中考数学备考之相似压轴突破训练∶培优易错试卷篇附答案

中考数学备考之相似压轴突破训练∶培优易错试卷篇附答案
中考数学备考之相似压轴突破训练∶培优易错试卷篇附答案

一、相似真题与模拟题分类汇编(难题易错题)

1.如图所示,△ABC中,AB=AC,∠BAC=90°,AD⊥BC,DE⊥AC,△CDE沿直线BC翻折到△CDF,连结AF交BE、DE、DC分别于点G、H、I.

(1)求证:AF⊥BE;

(2)求证:AD=3DI.

【答案】(1)证明:∵在△ABC中,AB=AC,∠BAC=90°,D是BC的中点,

∴AD=BD=CD,∠ACB=45°,

∵在△ADC中,AD=DC,DE⊥AC,

∴AE=CE,

∵△CDE沿直线BC翻折到△CDF,

∴△CDE≌△CDF,

∴CF=CE,∠DCF=∠ACB=45°,

∴CF=AE,∠ACF=∠DCF+∠ACB=90°,

在△ABE与△ACF中,,

∴△ABE≌△ACF(SAS),

∴∠ABE=∠FAC,

∵∠BAG+∠CAF=90°,

∴∠BAG+∠ABE=90°,

∴∠AGB=90°,

∴AF⊥BE

(2)证明:作IC的中点M,连接EM,由(1)∠DEC=∠ECF=∠CFD=90°

∴四边形DECF是正方形,

∴EC∥DF,EC=DF,

∴∠EAH=∠HFD,AE=DF,

在△AEH与△FDH中,

∴△AEH≌△FDH(AAS),

∴EH=DH,

∵∠BAG+∠CAF=90°,

∴∠BAG+∠ABE=90°,

∴∠AGB=90°,

∴AF⊥BE,

∵M是IC的中点,E是AC的中点,

∴EM∥AI,

∴,

∴DI=IM,

∴CD=DI+IM+MC=3DI,

∴AD=3DI

【解析】【分析】(1)根据翻折的性质和SAS证明△ABE≌△ACF,利用全等三角形的性质得出∠ABE=∠FAC,再证明∠AGB=90°,可证得结论。

(2)作IC的中点M,结合正方形的性质,可证得∠EAH=∠HFD,AE=DF,利用AAS证明△AEH与△FDH全等,再利用全等三角形的性质和中位线的性质解答即可。

2.如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.

(1)猜想DG与CF的数量关系,并证明你的结论;

(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P 是MN上一点,求△PDC周长的最小值.

【答案】(1)解:结论:CF=2DG.

理由:∵四边形ABCD是正方形,

∴AD=BC=CD=AB,∠ADC=∠C=90°,

∵DE=AE,

∴AD=CD=2DE,

∵EG⊥DF,

∴∠DHG=90°,

∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,

∴∠CDF=∠DEG,

∴△DEG∽△CDF,

∴ = = ,

∴CF=2DG

(2)解:作点C关于NM的对称点K,连接DK交MN于点P,连接PC,

此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.

由题意:CD=AD=10,ED=AE=5,DG= ,EG= ,DH= = ,

∴EH=2DH=2 ,

∴HM= =2,

∴DM=CN=NK= =1,

在Rt△DCK中,DK= = =2 ,

∴△PCD的周长的最小值为10+2 .

【解析】【分析】(1)结论:CF=2DG.理由如下:根据正方形的性质得出AD=BC=CD=AB,∠ADC=∠C=90°,根据中点的定义得出AD=CD=2DE,根据同角的余角相等得出∠CDF=∠DEG,从而判断出△DEG∽△CDF,根据相似三角形对应边的比等于相似比即可得出结论;

(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最

短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK,由题意得CD=AD=10,ED=AE=5,DG=,

EG=,根据面积法求出DH的长,然后可以判断出△DEH相似于△GDH,根据相似三角形对应边的比等于相似比得出EH=2DH=,再根据面积法求出HM的长,根据勾股定理及矩形的性质及对称的性质得出DM=CN=NK= 1,在Rt△DCK中,利用勾股定理算出DK的长,从而得出答案。

3.已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.

(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;

(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;

(3)延长AD、BO相交于点E,求证:DE=CO.

【答案】(1)解:如图1,

∵抛物线y=ax2的对称轴是y轴,且AB∥x轴,

∴A与B是对称点,O是抛物线的顶点,

∴OA=OB,

∵∠AOB=60°,

∴△AOB是等边三角形,

∵AB=2,AB⊥OC,

∴AC=BC=1,∠BOC=30°,

∴OC= ,

∴A(-1,),

把A(-1,)代入抛物线y=ax2(a>0)中得:a= ;

(2)解:如图2,过B作BE⊥x轴于E,过A作AG⊥BE,交BE延长线于点G,交y轴于F,

∵CF∥BG,

∴,

∵AC=4BC,

∴ =4,

∴AF=4FG,

∵A的横坐标为-4,

∴B的横坐标为1,

∴A(-4,16a),B(1,a),

∵∠AOB=90°,

∴∠AOD+∠BOE=90°,

∵∠AOD+∠DAO=90°,

∴∠BOE=∠DAO,

∵∠ADO=∠OEB=90°,

∴△ADO∽△OEB,

∴,

∴,

∴16a2=4,

a=± ,

∵a>0,

∴a= ;

∴B(1,);

(3)解:如图3,

设AC=nBC,

由(2)同理可知:A的横坐标是B的横坐标的n倍,

则设B(m,am2),则A(-mn,am2n2),

∴AD=am2n2,

过B作BF⊥x轴于F,

∴DE∥BF,

∴△BOF∽△EOD,

∴,

∴,

∴,DE=am2n,

∴,

∵OC∥AE,

∴△BCO∽△BAE,

∴,

∴,

∴CO= =am2n,

∴DE=CO.

【解析】【分析】(1)抛物线y=ax2关于y轴对称,根据AB∥x轴,得出A与B是对称点,可知AC=BC=1,由∠AOB=60°,可证得△AOB是等边三角形,利用解直角三角形求出OC的长,就可得出点A的坐标,利用待定系数法就可求出a的值。

(2)过B作BE⊥x轴于E,过A作AG⊥BE,交BE延长线于点G,交y轴于F,根据平行线分线段成比例证出AF=4FG,根据点A的横坐标为﹣4,求出点B的横坐标为1,则A(-4,16a),B(1,a),再根据已知证明∠BOE=∠DAO,∠ADO=∠OEB,就可证明△ADO∽△OEB,得出对应边成比例,建立关于a的方程求解,再根据点B在第一象限,确定点B的坐标即可。

(3)根据(2)可知A的横坐标是B的横坐标的n倍,则设B(m,am2),则A(-mn,am2n2),得出AD的长,再证明△BOF∽△EOD,△BCO∽△BAE,得对应边成比例,证得CO=am2n,就可证得DE=CO。

4.如图,BD是□ABCD的对角线,AB⊥BD,BD=8cm,AD=10cm,动点P从点D出发,以5cm/s的速度沿DA运动到终点A,同时动点Q从点B出发,沿折线BD—DC运动到终点C,在BD、DC上分别以8cm/s、6cm/s的速度运动.过点Q作QM⊥AB,交射线AB于点M,连接PQ,以PQ与QM为边作□PQMN.设点P的运动时间为t(s)(t>0),□PQMN与□ABCD重叠部分图形的面积为S(cm2).

(1)AP=________cm(同含t的代数式表示).

(2)当点N落在边AB上时,求t的值.

(3)求S与t之间的函数关系式.

(4)连结NQ,当NQ与△ABD的一边平行时,直接写出t的值.

【答案】(1)(10-5t)

(2)解:如图①,

当点N落在边AB上时,四边形PNBQ为矩形.∵PN∥DB,∴△APN∽△ADB,∴AP:

AD=PN:DB,∴(10-5t):10=8t:8,120t=80,∴.

(3)解:分三种情况讨论:

a)如图②,过点P作PE⊥BD于点E,则PE=3t.

当时,.

b)如图③,过点P作PE⊥BD于点E,则PE=3t,设PN交AB于点F,则

当时,.

c)如图④,当时,PF=8-4t,FB=3t,PN=DB=QM=8,∴FN=4t,DQ=6(t-1),∴BM=DQ=6(t-1).∵∠GBM=∠A,∠DBA=∠GMB,∴△BGM∽△ABD,∴GM:BM=DB:

AB,解得:GM=8t-8,∴S=S平行四边形PNMQ-S△FMN-S△BMG=8(9t-6)- ×4t×(9t-6)- ×(6t-6)(8t-8)= .

综上所述:

(4)解:分三种情况讨论.

①当NQ∥AB时,如图5,

过P作PF⊥BD于F,则PF=3t,DF=4t,PN=FQ=BQ=8t,∴BD=8t+8t+4t=8,解得:.②当AD∥NQ,且Q在BD上时,如图6.

∵PNQD和PNBQ都是平行四边形,∴PN=DQ=BQ,∴8t+8t=8,解得:.

③当AD∥NQ,且Q在DC上时,如图7,

可以证明当Q与C重合,即直线NQ与直线BC重合时,满足条件,如图8,

此时DQ=AB= =6,t= =2.

综上所述:或或.

【解析】【解答】解:(1)(10-5t);

【分析】(1)由题意可得,DP=5t,所以AP=AD-DP=10-5t;

(2)由欧勾股定理的逆定理可得∠ABD=,所以根据有一个角是直角的平行四边形是矩形可得,当点N落在边AB上时,四边形PNBQ为矩形;由平行线分线段成比例定理可得

比例式:,则可得关于t的方程,解方程即可求解;

(3)由(2)知,当□PQMN全部在□ABCD中时,运动时间是秒,由已知条件可知,点Q 在BD边上的运动速度是8cm/s,在DC边上的运动速度是6cm/s,所以当点Q运动到C点时,点P也运动到了点A,所以分3种情况:

a)如图②,过点P作PE⊥BD于点E,当0 < t ≤时, S=BQ PE;

b)如图③,过点P作PE⊥BD于点E,设PN交AB于点F,当< t ≤ 1 时,S =(PF+BQ)PE;

c)如图④,当1 < t ≤ 2 时, S =平行四边形PNMQ的面积-三角形FNM的面积-三角形BMG 的面积;

(4)由题意NQ与△ABD的一边平行可知,有3种情况:

①当NQ∥AB;

②当AD∥NQ,且Q在BD上时;

③当AD∥NQ,且Q在DC上时。分这三种情况根据已知条件即可求解。

5.如图1,在△ABC中,∠BAC=90°,AB=AC=4,D是BC上一个动点,连接AD,以AD为边向右侧作等腰直角△ADE,其中∠ADE=90°.

(1)如图2,G,H分别是边AB,BC的中点,连接DG,AH,EH.求证:△AGD∽△AHE;

(2)如图3,连接BE,直接写出当BD为何值时,△ABE是等腰三角形;

(3)在点D从点B向点C运动过程中,求△ABE周长的最小值.

【答案】(1)证明:如图2,由题意知△ABC和△ADE都是等腰直角三角形,

∴∠B=∠DAE=45°.

∵H为BC中点,

∴AH⊥BC.

∴∠BAH=45°=∠DAE.

∴∠GAD=∠HAE.

在等腰直角△BAH和等腰直角△DAE中,

AH= AB= AG,AE= AD.

∴,

∴△AGD∽△AHE;

(2)解:分三种情况:①当B与D重合时,即BD=0,如图3,此时AB=BE;

②当AB=AE时,如图4,此时E与C重合,

∴D是BC的中点,

∴BD= BC=2 ;

③当AB=BE时,如图5,过E作EH⊥AB于H,交BC于M,连接AM,过E作EG⊥BC于G,连接DH,

∵AE=BE,EH⊥AB,

∴AH=BH,

∴AM=BM,

∵∠ABC=45°,

∴AM⊥BC,△BMH是等腰直角三角形,

∵AD=DE,∠ADE=90°,

易得△ADM≌△DEG,

∴DM=EG,

∵∠EMG=∠BMH=45°,

∴△EMG是等腰直角三角形,

∴ME= MG,

由(1)得:△AHD∽△AME,且,

∴∠AHD=∠AME=135°,ME= DH,

∴∠BHD=45°,MG=DH,

∴△BDH是等腰直角三角形,

∴BD=DH=EG=DM= ;

综上所述,当BD=0或或2 时,△ABE是等腰三角形;

(3)解:当点D与点B重合时,点E的位置记为点M,连接CM,如图6,

此时,∠ABM=∠BAC=90°,∠AMB=∠BAM=45°,BM=AB=AC.

∴四边形ABMC是正方形.

∴∠BMC=90°,

∴∠AMC=∠BMC-∠AMB=45°,

∵∠BAM=∠DAE=45°,

∴∠BAD=∠MAE,

在等腰直角△BAM和等腰直角△DAE中,

AM= AB,AE= AD.

∴.

∴△ABD∽△AME.

∴∠AME=∠ABD=45°

∴点E在射线MC上,

作点B关于直线MC的对称点N,连接AN交MC于点E′,

∵BE+AE=NE+AE≥AN=NE′+AE′=BE′+AE′,

∴△ABE′就是所求周长最小的△ABE.

在Rt△ABN中,

∵AB=4,BN=2BM=2AB=8,

∴AN=.

∴△ABE周长最小值为AB+AN=4+4 .

【解析】【分析】(1)由等腰直角三角形的性质可得∠B=∠DAE=∠BAH=45°,所以

∠GAD=∠HAE,计算可得比例式:,根据有两对边对应相等,且它们的夹角也相等的两个三角形相似可得△AGD∽△AHE;

(2)根据等腰三角形的定义可知分3种情况讨论:①当B与D重合时,即BD=0,此时AB=BE;

②当AB=AE时,此时E与C重合,用勾股定理可求得BD的值;

③当AB=BE时,过E作EH⊥AB于H,交BC于M,连接AM,过E作EG⊥BC于G,连接DH,由已知条件和(1)的结论可求解;

(3)当点D与点B重合时,点E的位置记为点M,连接CM,作点B关于直线MC的对称点N,连接AN交MC于点E′,由已知条件易证四边形ABMC是正方形,由已知条件通过计

算易得比例式:,根据有两对边对应相等,且它们的夹角也相等的两个三角形相似可得△ABD∽△AME,则∠AME=∠ABD=45°,于是可得点E在射线MC上,根据轴对称的性质可得△ABE′就是所求周长最小的△ABE,在Rt△ABN中,用勾股定理即可求得AN的值,则△ABE周长最小值=AB+AN即可求解。

6.如图(1),在矩形DEFG中,DE=3,EG=6,在Rt△ABC中,∠ABC=90°,BC=3,AC=6,△ABC的一边BC和矩形的一边DG在同一直线上,点C和点D重合,Rt△ABC将从D以每秒1个单位的速度向DG方向匀速平移,当点C与点G重合时停止运动,设运动时间为t秒,解答下列问题:

(1)如图(2),当AC过点E时,求t的值;

(2)如图(3),当AB与DE重合时,AC与EF、EG分别交于点M、N,求CN的长;

(3)在整个运动过程中,设Rt△ABC与△EFG重叠部分面积为y,请求出y与t的函数关系式,并写出相应t的取值范围.

【答案】(1)解:如图(2),当AC过点E时,

在Rt△ABC中,BC=3,AC=6,

∴BC所对锐角∠A=30°,

∴∠ACB=60°,

依题意可知∠ABC=∠EDC=90°,

∵∠ACB=∠ECD,

∴△ABC∽△EDC,

∴,即,

∴CD= ,

∴t=CD= ;

(2)解:如图(3),∵∠EDG=90°,DE=3,EG=6,

∴DG= =3 ,

在Rt△EDG中,sin∠EGD= ,

∴∠EGD=30°,

∵∠NCB=∠CNG+∠EGD,

∴∠CNG=∠NCB﹣∠EGD=60°﹣30°=30°,

∴∠CNG=∠EGD,

∴NC=CG=DG﹣BC=3 ﹣3;

(3)解:由(1)可知,当x>时,△ABC与△EFG有重叠部分.

分两种情况:①当<t≤3时,如图(4),

△ABC与△EFG有重叠部分为△EMN,设AC与EF、EG分别交于点M、N,过点N作直线NP⊥EF于P,交DG于Q,

则∠EPN=∠CQN=90°,

∵NC=CG,

∴NC=DG﹣DC=3 ﹣t,

在Rt△NQC中,NQ=sin∠NCQ×NC=sin60°×(3 ﹣t)= ,

∴PN=PQ﹣NQ=3﹣ = ,

∵∠PMN=∠NCQ=60°,

∴sin∠PMN= ,MN= =t﹣,

在矩形DEFG中,EF∥DG,

∴∠MEN=∠CGN,

∵∠MNE=∠CNG,∠CNG=∠CGN,

∴∠EMN=∠MNE,

∴EM=MN,

∴EM=MN=t﹣,

∴y=S△EMN= EM?PN= × ;

②当3<t≤3 时,如图(5),

△ABC与△EFG重叠部分为四边形PQNM,设AB与EF、EG分别交于点P、Q,AC与EF、EG分别交于点M、N,则∠EPQ=90°,

∵CG=3 ﹣t,

∴S△EMN= ,

∵EP=DB=t﹣3,∠PEQ=30°,

∴在Rt△EPQ中,PQ=tan∠PEQ×EP=tan30°×(t﹣3)= ,

∴S△EPQ= EP?PQ= (t﹣3)× = ,

∴y=S△EMN﹣S△EPQ=()﹣()= +(﹣,

综上所述,y与t的函数关系式:y= .

【解析】【分析】(1)证△ABC∽△EDC,由相似三角形的性质可求出CD的值,即可求t;

(2)利用勾股定理求出DG的值,则由三角函数可∠EGD=30°,进而可证得∠CNG=∠EGD,则NC=CG=DG﹣BC,可求出答案;

(3)根据重叠部分可确定x的取值范围,再由三角形的面积公式可求出函数解析式.

7.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB 于点F,⊙O是△BEF的外接圆.

(1)求证:AC是⊙O的切线;

(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;

(3)已知:CD=1,EH=3,求AF的长.

【答案】(1)证明:如图,连接OE.

∵BE平分∠ABC,

∴∠CBE=∠OBE,

∵OB=OE,

∴∠OBE=∠OEB,

∴∠OEB=∠CBE,

∴OE∥BC,

∴∠AEO=∠C=90°,

∴AC是⊙O的切线;

(2)解:如图,连结DE.

∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,

∴EC=EH.

∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,

∴∠CDE=∠HFE.

在△CDE与△HFE中,

∴△CDE≌△HFE(AAS),

∴CD=HF.

(3)解:由(2)得,CD=HF.又CD=1

∴HF=1

在Rt△HFE中,EF= =

∵EF⊥BE

∴∠BEF=90°

∴∠EHF=∠BEF=90°

∵∠EFH=∠BFE

∴△EHF∽△BEF

∴,即

∴BF=10

∴ , ,

∴在Rt△OHE中, ,

∴在Rt△EOA中, ,

∴ .

【解析】【分析】(1)连接OE.利用角平分线的定义和等腰三角形的性质可证得OE∥BC,从而得∠AEO=∠C=90°,可得到证明;

(2)连结DE.利用AAS可证△CDE≌△HFE,从而得到证明;

(3)证△EHF∽△BEF,由相似三角形的性质可求得BF,从而得到OE,在Rt△OHE和△EOA中,由cos∠EOA可求出OA,从而求出AF.

8.如图,已知一次函数y=﹣ x+4的图象是直线l,设直线l分别与y轴、x轴交于点A、B.

(1)求线段AB的长度;

(2)设点M在射线AB上,将点M绕点A按逆时针方向旋转90°到点N,以点N为圆心,NA的长为半径作⊙N.

①当⊙N与x轴相切时,求点M的坐标;

②在①的条件下,设直线AN与x轴交于点C,与⊙N的另一个交点为D,连接MD交x 轴于点E,直线m过点N分别与y轴、直线l交于点P、Q,当△APQ与△CDE相似时,求点P的坐标.

【答案】(1)解:当x=0时,y=4,

∴A(0,4),

∴OA=4,

当y=0时,- x+4=0,

x=3,

∴B(3,0),

∴OB=3,

由勾股定理得:AB=5

(2)解:①如图1,过N作NH⊥y轴于H,过M作ME⊥y轴于E,

tan∠OAB= ,

∴设EM=3x,AE=4x,则AM=5x,

∴M(3x,-4x+4),

由旋转得:AM=AN,∠MAN=90°,

∴∠EAM+∠HAN=90°,

∵∠EAM+∠AME=90°,

∴∠HAN=∠AME,

∵∠AHN=∠AEM=90°,

∴△AHN≌△MEA,

∴AH=EM=3x,

∵⊙N与x轴相切,设切点为G,连接NG,则NG⊥x轴,∴NG=OH,

则5x=3x+4,

2x=4,

x=2,

∴M(6,-4);

②如图2,由①知N(8,10),

∵AN=DN,A(0,4),

∴D(16,16),

设直线DM:y=kx+b,

把D(16,16)和M(6,-4)代入得:

解得:,

∴直线DM的解析式为:y=2x-16,

∵直线DM交x轴于E,

∴当y=0时,2x-16=0,

x=8,

∴E(8,0),

由①知:⊙N与x轴相切,切点为G,且G(8,0),∴E与切点G重合,

∵∠QAP=∠OAB=∠DCE,

∴△APQ与△CDE相似时,顶点C必与顶点A对应,分两种情况:

i)当△DCE∽△QAP时,如图2,∠AQP=∠NDE,

∵∠QNA=∠DNF,

∴∠NFD=∠QAN=90°,

∵AO∥NE,

∴△ACO∽△NCE,

∴,

∴,

∴CO= ,

连接BN,

∴AB=BE=5,

∵∠BAN=∠BEN=90°,

∴∠ANB=∠ENB,

∵EN=ND,

∴∠NDE=∠NED,

∵∠CNE=∠NDE+∠NED,

∴∠ANB=∠NDE,

∴BN∥DE,

Rt△ABN中,BN= ,

sin∠ANB=∠NDE= ,

∴,

∴NF=2 ,

∴DF=4 ,

∵∠QNA=∠DNF,

∴tan∠QNA=tan∠DNF= ,

∴,

∴AQ=20,

浙教版初中数学中考培优题(含答案)

1、在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积是1.28 ㎡,已知床单的长是2 m ,宽是1.2 m ,求花边的宽度. 解:设花边的宽度是x m. ()()28.122.122=--x x 028.06.12=+-x x ()36.08.02 =-x 2.01=x ,4.12=x (舍去) 答:花边的宽度是0.2 m. 2、某商场将进货价为30元的台灯以 40 元售出,平均每月能售出600个。调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个。 ⑴ 为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个? ⑵ 台灯的售价应定为多少时销售利润最大? 解:⑴ 设台灯的售价为x 元,(x ≥40)根据题意得 [(600-10×(x -40))](x -30)=10000 解得:x 1=80 x 2=50 当x =80时 进台灯数为600-10×(x -40)=200 当x =50时 600-10×(x -40)=500 ⑵ 设台灯的售价定为x 元时,销售利润最大,利润为y y =[600-10(x -40)]·(x -30) 答:⑴ 台灯的售价为80元,进台灯数为200个,台灯的售价为50元时,进台灯数为500个。 ⑵ 3、学校有若干个房间分配给九年级(1)班的男生住宿,已知该班男生不足50人。若每间住4人,则余15人无住处;若每间住6人,则恰有一间不空也不满(其余均住满),那么该班男生人数是多少? 解:设有x 间,每间住4人,4x 人,15人无处住 所以有4x +15人 每间住6人,则恰有一间不空也不满 所以x -1间住6(x -1)=6x -6人 还有4x +15-6x +6=-2x +21人 不空也不满 所以0<-2x +21<6 -6<2x -21<0 15<2x <21 7.5<x <10.5 所以x =8, x =9, x =10 不到50人 一共4x +15<50 所以x =8 所以应该是4×8+15=47人

人教中考数学备考之锐角三角函数压轴突破训练∶培优易错试卷篇含答案(1)

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号). 【答案】. 【解析】 试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案. 试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°, ∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°, ∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==, ∴BC=.故该船与B港口之间的距离CB的长为海里. 考点:解直角三角形的应用-方向角问题. 2.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数: (1)如图1,若k=1,则∠APE的度数为; (2)如图2,若31)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.

(3)如图3,若k=3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由. 【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析. 【解析】 分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出 △FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论; (2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出 △FAE∽△ACD,再判断出∠EFB=90°,即可得出结论; (3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出 △ACD∽△HEA,再判断出∠EFB=90°,即可得出结论; 详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF, ∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形, ∴BD=AF,BF=AD. ∵AC=BD,CD=AE, ∴AF=AC. ∵∠FAC=∠C=90°, ∴△FAE≌△ACD, ∴EF=AD=BF,∠FEA=∠ADC. ∵∠ADC+∠CAD=90°, ∴∠FEA+∠CAD=90°=∠EHD. ∵AD∥BF, ∴∠EFB=90°. ∵EF=BF, ∴∠FBE=45°,

初三数学中考培优试题

初三数学中考培优试题 一.解答题: 1.如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴的负半轴上,且OD=10,OB=8,将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合 (1)直接写出点A、B的坐标:A(_________,_________)、B(_________,_________); (2)若抛物线y=﹣x2+bx+c经过A、B两点,则这条抛物线的解析式是_________; (3)若点M是直线AB上方抛物线上的一个动点,作MN⊥x轴于点N,问是否存在点M,使△AMN与△ACD相似?若存在,求出点M的横坐标;若不存在,说明理由; (4)当≤x≤7时,在抛物线上存在点P,使△ABP得面积最大,求△ABP面积的最大值. 2.如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D.运动时间为t秒. (1)当点B与点D重合时,求t的值; (2)设△BCD的面积为S,当t为何值时,S=? (3)连接MB,当MB∥OA时,如果抛物线y=ax2﹣10ax的顶点在△ABM内部(不包括边),求a的取值范围.

3.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是_________三角形; (2)若抛物线y=﹣x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=﹣x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由. 4.如图,抛物线y=ax2+bx﹣3交y轴于点C,直线l为抛物线的对称轴,点P在第三象限 且为抛物线的顶点.P到x轴的距离为,到y轴的距离为1.点C关于直线l的对称点为 A,连接AC交直线l于B. (1)求抛物线的表达式; (2)直线y=x+m与抛物线在第一象限内交于点D,与y轴交于点F,连接BD交y轴于 点E,且DE:BE=4:1.求直线y=x+m的表达式; (3)若N为平面直角坐标系内的点,在直线y=x+m上是否存在点M,使得以点O、F、M、N为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由.

中考数学 专题 四边形培优试题

四边形 1、如图,在正方形ABCD中,点E是CD边上的一点,过C作AE的垂线交AE的延长线于点F,连结DE,过点D作DF的垂线交AF于点G。 (1)求证:AG=CF。 (2)连结BG,若BG⊥AE,取BC的中点H,试判断线段BD与线段EH的数量关系和位置关系,并给出证明。 2、(1)如图1,已知正方形ABCD,E是边CD上一点,延长CB到点F,使BF=DE,作∠EAF 的平分线交边BC于点G,求证:BG+DE=E G。 (2)如图2,已知△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=2,CD=1,求△ABC的面积。

3、如图1,摆放矩形AB CD与矩形ECGF,使B,C,G三点在一条直线上,CE在边CD上,连结AF,若M为AF的中点,连结DM、ME,猜想DM与ME的关系,并证明你的结论。 拓展与延伸: (1)若将图1中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM 和ME的关系为。 (2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立。

4、在正方形ABCD中,动点E、F分别从D、C两点同时出发,以相同速度在直线DC、CB上移动。 (1)如图1,当点E在线段CD上,点F在线段BC上时,连结AE和DF交于点P,请写出AE与DF的关系,并说明理由。 (2)如图2,点E、F分别移动到边DC、CB的延长线上时,连结AE和DF,(1)中的结论还成立吗?真接写出结论,无需证明。 (3)如图3,当点E、F分别在CD、BC的延长线上移动时,连结AE与D F,(1)的结论还成立吗?请说明理由。 (4)如图4,当点E、F分别在边DC、CB上移动时,连结AE和DF交于点P,由于点E、F 的移动,使得点P也随之移动,请画出点P的运动路径的草图,若AD=2,试求出线段CP的最小值。

人教版九年级上册数学培优体系讲义

第二十一章 一元二次方程 1.一元二次方程 预习归纳 1.等号两边都是整式,只含有一个 ,并且未知数的最高次数是 的方程,叫一元二次方程. 2.一元二次方程的解也叫做一元二次方程的 . 3.一元二次方程的一般形式是 . 例题讲解 【例】把方程(3x -2)(2x -3)=x 2-5化成一元二次方程的一般形式,并写出方程的二次项,一次项及常数项和二次项系数,一次项系数. 基础训练 1.下列方程是一元二次方程的是( ) A .21 10x x =++ B .2110x x =++ C .210xy -= D .22 0x xy y =-+ 2.方程()45x x -=化为一般形式为( ) A .2450x x =-+ B .2450x x =++ C .2450x x =-- D .2 450x x =+- 3.方程23740x x =-+中二次项的系数,一次项的系数及常数项分别是( ) A .3、7、4 B .3、7、﹣4 C .3、﹣7、4 D .3、﹣7、﹣4 4.(2014菏泽)已知关于x 的一元二次方程x 2 +ax +b =0有一个非零根-b ,则a -b 的值为 ( ) A .1 B .-1 C .0 D .-2 5.(2014哈尔滨)若x =-1是关于x 的一元二次方程x 2+3x +m +1=0的一个解,则m 的值为 . 6.把一元二次方程2(x 2+7)=x +2化成一般形式是 . 7.下列数中-1,2,-3,-2,3是一元二次方程x 2-2x =3的根是 . 8.若方程x 2-2x +m =0的一个根是-1,求m 的值. 9.(2013牡丹江)若关于x 的一元二次方程为ax 2+bx +5=0(a ≠0)的解是x =1,求2013-a -b 的值.

人教中考数学平行四边形(大题培优易错试卷)附详细答案

一、平行四边形真题与模拟题分类汇编(难题易错题) 1.问题发现: (1)如图①,点P 为平行四边形ABCD 内一点,请过点P 画一条直线l ,使其同时平分平行四边形ABCD 的面积和周长. 问题探究: (2)如图②,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴正半轴上,点B 坐标为(8,6).已知点(6,7)P 为矩形外一点,请过点P 画一条同时平分矩形OABC 面积和周长的直线l ,说明理由并求出直线l ,说明理由并求出直线l 被矩形ABCD 截得线段的长度. 问题解决: (3)如图③,在平面直角坐标系xOy 中,矩形OABCD 的边OA 、OD 分别在x 轴、y 轴正半轴上,DC x ∥轴,AB y ∥轴,且8OA OD ==,2AB CD ==,点 (1052,1052)P --为五边形内一点.请问:是否存在过点P 的直线l ,分别与边OA 与BC 交于点E 、F ,且同时平分五边形OABCD 的面积和周长?若存在,请求出点E 和点F 的坐标:若不存在,请说明理由. 【答案】(1)作图见解析;(2)25y x =-,353)(0,0)E ,(5,5)F . 【解析】 试题分析:(1)连接AC 、BD 交于点O ,作直线PO ,直线PO 将平行四边形ABCD 的面积和周长分别相等的两部分. (2)连接AC ,BD 交于点O ',过O '、P 点的直线将矩形ABCD 的面积和周长分为分别相等的两部分. (3)存在,直线y x =平分五边形OABCD 面积、周长. 试题解析:(1)作图如下:

(2)∵(6,7)P ,(4,3)O ', ∴设:6PO y kx =+', 67{43k b k b +=+=,2{5 k b ==-, ∴25y x =-, 交x 轴于5,02N ?? ??? , 交BC 于11,62M ?? ???, 2 211563522MN ??=+-= ???. (3)存在,直线y x =平分五边形OABCD 面积、周长. ∵(1052,102)P --在直线y x =上, ∴连OP 交OA 、BC 于点E 、F , 设:BC y kx b =+,(8,2)(2,8)B C , 82{28k b k +=+=,1{10 k b =-=, ∴直线:10BC y x =-+, 联立10{y x y x =-+=,得55x y =??=? , ∴(0,0)E ,(5,5)F .

中考数学培优专题复习相似练习题及答案

中考数学培优专题复习相似练习题及答案 一、相似 1.如图,在Rt△ABC中,,角平分线交BC于O,以OB为半径作⊙O. (1)判定直线AC是否是⊙O的切线,并说明理由; (2)连接AO交⊙O于点E,其延长线交⊙O于点D,,求的值; (3)在(2)的条件下,设的半径为3,求AC的长. 【答案】(1)解:AC是⊙O的切线 理由:, , 作于, 是的角平分线, , AC是⊙O的切线 (2)解:连接, 是⊙O的直径, ,即 . . 又 (同角) , ∽ ,

(3)解:设 在和中,由三角函数定义有: 得: 解之得: 即的长为 【解析】【分析】(1)利用角平分线的性质:角平分线上的点到角两边的距离相等证得点O到AC的距离为半径长,即可证得AC与圆O相切;(2)先连接BE构造一个可以利用正切值的直角三角形,再证得∠1=∠D,从而证得两个三角形ABE与ABD相似,即可求得两个线段长的比值;(3)也可以应用三角形相似的判定与性质解题,其中AB的长度是利用勾股定理与(2)中AE与AB的比值求得的. 2.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题: (1)求证:△BEF∽△DCB; (2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值; (3)当t为何值时,△PQF为等腰三角形?试说明理由. 【答案】(1)解:∵四边形ABCD是矩形, ∴ AD∥BC, 在中, ∵别是的中点, ∴EF∥AD, ∴ EF∥BC,

人教备战中考数学培优(含解析)之相似含详细答案

一、相似真题与模拟题分类汇编(难题易错题) 1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C. (1)求抛物线解析式及对称轴; (2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由; (3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由. 【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得 解得 ∴抛物线解析式为:y= x2?x?1 ∴抛物线对称轴为直线x=- =1 (2)解:存在 使四边形ACPO的周长最小,只需PC+PO最小 ∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点. 设过点C′、O直线解析式为:y=kx

∴k=- ∴y=- x 则P点坐标为(1,- ) (3)解:当△AOC∽△MNC时, 如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E ∵∠ACO=∠NCD,∠AOC=∠CND=90° ∴∠CDN=∠CAO 由相似,∠CAO=∠CMN ∴∠CDN=∠CMN ∵MN⊥AC ∴M、D关于AN对称,则N为DM中点 设点N坐标为(a,- a-1) 由△EDN∽△OAC ∴ED=2a ∴点D坐标为(0,- a?1) ∵N为DM中点 ∴点M坐标为(2a,a?1) 把M代入y= x2?x?1,解得 a=4 则N点坐标为(4,-3) 当△AOC∽△CNM时,∠CAO=∠NCM ∴CM∥AB则点C关于直线x=1的对称点C′即为点N

中考数学培优专题复习圆的综合练习题附详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S △CDO = 1 2 ×6×4=12, ∴平行四边形OABC 的面积S=2S △CDO =24. 2.已知 O 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______; ()2如图②,若m 6=. ①求C ∠的正切值; ②若ABC 为等腰三角形,求ABC 面积. 【答案】()130;()2C ∠①的正切值为3 4 ;ABC S 27=②或 432 25 . 【解析】 【分析】 ()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论; ()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结 论; ②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论. 【详解】 ()1如图1,连接OB ,OA ,

中考数学总复习 培优专题精选经典题

专项训练一 一元二次方程 一、选择题 1.(2016·新疆中考)一元二次方程x 2-6x -5=0配方后可变形为( ) A .(x -3)2=14 B .(x -3)2=4 C .(x +3)2=14 .(x +3)2=4 2.(2016·攀枝花中考)若x =-2是关于x 的一元二次方程x 2+3 2ax -a 2=0的一个根,则a 的值为( ) A .-1或4 B .-1或-4 C .1或-4 D .1或4 3.(2016·凉山州中考)已知x 1、x 2是一元二次方程3x 2=6-2x 的两根,则x 1-x 1x 2+x 2的值是( ) A .-43 B.83 C .-83 D.43 4.(2016·随州中考)随州市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次, 2016年约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( ) A .20(1+2x )=28.8 B .28.8(1+x )2=20 C .20(1+x )2=28.8 D .20+20(1+x )+20(1+x )2=28.8 5.(2016·潍坊中考)关于x 的一元二次方程x 2-2x +sin α=0有两个相等的实数根,则锐角α等于( ) A .15° B .30° C .45° D .60° 6.已知三角形两边的长是3和4,第三边长是方程x 2-12x +35=0的根,则该三角形的周长是( ) A .14 B .12 C .12或14 D .以上都不对 7.(2016·深圳中考)给出一种运算:对于函数y =x n ,规定y ′=nx n - 1.例如:若函数y =x 4,则有y ′=4x 3.已知函数y =x 3,则方程y ′=12的解是( ) A .x 1=4,x 2=-4 B .x 1=2,x 2=-2 C .x 1=x 2=0 D .x 1=23,x 2=-2 3 8.★关于x 的一元二次方程x 2+2mx +2n =0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m =0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都是负根;②(m -1)2+(n -1)2≥2;③-1≤2m -2n ≤1,其中正确结论的个数是( ) A .0个 B .1个 C .2个 D .3个 二、填空题 9.(2016·菏泽中考)已知m 是关于x 的方程x 2-2x -3=0的一个根,则2m 2-4m =________. 10.方程(2x +1)(x -1)=8(9-x )-1的根为____________. 11.(2016·聊城中考)如果关于x 的一元二次方程kx 2-3x -1=0有两个不相等的实数根,那么k 的取值范围是______________. 12.(2016·黄石中考)关于x 的一元二次方程x 2+2x -2m +1=0的两实数根之积为负,则实数m 的取值范围是________. 13.关于x 的反比例函数y = a +4 x 的图象如图所示,A 、P 为该图象上的点,且关于原点成中心对称.△P AB 中,PB ∥y 轴,AB ∥x 轴,PB 与AB 相交于点B .若△P AB 的面积大于12,则关于x 的方程(a -1)x 2-x +1 4 =0的根的情况是______________. 14.一个容器盛满纯药液40L ,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这

2020年中考数学《几何综合》培优拔高专项复习讲义及解析

2020年中考数学《几何综合》培优拔高专项复习讲义及解析 1.如图,△ABC是等边三角形,D,E分别是AC,BC边上的点,且AD=CE,连接BD,AE相交于点F.(1)∠BFE的度数是; (2)如果=,那么=; (3)如果=时,请用含n的式子表示AF,BF的数量关系,并证明. 2.如图,∠BAD=90°,AB=AD,CB=CD,一个以点C为顶点的45°角绕点C旋转,角的两边与BA,DA交于点M,N,与BA,DA的延长线交于点E,F,连接AC. (1)在∠FCE旋转的过程中,当∠FCA=∠ECA时,如图1,求证:AE=AF; (2)在∠FCE旋转的过程中,当∠FCA≠∠ECA时,如图2,如果∠B=30°,CB=2,用等式表示线段AE,AF之间的数量关系,并证明. 3.已知:如图,矩形ABCD中,AB>AD. (1)以点A为圆心,AB为半径作弧,交DC于点E,且AE=AB,联结AE,BE,请补全图形,并判断∠AEB 与∠CEB的数量关系; (2)在(1)的条件下,设a=,b=,试用等式表示a与b间的数量关系并加以证明. 4.已知:△ABD和△CBD关于直线BD对称(点A的对称点是点C),点E,F分别是线段BC和线段BD上的点,且点F在线段EC的垂直平分线上,连接AF,AE,AE交BD于点G. (1)如图1,求证:∠EAF=∠ABD;

(2)如图2,当AB=AD时,M是线段AG上一点,连接BM,ED,MF,MF的延长线交ED于点N,∠MBF =∠BAF,AF=AD,试探究FM和FN之间的数量关系,并证明你的结论. 5.以AB为直径作半圆O,AB=10,点C是该半圆上一动点,连接AC、BC,并延长BC至点D,使DC=BC,过点D作DE⊥AB于点E、交AC于点F,连接OF. (1)如图①,当点E与点O重合时,求∠BAC的度数; (2)如图②,当DE=8时,求线段EF的长; (3)在点C运动过程中,若点E始终在线段AB上,是否存在以点E、O、F为顶点的三角形与△ABC相似? 若存在,请直接写出此时线段OE的长;若不存在,请说明理由. 6.如图①,P为△ABC内一点,连接P A、PB、PC,在△P AB、△PBC和△P AC中,如果存在一个三角形与△ABC 相似,那么就称P为△ABC的自相似点. (1)如图②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中线,过点B作BE丄CD,垂足为E.试说明E是△ABC的自相似点; (2)在△ABC中,∠A<∠B<∠C. ①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹); ②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数. 7.在Rt△ABC中,∠ACB=90°,AC=BC,CD⊥AB于点D,点E为AC边上一点,连接BE交CD于点F,过点E作EG⊥BE交AB于点G,

初三数学中考培优试题

2013级初三数学中考培优试题 一.解答题: 1.如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴的负半轴上,且OD=10,OB=8,将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合 (1)直接写出点A、B的坐标:A(_________,_________)、B(_________,_________); (2)若抛物线y=﹣x2+bx+c经过A、B两点,则这条抛物线的解析式是_________; (3)若点M是直线AB上方抛物线上的一个动点,作MN⊥x轴于点N,问是否存在点M,使△AMN与△ACD相似?若存在,求出点M的横坐标;若不存在,说明理由; (4)当≤x≤7时,在抛物线上存在点P,使△ABP得面积最大,求△ABP面积的最大值. 2.如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D.运动时间为t秒. (1)当点B与点D重合时,求t的值; (2)设△BCD的面积为S,当t为何值时,S=? (3)连接MB,当MB∥OA时,如果抛物线y=ax2﹣10ax的顶点在△ABM内部(不包括边),求a的取值范围.

3.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是_________三角形; (2)若抛物线y=﹣x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=﹣x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由. 4.如图,抛物线y=ax2+bx﹣3交y轴于点C,直线l为抛物线的对称轴,点P在第三象限 且为抛物线的顶点.P到x轴的距离为,到y轴的距离为1.点C关于直线l的对称点为 A,连接AC交直线l于B. (1)求抛物线的表达式; (2)直线y=x+m与抛物线在第一象限内交于点D,与y轴交于点F,连接BD交y轴于点E,且DE:BE=4:1.求直线y=x+m的表达式; (3)若N为平面直角坐标系内的点,在直线y=x+m上是否存在点M,使得以点O、F、M、N为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由.

2020年中考数学培优 专题讲义 第17讲 二次函数与面积

第17讲 二次函数与面积 解这类问题一般用到以下与面积相关的知识:图形割补、等积转换、等比转化. 【例题讲解】 例题1 如图1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ABC S △=1 2 ah ,即三角形面积等于水平宽与铅垂高乘积的一半. 解答问题: 如图2,顶点为C (1,4)的抛物线y =ax 2+bx +c 交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)点P 是抛物线(在第一象限内)上的一个动点,连接P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S △; ②是否存在抛物线上一点P ,使PAB S △=CAB S △?若存在,求出P 点的坐标;若不存在,请说明理由. C B 1把A (3,0)代入解析式求得a =-1, 所以1y =-(x -1)2+4=-x 2+2x +3, 设直线AB 的解析式为:2y =kx +b 由1y =-x 2+2x +3求得B 点的坐标为(0,3) 把A (3,0),B (0,3)代入2y =kx +b 中 解得:k =-1,b =3 所以2y =-x +3; (2)①因为C 点坐标为(1,4) 所以当x =1时,1y =4,2y =2 所以CD =4-2=2 CAB S △= 1 2 ×3×2=3(平方单位);

②假设存在符合条件的点P ,设P 点的横坐标为x ,△P AB 的铅垂高为h ,则h =1y -2y =(-x 2+2x +3)-(-x +3)=-x 2+3x 由PAB S △=CAB S △ 得: 1 2 ×3×(-x 2+3x )=3 化简得:x 2-3x +2=0, 解得:1x =1,2x =2, 将1x =1代入1y =-x 2+2x +3中, 解得P 点坐标为(1,4). 将2x =2代入1y =-x 2+2x +3中, 解得P 点坐标为(2,3). ∵点P 是抛物线(在第一象限内)上的一个动点, 综上所述,P 点的坐标为(1,4),(2,3). 模型讲解 竖切 面积公式均为1 = 2 S dh C B h C B h C B 横切 面积公式均为1 = 2 S dh D 【总结】 这种“铅垂高×水平宽的一半”的求解方法可过三角形的任意一点,并且“横竖”均可.而在选择时,如何选用,取决于点D 的坐标哪种更易求得. 例题2 已知一次函数y =(k +3)x +(k -1)的图像与x 轴、y 轴分别相交于点A 、B ,P (-1,-4).

人教版九年级数学上下册培优讲义机构辅导资料(共30讲)

九年级讲义目录

专题01 二次根式的化简与求值 阅读与思考 二次根式的化简与求值问题常涉及最简根式、同类根式,分母有理化等概念,常用到分解、分拆、换元等技巧. 有条件的二次根式的化简与求值问题是代数变形的重点,也是难点,这类问题包含了整式、分式、二次根式等众多知识,又联系着分解变形、整体代换、一般化等重要的思想方法,解题的基本思路是: 1、直接代入 直接将已知条件代入待化简求值的式子. 2、变形代入 适当地变条件、适当地变结论,同时变条件与结论,再代入求值. 数学思想: 数学中充满了矛盾,如正与负,加与减,乘与除,数与形,有理数与无理数,常量与变量、有理式与无理式,相等与不等,正面与反面、有限与无限,分解与合并,特殊与一般,存在与不存在等,数学就是在矛盾中产生,又在矛盾中发展. =x , y , n 都是正整数) 例题与求解 【例1】 当x = 时,代数式32003 (420052001)x x --的值是( ) A 、0 B 、-1 C 、1 D 、2003 2- (绍兴市竞赛试题) 【例2】 化简 (1(b a b ab b -÷-- (黄冈市中考试题) (2 (五城市联赛试题)

(3 (北京市竞赛试题) (4 (陕西省竞赛试题) 解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解. 思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度. 【例3】比6大的最小整数是多少? (西安交大少年班入学试题) 解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设x y == 想一想:设x=求 432 32 621823 7515 x x x x x x x --++ -++ 的值. (“祖冲之杯”邀请赛试题) 的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.

初三数学培优试题(含答案)

初三数学培优试题一 学校: 班级: 姓名: 分数: 一.选择题 1、下列函数:① 3y x =-,②21y x =-,③() 1 0y x x =-<,④223y x x =-++ 其中y 的值随x 值的增大而增大的函数有( ) (A )4个 (B )3个 (C )2个 (D )1个 2.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( ) A .(0,4) B .(1,1) C .(1,2) D .(2,1) x y –1–2–3–41 2 34 1 234 567B C A A' C 'B' O 3、按下面的程序计算,若开始输入x 的值为正数,最后输出的结果为656, 则满足条件的x 的不同值最多有( ) (A )2个 (B )3个 (C )4个 (D )5个

4、已知关于x 的不等式组1 2 x a x a ->-?? -或2a <- (B )25a -≤≤ (C )25a -<< (D )5a ≥或 2a ≤- 5、如图所示,已知点A 是半圆上一个三等分点,点B 是AN 的中点,点P 是半径ON 上的动点。 若O 的半径长为,则AP BP +的最小值为( ) (A )2 (B )3 (C )2 (D ) 6.(3分)如图,矩形ABCD 中,E 是AB 的中点,将△BCE 沿CE 翻折,点B 落在点F 处,tan ∠DCE=.设AB=x ,△ABF 的面积为y ,则y 与x 的函数图象大致为( ) A . B . C . D . B A

中考数学总复习培优专题精选经典题

初三数学中考总复习培优资料一 一、选择题(本大题共有12小题,每小题2分,共24分.) 1.-2的绝对值是 A .-2 B .- 12 C .2 D .12 2.下列运算正确的是 A .x 2+ x 3= x 5 B .x 4·x 2= x 6 C .x 6÷x 2 = x 3 D .( x 2)3 = x 8 3.下面四个几何体中,俯视图为四边形的是 4.已知a -b =1,则代数式2a -2b -3的值是 A .-1 B .1 C .-5 D .5 5.若⊙O 1、⊙O 2的半径分别为4和6,圆心距O 1O 2=8,则⊙O 1与⊙O 2的位置关系是 A .内切 B .相交 C .外切 D .外离 6.对于反比例函数y =1 x ,下列说法正确的是 A .图象经过点(1,-1) B .图象位于第二、四象限 C .图象是中心对称图形 D .当x <0时,y 随x 的增大而增大 7.某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是 A .平均数为30 B .众数为29 C .中位数为31 D .极差为5 8.小亮从家步行到公交车站台,等公交车去学校. 折线表示小亮的行程s (km)与所花时间t (min)之间的函数关系. 下列说法错误..的是 A .他离家8km 共用了30min B .他等公交车时间为6min C .他步行的速度是100m/min D .公交车的速度是350m/min 9.一元二次方程x x 22 =的根是( ) A .2=x B .0=x C .2,021==x x D .2,021-==x x 10.如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是( ) A .1 B . 21 C .31 D .4 1 A B C D (第8题图)

2019中考数学培优试题

2019级初三数学中考培优试题 一.解答题: 1.如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴的负半轴上,且OD=10,OB=8,将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合 (1)直接写出点A、B的坐标:A(_________,_________)、B(_________,_________); (2)若抛物线y=﹣x2+bx+c经过A、B两点,则这条抛物线的解析式是_________; (3)若点M是直线AB上方抛物线上的一个动点,作MN⊥x轴于点N,问是否存在点M,使△AMN与△ACD相似?若存在,求出点M的横坐标;若不存在,说明理由; (4)当≤x≤7时,在抛物线上存在点P,使△ABP得面积最大,求△ABP面积的最大值. 2.如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D.运动时间为t秒. (1)当点B与点D重合时,求t的值; (2)设△BCD的面积为S,当t为何值时,S=? (3)连接MB,当MB∥OA时,如果抛物线y=ax2﹣10ax的顶点在△ABM内部(不包括边),求a的取值范围.

3.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是_________三角形; (2)若抛物线y=﹣x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=﹣x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由. 4.如图,抛物线y=ax2+bx﹣3交y轴于点C,直线l为抛物线的对称轴,点P在第三象限 且为抛物线的顶点.P到x轴的距离为,到y轴的距离为1.点C关于直线l的对称点为 A,连接AC交直线l于B. (1)求抛物线的表达式; (2)直线y=x+m与抛物线在第一象限内交于点D,与y轴交于点F,连接BD交y轴于 点E,且DE:BE=4:1.求直线y=x+m的表达式; (3)若N为平面直角坐标系内的点,在直线y=x+m上是否存在点M,使得以点O、F、M、N为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由.

中考数学二轮 旋转 专项培优易错试卷及答案

一、旋转真题与模拟题分类汇编(难题易错题) 1.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F. (1)如图①,当点D落在BC边上时,求点D的坐标; (2)如图②,当点D落在线段BE上时,AD与BC交于点H. ①求证△ADB≌△AOB; ②求点H的坐标. (3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可). 【答案】(1)D(1,3);(2)①详见解析;②H(17 5 ,3);(3) 30334 - ≤S≤30334 + . 【解析】 【分析】 (1)如图①,在Rt△ACD中求出CD即可解决问题; (2)①根据HL证明即可; ②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题; (3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题; 【详解】 (1)如图①中, ∵A(5,0),B(0,3),

∴OA=5,OB=3, ∵四边形AOBC是矩形, ∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°, ∵矩形ADEF是由矩形AOBC旋转得到, ∴AD=AO=5, 在Rt△ADC中,CD=22 AD AC -=4, ∴BD=BC-CD=1, ∴D(1,3). (2)①如图②中, 由四边形ADEF是矩形,得到∠ADE=90°, ∵点D在线段BE上, ∴∠ADB=90°, 由(1)可知,AD=AO,又AB=AB,∠AOB=90°, ∴Rt△ADB≌Rt△AOB(HL). ②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC, ∴∠CBA=∠OAB, ∴∠BAD=∠CBA, ∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m, 在Rt△AHC中,∵AH2=HC2+AC2, ∴m2=32+(5-m)2, ∴m=17 5 , ∴BH=17 5 , ∴H(17 5 ,3). (3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=1 2 ?DE?DK= 1 2 ×3× (34 ) 30334 -

上海数学初三中考冲刺讲义5(几何证明)培优(教案)【陈玉婷】

志航教育学科教师辅导讲义 限速训练 一、选择题::(本大题共 6题,每题 4分,满分 24分) 1.下列计算正确的是( ) A .422a a a =+; B .236a a a =÷; C .32a a a =?; D .532)(a a =. 2.关于x 的方程2 10x mx --=根的情况是( ) A .有两个不相等的实根; B .有两个相等的实根; C .没有实数根; D .不能确定. 3.已知反比例函数1 y x =的图像上有两点),(11y x A ,),(22y x B ,且21x x <,那么下列结论中,正确的是( ) A .21y y <; B .21y y >; C .21y y =; D .1y 与2y 之间的大小关系不能确定. 4.如果一组数据1a ,2a ,…,n a 的方差2 0S =,那么下列结论一定正确的是( ) A .这组数据的平均数0x =; B .12n a a a == =; C .120n a a a ====; D .12n a a a << <. 5.若一个多边形的内角和等于900,则这个多边形的边数是( ) A .8; B .7; C .6; D .5. 6.一个正多边形绕它的中心旋转36°后,就与原正多边形第一次重合,那么这个正多边形( ) A .是轴对称图形,但不是中心对称图形; B .是中心对称图形,但不是轴对称图形; C .既是轴对称图形,又是中心对称图形; D .既不是轴对称图形,也不是中心对称图形. 二、填空题::(本大题共 12题,每题 4分,满分 48分) 7.分解因式3 9x x -= . 8.4的平方根 .

相关文档
最新文档