P A B =,则下列结论正确的有( ) A )B A ,相互独立; B )B A ,互不相容; C )A B ?; D ))()()(B P A P B A P +=?。 二、填空题 1、设C B A ,,是随机事件,则事件“A 、B 都不发生,C 发生”表示为 , “C B A ,,至少有两个发生”表示成 。 2、设A 、B 互不相容,4.0)(=A P ,7.0)(=?B A P ,则=)(B P ; 3、某市有50%住户订日报,有65%住户订晚报,有85%的住户至少订这两种报纸中的一种,则同时订这两种的住户百分比是: ; 4、设4/1)()()(===C P B P A P ,0)()(==BC P AB P ,8/1)(=AC P ,则 C B A 、、三件事至少有一个发生的概率为 ; 5、若A 、B 互不相容,且,0)(>A P 则=)|(A B P ;若A 、B 相互独立,

概率论--事件与概率

第一章 事件与概率 1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。 (1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。 (2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。 解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则 ,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,, ,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,, =A ){(1次正,,,,)(2次正)}(9次正,, (2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r } (ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r } 1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。 (1) 叙述C AB 的意义。 (2)在什么条件下C ABC =成立? (3)什么时候关系式B C ?是正确的? (4) 什么时候B A =成立? 解 (1)事件C AB 表示该是三年级男生,但不是运动员。 (2) C ABC = 等价于AB C ?,表示全系运动员都有是三年级的男生。 (3)当全系运动员都是三年级学生时。 (4)当全系女生都在三年级并且三年级学生都是女生时`。 1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。用i A 表示下列事件: (1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。 解 (1) n i i A 1=; (2) n i i n i i A A 11===; (3) n i n i j j j i A A 11)]([=≠=;

概率论与数理统计第一章知识小结

排列组合知识小结: 一、计数原理 1.加法原理:分类计数。 2.乘法原理:分步计数。 二、排列组合 1.排列数(与顺序有关): )(),1()2)(1(n m m n n n n A m n ≤+---=Λ !n A n n =,n A A n n ==10,1 如:25203456757=????=A ,12012345!5=????= 2.组合数(与顺序无关): !m A C m n m n =,m n n m n C C -= 如:3512344567!447 4 7 =??????==A C ,211 2672757757=??===-C C C 3.例题:(1)从1,2,3,4,5这五个数字中,任取3个数字,组成一个没有重复的3位数,共有___6034535=??=A ____种取法。 (2)从0,1,2,3,4这五个数字中,任取3个数字,组成一个没 有重复的3位数,共有___483442 414 =??=A A ____种取法。 (3)有5名同学照毕业照,共有__1201234555=????=A _种排法。 (4)有5名同学照毕业照,其中有两人要排在一起,那么共有 _48)1234()12(4422=?????=A A ___种排法。 (5)袋子里有8个球,从中任意取出3个,共有___38C ____种取法。 (6)袋子里有8个球,5个白球,3个红球。从中任意取出3个, 取到2个白球1个红球的方法有___1 325C C ____种。 3 8876 56321 C ??= =??

第一章、基础知识小结 一、随机事件的关系与运算 1.事件的包含 设A ,B 为两个事件,若A 发生必然导致B 发生,则称事件B 包含于A ,记作B A ?。 2.和事件 事件“A,B 中至少有一个发生”为事件A 与B 的和事件,记作B A Y 或B A +。 性质:(1)B A B B A A Y Y ?? , ; (2)若B A ?,则B B A =Y 3.积事件:事件A,B 同时发生,为事件A 与事件B 的积事件,记作B A I 或AB 。 性质:(1),AB A AB B ??; (2)若B A ?,则A AB = 4.差事件:事件A 发生而B 不发生为事件A 与B 事件的差事件,记作()A B AB -。 性质:(1)A B A ?-; (2)若B A ?,则φ=-B A 5.互不相容事件:若事件A 与事件B 不能同时发生,即AB Φ=,则称事件A 与事件B 是互不相容的两个事件,简称A 与B 互不相容(或互斥)。 6.对立事件:称事件A 不发生为事件A 的对立事件,记作A 。 性质:(1)A A =; (2)Ω==Ωφφ,; (3)AB A B A B A -==- 设事件A,B ,若AB=Φ,A+B=?,则称A 与B 相互对立.记作。 7.事件的运算律 (1)交换律:BA AB A B B A ==,Y Y

相关文档
最新文档