高考数学专题突破数形结合思想

高考数学专题突破数形结合思想
高考数学专题突破数形结合思想

高考数学专题突破:数形结合思想

一.知识探究:

数形结合作为一种重要的数学思想方法历年来一直是高考考察的重点之一。数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。

这种思想方法体现在解题中,就是指在处理数学问题时,能够将抽象的数学语言与直观的几何图象有机结合起来思索,促使抽象思维和形象思维的和谐复合,通过对规范图形或示意图形的观察分析,化抽象为直观,化直观为精确,从而使问题得到简捷解决。

1.数形结合的途径 (1)通过坐标系形题数解

借助于建立直角坐标系、复平面可以将图形问题代数化。这一方法在解析几何中体现的相当充分(在高考中主要也是以解析几何作为知识载体来考察的);值得强调的是,形题数解时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大缩短代数推理)

实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。

4)1()2(22=-+-y x 如等式

(2)通过转化构造数题形解

许多代数结构都有着对应的几何意义,据此,可以将数与形进行巧妙地转化.例如,将a >0与距离互化,将a 2

与面积互化,将a 2

+b 2

+ab=a 2

+b 2

-2)12060(cos ?=?=θθθ或b a 与

余弦定理沟通,将a≥b≥c>0且b+c >a 中的a 、b 、c 与三角形的三边沟通,将有序实数对(或复数)和点沟通,将二元一次方程与直线、将二元二次方程与相应的圆锥曲线对应等等.这种代数结构向几何结构的转化常常表现为构造一个图形(平面的或立体的)。另外,函数的图象也是实现数形转化的有效工具之一,正是基于此,函数思想和数形结合思想经常借助于相伴而充分地发挥作用。

2.数形结合的原则 (1)等价性原则

在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,但它同时也是抽象而严格证明的诱导。

(2)双向性原则

在数形结合时,既要进行几何直观的分析,又要进行代数抽象的探索,两方面相辅相成,仅对代数问题进行几何分析(或仅对几何问题进行代数分析)在许多时候是很难行得通的。

例如,在解析几何中,我们主要是运用代数的方法来研究几何问题,但是在许多时候,若能充分地挖掘利用图形的几何特征,将会使得复杂的问题简单化。

(3)简单性原则

就是找到解题思路之后,至于用几何方法还是用代数方法、或者兼用两种方法来叙述解题过程,则取决于那种方法更为简单.而不是去刻意追求一种流性的模式——代数问题运用几何方法,几何问题寻找代数方法。

二.命题趋势

纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。

数形结合是每年高考必考的内容,预测2008年对本专题的考察为:选择题可采用的简易解法,还有函数问题对应图形性质等,尤其关注三个“二次”的互相转化。

三.例题点评

题型1:利用数轴、韦恩图解决集合与函数问题 例1.(1)(2007年湖南理3)设M N ,是两个集合,则“M

N ≠?”

是“M N ≠?”

的( )

A .充分不必要条件

B .必要不充分条件

C .充分必要条件

D .既不充分又不必要条件

(2)(1999全国,1)如图所示,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( )

A.(M ∩P )∩S

B.(M ∩P )∪S

C.(M ∩P )∩

I

S

D.(M ∩P )∪

I

S

解析:(1)B ;由韦恩图知M N ≠??/M

N ≠?;反之,

M N ≠?.M N ?≠?

(2)C;由图知阴影部分表示的集合是M ∩P 的子集且是

I

S 的子集,故答案为C。

点评:本题主要利用数轴、韦恩图考查集合的概念和集合的关系。

例2.(1)(06重庆卷)如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )

(2)(06浙江卷)对a,b ∈R,记max|a,b |=??

?≥b

a b b

a a <,,函数f (x )=max||x+1|,|x -2||(x ∈R)

的最小值是 。

解析:(1)如图所示,单位圆中AB 的长为x ,()f x 表示弧AB 与弦AB 所围成的弓形面积的2倍,当AB 的长小于半圆时,函数()y f x =的值增加的越来越快,当AB 的长大于半圆时,函数()y f x =的值增加的越来越慢,所以函数()y f x =的图像是D 。

(2)由()()2

1212122≥

?-≥+?-≥+x x x x x , 故()????

??

?

?

?? ?

?

<-?

?? ?

?

≥+=212211

x x x x x f ,其图象如右, 则()2

312121min =+=

??

?

??=f x f 。 点评:数学中考查创新思维,要求必须要有良

好的数学素养,考查新定义函数的理解、解绝对值不等式,中档题,借形言数。 题型2:解决方程、不等式问题

例3.若方程()

()lg lg -+-=-x x m x 233在()

x ∈03,内有唯一解,求实数m 的取值范围。

解析:(1)原方程可化为()()--+=<

设()()y x x y m 12

22103=--+<<=,

在同一坐标系中画出它们的图象(如图)。由原方程在(0,3)内有唯一解,知y y 12与的图象只有一个公共点,可见m 的取值范围是-<≤10m 或m =1。

例4.已知u v ≥≥11,且()()()()()log log log log a a a a u v au av

a 2

2

221+=+>,求

()l o g

a

uv 的最大值和最小值。

解析:令x u y v a a ==log log ,,

1+

x

则已知式可化为 ()()()x y x y -+-=≥≥114002

2

,,

再设()(

)

t uv x y x y a ==+≥≥log 00,,由图3可见,则当线段y x t =-+

()x y ≥≥00,与圆弧()()()x y x y -+-=≥≥114002

2

,相切时,截距

t 取最大值

t max =+222(如图3中CD 位置);当线段端点是圆弧端点时,t 取最小值t min =+13

(如图中AB 位置)。因此log ()a uv 的最大值是222+,最小值是13+。

点评:数形结合的思想方法,是研究数学问题的一个基本方法。深刻理解这一观点,有利于提高我们发现问题、分析问题和解决问题的能力。 题型3:解决三角函数、平面向量问题

例5.(1)(07年北京理13)2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐

角为θ,那么cos2θ的值等于 。

(2)(2007年陕西15)如图,平面内有三个向量、OB 、OC ,其中OA 与OB 的夹角为

120°,OA 与的夹角为30°,且|OA |=||=1,||=32,若OC =λ+μOB (λ,μ∈R ),则λ+μ的值

为 。

解析:(1)

7

25

;注意图形是正方体,充分利用全等及直角三角形的性质处理问题; (2)6;解析:(OC )2=(λOA +μOB )2=λ2OA 2+μ2OB 2

+2λμ?=12;注意

OA 与OC 的夹角为30°,OA 与OB 的夹角为120°,结合图形容易得到OB 与OC 的夹角

为90°,得μ=0;这样就得到答案。

点评:综合近几年的高考命题,平面向量单纯只靠运算解题是不够的,需要结合几何特征。

例6.(2007山东20)如图,甲船以每小时海里的速度向正北方向航行,乙船按固定

方向匀速直线航行,当甲船位于1A 处时,乙船位于甲船的北偏西105?

的方向1B 处,此时两船相距20海里.当甲船航行20分钟到达2A 处时,乙船航行到甲船的北偏西120?

方向的2B 处,

此时两船相距,问乙船每小时航行多少海里? 解:如图,连结

12A B

,22A B =

1220

60

A A =

?= 122A A B ?是等边三角形,1121056045B A B ∠=?-?=?,

在121A B B ?中,由余弦定理得

22212111211122

2

2cos 4520220200

2

B B A B A B A B A B =+-??

=+-??=,

12B B =

60=

答:乙船每小时航行海里。

点评:三角形经常和正余弦定理结合到一块,利用平面图形的几何意义以及具有几何性质的处理实际问题,注意对解的存在性的讨论。 题型4:解析几何问题

例7.(1)(06湖南卷)已知1,10,220x x y x y ≥??-+≤??--≤?

则22

x y +的最小值是 ;

(2)(06全国II )过点(1,2)的直线l 将圆(x -2)2

+y 2

=4分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k = 。

解析:(1)由??

???≤--≤+-≥022011y x y x x ,画出可行域,得交点A(1,2),B(3,4),则2

2y

x +的最小值是5。

(2)(数形结合)由图形可知点

A 在圆2

2

(2)4x y -+=的内部, 圆心为O(2,0)要使得劣弧所对的圆心角最小,只能是直线l OA ⊥,

所以1l OA k k =-==

点评:线性规划是借助平面区域表示直线、不等式等代数表达式,最终借助图形的性质解决问题;对于直线与圆的位置关系以及一些相关的夹角、弦长问题,往往要转化为点到线的距离问题来解决。

例8.(1)(06上海卷)若曲线2

y =|x |+1与直线y =

kx +b 没有公共点,则k 、b 分别应满足的条件

是 。

解析:作出函数2

1,0||11,0x x y x x x +≥?=+=?-+

的图象,如

右图所示:所以,0,(1,1)k b =∈-;

(2)(06江西卷)如图,椭圆22

221(0)

x y Q a b a b

+=>>:的右焦点为(0)F c ,,过点F 的一动直线m 绕点F 转动,并且交椭圆于A B , 两点,P 为线段AB 的中点.

(1)求点P 的轨迹H 的方程;

(2)若在Q 的方程中,令21cos sin a θθ=++,2sin 0b θθπ??

=< ?2??

,设轨迹H 的最高点和最低点分别为M 和N ,当tan θ为何值时,MNF △为一个正三角形?

解析:如图,(1)设椭圆Q :22

22x y 1a b

+=(a >b >0)上的点A (x 1,y 1)、B (x 2,y 2),

又设P 点坐标为P (x ,y ),则2222221122222222b x a y a b 1b x a y a b 2?????+=…………(

)+=…………()

1?当AB 不垂直x 轴时,x 1≠x 2,

由(1)-(2)得b 2(x 1-x 2)2x +a 2

(y 1-y 2)2y =0,

212212y y b x y

x x a y x c

∴-=-=

--, ∴b 2x 2

+a 2y 2

-b 2

cx =0…………(3),

2?当AB 垂直于x 轴时,点P 即为点F ,满足方程(3),

故所求点P 的轨迹方程为:b 2x 2+a 2y 2-b 2

cx =0,

(2)因为轨迹H 的方程可化为:2

222222c x y c a b a

(-)

+=(),

∴M (c 2,2bc a ),N ( c 2,-2bc a

),F (c ,0),使△MNF 为一个正三角形时,

则tan 6

π=22

bc

a c =

b a ,即a 2=3b 2,由于2

1cos sin a θθ=++,

2sin 0b θθπ?

?=< ?2?

?≤,则1+cos θ+sin θ=3 sin θ,得tan θ=43。

点评:对于直线与圆锥曲线的相交及相关问题,借数言形是常用的方法,可以通过斜率

处理垂直、夹角等问题,等等。 题型5:导数问题 例9.(06天津卷)函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图

象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )

A .1个

B .2个

C .3个

D . 4个

解析:函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,函数)(x f 在开区间),(b a 内有极小值的点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个,选A 。

点评:通过函数图像分解导函数的正负,对应好原函数的单调递增、单调递减。

例10.(06浙江卷)已知函数f(x)=x 3

+ x 3

,数列|x n |(x n >0)的第一项x n =1,以后各项按如下方式取定:曲线x=f(x)在))(,(11++n n x f x 处的切线与经过(0,0)和(x n ,f (x n ))两点的直线平行(如图)

求证:当n *N ∈时,

(Ⅰ)x ;2312

12+++=+n n n n x x x (Ⅱ)21)2

1()21(--≤≤n n n x 。

证明:(I )因为'2

()32,f x x x =+所以曲线()y f x =在11(,())n n x f x ++处的切线斜率

1

2

1132.n n n k x x +++=+ 因为过(0,0)和(,())n n x f x 两点的直线斜率是2

,n n x x +所以221132n n n n x x x x +++=+.

(II )因为函数2

()h x x x =+当0x >时单调递增,

而221132n n n n x x x x +++=+2

1142n n x x ++≤+211(2)2n n x x ++=+,

所以12n n x x +≤,即

11,2n n x x +≥因此1121211

().2

n n n n n n x x x x x x x ----=??????≥ 又因为12

2

12(),n n n n x x x x +++≥+令2

,n n n y x x =+则

11

.2

n n y y +≤ 因为2

1112,y x x =+=所以12111()().2

2

n n n y y --≤?=

因此2

21(),2n n n n x x x -≤+≤故1211()().22

n n n x --≤≤

点评:切线方程的斜率与函数的导数对应,建立了几何图形与函数值的对应。 题型6:平面几何问题

例11.已知ABC ?三顶点是(4,1),(7,5),(4,7)A B C -,求A ∠的平分线AD 的长。 解析:第一步,简单数形结合,在直角坐标系下,描出已知点,,A B C ,画出ABC ?的边及其A ∠的平分线AD 。(如图)

第二步,观察图形,挖掘图形的特性(一般性或特殊性),通过数量关系证明(肯定或否定)观察、挖掘出来的特性。特性有:

(1)AB AC ⊥;(2)45BAD CAD ∠=∠=?; (3)2CD DB =,(4)260ABC ACB ∠=∠=?等等。

证明:∵(4,1),(7,5),(4,7)A B C -∴(3,4),(8,6)AB AC ==-,5,10AB AC == ∵38460AB AC ?=-?+?=

∴(1)AB AC ⊥,∵AD 是A ∠的平分线; ∴(2)45BAD CAD ∠=∠=?,∵10

25

CD AC DB

AB

=

=

=(角平分线定理) ;

∴(3)2CD DB =

,∵tan tan 602ABC ∠=∠?=

≠,

∴(4)260ABC ACB ∠=∠=?不正确,

第三步,充分利用图形的属性,创造性地数形结合,完成解题。过点D 作DE AB ⊥,

交AB 于点E ,则有BDE ?∽BCA ?或110

33

DE AC =

=等等。又在Rt ADE ?中,(可

以口答出)3

AD ==

2

1点评:数形结合的基础是作图要基本准确,切忌随手作图!数形结合的关键是挖掘图形的几何属性,切忌只重数量关系忽视位置关系!如果把本题的图形随手作成如下一般平面图形,则失去了数形结合的基础,很难挖掘出图形的几何属性,是很失败的。

12

A =

{(x,y )||x |≤1,|y |≤1},B ={(x,y )|(x

a

)2

+(y –

a

)2

≤1,

a

∈R },若

A ∩

B ≠?,则

a

的取值范围

是 。

解析:如图,集合A 所表示的点为正方形PQRS 的内部及其边界,集合B 所表示的

点为以C (a ,a )为圆心,以1为半径的圆的内部及其边界.而圆心C (a ,a )在直线y=x 上,故要使A ∩B ≠?,

则2

2

1221+≤≤-

-a 为所求。

点评:应用几何图象解决问题时,尤其要注意特殊点(或位置)的情况,本题就是按照这样的思路直接求出实数a 的取值范围。

四.思维总结

从目前高考“注重通法,淡化特技”的命题原则来看,对于数形结合的数学思想方法,我们在复习时,应将重点置于解析几何中图象的几何意义的重视与挖掘以及函数图象的充分利用之上即可。

数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。

数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。

上海市2019届高三数学理一轮复习专题突破训练:数列

上海市2017届高三数学理一轮复习专题突破训练 数列 一、填空、选择题 1、(2016年上海高考)无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________. 2、(2015年上海高考)记方程①:x 2+a 1x+1=0,方程②:x 2+a 2x+2=0,方程③:x 2+a 3x+4=0,其中a 1,a 2,a 3是正实数.当a 1,a 2,a 3成等比数列时,下列选项中,能推出方程③无实根的是( ) A .方程①有实根,且②有实根 B . 方程①有实根,且②无实根 C .方程①无实根,且②有实根 D . 方程①无实根,且②无实根 3、(2014年上海高考)设无穷等比数列{}n a 的公比为q ,若()134lim n n a a a a →∞ =++ +,则q = . 4、(虹口区2016届高三三模)若等比数列{}n a 的公比1q q <满足,且24 344,3,a a a a =+=则12lim()n n a a a →∞ ++ +=___________. 5、(浦东新区2016届高三三模)已知公差为d 的等差数列{}n a 的前n 项和为n S ,若 533S S =,则53 a a = 6、(杨浦区2016届高三三模)若两整数a 、 b 除以同一个整数m ,所得余数相同,即 a b k m -=()k Z ∈,则称a 、b 对模m 同余,用符号(mod )a b m ≡表示,若10(mod 6)a ≡(10)a >,满足条件的a 由小到大依 次记为12,,,,n a a a ??????,则数列{}n a 的前16项和为 7、(黄浦区2016届高三二模) 已知数列{}n a 中,若10a =,2i a k =*1 (,22,1,2,3, )k k i N i k +∈≤<=,则满足2100i i a a +≥的i 的最小值 为 8、(静安区2016届高三二模)已知数列{}n a 满足181a =,1 311log ,2, (*)3, 21n n n a a n k a k N n k ---+=?=∈?=+?,则数列{}n a 的前n 项和n S 的最大值为 . 9、(闵行区2016届高三二模)设数列{}n a 的前n 项和为n S , 2 2|2016|n S n a n (0a >),则使得1 n n a a +≤(n ∈* N )恒成立的a 的最大值为 . 10、(浦东新区2016届高三二模)已知数列{}n a 的通项公式为(1)2n n n a n =-?+,* n N ∈,则这个数列的前 n 项和n S =___________. 11、(徐汇、金山、松江区2016届高三二模)在等差数列{}n a 中,首项13,a =公差2,d =若某学生对其中连

2020年高考数学二轮复习(上海专版) 专题15 数形结合思想(原卷版)

专题15 数形结合思想 专题点拨 数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合. (1)数形结合思想解决的问题常有以下几种: ①构建函数模型并结合其图像求参数的取值范围; ②构建函数模型并结合其图像研究方程根的范围; ③构建函数模型并结合其图像研究量与量之间的大小关系; ④构建函数模型并结合其几何意义研究函数的最值问题和证明不等式; ⑤构建立体几何模型研究代数问题; ⑥构建解析几何中的斜率、截距、距离等模型研究最值问题; ⑦构建方程模型,求根的个数; ⑧研究图形的形状、位置关系、性质等. (2)数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解填空题、选择题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点: ①准确画出函数图像,注意函数的定义域; ②用图像法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个函数的图像,由图求解. (3)在运用数形结合思想分析问题和解决问题时,需做到以下四点: ①要彻底明白一些概念和运算的几何意义以及曲线的代数特征; ②要恰当设参,合理用参,建立关系,做好转化; ③要正确确定参数的取值范围,以防重复和遗漏; ④精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解. 例题剖析 一、数形结合思想在求参数、代数式的取值范围、最值问题中的应用

关于数形结合思想的教学方式浅谈

关于数形结合思想的教学方式浅谈 资料来源:大学生教育资源 我有幸参加了由省教科所组织的四川省教育教学共同体举办的关于“小学生数形结合能力的研究”论坛,全省30个共同体研究单位进行了三年级和六年级数形结合能力调查与分析,共同体学校对此项工作非常重视,都给出了分析报告。论坛中来自7所学校的一线教师带来了七堂精彩的数形结合课,有以形来揭示数的《路程速度时间》、《相遇问题》、《合理安排提高效率》、《比赛场次》,有以数来表示形的《点阵中的规律》、《组合图形》、《方向与位置》等,七节课为此次论坛数形结合能力研究提供了很多研究素材,特别是经过小组讨论、专家点评、专家讲座后,给我的教学方法提供了启发。 通过本次论坛,通过与专家面对面的评课、议课结合自己的教学实际和本次对三、六年级的数形能力的调查与分析,主要对以下问题提出了质疑: ●数形结合中“数”与“形”谁先谁后? ●教师在数学教学中如何充分渗透数形结合的思想? ●通过直观的图形揭示数,是否影响了学生的抽象思维能力? ●如何在教学中很好地通过数抽象出图形,看图提问题、解决问题? ●数学课堂中能否建立一种数一形一数或形一数一形的数

学教学模式? ●在高段教学中,数形怎样结合才能促进学生主动发展? 在这次论坛中,通过专家对课例的点评和对数形结合的理解,结合课例对一线教师提出的质疑作出了解答,使一线教师对数形结合在实际教学中要注意的问题有了更深入的理解和认识,使我由最初的迷茫发展至现在的茅塞顿开,达到了参与这次论坛的目的。 一、数形结合是一种数学思考方法 数形结合是数学思考、数学研究、数学应用、数学教学的基本方式,数形结合是双向过程,要处理好数与形的结合,要根据教材的特点和学生的思维水平而定。 1.就教材内容而言,对于较新、较难的教学内容、对于学习较困难的学生可先形后数,用形来表示数,学生通过形来表示数量之间的关系;对于后继教材和较容易理解的内容可先数后形,通过数来揭示形。 2.就学生的年龄特征而言。中低段学生是以具体形象思维为主,实施先形后数,让学生从形中读懂重要的数学信息,并整理信息,提出数学问题并加以解决,对于逻辑思维能力较强的中高段学生,应该逐步过渡到先数后形,如在教学分数的乘、除法意义,教学长方体、正方体、圆柱体的拼、截引起的面积变化时,让学生通过画出直观图形,能让学生很快找出面的变化,

高三数学教案 数形结合思想

第十三专题 数形结合思想 考情动态分析: 数形结合就是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维结合,通过“以形助数”或“以数解形”,可使复复杂问题简单化、抽象总是具体化,从而起到优化解题途径的目的. 一般地说,“形”具有形象、直观的特点,易于整体上定性地分析问题.“数形对照”便于寻求思路,化难为易;“数”则具有严谨、准确的特点,能够严格论证和定量求解.“由数想形”可以弥补“形”难以精确的弊端.恰当地应用数形结合是提高解题速度、优化解题过程的一种重要方法. 纵观多年来的高考试题,巧妙运用数形结合的数学思想方法来解决一些抽象数学问题,可起到事半功倍的效果. 数形结合的重点是研究“以形助数”,但以数解形在近两年高考试题中也得到了加强,其发展趋势不容忽视. 数形结合在解题过程中应用十分广泛,如在解方程和解不等式问题中,在求函数的值域和最值问题中,在三角函数问题中都有充分体现.运用数形结合思想解题,不仅直观易于寻找解题途径,而且能避免繁杂的计算和推理,简化解题过程,这在选择题、填空题解答中更显优越. 第一课时 方程、函数中数形结合问题 一、考点核心整合 利用“形”的直观来研究方程的根的情况,讨论函数的值域(或最值),求解变量的取值范围,运用数形结合思想考查化归转化能力、逻辑思维能力,能使烦琐的数量运算变得简捷. 二、典例精讲: 例1 方程的实根的个数有( ) A 、1个 B 、2个 C 、3个 D 、无穷多个 例 2 已知函数x x x g x x f 2)(|,|23)(2 -=-=,构造函数)(x F ,定义如下:当)()(x g x f ≥时,)()(x g x F =;当)()(x g x f <时,)()(x f x F =.那么)(x F ( ) A 、有最大值3,最小值1- B 、有最大值727-,无最小值 C 、有最大值,无最小值 D 、无最大值,也无最小值 例3 已知0>x ,设:P 函数x c y =在R 上单调递减;:Q 不等式1|2|||>-+c x x 的解集为R .如果P 和Q 有且仅有一个正确,试求c 的取值范围. 例 4 已知0>a ,且方程022 =++b ax x 与方程022 =++a bx x 都有实数根,求b a +的最小值. 三、提高训练: (一)选择题: 1.函数||x a y =和a x y +=的图象恰有两个公共点,则实数a 的取值范围是( ) A 、),1(+∞ B 、)1,1(- C 、),1[]1,(+∞--∞ D 、),1()1,(+∞--∞ 2.已知],0(π∈x ,关于x 的方程a x =+)3 sin(2π 有两个不同的实数解,则实数a 的 取值范围为( )

2016高考数学二轮复习微专题强化练习题:27转化与化归思想、数形结合思想

第一部分 二 27 一、选择题 1.已知f (x )=2x ,则函数y =f (|x -1|)的图象为( ) [答案] D [解析] 法一:f (|x -1|)=2|x - 1|. 当x =0时,y =2.可排除A 、C . 当x =-1时,y =4.可排除B . 法二:y =2x →y =2|x |→y =2|x - 1|,经过图象的对称、平移可得到所求. [方法点拨] 1.函数图象部分的复习应该解决好画图、识图、用图三个基本问题,即对函数图象的掌握有三方面的要求: ①会画各种简单函数的图象; ②能依据函数的图象判断相应函数的性质; ③能用数形结合的思想以图辅助解题. 2.作图、识图、用图技巧 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换. 描绘函数图象时,要从函数性质入手,抓住关键点(图象最高点、最低点、与坐标轴的交点等)和对称性进行. (2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系. (3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象结合研究. 3.利用基本函数图象的变换作图 ①平移变换: y =f (x )――→h >0,右移|h |个单位 h <0,左移|h |个单位y =f (x -h ), y =f (x )――→k >0,上移|k |个单位k <0,下移|k |个单位y =f (x )+k . ②伸缩变换: y =f (x )错误!y =f (ωx ),

y =f (x ) ――→01,纵坐标伸长到原来的A 倍 y =Af (x ). ③对称变换: y =f (x )――→关于x 轴对称 y =-f (x ), y =f (x )――→关于y 轴对称y =f (-x ), y =f (x ) ――→关于直线x =a 对称y =f (2a -x ), y =f (x )――→关于原点对称 y =-f (-x ). 2.(文)(2014·哈三中二模)对实数a 和b ,定义运算“*”:a *b =????? a ,a - b ≤1 b ,a -b >1 ,设函数f (x ) =(x 2+1)*(x +2),若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ) A .(2,4]∪(5,+∞) B .(1,2]∪(4,5] C .(-∞,1)∪(4,5] D .[1,2] [答案] B [解析] 由a *b 的定义知,当x 2+1-(x +2)=x 2-x -1≤1时,即-1≤x ≤2时,f (x )=x 2+1;当x <-1或x >2时,f (x )=x +2,∵y =f (x )-c 的图象与x 轴恰有两个公共点,∴方 程f (x )-c =0恰有两不同实根,即y =c 与y =? ???? x 2 +1 (-1≤x ≤2), x +2 (x <-1或x >2),的图象恰有两个交点, 数形结合易得1

数形结合思想数形结合思想数形结合

数 形 结 合 ———高考解题的一把利刃 山东 胡大波 数形结合思想的实质是将抽象的数量关系与直观的图形结合起来,具有直观、明了、易懂等优越性,如能准确把握,威力巨大.这也是高考考查的重点,让我们看看其在函数中的神奇效果. 一、研究函数的性质 例1 (2005年北京卷13题)对于函数()f x 定义域中任意的1212()x x x x ≠,,有如下结论: ①1212()()()f x x f x f x +=g ;②1212()()()f x x f x f x =+g ; ③1212()()0f x f x x x ->- ;④1212()()22x x f x f x f ++??< ??? . 当()lg f x x =时,上述结论中正确结论的序号是___. 解析:作出图象如图1,由图可知④不正确;而①显然不成立;②为运算律,成立;③表示12x x -与12()()f x f x -同号,由增函数的定义知:()lg f x x =在其定义域上为增函数成立.所以答案为:②③. 点评:本题综合考查函数的概念、图象及性质,选项③侧重考查单调性,选项④考查函数图象,若用代数方法研究,难度较大,通过图象的特征及其变化趋势则容易判断. 二、研究函数的最值 例2 (2006年全国Ⅱ理科12题)函数19 1()n f x x n ==-∑的最小值为( ) . (A)190 (B)171 (C)90 (D)45 解析:绝对值往往是使试题增加难度的“添加剂”.如果试图进行分类讨论,几乎不可能完成,必须另寻妙法!1x -的几何意义是什么?是数轴上的点 x 到点1的距离,那么 12x x -+-就是点x 到点1与到点2的距离之和,如图2,当[1 2]x ∈,时,12x x -+-的最小值为1;又当x =2时,123x x x -+-+-的最小值为2;…,依次类推,当x =10

数学思想方法专题数形结合思想

数学思想方法专题:数形结合思想 【教学目标】 知识目标 数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。 能力目标 用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。函数的图像、方程的曲线、集合的文氏图或数轴表示等,是 “以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是 “以数助形”,还有导数更是数形结合的产物,这些都为我们提供了 “数形结合”的知识平台。 情感目标 在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。 【教学重难点】 重点:对数形结合思想方法的考查包含“以形助数”和“以数辅形”两个方面,代数问题几何化,几何问题代数化。 难点:一些概念和运算的几何意义及常见曲线的代数特征,关键在于恰当应用图形来体现数的几何意义,巧妙运用数的精确性和严密性,来揭示形的某些属性。 【考情分析】 在高考中,利用客观题的题型特点来考查数形结合的思想方法,突出考查考生将复杂的数量关系转化为直观的几何图形来解决问题的意识,而在解答题中对数形结合思想的考查是由“形”到“数”的转化为主。高考题对数形结合思想方法的考查,一方面是通过解析几何或平面向量考查一些几何问题,如何用代数方法来处理,另一方面,有一些代数问题则依靠几何图形的构造和分析辅助解决,历年来高考试卷中的许多试题都富有鲜明的几何意义,运用数形结合思想可迅速做出正确的判断。 【知识归纳】 数形结合思想包含“数形结合”和“形数结合”两方面,“数形结合”就是将代数的问题转化为图形形式的问题,利用图形形式解决问题;“形数结合”就是将图形的问题转化为代数的问题,利用代数的方法解决问题。 应用数形结合的思想,可实现以下类型的数与形的转化: (1)构建函数模型并结合其图象求参数的取值范围; (2)构建函数模型并结合其图象研究方程根的范围,求零点的个数; (3)构建解析几何中的斜率、截距、距离等模型研究最值问题; (4)构建函数模型并结合其几何意义研究函数的最值问题、比较大小关系和证明不等式; (5)构建立体几何模型将代数问题几何化; (6)建立坐标关系,研究图形的确定形状、位置关系、性质等. 【考点例析】 题型1:数形结合思想在集合中的应用 例1.设平面点集{ } 22 1(,)()()0,(,)(1)(1)1A x y y x y B x y x y x ??=--≥=-+-≤??? ? ,则B A ?所表示的平 面图形的面积为( D ) A . 34π B . 35π C . 47π D . 2 π

【高考数学专题突破】《专题三第讲数列求和及综合应用学案》(解析版)

第2讲 数列求和及综合应用 数列求和问题(综合型) [典型例题] 命题角度一 公式法求和 等差、等比数列的前n 项和 (1)等差数列:S n =na 1+ n (n -1)2 d (d 为公差)或S n =n (a 1+a n ) 2 . (2)等比数列:S n =???? ?na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1其中(q 为公比). 4类特殊数列的前n 项和 (1)1+2+3+…+n =1 2n (n +1). (2)1+3+5+…+(2n -1)=n 2 . (3)12+22+32+…+n 2 =16n (n +1)(2n +1). (4)13+23+33+…+n 3=14 n 2(n +1)2 . 已知数列{a n }满足a 1=1,a n +1=3a n 2a n +3 ,n ∈N * .

(1)求证:数列???? ?? 1a n 为等差数列; (2)设T 2n = 1 a 1a 2- 1 a 2a 3+ 1 a 3a 4- 1 a 4a 5 +…+ 1 a 2n -1a 2n - 1 a 2n a 2n +1 ,求T 2n . 【解】 (1)证明:由a n +1=3a n 2a n +3,得1a n +1=2a n +33a n =1a n +2 3 , 所以 1 a n +1-1a n =23. 又a 1=1,则1a 1=1,所以数列???? ??1a n 是首项为1,公差为2 3的等差数列. (2)设b n = 1 a 2n -1a 2n - 1 a 2n a 2n +1 =? ??? ?1a 2n -1-1a 2n +11a 2n , 由(1)得,数列???? ??1a n 是公差为2 3的等差数列, 所以 1 a 2n -1 - 1 a 2n +1=-43,即 b n =? ????1a 2n -1-1a 2n +11a 2n =-43×1a 2n , 所以b n +1-b n =-43? ????1a 2n +2-1a 2n =-43×43=-16 9. 又b 1=-43×1a 2=-43×? ????1a 1+23=-20 9 , 所以数列{b n }是首项为-209,公差为-16 9的等差数列, 所以T 2n =b 1+b 2+…+b n =- 209n +n (n -1)2×? ?? ??-169=-49(2n 2 +3n ). 求解此类题需过“三关”:第一关,定义关,即会利用等差数列或等比数列的定义,判断所给的数列是等差数列还是等比数列;第二关,应用关,即会应用等差(比)数列的前n 项和公式来求解,需掌握等差数列{a n }的前n 项和公式:S n = n (a 1+a n ) 2 或S n =na 1+ n (n -1) 2d ;等比数列{a n }的前n 项和公式:S n =?????na 1,q =1,a 1(1-q n )1-q ,q ≠1;第三关,运算关,认真运算,此类题将迎刃而解. 命题角度二 分组转化法求和 将一个数列分成若干个简单数列(如等差数列、等比数列、常数列等),然后分别求和.也可先根据通项公式的特征,将其分解为可以直接求和的一些数列的和,再分组求和,即把一个通项拆成几个通项求和的形式,方便求和. 已知等差数列{a n }的首项为a ,公差为d ,n ∈N * ,且不等式ax 2 -3x +2<0的解集为(1,

2021新高考数学二轮总复习专题突破练2函数与方程思想数形结合思想含解析

专题突破练2 函数与方程思想、数形结合思想 一、单项选择题 1. (2020河南开封三模,理3)如图,在平行四边形OABC 中,顶点O ,A ,C 在复平面内分别表示复数0,3+2i,-2+4i,则点B 在复平面内对应的复数为( ) A.1+6i B.5-2i C.1+5i D.-5+6i 2.(2020山东聊城二模,2)在复数范围内,实系数一元二次方程一定有根,已知方程x 2+ax+b=0(a ∈R ,b ∈R )的一个根为1+i(i 为虚数单位),则a 1+i =( ) A.1-i B.-1+i C.2i D.2+i 3.(2020河北武邑中学三模,5)已知f (x )是定义在区间[2b ,1-b ]上的偶函数,且在区间[2b ,0]上为增函数,f (x-1)≤f (2x )的解集为( ) A.[-1,2 3] B.[-1,1 3] C.[-1,1] D.[1 3,1] 4.(2020广东江门4月模拟,理6)《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为8 5.5尺,则小满日影长为( ) A.1.5尺 B.2.5尺 C.3.5尺 D.4.5尺 5.(2020安徽合肥二模,文5)在平行四边形ABCD 中,若DE ????? =EC ????? ,AE 交BD 于点F ,则AF ????? =( ) A.23AB ????? +13AD ????? B.23 AB ????? ?13AD ????? C.1 3 AB ????? ?2 3 AD ????? D.13 AB ????? +2 3 AD ????? 6.(2020安徽合肥二模,文7)若函数F (x )=f (x )-2x 4 是奇函数,G (x )=f (x )+(12) x 为偶函数,则 f (-1)= ( ) A.-5 2 B.-5 4 C.5 4 D.5 2 7.(2020河北衡水中学月考,文12)已知关于x 的方程[f (x )]2-kf (x )+1=0恰有四个不同的实数根,则当函数f (x )=x 2e x 时,实数k 的取值范围是( ) A.(-∞,-2)∪(2,+∞) B.(4 e 2+ e 24 ,+∞) C.(8 e 2,2) D.(2,4 e 2+e 2 4)

数形结合思想方法

八、数形结合思想方法 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合一是一个数学思想方法,应用主要是借助形的直观性来阐明数之间的联系,其次是借助于数的精确性来阐明形的某些属性。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化。 Ⅰ、再现性题组: 1. 设命题甲:0b>1 D. b>a>1 3. 如果|x|≤π4 ,那么函数f(x)=cos 2x +sinx 的最小值是_____。 (89年全国文) A. 212- B. -212+ C. -1 D. 122 - 4. 如果奇函数f(x)在区间[3,7]上是增函数且最小值是5,那么f(x)的[-7,-3]上是____。(91年全国) A.增函数且最小值为-5 B.增函数且最大值为-5 C.减函数且最小值为-5 D.减函数且最大值为-5 5. 设全集I ={(x,y)|x,y ∈R},集合M ={(x,y)| y x --32 =1},N ={(x,y)|y ≠x +1},那么M N ∪等于_____。 (90年全国) A. φ B. {(2,3)} C. (2,3) D. {(x,y)|y =x +1 6. 如果θ是第二象限的角,且满足cos θ2-sin θ2=1-sin θ,那么θ2 是_____。 A.第一象限角 B.第三象限角 C.可能第一象限角,也可能第三象限角 D.第二象限角 7. 已知集合E ={θ|cos θ-+-=-???x x x m x 即:30212->-=-???x x m () 设曲线y 1=(x -2)2 , x ∈(0,3)和直线y 2=1-m ,图像如图所示。由图 可知:① 当1-m =0时,有唯一解,m =1; ②当1≤1-m<4时,有唯一解,即-3

《数形结合思想》专题(整理)

数形结合思想 知识综述 (1)函数几何综合问题是近年来各地中考试题中引人注目的新题型,这类试题将几何问题与函数知识有机地结合起来,重在考查学生的创新思维及灵活运用函数、几何有关知识,通过分析、综合、概括和逻辑推理来解决数学综合问题的能力,此类试题倍受命题者青睐,究其原因,它是几何与代数的综合题,构题者巧妙地将几何图形置于坐标系中,通过函数图象为纽带,将数与形有机结合,并往往以开放题的形式出现。 (2)解答此类问题必须充分注意以下问题: a. 认识平面坐标系中的两条坐标轴具有垂直关系 b. 灵活将点的坐标与线段长度互相转化 c. 理解二次函数与二次方程间的关系——抛物线与x轴的交点,横坐标是对应方程的根。 d. 熟练掌握几个距离公式: 点P(x,y)到原点的距离 e. 具备扎实的几何推理论证能力。 一、填空题(每空5分,共50分) 1. 如果a,b两数在数轴上的对应点如图所示: 则化简:__________。 2. 已知A,B是数轴上的两点,AB=2,点B表示数-1,则点A表示的数为__________。 3. 已知△ABC的三边之比是,则这个三角形是__________三角形。 4. 已知点A在第二象限,它的横坐标与纵坐标之和是1,则点A的坐标是__________。(写出符合条件的一个点即可) 5. 如图,在梯形ABCD中,AB∥CD,E为CD的中点,△BCE的面积为1,则△ACD 的面积为__________。 6. 已知二次函数的图象如图所示,则由抛物线的特征写出如下含有系数

a,b,c的关系式:①②③④,其中正确结论的序号是__________(把你认为正确的都填上) 7. 如图,AB是半圆的直径,AB=10,弦CD∥AB,∠CBD=45°,则阴影部分面积为__________。 8. 某公司市场营销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售时的收入是__________元。 9. 如图,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为 __________。 10. 如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若 ,则AD的长为__________。

最新高考数学数列题型专题汇总

1. 高考数学数列题型专题汇总 1 一、选择题 2 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 3 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

2. 4、如图,点列{A n },{B n }分别在某锐角的两边上,且 19 1122,,n n n n n n A A A A A A n ++++=≠∈*N , 20 1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合). 21 若1n n n n n n n d A B S A B B +=,为△的面积,则 22 23 A .{}n S 是等差数列 B .2{}n S 是等差数列 24 C .{}n d 是等差数列 D .2{}n d 是等差数列 25 【答案】A 26 27 28 29 30 二、填空题 31 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 32 6=S _______.. 33 【答案】6 34 35 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 36

高三数学复习专题数形结合

专题讲座: 数形结合 一、填空题 例1曲线241x y -+=(22≤≤-x )与直线()24-=-x k y 有两个交点时,实数k 的取值范围是 【答案】:53,124?? ?? ? 【提示】曲线为圆的一部分,直线恒过定点M (2,4),由图可得有两 个交点时k 的范围。 例2已知平面向量,(0,)αβααβ≠≠满足1,β=且αβα-与的夹角为120? ,则α的 取值范围是 【答案】:23 03 α<≤ 【提示】作出草图,由1 sin sin 60 B α ? = ,故α=23sin 3B 又0120B ? ? << 0sin 1B ∴<≤,23 03 α∴<≤ 例3已知向量(2, 0)OB =,(2, 2)OC =, (2cos , 2sin ),CA αα=则OA 与OB 夹角的范围为 【答案】:]12 5,12[ π π 【提示】因2(cos ,sin ),CA αα=说明点A 的轨迹是以(2, 2)C 为圆心,2为半径的圆,如图,则OA 与OB 夹角最大是 5,4612πππ+=最小是4612 πππ -= 例4若对一切R θ∈,复数(cos )(2sin )z a a i θθ=++-的模不超过2,则实数a 的取值范围为 【答案】:55,55?? -???? 【提示】复数的模2 2 (cos )(2sin )2z a a θθ=++-≤,可以借助单位圆上一点(cos ,sin )θθ-和直线2y x =的一点(,2)a a 的距离来理解。 x x y M

例5若11 ||2 x a x -+≥对一切0x >恒成立,则a 的取值范围是 【答案】:(,2]-∞ 【提示】分别考虑函数1y x a =-和211 2 y x =- +的图像 例6 已知抛物线()y g x =经过点(0,0)O 、(,0)A m 与点(1,1)P m m ++, 其中0>>n m ,a b <,设函数)()()(x g n x x f -=在a x =和b x =处取到极值,则n m b a ,,,的大小关系为 【答案】b n a m <<< 【提示】由题可设()(),(0)g x kx x m k =->, 则()()()f x kx x m x n =--,作出三次函数图象即可。 例7若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 【答案】:0k <或4k = 【提示】:研究函数1y kx =(10y >)和函数2 2(1),(1)y x x =+>-的图像 例8已知函数2 1 ()(2) 1ax bx c x f x f x x ?++≥-=?--<-? ,其图象在点(1,(1)f )处的切线方程为 21y x =+,则它在点(3,(3))f --处的切线方程为 【答案】:230x y ++= 【提示】:由()(2)f x f x =--可得()f x 关于直线1x =-对称,画出示意图(略),(1,(1)f )和(3,(3))f --为关于直线1x =-的对称点,斜率互为相反数,可以快速求解。 例9直线1y =与曲线2 y x x a =-+有四个交点,则a 的取值范围是__________ 【答案】:514a << 【提示】研究22,0 ,0 x x a x y x x a x ?-+≥?=?++

数形结合的思想

数形结合的思想 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意

义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。数学中的知识,有的本身就可以看作是数形的结合。如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

《数形结合思想》专题(整理)doc初中数学

《数形结合思想》专题(整理)doc 初中数学 知识综述 〔1〕函数几何综合咨询题是近年来各地中考试题中引人注目的新题型,这类试题将几何咨询题与函数知识有机地结合起来,重在考查学生的创新思维及灵活运用函数、几何有关知识,通过分析、综合、概括和逻辑推理来解决数学综合咨询题的能力,此类试题倍受命题者青睐,究其缘故,它是几何与代数的综合题,构题者巧妙地将几何图形置于坐标系中,通过函数图象为纽带,将数与形有机结合,并往往以开放题的形式显现。 〔2〕解答此类咨询题必须充分注意以下咨询题: a. 认识平面坐标系中的两条坐标轴具有垂直关系 b. 灵活将点的坐标与线段长度互相转化 c. 明白得二次函数与二次方程间的关系——抛物线与x 轴的交点,横坐标是对应方程的根。 d. 熟练把握几个距离公式: 点P 〔x ,y 〕到原点的距离PO x y =+22 AB x x a =-= |||| 12? e. 具备扎实的几何推理论证能力。 一、填空题〔每空5分,共50分〕 1. 假如a ,b 两数在数轴上的对应点如下图: 那么化简:||||a b a b ++-=__________。 2. A ,B 是数轴上的两点,AB=2,点B 表示数-1,那么点A 表示的数为__________。 3. △ABC 的三边之比是752::,那么那个三角形是__________三角形。 4. 点A 在第二象限,它的横坐标与纵坐标之和是1,那么点A 的坐标是__________。〔写出符合条件的一个点即可〕 5. 如图,在梯形ABCD 中,AB ∥CD ,E 为CD 的中点,△BCE 的面积为1,那么△ACD 的面积为__________。 6. 二次函数y ax bx c =++2 的图象如下图,那么由抛物线的特点写出如下含有系数a ,

高中数学数形结合

数形结合 实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。如等式()()x y -+-=21422 一、联想图形的交点 例1. 已知,则方程的实根个数为01<<=a a x x a |||log |() A. 1个 B. 2个 C. 3个 D. 1个或2个或3个 分析:判断方程的根的个数就是判断图象与的交点个数,画y a y x x a ==|||log |出两个函数图 象,易知两图象只有两个交点,故方程有2个实根,选(B )。 例2. 解不等式x x +>2 令,,则不等式的解,就是使的图象 y x y x x x y x 121222= +=+>=+ 在的上方的那段对应的横坐标, y x 2=如下图,不等式的解集为{|} x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。{|}x x -≤<22 练习:设定义域为R 函数?? ?=≠-=1 01 1lg )(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同 实数解的充要条件是( ) 0,0. 0,0. 0,0. 0,0.=≥=<<>>c ,设P :函数x c y =在R 上单调递减,Q :不等式12>++c x x 的解集为R ,如 果P 与Q 有且仅有一个正确,试求c 的范围。 因为不等式12>++c x x 的几何意义为:在数轴上求一点)(x P ,使P 到)2(),0(c B A 的距离之和的最小值大于1,而P 到AB 二点的最短距离为12>=c AB ,即2 1> c 而P :函数x c y =在R 上单调递减,即1

数形结合思想

数形结合思想 数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题,几何问题相互转化,使抽象思维与形象思维有机结合。应用数形结合思想,就是充分考查数学问题的条件与结论之间的内在联系,既分析其代数意义又提示其几何意义,将数量关系和空间形式巧妙结合,寻求解题思路,使问题得到解决。运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征。 一、选择题 1.设()y f x = 的图象经过点(1,2)--( ) A.(2,1)- B .(8,1)-- C.(4,-解:已知得(1)2f -=-,∴1(2)1f --=- 令1 222 x -= +,得8x =-,故选答案 2.已知函数32 ()f x ax bx cx d =+++A.(,0)b ∈-∞ B.(0,1)b ∈ C.b 解:根据图象可知()(1)(2)f x ax x x =--展开得32()32f x ax ax ax =-+ 与32()f x ax bx cx d =+++比较系数知b 3.方程1 sin()44 x x π-=的实根个数是( ) A .2 B.3 解:分别作出sin(y x =

与直线1 :4 l y x =的图象如下 只须考虑[4,4]x ∈-时交点个数,得答案 B. 4.设P (,) x y 是圆22(1)1x y +-=上的任意一点,欲使不等式 0x y c ++≥恒成立,则c 的取值范围是( ) A.[11]-- B.1,)+∞ C.(1) D.(,1]-∞ 解:由线性规划知识知0x y c ++≥表示点P 在直线:0l x y c ++=的上方 ∴圆在l 上方,即圆心(0,1)到l 的距离大于(或等于)1 1, ∴1c (舍去)或1c ≤,得答案D. 5.已知()()()2f x x a x b =---(其中a b <)且α、β是方程()0f x =的两根(αβ<),则实数,,,a b αβ的大小关系是( ) A.a b αβ<<< B.a b αβ<<< C.a b αβ<<< D.a b αβ<<< 解:易知,a b 是()()()0g x x a x b =--= ∵()()2f x g x =-,作(),()f x g x 得答案A. 6.平面上整点(横、纵坐标都是整数的点)到直线54 35 y x =+的最小值是( ) A. 170 B.85 C. 120 D .1 30 解:直线方程化为2515120x y -+=,设整点坐标为(,)m n ,则距离 d = = ∵5(53)051015m n -=±±±或或或 ∴min |5(53)12|2m n -+=,此时2,4m n == ∴min 85 d ==,此时整点为(2,4),选答案B . )

相关文档
最新文档