高考圆锥曲线中定点与定值问题(题型总结超全)

高考圆锥曲线中定点与定值问题(题型总结超全)
高考圆锥曲线中定点与定值问题(题型总结超全)

专题08 解锁圆锥曲线中的定点与定值问题

一、解答题

1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆的左右焦点分别为,离心率为;圆过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于两点.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)证明:在轴上存在定点,使得为定值;并求出该定点的坐标.

【答案】(1)(2)

【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,

可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得

。设x轴上的定点为,可得

,由定值可得需满足,解得可得定点坐标。

解得。

∴椭圆的标准方程为.

(Ⅱ)证明:

由题意设直线的方程为,

由消去y整理得,

设,,

要使其为定值,需满足,

解得

.

故定点的坐标为

.

点睛:解析几何中定点问题的常见解法

(1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意.

2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为k 的直线l 经过点()1,0-与抛物线2:2C y px =(0,p p >为常数)交于不同的两点,M N ,当1

2

k =时,弦MN

的长为. (1)求抛物线C 的标准方程;

(2)过点M 的直线交抛物线于另一点Q ,且直线MQ 经过点()1,1B -,判断直线NQ 是否过定点?若过定点,求出该点坐标;若不过定点,请说明理由. 【答案】(1)24y x =;(2)直线NQ 过定点()1,4- 【解析】试题分析:(1)根据弦长公式即可求出答案;

(2)由(1)可设()()()

222

1122,2,,2,,2M t t N t t Q t t ,则1

2

MN k t t =

+, 则()11:220MN x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++=

()1212:220NQ x t t y t t -++=.

由()1,0-在直线MN 上1

1

t t ?=(1);

由()1,1-在直线MQ 上22220t t tt ?+++=将(1)代入()121221t t t t ?=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ?-+-+-=,即可得出直线NQ 过定点.

(2)设()()()

222

1122,2,,2,,2M t t N t t Q t t ,则122

11

222

=

MN t t k t t t t -=-+, 则()

21

2

:2MN y t x t t t -=

-+即()11220x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++=;

()1212:220NQ x t t y t t -++=.

由()1,0-在直线MN 上11tt ?=,即1

1

t t =

(1); 由()1,1-在直线MQ 上22220t t tt ?+++=将(1)代入()121221t t t t ?=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ?-+-+-=,易得直线NQ 过定点()1,4-

3.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知抛物线()2

:0C y mx m =>过点

()1,2-, P 是C 上一点,斜率为1-的直线l 交C 于不同两点,A B (l 不过P 点),且PAB ?的重心的纵坐标为2

3

-

. (1)求抛物线C 的方程,并求其焦点坐标;

(2)记直线,PA PB 的斜率分别为12,k k ,求12k k +的值. 【答案】(1)方程为2

4y x =;其焦点坐标为()1,0(2)120k k +=

【解析】试题分析;(1)将()1,2-代入2y mx =,得4m =,可得抛物线C 的方程及其焦点坐标;

(2)设直线l 的方程为y x b =-+,将它代入2

4y x =得22220x b x b -++=(

),利用韦达定理,结合斜率公式以及PAB ?的重心的纵坐标2

3

-

,化简可12k k + 的值;

因为PAB ?的重心的纵坐标为23

-, 所以122p y y y ++=-,所以2p y =,所以1p x =,

所以()()()()()()

1221121212122121221111y x y x y y k k x x x x ------+=

+=----, 又()()()()12212121y x y x --+--

()()()()12212121x b x x b x ????=-+--+-+--????

()()()12122122x x b x x b =-+-+--

()()()22212220b b b b =-+-+--=.

所以120k k +=.

4.已知椭圆22

22:1(0)x y C a b a b

+=>>的短轴端点到右焦点()10F ,的距离为2.

(Ⅰ)求椭圆C 的方程;

(Ⅱ)过点F 的直线交椭圆C 于A B ,两点,交直线4l x =:于点P ,若1PA AF λ=,

2PB BF λ=,求证: 12λλ-为定值.

【答案】(1) 22

143

x y +=;(2)详见解析. 【解析】试题分析:(Ⅰ)利用椭圆的几何要素间的关系进行求解;(Ⅱ)联立直线和椭圆的方程,得到关

于x 或y 的一元二次方程,利用根与系数的关系和平面向量的线性运算进行证明

.

(Ⅱ)由题意直线AB 过点()1,0F ,且斜率存在,设方程为()1y k x =-, 将4x =代人得P 点坐标为()4,3k ,

由()

2

2

1{ 14

3

y k x x y =-+

=,消元得()22223484120k x k x k +-+-=,

设()11,A x y , ()22,B x y ,则0?>且2

122

2

122

834{ 412

34k x x k

k x x k +=+-?=

+, 方法一:因为1PA AF λ=,所以111

4

1PA x AF x λ-==-. 同理222

41PB x BF

x λ-=

=

-,且1141x x --与2241x x --异号,

所以12121212443321111x x x x x x λλ??

---=

+=--+ ?----?

?

()()1212123221

x x x x x x +-=-+

-++

()

22

222

38682412834k k k k k --=-+

--++

0=. 所以, 12

λλ-为定值0.

当121x x <<时,同理可得120λλ-=. 所以, 12λλ-为定值0.

同理222

3PB my BF

my λ-=

=

,且113my my -与223

my my -异号,

所以()1212121212

333

2y y my my my my my y λλ+---=+=-

()()

36209m m ?-=-

=?-.

又当直线AB 与x 轴重合时, 120λλ-=, 所以, 12λλ-为定值0.

【点睛】本题考查直线和椭圆的位置关系,其主要思路是联立直线和椭圆的方程,整理成关于x 或y 的一元二次方程,利用根与系数的关系进行求解,因为直线AB 过点()1,0F ,在设方程时,往往设为1x my =+

()0m ≠,可减少讨论该直线是否存在斜率.

5.【四川省绵阳南山中学2017-2018学年高二上学期期中考】设抛物线C : 24y x =, F 为C 的焦点,过F 的直线l 与C 相交于,A B 两点. (1)设l 的斜率为1,求AB ; (2)求证: OA OB ?是一个定值. 【答案】(1) 8AB =(2)见解析

【解析】试题分析:(1)把直线的方程与抛物线的方程联立,利用根与系数的关系及抛物线的定义、弦长

公式即可得出;(2)把直线的方程与抛物线的方程联立,利用根与系数的关系、向量的数量积即可得出;

(2)证明:设直线l 的方程为1x ky =+,

由2

1{

4x ky y x

=+-得2

440y ky --= ∴124y y k +=, 124y y =-

()()1122,,,OA x y OB x y ==,

∵()()1212121211OA OB x x y y kx ky y y ?=+=+++,

()2121212

2

2

144143

k y y k y y y y k k =++++=-++-=-,

∴OA OB ?是一个定值.

点睛:熟练掌握直线与抛物线的相交问题的解题模式、根与系数的关系及抛物线的定义、过焦点的弦长公式、向量的数量积是解题的关键,考查计算能力,直线方程设成1x ky =+也给解题带来了方便.

6.【内蒙古包头市第三十三中2016-2017学年高一下学期期末】已知椭圆C : 22

221(0,0)x y a b a b

+=>>的

离心率为3

,右焦点为求椭圆C 的方程; (2)若过原点作两条互相垂直的射线,与椭圆

交于A ,B 两点,求证:点O 到直线AB 的距离为定值.

【答案】(1) 2213x y += ,(2) O 到直线AB 的距离为定值2

. 【解析】试题分析:(1)根据焦点和离心率列方程解出a ,b ,c ;

(2)对于AB 有无斜率进行讨论,设出A ,B 坐标和直线方程,利用根与系数的关系和距离公式计算;

有OA⊥OB知x1x2+y1y2=x1x2+(k x1+m) (k x2+m)=(1+k2) x1x2+k m(x1+x2)=0 代入,得4 m2=3 k2+3原点到直线AB

的距离

2

d==,当AB的斜率不存在时,

11

x y

= ,可得

,

1

x d

==依然成立.所以点O 到直线

点睛:本题考查了椭圆的性质,直线与圆锥曲线的位置关系,分类讨论思想,对于这类题目要掌握解题方法.设而不求,套用公式解决.

7.【四川省成都市石室中学2017-2018学年高二10月月考】已知双曲线()

22

22

10

x y

b a

a b

-=>>渐近线方

程为y=,O

为坐标原点,点(M在双曲线上.

(Ⅰ)求双曲线的方程;

(Ⅱ)已知,P Q为双曲线上不同两点,点O在以PQ为直径的圆上,求

22

11

OP OQ

+的值.

【答案】(Ⅰ)

22

1

26

x y

-=;(Ⅱ)

22

111

3

OP OQ

+=.

【解析】试题分析:(1)根据渐近线方程得到设出双曲线的标准方程,代入点M的坐标求得参数即可;(2)由条件可得OP OQ

⊥,可设出直线,

OP OQ的方程,代入双曲线方程求得点,P Q的坐标可求得22

111

3

OP OQ

+=。

(Ⅱ)由题意知OP OQ ⊥。 设OP 直线方程为y kx =,

由2

2

1{ 26x y y kx -== ,解得22

2

22

6

3{ 63x k k

y k =

-=

-, ∴()

22222222

6166||333k k

OP x y k k k +=+=+=---。 由OQ 直线方程为1y x k =-.以1

k

-代替上式中的k ,可得

()22

2

22

16161||3113k k OQ k k ????+-?? ?+??????==-??

-- ???

。 ∴()(

)(

)()

2

2222222

2111

3311

+=3616161k k k k k k OP OQ

+--+==+++。 8.【湖南省株洲市醴陵第二中学、醴陵第四中学2018届高三上学期两校期中联考】已知椭圆E :

22221(0)x y a b a b +=>>经过点P (2,1)

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设O 为坐标原点,在椭圆短轴上有两点M ,N 满足OM NO =,直线PM 、PN 分别交椭圆于A ,B .探求直线AB 是否过定点,如果经过定点请求出定点的坐标,如果不经过定点,请说明理由.

【答案】(1)22

182

x y +=;(2)直线AB 过定点Q (0,﹣2). 【解析】试题分析:(1)根据椭圆的几何性质得到椭圆方程;(2)先由特殊情况得到结果,再考虑一般情

况,联立直线和椭圆得到二次函数,根据韦达定理,和向量坐标化的方法,得到结果。

x 1+x 2=2841kt

k -

+,x 1x 2=2

2

4841

t k -+, 又直线PA 的方程为y ﹣1=1112y x --(x ﹣2),即y ﹣1=111

2

kx t x +--(x ﹣2),

因此M 点坐标为(0,

()111222

k x t x ---),同理可知:N (0, ()221222

k x t x ---)

当且仅当t =﹣2时,对任意的k 都成立,直线AB 过定点Q (0,﹣2).

9.【广西桂林市第十八中学2018届高三上学期第三次月考】已知椭圆()22

22:10x y C a b a b

+=>>的左,右

焦点分别为12,F F .过原点O

的直线与椭圆交于,M N 两点,点P 是椭圆C 上的点,若1

4

PM PN k k =-,

11

0F N FM ?=,且1F MN ?

的周长为4+(1)求椭圆C 的方程; (2) 设椭圆在点P 处的切线记为直线',点12,,F F O 在'上的射影分别为,,A B D ,过P 作'的垂线交x

轴于点Q ,试问

12F A F B

OD PQ

?

是否为定值?若是,求出该定值;若不是,请说明理由. 【答案】(1) 2

214

x y +=;(2)1. 【解析】试题分析; (1)设(),M m n ,则(),N m n --,∴ 22

221m n a b

+=,设()00,P x y ,

,AP BP y n y n k k x m x m -+==-+,以及14

AM BM k k ?=-, ()22

4..1a b =????,由11

0F N FM ?=,由椭圆的定义可

得()224..2a c +=+,结合()222

..3a b c =+??,综合()()()

123可得:

224,1a b ==,可得椭圆C 的方程;

(2)由(1

)知(

))

12

,F F ,直线的方程为:

0014x x

y y +=,由此可得 121F A F B ?=.,又∵PQ ⊥',∴ PQ 的方程为()00004y y y x x x -=-,可得03,04x Q ??

???

则可得PQ =

,又OD =

,∴ 1PQ OD ?=.,故

121F A F B

OD PQ

?=. 当直线'平行于x 轴时,易知121F A PQ OD F B ====,结论显然成立. 综上,可知

12F A F B

OD PQ

?

为定值

1.

有12F N F M =

,则()11122224..2F N F M MN F N F M c a c ++=++=+=+ ∵()2

2

2

..3a b c =+??,综合()()()123可得: 2

2

4,1a b ==

∴椭圆C 的方程为: 2

214

x y +=. (2)由(1

)知(

))

12

,F F ,直线的方程为:

0014

x x

y y += 即: 00440x x y y +-=

,所以1F A =

=

2F B =

=

∴201220

1631163x F A F B x -?=

==-. ∵PQ ⊥',∴ PQ 的方程为()00004y y y x x x -=

-,令0y =,可得034x x =,∴ 03,04x Q ??

???

则PQ ==

=

又点O 到直线'

的距离为OD =

,∴1PQ OD ?=

=.

121F A F B

OD PQ

?=. 当直线'平行于x 轴时,易知121F A PQ OD F B ====,结论显然成立. 综上,

121F A F B

OD PQ

?=. 【点睛】本题考查的知识点是直线与圆锥曲线的关系,椭圆的标准方程,直线与圆的位置关系,是解析几何的综合应用,难度较大.

10.【云南省玉溪第一中学2018届高三上学期第三次月考】在平面直角坐标系xOy 中,直线l 与抛物线y 2

=4x 相交于不同的A ,B 两点,O 为坐标原点.

(1) 如果直线l 过抛物线的焦点且斜率为1,求AB 的值;

(2)如果4OA OB ?=-,证明:直线l 必过一定点,并求出该定点. 【答案】(1)8;(2)证明见解析 【解析】试题分析:(Ⅰ)根据抛物线的方程得到焦点的坐标,设出直线与抛物线的两个交点和直线方程,是直线的方程与抛物线方程联立,得到关于y 的一元二次方程,根据根与系数的关系,求出弦长;

(Ⅱ)设出直线的方程,同抛物线方程联立,得到关于y 的一元二次方程,根据根与系数的关系表示出数量积,根据数量积等于﹣4,做出数量积表示式中的b 的值,即得到定点的坐标.

令b 2-4b =-4,∴b 2

-4b +4=0,∴b =2, ∴直线l 过定点(2,0).∴若·=-4,则直线l 必过一定点.

点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.

11.【黑龙江省佳木斯市第一中学2017-2018学年高二上学期期中】已知椭圆()22

22:10x y C a b a b

+=>>,

1

1.

(1)求椭圆的方程;

(2)过点10,3S ??- ???

的动直线l 交椭圆C 于,A B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以线段AB 为直径的圆恒过点Q ?若存在,求出点Q 的坐标:若不存在,请说明理由.

【答案】(1) 椭圆方程为2

212

x y +=;(2) 以线段AB 为直径的圆恒过点()0,1Q .

当l 与y 轴平行时,以线段AB 为直径的圆的方程为2

2

1x y +=. 故若存在定点Q ,则Q 的坐标只可能为()0,1Q . 下面证明()0,1Q 为所求:

若直线l 的斜率不存在,上述己经证明. 若直线l 的斜率存在,设直线1

:3

l y kx =-

, ()()1122,,,A x y B x y ,

∴QA QB ⊥,即以线段AB 为直径的圆恒过点()0,1Q .

点睛:这个题是圆锥曲线中的典型题目,证明定值定点问题。第一问考查几何意义,第二问是常见的将图的垂直关系,转化为数量关系,将垂直转化为向量点积为0 ,再者就是向量坐标化的意识。还有就是这种证明直线过定点问题,可以先通过特殊位置猜出结果,再证明。

12.【四川省成都市新津中学2018届高三11月月考】已知椭圆2222:1(0)x y C a b a b +=>>

且过点)

.

(1)求椭圆C 的方程;

(2)设P 是椭圆C 长轴上的一个动点,过点P 的直线1交椭圆C 于,A B 两点,求证: 22

PA PB +为定值.

【答案】(1)22

142

x y +=;(2)证明见解析. 【解析】试题分析:(1)

由椭圆的离心率2

c e a ==求得222a c =,由222a b c ++,得22b c =,

将点)

代入22

2212x y b b +=,即可求得a 和b 的值,求得椭圆方程;(2)设()(),022P m m -≤≤, ∴直线l 的方程

是()2

y x m =-与椭圆的方程联立,利用韦达,根据两点间的距离公式将22

PA PB +用m 表示,化简

后消去m 即可得结果

.

()()2

222222

121211224,,2

m x x m x x PA PB x m y x m y -∴+==

∴+=-+-+ ()()()()()()222222

112212115444x m x m x m x m x m x m ??

=-+-+-+-=-+-?

?

()()()222

212121212125522222244

x x m x x m x x m x x x x m ????=+-++=+-+-+???? 222

52454

m m m ??=---=??(定值),22PA PB ∴+为定值. 【方法点睛】本题主要考查待定待定系数法椭圆标准方程、韦达定理的应用以及圆锥曲线的定值问题,属

于难题. 探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.

13.【北京朝阳日坛中学2016-2017学年高二上学期期中】已知椭圆22

22:1(0)x y a b a b

Γ+=>>的离心率为

2

3

,半焦距为(0)c c >,且1a c -=,经过椭圆的左焦点F ,斜率为()110k k ≠的直线与椭圆交于A , B 两点, O 为坐标原点. (I )求椭圆Γ的标准方程.

(II )设()1,0R ,延长AR , BR 分别与椭圆交于C , D 两点,直线CD 的斜率为2k ,求证: 12

k

k 为定

值.

【答案】(I )22

195

x y +=;(II )见解析.

【解析】试题分析:(I )依题意,得2{ 31

c a a c =

-=,再由222b a c =-求得2b ,从而可得椭圆的标准方程;

(II )设()33,C x y , ()44,D x y ,可求得直线的方程为()1

111

y y x x =--,与椭圆方程联立,由韦达定理可求

得2

113145y y y x =--,进一步可求1111594,55x y C x x ??- ?--??, 同理2222594,55x y D x x ??- ?--??

,从而可得2k ,化简运算即

可.

试题解析:

(I )由题意,得2{ 31

c a a c =-=解得3

{ 2

a c ==,

∴222

5b a c =-=,

故椭圆Γ的方程为22

195

x y +=.

点睛:本题主要考查了椭圆的方程及直线与椭圆的位置关系,是高考的必考点,属于难题.求椭圆方程的

方法一般就是根据条件建立,,a b c 的方程,求出22,a b 即可,注意222

,c

a b c e a

=+=

的应用;涉及直线与圆锥曲线相交时,未给出直线时需要自己根据题目条件设直线方程,要特别注意直线斜率是否存在的问题,避免不分类讨论造成遗漏,然后要联立方程组,得一元二次方程,利用根与系数关系写出1212,x x x x +?,再根据具体问题应用上式,其中要注意判别式条件的约束作用. 14.【2017-2018学年高中数学(苏教版)选修1-1 课时跟踪训练】已知平面内的动点P 到定直线l :x

=P 到定点F 0)(1)求动点P 的轨迹C 的方程;

(2)若点N 为轨迹C 上任意一点(不在x 轴上),过原点O 作直线AB ,交(1)中轨迹C 于点A 、B ,且直线AN 、BN 的斜率都存在,分别为k 1、k 2,问k 1·k 2是否为定值?

【答案】(1)

22142

x y += (2) k 1·k 2=-12 【解析】试题分析:(1)设出点P ,利用两点间的距离公式分别表示出P 到定直线的距离和到点F 的距离的

比,建立方程求得x 和y 的关系式,即P 的轨迹方程.(2)设出N ,A ,则B 的坐标可知,代入圆锥曲线的方程相减后,可求得k 1·k 2=-1

2

证明原式. 试题解析:

(1)设点P (x ,y ),依题意,有

.整理,得+=1.所以动点P 的轨迹C 的方程为+

=1.

(2)由题意,设N (x 1,y 1),A (x 2,y 2),则B (-x 2,-y 2),

+=1,+=1.k 1·k 2=

·

=-,为定值.

15.【河北省鸡泽县第一中学2017-2018学年高二10月月考】如图,已知椭圆()22

22:10x y C a b a b

+=>>的

左焦点为()1,0F -,过点F 做x 轴的垂线交椭圆于A ,B 两点,且3AB =.

(1)求椭圆C 的标准方程:

(2)若M ,N 为椭圆上异于点A 的两点,且直线,AM AN 的倾斜角互补,问直线MN 的斜率是否为定值?若是,求出这个定值;若不是,请说明理由.

【答案】(1)

22143

x y +=;(2) 12-.

试题解析:

(1)由题意可知1c =,

令x c =-,代入椭圆可得2b y a =±,所以

2

23b a

=,又221a b -=, 两式联立解得: 224,3a b ==, 22143

x y ∴+= .

又直线AM 的斜率与AN 的斜率互为相反数,在上式中以k -代替k ,可得

22

412334N k k x k --=-+, 3

2N N

y kx k =--+, 所以直线MN 的斜率()21

2

M N M N MN M N M N k x x k y y k x x x x ++-===---,

即直线MN 的斜率为定值,其值为1

2

-.

点睛: 本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.

16.【北京市西城鲁迅中学2016-2017学年高二上学期期中】过点()0,1M 且与直线:1l y =-相切,设圆心

C 的轨迹为曲线E , A , B (A 在y 轴的右侧)为曲线E 上的两点,点()0,(0)P t t >,且满足

(1)AB PB λλ=>.

(Ⅰ)求曲线E 的方程. (Ⅱ)若6t =,直线AB 的斜率为1

2

,过A , B 两点的圆N 与抛物线在点A 处共同的切线,求圆N 的方程.

(Ⅲ)分别过A , B 作曲线E 的切线,两条切线交于点Q ,若点Q 恰好在直线l 上,求证: t 与QA QB ?均为定值.

【答案】(1) 24x y = (2) 22

323125222x y ?

???++-=

? ?????

(3)见解析 【解析】试题分析:(1)由抛物线定义得曲线E 为抛物线,根据基本量可得其标准方程(2)先根据直线AB

方程与抛物线方程解出A ,B 两点坐标,再利用导数求出在点A 处的切线的斜率,则得圆心与A 连线的直线

方程,设圆一般式方程,利用三个条件解方程组得圆N 的方程.(3)设211,4x A x ?? ???, 2

22,4x B x ?? ???,

(),1Q a -,则利用导数求出在点A 处的切线的斜率,利用点斜式写出切线方程2

11240x ax --=,同理可得

2

22240x ax --=,即得2240x ax --=两根为12,x x ,利用韦达定理化简直线AB 斜率得2

a ,即得AB 方

程为12

a

y x =+,因此1t =,再根据向量数量积可计算得QA QB ?

=0

由2

4{

2120

x y x y =-+=,得()6,9A , ()4,4B -.

∵24x y =,即2

14

y x =

, 1

2

y x '=

. ∴抛物线24x y =在点A 处切线的斜率

1

632y '=?=.

∴圆C 的方程为2222

323323442222x y ?

???????++-=-++- ? ? ? ?????????,

整理得22

323125222x y ?

???++-=

? ??

???. (Ⅲ)设211,4x A x ?? ???, 2

22,4x B x ?? ??

?, (),1Q a -,

过点A 的切线方程为()211

142

x x y x x -=-, 即211240x ax --=,

同理得222240x ax --=,

∴122x x a +=, 124x x =-, 又∵22

12

1212444

AB

x x x x

k x x -

+==-,

整理得

2

22

48

42110

4

a

a a

+

=--++++=,

∴t与QA QB

?均为定值.

点睛:1.求定值问题常见的方法有两种

(1)从特殊入手,求出定值,再证明这个值与变量无关.

(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.

2.定点的探索与证明问题

(1)探索直线过定点时,可设出直线方程为y kx b

=+,然后利用条件建立,k b等量关系进行消元,借助于直线系的思想找出定点.

(2)从特殊情况入手,先探求定点,再证明与变量无关.

17.【南宁市2018届高三毕业班摸底联考】已知抛物线上一点到焦点的距离为.

(l)求抛物线的方程;

(2)抛物线上一点的纵坐标为1,过点的直线与抛物线交于两个不同的点(均与点不重合),设直线的斜率分别为,求证:为定值.

【答案】(1);(2)证明见解析.

【解析】试题分析:(1)由焦半径定义和点在抛物线上建立两个方程,两个未知数,可求得抛物线方程。(2)由(1)知抛物线的方程,及,,设过点的直线的方程为,代入

得,由韦达定理可求得为定值上。

(2)∵点在抛物线上,且.

∴,设过点的直线的方程为,即,

代入得,

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

圆锥曲线常见题型与答案

圆锥曲线常见题型归纳 一、基础题 涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。此类题在考试中最常见,解此类题应注意: (1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况; (3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中 222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=; 例题: (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( ) A .421=+PF PF B .6 21=+PF PF C .1021=+PF PF D .122 2 2 1 =+PF PF (答:C ); (2) 方程8=表示的曲线是_____ (答:双曲线的左支) (3)已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2) (4)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值围为____ (答:11(3,)(,2)22---U ); (5)双曲线的离心率等于25 ,且与椭圆14 922=+y x 有公共焦点,则该双曲线的方程_______(答:2 214x y -=); (6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为 _______(答:226x y -=) 二、定义题 对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。常用到的平面几何知识有:中垂线、角平分线的性质,勾股定理,圆的性质,解三角形(正弦余弦定理、三角形面积公式),当条件是用向量的形式给出时,应由向量的几何形式而用平面几何知识;涉及圆的解析几何题多用平面几何方法处理; 圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例): ①围:,a x a b y b -≤≤-≤≤; ②焦点:两个焦点(,0)c ±; ③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为 2a ,短轴长为2b ; ④准线:两条准线2 a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。 p e c b a ,,,,

圆锥曲线基本题型总结

锥曲线基本题型总结: 提纲: 一、定义的应用: 1、定义法求标准方程: 2、涉及到曲线上的点到焦点距离的问题: 3、焦点三角形问题: 二、圆锥曲线的标准方程: 1、对方程的理解 2、求圆锥曲线方程(已经性质求方程) 3、各种圆锥曲线系的应用: 三、圆锥曲线的性质: 1、已知方程求性质: 2、求离心率的取值或取值范围 3、涉及性质的问题: 四、直线与圆锥曲线的关系: 1、位置关系的判定: 2、弦长公式的应用: 3、弦的中点问题: 4、韦达定理的应用: 一、定义的应用: 1.定义法求标准方程: (1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处理)

1?设F-F2为泄点,∣F1F2∣=6 ,动点M满足IMF I I+∣M F2I= 6 ,则动点M的轨迹是() 1/1 C.圆 D.线段【注:2a>|Fi F2I是椭圆,2a=∣Fι F2 I是线段】 2.设%4, O), C(4,0) ,KZLlSC的周长等于18侧动点/1的轨迹方程为() A.5J+= 1 (yH0) - B.+ ? f ( X2,9)=1 (yH 0 ) C错误!-错误!=1 G?≠ 0) °D?错误! + = 1 (y≠0)【注:检验去点】 3.已知力(0, — 5)、B(0,5),昭I 一砂∣=2α,当α=3或5时,P点的轨迹为() A.双曲线或一条直线 B.双曲线或两条直线 C.双曲线一支或一条直线 D.双曲线一支或一条射线【注:2a<|F I F2∣是双曲线,2a=∣ F1F2∣?射线,注意一支与两支的判断】 4?已知两左点巧(一 3,0),尸2(3.0),在满足下列条件的平而内动点P的轨迹中,是双曲线的是() A↑?PF i?-?PF2 I |=5 B.∣ I PFll-I PF2? I =6 C.∣∣PF1∣-∣PF2∣∣=7 D.∣ I PF1?-?PF2? I =0 【注ι2a<∣Fι F2∣是双曲线】 5?平而内有两个泄点Fι(-5,0)和F2( 5 ,0),动点P满足IPF I l-I PF沪6 ,则动点P的轨迹方程是() A.? f(x2, 1 6)- 错误! = l(xW-4) " B.错误!?=l(xW?3)

最新圆锥曲线题型总结

圆锥曲线题型总结

直线和圆锥曲线常考题型 运用的知识: 1、中点坐标公式:1212,y 22 x x y y x ++= =,其中,x y 是点 1122(,)(,)A x y B x y ,的中点坐标。 2、弦长公式:若点 1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上, 则 1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一, AB === = 或者 AB === = 3、两条直线111222: ,:l y k x b l y k x b =+=+垂直:则121k k =- 两条直线垂直,则直线所在的向量120v v = 4、韦达定理:若一元二次方程2 0(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a +=-=。 常见的一些题型: 题型一:数形结合确定直线和圆锥曲线的位置关系 例题1、已知直线:1l y kx =+与椭圆22 : 14x y C m +=始终有交点,求m 的取值范围 解:根据直线:1l y kx =+的方程可知,直线恒过定点(0,1),椭圆22 : 14x y C m +=过动点04m ≠(,且,如果直线 :1l y kx =+和椭圆22 :14x y C m + =14m ≥≠,且,即14m m ≤≠且。 规律提示:通过直线的代数形式,可以看出直线的特点: :101l y kx =+?过定点(,) :(1)1l y k x =+?-过定点(,0) :2(1)1l y k x -=+?-过定点(,2)

高考圆锥曲线中的定点与定值问题(题型总结超全)

专题08解锁圆锥曲线中的定点与定值问题 一、解答题 1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆的左右焦点分别为,离心率为;圆过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于两点. (Ⅰ)求椭圆的标准方程; (Ⅱ)证明:在轴上存在定点,使得为定值;并求出该定点的坐标. 【答案】(1)(2) 【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得 。设x轴上的定点为,可得 ,由定值可得需满足,解得可得定点坐标。 解得。 ∴椭圆的标准方程为. (Ⅱ)证明: 由题意设直线的方程为, 由消去y整理得, 设,,

要使其为定值,需满足, 解得 . 故定点的坐标为 . 点睛:解析几何中定点问题的常见解法 (1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意. 2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为k 的直线l 经过点()1,0-与抛物线2 :2C y px =(0,p p >为常数)交于不同的两点,M N ,当1 2 k =时,弦MN 的长为15(1)求抛物线C 的标准方程; (2)过点M 的直线交抛物线于另一点Q ,且直线MQ 经过点()1,1B -,判断直线NQ 是否过定点?若过定点,求出该点坐标;若不过定点,请说明理由. 【答案】(1)24y x =;(2)直线NQ 过定点()1,4- 【解析】试题分析:(1)根据弦长公式即可求出答案; (2)由(1)可设()()() 2221122,2,,2,,2M t t N t t Q t t ,则1 2 MN k t t =+, 则()11:220MN x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++= ()1212:220NQ x t t y t t -++=. 由()1,0-在直线MN 上1 1 t t ?= (1); 由()1,1-在直线MQ 上22220t t tt ?+++=将(1)代入()121221t t t t ?=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ?-+-+-=,即可得出直线NQ 过定点.

直线和圆锥曲线题型总结

姓 名 年级 性 别 学 校 学 科 教师 上课日期 上课时间 课题 直线和圆锥曲线总结 题型一:数形结合确定直线和圆锥曲线的位置关系 例题1、已知直线:1l y kx =+与椭圆22 :14x y C m +=始终有交点,求m 的取值范围 题型二:弦的垂直平分线问题 例题2、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。 题型三:动弦过定点的问题 例题3、已知椭圆C :22221(0)x y a b a b +=>>的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。 (I )求椭圆的方程; (II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任 一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭 圆的焦点?并证明你的结论

题型四:过已知曲线上定点的弦的问题 例题4、已知点A 、B 、C 是椭圆E :22221x y a b += (0)a b >>上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC =,如图。(I)求点C 的坐标及椭圆E 的方程;(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线3x =对称,求直线PQ 的斜率。 题型五:共线向量问题 例题5、设过点D(0,3)的直线交曲线M :22 194 x y +=于P 、Q 两点,且DP DQ ,求实数的取值范围。

(完整版)高考圆锥曲线题型归类总结(最新整理)

)直接法:直接利用条件建立之间的关系; 和直线的距离之和等于 ),端点向圆作两条切线

的距离比它到直线的距离小于 :和⊙:都外切,则动圆圆心 代入转移法:动点依赖于另一动点的变化而变化,并且又在某已知曲线上,则可先用的代数式表示,再将代入已知曲线得要求的轨 是抛物线上任一点,定点为,分所成的比为 参数法:当动点坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。 过抛物线的焦点作直线交抛物线于

?OA OB ⊥?121K K ?=-?0OA OB ?= ?12120 x x y y += ②“点在圆内、圆上、圆外问题” “直角、锐角、钝角问题” “向量的数量积大于、等于、小于0问题”?? >0; ?1212x x y y + ③“等角、角平分、角互补问题” 斜率关系(或);?120K K +=12K K = ④“共线问题” (如: 数的角度:坐标表示法;形的角度:距离转化法); AQ QB λ= ?(如:A 、O 、B 三点共线直线OA 与OB 斜率相等);? ⑤“点、线对称问题” 坐标与斜率关系;? ⑥“弦长、面积问题” 转化为坐标与弦长公式问题(提醒:注意两个面积公式的合理选择);?六、化简与计算;七、细节问题不忽略; ①判别式是否已经考虑;②抛物线问题中二次项系数是否会出现0.基本解题思想: 1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无关;⑵也可先在特殊条件下求出定值,再给出一般的证明。 4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明 5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决; 6、转化思想:有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 7、思路问题:大多数问题只要忠实、准确地将题目每个条件和要求表达出来,即可自然而

圆锥曲线经典例题及总结(全面实用,你值得拥有!)

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两 个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22 2 21x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 22 ,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);

高考圆锥曲线解题技巧总结

第五篇 高考解析几何万能解题套路 解析几何——把代数的演绎方法引入几何学,用代数方法来解决几何问题。 与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到。 第一部分:基础知识 1.概念 特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F 1,F 2的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,a b ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向; (2)在椭圆中,a 最大,222 a b c =+,在双曲线中,c 最大,222c a b =+。 2.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0), 四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2 a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22221x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时, 称为等轴双曲线,其方程可设为22,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离 心率:c e a =,双曲线?1e >,等轴双曲线?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以22(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦 点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线:一条准线2p x =-; ⑤离心率:c e a =,抛物线?1e =。

圆锥曲线基本题型总结

圆锥曲线基本题型总结:提纲: 一、定义的应用: 1、定义法求标准方程: 2、涉及到曲线上的点到焦点距离的问题: 3、焦点三角形问题: 二、圆锥曲线的标准方程: 1、对方程的理解 2、求圆锥曲线方程(已经性质求方程) 3、各种圆锥曲线系的应用: 三、圆锥曲线的性质: 1、已知方程求性质: 2、求离心率的取值或取值范围 3、涉及性质的问题: 四、直线与圆锥曲线的关系: 1、位置关系的判定: 2、弦长公式的应用: 3、弦的中点问题:

4、韦达定理的应用: 一、定义的应用: 1. 定义法求标准方程: (1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处 理) 1.设F1, F2 为定点,|F1F2| =6,动点M满足|MF1| + |MF2| = 6,则动点M的轨 迹是() A.椭圆 B.直线 C.圆 D.线段【注:2a>|F1 F2| 是椭圆,2a=|F1 F2|是线段】 2. 设 B - 4,0) , C4,0),且厶ABC的周长等于18,则动点A的轨迹方程为) x2 y2 y2 x2 A.25+ -9 = i y z0) B.25^9 = 1 徉0) x2 y2 y2 x2 C.^+16= 1 y z 0) D£+_9 = 1 y z 0) 【注:检验去点】 3. 已知A0, - 5)、B0,5) ,|PA| - |PB| = 2a,当a= 3 或 5 时,P点的轨迹为) A. 双曲线或一条直线 B. 双曲线或两条直线 C. 双曲线一支或一条直线

D. 双曲线一支或一条射线【注:2av|F1 F2|是双曲线,2a=|F1 F2|是射线,注意一支与两支的判断】

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

圆锥曲线大题题型归纳3

圆锥曲线大题题型归纳 基本方法: 1. 待定系数法:求所设直线方程中的系数,求标准方程中的待定系数a 、b 、c 、e 、p 等等; 2. 齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题; 3. 韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根; 4. 点差法:弦中点问题,端点坐标设而不求。也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式; 5. 距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题; 基本思想: 1.“常规求值”问题需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题当作存在去求,若不存在则计算时自然会无解; 3.证明“过定点”或“定值”,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关; 4.证明不等式,或者求最值时,若不能用几何观察法,则必须用函数思想将对象表示为变量的函数,再解决; 5.有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 6.大多数问题只要真实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。 题型一:求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题 例1、 已知F 1,F 2为椭圆2100x +2 64 y =1的两个焦点,P 在椭圆上,且∠F 1PF 2=60°,则△F 1PF 2的面积为多少? 点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。 变式1、已知12,F F 分别是双曲线223575x y -=的左右焦点,P 是双曲线右支上的一点,且

直线与圆锥曲线题型总结

直线与圆锥曲线题型总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

直线和圆锥曲线基本题型 题型一:数形结合确定直线和圆锥曲线的位置关系 例题1、已知直线:1l y kx =+与椭圆22 :14x y C m +=始终有交点,求m 的取值范 围 解:根据直线:1l y kx =+的方程可知,直线恒过定点(0,1),椭圆 22 :14x y C m +=过动点04m ±≠(,且,如果直线:1l y kx =+和椭圆22 :14x y C m +=始 终有交点,则 14m ≥≠,且,即14m m ≤≠且。 题型二:弦的垂直平分线问题 例题2、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。 设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。 由2 (1) y k x y x =+?? =?消y 整理,得 2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ?=--=-+> 即21 04 k << ② 由韦达定理,得:212221 ,k x x k -+=-121x x =。则线段 AB 的中点为 22 211(,)22k k k --。 线段的垂直平分线方程为:2 2 1112()22k y x k k k --=-- 令y=0,得021122 x k = -,则211( ,0)22 E k -

圆锥曲线经典题型总结(含答案)

圆锥曲线整理 1.圆锥曲线的定义: (1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|); (2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d . 圆锥曲线的定义是本部分的一个重点内容,在解题中有广泛的应用,在理解时 要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12 222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。 (3)抛物线:开口向右时22(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。 注意:1.圆锥曲线中求基本量,必须把圆锥曲线的方程化为标准方程。 2.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): 椭圆:由x 2 ,y 2分母的大小决定,焦点在分母大的坐标轴上。 双曲线:由x 2 ,y 2项系数的正负决定,焦点在系数为正的坐标轴上; 抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 3.与双曲线x 2a 2- y 2 b 2 =1有相同渐近线的双曲线方程也可设为x 2a 2- y 2 b 2 =λ(λ≠0), 渐近线方程为y =±b a x 的双曲线方程也可设为x 2a 2- y 2 b 2 =λ(λ≠0).要求双曲线x 2a 2- y 2b 2 =λ(λ≠0)的渐近线,只需令λ=0即可. 4.直线与圆锥曲线的位置关系的判断是利用代数方法,即将直线的方程与圆锥曲线的方程联立,根据方程组解的个数判断直线与圆锥曲线的位置关系. 解决直线与圆锥曲线问题的通法 (1)设方程及点的坐标. (2)联立直线方程与曲线方程得方程组,消元得方程. (3)应用韦达定理及判别式. (4)结合已知、中点坐标公式、斜率公式及弦长公式求解. 5.若直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),且直线P 1P 2的斜率为 k ,则弦长|P 1P 2|=1+k 2|x 1-x 2|= 1+1 k 2|y 1-y 2|(k ≠0).|x 1-x 2|,|y 1-y 2|

高中数学 圆锥曲线题型总结

直线和圆锥曲线常考题型 运用的知识: 1、中点坐标公式:1212,y 22 x x y y x ++= =,其中,x y 是点 1122(,)(,)A x y B x y ,的中点坐标。 2、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上, 则 1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一, AB === = 或者 AB === = 3、两条直线111222: ,:l y k x b l y k x b =+=+垂直:则121k k =- 两条直线垂直,则直线所在的向量120v v = 4、韦达定理:若一元二次方程2 0(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a +=-=。 常见的一些题型: 题型一:数形结合确定直线和圆锥曲线的位置关系 例题1、已知直线:1l y kx =+与椭圆22 : 14x y C m +=始终有交点,求m 的取值范围 解:根据直线:1l y kx =+的方程可知,直线恒过定点(0,1),椭圆22 : 14x y C m +=过动点04m ±≠(,且,如果直线 :1l y kx =+和椭圆22 :14x y C m + =14m ≥≠,且,即14m m ≤≠且。 规律提示:通过直线的代数形式,可以看出直线的特点: :101l y kx =+?过定点(,) :(1)1l y k x =+?-过定点(,0) :2(1)1l y k x -=+?-过定点(,2) 题型二:弦的垂直平分线问题 例题2、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在, 求出0x ;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。

圆锥曲线基本题型总结

圆锥曲线基本题型总结: 提纲: 一、定义的应用: 1、定义法求标准方程: 2、涉及到曲线上的点到焦点距离的问题: 3、焦点三角形问题: 二、圆锥曲线的标准方程: 1、对方程的理解 2、求圆锥曲线方程(已经性质求方程) 3、各种圆锥曲线系的应用: 三、圆锥曲线的性质: 1、已知方程求性质: 2、求离心率的取值或取值范围 3、涉及性质的问题: 四、直线与圆锥曲线的关系: 1、位置关系的判定: 2、弦长公式的应用: 3、弦的中点问题: 4、韦达定理的应用: 一、定义的应用: 1.定义法求标准方程: (1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处理)1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是( )

A .椭圆 B .直线 C .圆 D .线段 【注:2a>|F 1 F 2|是椭圆,2a=|F 1 F 2|是线段】 2.设B -4,0),C 4,0),且△ABC 的周长等于18,则动点A 的轨迹方程为 ) A.x 225+y 29 =1 y ≠0) B.y 225+x 29=1 y ≠0) C.x 216+y 216=1 y ≠0) D.y 216+x 2 9=1 y ≠0) 【注:检验去点】 3.已知A 0,-5)、B 0,5),|PA |-|PB |=2a ,当a =3或5时,P 点的轨迹为 ) A.双曲线或一条直线 B.双曲线或两条直线 C.双曲线一支或一条直线 D.双曲线一支或一条射线 【注:2a<|F 1 F 2|是双曲线,2a=|F 1 F 2|是射线,注意一支与两支的判断】 4.已知两定点F 1-3,0),F 23,0),在满足下列条件的平面内动点P 的轨迹中,是双曲线的是 ) A.||PF 1|-|PF 2||=5 B.||PF 1|-|PF 2||=6 C.||PF 1|-|PF 2||=7 D.||PF 1|-|PF 2||=0 【注:2a<|F 1 F 2|是双曲线】 5.平面内有两个定点F 1-5,0)和F 25,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是 ) A.x 216-y 29=1x ≤-4) B.x 29-y 216=1x ≤-3) C.x 216-y 29=1x ≥4) D.x 29-y 2 16=1x ≥3) 【注:双曲线的一支】 6.如图,P 为圆B :x +2)2+y 2=36上一动点,点A 坐标为2,0),线段AP 的垂直平分线交直线BP 于点Q ,求点Q 的轨迹方程. 7.已知点A(0,3)和圆O 1:x 2+(y +3)2=16,点M 在圆O 1上运动,点P 在半径O 1M 上,且|PM|=|PA|,求动点P 的轨迹方程.

圆锥曲线经典题型总结(含答案)

圆锥曲线整理 1.圆锥曲线的定义: (1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|); (2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d . 圆锥曲线的定义是本部分的一个重点内容,在解题中有广泛的应用,在理解时 要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1 (0a b >>)。 % (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。 (3)抛物线:开口向右时22(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。 注意:1.圆锥曲线中求基本量,必须把圆锥曲线的方程化为标准方程。 2.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): 椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 双曲线:由x 2 ,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; 抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 在椭圆中,a 最大,222a b c =+,在双曲线中,c 最大,222 c a b =+。 | 3.与双曲线x 2a 2-y 2b 2=1有相同渐近线的双曲线方程也可设为x 2a 2-y 2 b 2=λ(λ≠0),渐近线方程为y =±b a x 的双曲线方程也可设为x 2a 2-y 2b 2=λ(λ≠0).要求双曲线x 2a 2-y 2b 2=λ(λ≠0)的渐近线,只需令λ=0即可. 4.直线与圆锥曲线的位置关系的判断是利用代数方法,即将直线的方程与圆锥曲线的方程联立,根据方程组解的个数判断直线与圆锥曲线的位置关系. 解决直线与圆锥曲线问题的通法 (1)设方程及点的坐标. (2)联立直线方程与曲线方程得方程组,消元得方程. (3)应用韦达定理及判别式. (4)结合已知、中点坐标公式、斜率公式及弦长公式求解. — 5.若直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),且直线P 1P 2的斜率为k , 则弦长|P 1P 2|=1+k 2|x 1-x 2|= 1+1 k 2|y 1-y 2|(k ≠0).|x 1-x 2|,|y 1-y 2|的求法, 通常使用根与系数的关系,需要作下列变形:|x 1-x 2|=x 1+x 2 2-4x 1x 2,|y 1 -y 2|= y 1+y 2 2-4y 1y 2. 6.与圆锥曲线的弦的中点有关的问题 (1)通法.联立方程利用根与系数的关系 (2)“点差法”.点差法的作用是用弦的中点坐标表示弦所在直线的斜率. 点差法的步骤: ①将两交点A (x 1,y 1),B (x 2,y 2)的坐标代入曲线的方程. ②作差消去常数项后分解因式得到关于x 1+x 2,x 1-x 2,y 1+y 2,y 1-y 2的关系式.

高考圆锥曲线题型归类总结

圆锥曲线的七种常考题型 题型一:定义的应用 1、圆锥曲线的定义: (1)椭圆 (2)双曲线 (3)抛物线 2、定义的应用 (1)寻找符合条件的等量关系 (2)等价转换,数形结合 3、定义的适用条件: 典型例题 例1、动圆M 与圆C 1:()2 2 136x y ++=内切,与圆C 2:()2 2 14x y -+=外切,求圆心M 的 轨迹方程。 例2、方程() () 2 2 22668x y x y -+- ++=表示的曲线是 题型二:圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): 1、椭圆:由2 2 x y 、分母的大小决定,焦点在分母大的坐标轴上。 2、双曲线:由2 2 x y 、系数的正负决定,焦点在系数为正的坐标轴上; 3、抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 典型例题 例1、已知方程1212 2=-+-m y m x 表示焦点在y 轴上的椭圆,则m 的取值范围是 例2、k 为何值时,方程 1592 2=---k y k x 表示的曲线: (1)是椭圆;(2)是双曲线.

题型三:圆锥曲线焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题 1、常利用定义和正弦、余弦定理求解 2、12PF m PF n ==,,2 2 m n m n mn m n +-+,,,四者的关系在圆锥曲线中的应用 典型例题 例1、椭圆x a y b a b 222 210+=>>()上一点P 与两个焦点F F 12,的张角α=∠21PF F , 求21PF F ?的面积。 例2、已知双曲线的离心率为2,F 1、F 2是左右焦点,P 为双曲线上一点,且 6021=∠PF F , 31221=?PF F S .求该双曲线的标准方程 题型四:圆锥曲线中离心率,渐近线的求法 1、a,b,c 三者知道任意两个或三个的相等关系式,可求离心率,渐进线的值; 2、a,b,c 三者知道任意两个或三个的不等关系式,可求离心率,渐进线的最值或范围; 3、注重数形结合思想不等式解法 典型例题 例1、已知1F 、2F 是双曲线122 22=-b y a x (00>>b a ,)的两焦点,以线段21F F 为边作 正三角形21F MF ,若边1MF 的中点在双曲线上,则双曲线的离心率是( ) A. 324+ B. 13- C. 2 1 3+ D. 13+ 例2、双曲线)00(122 22>>=-b a b y a x ,的两个焦点为F 1、F 2,若P 为其 上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为 A. (1,3) B.(]13, C.(3,+∞) D.[)3,+∞

相关文档
最新文档