ASTM A743-2017 一般用耐腐蚀铬铁及镍铬铁合金铸件

ASTM A743-2017 一般用耐腐蚀铬铁及镍铬铁合金铸件
ASTM A743-2017 一般用耐腐蚀铬铁及镍铬铁合金铸件

AMS5665镍铬合金

AMS5665镍铬合金

ASTM B163 –无缝镍和镍合金冷凝器和热交换器管的标准规范 ASTM B166 –镍铬铁合金标准规范(UNS N06600,N06601,N06603,N06690,N06693,N06025,N06045和N06696)*和镍铬钴钴钼合金(UNS N06617)棒,棒和棒线 ASTM B167 –镍铬铁合金(UNS N06600,N06601,N06603,N06690,N06693,N06025,N06045和N06696)的标准规范*和镍铬钴钴钼合金(UNS N06617)无缝管 ASTM B168 –镍铬铁合金(UNS N06600,N06601,N06603,N06690,N06693,N06025,N06045和N06696)和镍铬钴钴钼合金(UNS N06617)板,片和带的标准规范 ASTM B366 –工厂制造的锻造镍和镍合金配件的标准规范 ASTM B516 –镍铬铁合金焊接标准规范(UNS N06600,UNS N06603,UNS N06025和UNS N06045管 ASTM B517 –镍铬铁合金焊接标准规格(UNS N06600,UNS N06603,UNS N06025和UNS N06045) ASTM B564 –镍合金锻件的标准规范 ASTM B751 –镍和镍合金焊接管通用要求的标准规范 MIL-R-5031 –棒和钢丝,焊接,耐腐蚀和耐热合金 MIL-T-23227 –管和管,镍铬铁合金(UNS N06600) MIL-N-23228 –镍铬铁合金板,片和带 MIL-N-23229 –镍铬铁合金棒料和锻件 ASME SB-163,SB-166 – SB-168,SB-564 纳斯MR-01-75 QQ-W-390

镍基高温合金

镍基高温合金 浏览: 文章来源:中国刀具信息网 添加人:阿刀 添加时间:2007-06-28 以镍为基体(含量一般大于50%) 在650~1000℃范围内具有较高的强度和良好的抗 氧化、抗燃气腐蚀能力的高温合金。 发展过程 镍基高温合金(以下简称镍基合金)是30年代后期开始研制的。英国于1941年首先生产出镍基合金Nimonic 75(Ni-20Cr-0.4Ti);为了提高蠕变强度又添加铝,研制出Nimonic 80(Ni-20Cr-2.5Ti-1.3Al)。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基合金。镍基合金的发展包括两个方面:合金成分的改进和生产工艺的革新。50年代初,真空熔炼技术的发展,为炼制含高铝和钛的镍基合金创造了条件。初期的镍基合金大都是变形合金。50年代后期,由于涡轮叶片工作温度的提高,要求合金有更高的高温强度,但是合金的强度高了,就难以变形,甚至不能变形,于是采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金。60 年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金。为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内, 镍基高温合金的发展趋势

镍基合金的工作温度从 700℃提高到1100℃,平均每年提高10℃左右。镍基高温合 金的发展趋势见图1。 成分和性能 镍基合金是高温合金中应用最广、高温强度最高的一类合金。其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的 A 3B 型金属间化合物 '[Ni 3(Al ,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗氧化和抗燃气腐蚀能力。镍基合金含有十多种元素,其中 Cr

GH4169是什么牌号材料

GH4169是是Fe-Ni-Cr基沉积硬化型变形高温合金,长时间运用温度规模-253~650℃,短期运用温度在800℃,在650℃以下时具有高强度、出色的耐性以及在高低温环境均具有耐氧化耐腐蚀性。以及出色的加工功能和焊接功能和长时间组织稳定性。 GH4169适用于制作航空、航天和石油化工中的环件、叶片、紧固件和结构件等,主要有棒、板、管、带、丝、等。 GH4169对应牌号:2.4668、N07718、GH4169。 GH3536钢板GH3536棒GH3536锻件GH3536管GH3536带材 预热:工件在加热之前和加热过程中都应进行外表清理,坚持外表清洁。若加热环境含有S、P、铅或其他低熔点金属,合金将变脆。杂

质来源于做符号的油漆、粉笔、润滑油、水、燃料等。燃料的硫含量要低,如液化气和气的杂质含量要低于0.1%,城市煤气的硫含量要低于0.25g/m3,石油气的硫含量低于0.5%是理想的。加热的电炉应要具有较准的控温才能,炉气应为中性或弱碱性,应防止炉气成分在氧化性和还原性中动摇。 GH4169冷热加工:合金合适的热加工温度为1120-900℃,冷却方法可以是水 62616964757a686964616fe59b9ee7ad9431333431353839淬或其他快速冷却方法,热加工后应及时退火以确保得到很好的功能。热加工时资料应加热到加工温度的上限,为了确保加工时的塑性,变形量到达20%时的终加工温度不应低于960℃。冷加工应在固溶处理后进行,加工硬化率大于奥氏体不锈钢,因此加工设备应作相应调整,并且在冷加工过程中应有中间退火过程。 冷热处理:不同的固溶处理和时效处理工艺会得到不同的资料功能。因为γ”相的扩散速率较低,所以通过长时间的时效处理能使合金取得很好的机械功能。 冷打磨:工件焊缝附近的氧化物要比不锈钢的更难以去除,需要用细砂带打磨,在HNO3和氢氟酸的混合酸中酸洗之前,也要用砂纸去除氧化物或进行盐浴预处理。 GH4169机加工:机加工需在固溶处理后进行,要考虑到资料的加工硬化性,与奥氏体不锈钢不同的是,合适选用低外表切削速度。GH4169焊接功能:沉淀硬化型的GH4169合金很合适于焊接,无焊

部分高温合金牌号及成分

部分高温合金牌号及成分

部分特种合金牌号及成分Monel 400 相近牌号 UNS Trademark W.Nr N04400Monel400 2.4360 Monel 400 的化学成分: Monel 400 的物理性能: 在常温下合金的机械性能的最小值: Monel 400

Monel 400特性: Monel400是一种用量最大、用途最广、综合性能极佳的耐蚀合金。此合金在氢氟酸和氟气介质中具有优异的耐蚀性,对热浓碱液也有优良的耐蚀性。同时还耐中性溶液、水、海水、大气、有机化合物等的腐蚀。该合金的一个重要特征是一般不产生应力腐蚀裂纹,切削性能良好。 Monel 400 的金相结构: Monel400合金的组织为高强度的单相固溶体。 Monel 400 的耐腐蚀性: Monel400合金在氟气、盐酸、硫酸、氢氟酸以及它们的派生物中有极优秀的耐蚀性。同时在海水中比铜基合金更具耐蚀性。酸介质:Monel400在浓度小于85%的硫酸中都是耐蚀的。Monel400是可耐氢氟酸中为数极少的重要材料之一。水腐蚀:Monel400合金在多数水腐蚀情况下,不仅耐蚀性极佳,而且孔蚀、应力腐蚀等也很少发现,腐蚀速度小于0.025mm/a。高温腐蚀:Monel400在空气中连续工作的最高温度一般在600℃左右,在高温蒸汽中,腐蚀速度小于0.026mm/a。氨:由于Monel400合金镍含量高,故可耐585℃以下无水氨和氨化条件下的腐蚀。

Monel 400 应用领域: Monel400合金是一种多用途的材料,在许多工业领域都能应用: 1.动力工厂中的无缝输水管、蒸汽管 2.海水交换器和蒸发器 3.硫酸和盐酸环境 4.原油蒸馏 5.在海水使用设备的泵轴和螺旋桨 6.核工业用于制造铀提炼和同位素分离的设备 7.制造生产盐酸设备使用的泵和阀 Monel K500 相近牌号 UNS Trademark N05500MonelK500 Monel K500 的化学成分:

镍基合金焊接材料

镍基合金焊接材料 镍及镍合金焊条

产品名称:镍及镍基合金焊材 产品说明: Ni102镍及镍合金焊条型号GB/T:ENi-0 说明:钛钙型药皮的纯镍焊条,具有较好的力学性能及耐热、耐腐蚀性,交、直流两用,采用直流反接。 用途:用于化工设备、食品工业,医疗器械制造中镍基合金和双金属的焊接,也可用作异种金属的过渡层焊条,具有良好的熔合性和抗裂性。 熔敷金属化学成份/% C≤0.03 Mn 0.6-1.1 Si≤1Ni≥92Fe≤0.5 Ti 0.7-1.2 Nb 1.8-2.3 S≤0.015P≤0.015 Ni112镍及镍合金焊条型号GB/T:ENi-0 相当于AWS:ENi-1 说明:钛钙型药皮的纯镍焊条,具有较好的力学性能及耐热、耐腐蚀性,交、直流两用,采用直流反接。 用途:用于化工设备、食品工业,医疗器械制造中镍基合金和双金属的焊接,也可用作异种金属的过渡层焊条,具有良好的熔合性和抗裂性。 熔敷金属化学成份/% C≈0.04Mn≈1.5Ni≥92Fe≈3Ti≈0.5Nb≈1S≤0.015P≤0.015 Ni202镍及镍合金焊条型号GB/T:ENiCu-7 相当于AWS:ENiCu-7 说明:钛钙型药皮的Ni70Cu30蒙乃尔合金焊条,含适量的锰、铌,具有较好的抗裂性,焊接时电弧燃烧稳定,飞溅小,脱渣容易,焊接成形美观,采用交流或直流反接,采用直流反接。用途:用于镍铜合金与异种钢的焊接,也可用作过渡层堆焊材料。 熔敷金属化学成份/% C≤0.15 Mn≤4Si≤1.5 Ni 62-69 Fe≤2.5Ti≤1Nb≤2.5 S≤0.015 P≤0.02Al≤0.75 Cu余量 Ni207镍及镍合金焊条型号GB/T:ENiCu-7 相当于AWS:ENiCu-7 说明:低氢型蒙乃尔合金焊条,具有良好的抗裂性和焊接工艺性能。 用途:用于焊接蒙乃尔合金焊条或异种钢,也可用作过渡层堆焊材料。 熔敷金属化学成份/% C≤0.15Mn≤4Si≤1.5 Ni 62-69 Fe≤2.5Ti≤1Nb≤2.5S≤0.015 P≤0.02 Cu余量 Ni307镍及镍合金焊条型号GB/T:ENiCrMo-0

镍基高温合金溅射NiCrALY涂层盐腐蚀行为

第一章绪论 1.1. 铸造高温合金的发展 自从20世纪40年代初期第一台航空喷气发动机采用第一个铸造涡轮工作叶片以来,铸造高温合金的发展经历了一段曲折而又辉煌的历程。半个世纪以来,航空发动机涡轮前温度从40年代的730℃提高到90年代的1677℃,推重比从大约3提高到10,这一巨大进展固然离不开先进的设计思想、精湛的制造工艺以及有效的防护涂层,但是高性能的铸造高压涡轮叶片合金的应用更是功不可没。在这世纪之初回顾铸造高温合金发展的历程,不能不提到如下几件使人难忘的重大事件[1]。美国GE公司为其J33航空发动机选用了钴基合金HS 21制作涡轮工作叶片,代替原先用的锻造高温合金Hasteelloy B。,从此开创了使用铸造高温合金工作叶片的历史。到60年代初,由于发动机工作温度提高,要求叶片合金的热强性能进一步提高,使高温合金合金化程度不断提高,于是出现了复杂合金化与压力加工困难的矛盾,并且越来越尖锐,加之这一时期铸造技术进步,使合金性能和叶片质量提高,出现了大批复杂合金化的高性能合金,使铸造高温合金叶片的应用越来越广泛。我国第一个铸造高温合金是北京航空材料研究院于1958年研制的K401合金,用作WP6发动机的导向叶片。我国第一个铸造涡轮工作叶片是60年代初在黎明发动机厂研制的WP6S发动机一级涡轮叶片(K406合金)。70年代中期,由中科院金属研究所研制成功的K417镍基铸造高温合金制作涡轮叶片用于WP-7型发动机,投入生产,成为我国最先服役于航线的铸造涡轮叶片合金。70年代之后,由于定向凝固和单晶合金的出现,使得所有国家的先进新型发动机几乎无一例外地选用铸造高温合金制作最高温区工作的叶片,从此确立了铸造高温合金叶片的稳固地位[2]。 1.2镍基高温合金的发展 早在60年代,国内外就开始对从高温合金诞生的金属间化合物(Ni3Al、NiAl、Ti3Al、TiAl)为基的合金进行了广泛的研究,因为这些化合物具有诱人的低密度、高模量和良好的抗氧化性,认为是有发展前景的替换材料。70年代中期,美国Howmet公司发展了高温合金细晶铸造法,从而在合金凝固过程的晶粒控制方面

常用的电热材料是有镍铬合金和铁铬合金

常用的电热材料是有镍铬合金和铁铬合金,用来制造各种电阻加热设备中的发热元件。对电热材料的要求是电阻系数高,加工性好,且在高温时具有足够的力学强度和良好的抗氧化性能。 (5)电触头材料 常用的触头(触点)材料见表4——6.强电用的触头和弱电用的触头性能和要求不同,选用的材料也各不相同。触头材料在电气开关中,承担电路的接通、载流、分段和隔离的作用,因此要求它的接触电阻小、操作安全可靠和使用寿命长等。 三、磁性材料 常用磁性材料就是指铁磁性物质,一般分为软磁材料、硬磁材料和钜磁材料三类。 1.软磁性材料的主要特点就是磁导率高、剩磁小、矫顽力小、磁滞现象不严重,是一种既 容易磁化也容易去磁的材料,磁滞损耗小。常用的软磁性材料品种有电工纯铁、硅钢片、贴镍合金、铁铝合金、软磁铁氧体等。 电工纯铁一般用于直流磁场中;硅钢片是电力和电信等工业的基础材料,用量占磁性材料90%以上。硅钢片主要用于工频交流电磁器中,如变压器、电动机、开关盒和继电器等的铁心,近年来冷轧硅钢片有取代热轧硅钢片的趋势,冷轧无取向硅钢片主要用于小型叠片铁心,冷轧取向硅钢片主要用作电力变压器和大型发电机的铁心。贴镍合金用于较高的频率、弱磁场或要求磁导率特别高的铁心材料,常用于制作海底电缆、电视、精密仪器用的各类特种变压器及精密仪表的磁元件等一类小功率的磁性元件。铁铝合金常用来制作在弱磁场中工作的音频变压器、脉冲变压器、灵敏继电器、磁放大器和电动机的磁屏蔽等。软磁铁氧体是目前用途广、品种多、数量大、产值高的一种铁氧体,最常用的铁氧体软材料有孟锌铁氧体和镍锌铁氧体。 软磁材料一般都是在交变磁场中使用,选用时主要考虑材料的磁性能及价格等因素。再强磁场下,最常用的软磁材料是硅钢片;在弱磁场下常选用各种铁镍合金、1J16铁铝合金及冷轧单取向硅钢薄带。在高频下一般选用铁氧体软磁材料。 2.硬磁材料 硬磁材料的主要特点是剩磁、矫顽力都很大;但磁化后不易消磁,适合制造永久磁铁。 铝镍合金是目前我国电动机、电气设备工业中应用比较多的硬磁材料,主要用于电动机、微电机、磁电系仪表等。铁氧体硬磁材料主要用于电气元件中的拾音器、扬声器、电话机等的磁心,以及为电动机,微波元件、磁疗片等。 稀土钻硬磁材料主要为超大型高频元件中的电子聚焦装置提供磁场。另外,它还应用在微电机、磁性轴承、电子手表等方面。 塑性变形硬磁材料通常用于里程表、罗盘仪、计量仪表、微电机、继电器等。 3. 钜磁材料

INCONEL 718合金(UNS N07718)

Inconel 718 Inconel718合金是含铌、钼的沉淀硬化型镍铬铁合金,在650℃以下时具有高强 度、良好的韧性以及在高低温环境均具有耐腐蚀性。其状态可以是固溶处理或沉淀硬化态。 热处理和机械特性 对于大部分用处, INCONEL 718合金需要做退火和淬硬处理。INCONEL 718合金由二级的淬火硬化成必定的金属晶阵。在593~815℃的热处理下,这些镍(铝、钛、铌)生了改动。由于完全进行了冶金反应,那些铝、钛、铌等金属要素完全溶解在了合金相矩阵中均匀扩散);假如这些元素以其他的方法结晶出来或许以某种方法组成的不会构成要求的满足强度。为了完结这些功用,合金材料必须首要进行退火热处理。 对于INCONEL 718合金,一般选用两种热处理方法: 方案1 加热到926~1010℃,水中快速冷却至室温,然后升温至718℃保 炉冷至621℃,在621℃坚持18个小时作为时效处理,随后在空气中冷却至室温。 方案2 加热到1037~1065℃,水中快速冷却至室温,然后升温至760℃坚持1 0个小时 炉冷至648℃,在649℃坚持二十个小时作为时效处理,随后在空气中冷却至室温。 如果这种材料是用于机加工、成型加工或许焊接,在工厂中买到的材料通处理或消除应力处理的。在最大延展率的状态下进行成型加工。成型加工后,按照每体的运用要求进行热处理。 Inconel 718是一种高强度耐腐蚀用于-252℃到704℃环境下的镍基合金材料,其化学成分

这种可硬化的合金具有很好的塑性,甚至能加工成各种复杂的零部件;具有很好的焊接特性,尤其是能有效抑制焊接破裂现象的产生,效果比较明显。 Inconel718合金具有良好的塑性、延展性、疲劳特性、蠕变特性、抗拉强度,所以被广泛的应用于各个领域。比较典型的是应用于液体火箭、柱状体、防护套和各种各样飞行器上的成型板金件、地上的燃气涡轮发动机、低温储存罐。也能用于扣件和仪器零部件。 物理常数和热特性 Inconel718的物理常数,杨氏摸量、扭转系数等列于表3、4中,热特性系数这些表格中的数值由于化学含量和测试环境的不同可能会有稍微的出入。这些都是一般的通用参数,而不是对于某种具体的工程项目。 物理性能 密度密度ρ=8.24g/cm3 熔化温度范围熔化温度范围1260~1320℃ 加工和热处理 Inconel718合金在机械加工范畴属难加工材料。 预热 工件在加热之前和加热进程中都有必要进行表面收拾,坚持表面清洁。若加热环境含有硫、磷、铅或其他低熔点金属,Inconel718合金将变脆。杂质来源于做符号的油漆、粉笔、润滑油、水、燃料等。燃料的硫含量要低,如液化气和天然气的杂质含量要低于0.1%,城市煤气的硫含量要低于0.25g/m3,石油气的硫含量低于0.5%是志向的。 加热的电炉好要具有较准确的控温才干,炉气有必要为中性或弱碱性,应避免炉气成分在氧化性和还原性中不坚定。 热加工 Inconel718合金合适的热加工温度为1120-900℃,冷却方法可所以水淬或其他快速冷却方法,热加工后应及时退火以保证得到佳的功用。热加工时材料应加热到加工温度的上限,为了保证加工时的塑性,变形量达到20%时的终加工温度不该低于960℃。 冷加工 冷加工应在固溶处理后进行,Inconel718的加工硬化率大于奥氏体不锈钢,因此加工设备应作相应调整,并且在冷加工进程中应有中心退火进程。 热处理 不同的固溶处理和时效处理工艺会得到不同的材料功用。因为γ”相的涣散速率较低,所以通过长期的时效处理能使Inconel718合金取得佳的机械功用。

Nimonic 75(N06075、2.4951)耐蚀耐热镍铬合金

上海商虎/张工:158 –0185 -9914 进口Nimonic 75耐蚀耐热镍铬合金Nimonic 75棒BS HR 504 对应商标:W.NR 2.4951 W.NR 2.4630 UNS N06075 AWS 032适用标准:BS HR 5 BS HR 504 Nimonic 75是一种具有杰出耐蚀性和耐热性的镍铬合金。 使用领域包含: 航天紧固件

产品:哈氏合金、高温合金、铜镍合金、英科耐尔、蒙乃尔、钛合金、沉淀硬化钢等各种中高端不锈钢,镍基合金等。 高温合金: GH3030、GH4169、GH3128、GH145、GH3039、GH3044、GH4099、GH605、GH5188等 软磁合金: 1J06、1J12、1J22、1J27、1J30、1J36、1J50、1J79、1J85等 弹性合金: 3J01、3J09、3J21、3J35等。蒙乃尔合金:Monel 400(N04400)、Monel K500(N05500)等 膨胀合金: 4J28、4J29(与玻璃烧结)、4J32、4J33、4J34、4J36、(与陶瓷烧结)4J38、4J42、4J50等 耐蚀合金:

Inconel 600、601、617、625、686、690、713C、718、Inconel X-750等 因科洛伊合金: Incoloy 20、330、718、800、800H、800HT、825、925、Inconel 926【N08926/1.4529】等 哈氏合金: Hastelloy C、C-4、C-22(N06022)、C-276、C-2000、Hastelloy B、B-2、B-3等 纯镍 / 钛合金: N4、N5(N02201)N6、N7(N02200)TA1、TA2、TA9、TA10、TC4等 沉淀硬化钢/双相不锈钢 17-4PH(sus630)、17-7PH(sus631)、15-5PH/ 2205、2507、904L、254SMO、20#(N08020) 生产工艺:热轧、锻轧、精扎、机轧、挤压、连铸、冷拔、浇铸、冷拉等 供应规格:棒材、板材、管材、带材、毛细管、丝材及块料。

镍基合金焊条

镍基合金焊条(ERNiCr-3、ERNiCrFe-7) 产品简介? 镍基合金焊接材料 AWS牌号 应用 焊丝焊条 ERNiCr-3 用于600,601以及800合金自身的焊接,及不锈钢和碳钢之间的异种钢焊接 ERNiCrFe-7 用于焊接ASTMB163,166,167和168标准内的镍铬铁合金 ERNiCrFe-6 用于钢和镍铬铁合金的焊接,钢及不锈钢和镍基合金的焊接 ERNiCrCoMo-1 用于焊接镍铬钴钼合金及各种高温合金的异种焊接

ERNiCrMo-3 用于镍合金,碳钢,不锈钢和低合金钢的一种焊接,最主要用于625,601,802合金的焊接及9%镍合金的焊接 ERNi-CI 工业纯镍,用于可锻铸铁及灰口铸铁的焊接 ERCuNi 用于70/30,80/20,90/10铜镍合金的焊接 ERNiCu-7 用于焊接镍铜合金B127,163,164和165等 ERNi-1 用于纯镍铸件和锻件的焊接,如:ASTMB160,161,162,163标准内的合金 ERNiFeMn-CI 用于结节铸铁,球墨铸铁,可锻铸铁和灰口铸铁自身的焊接或用于它们与不锈钢,碳钢,低合金钢及各种镍合金的焊接 ERNiCrMo-4

用于镍铬钼合金自身的焊接,或镍铬钼合金和钢及大多数其它镍基合金的焊接 ERNiCrMo-11 用于镍铬钼合金自身的焊接,或镍铬钼合金和钢及大多数其它镍基合金的焊接,还可以用于镍铬钼合金和钢焊接焊缝的堆焊 ERNiCrMo-13 用于焊接低碳镍铬钼合金 焊条 ENiCrMo-3 用于焊接镍铬钼合金,如625,800,801,825和600 ENiCrFe-3 用于镍铬铁合金自身的焊接及与碳钢的焊接 ENiCrFe-2 用于奥氏体钢,铁素体钢及高镍合金之间的异种焊接,还可用于9%镍合金的焊接 ENiCu-7

镍基合金管的性能化学成分

镍基合金管的性能、化学成分 以镍为基体,能在一些介质中耐腐蚀的合金,称为镍基耐蚀合金。此外,含镍大于30%,且含镍加铁大于50%的耐蚀合金,习惯上称为铁-镍基耐蚀合金(见不锈耐酸钢)。1905年美国生产的Ni-Cu合金(Monel合金Ni 70 Cu30)是最早的镍基耐蚀合金。1914年美国开始生产Ni-Cr-Mo-Cu型耐蚀合金(Illium R),1920年德国开始生产含Cr约15%、Mo约7%的Ni-Cr-Mo型耐蚀合金。70年代各国生产的耐蚀合金牌号已近50种。其中产量较大、使用较广的有Ni-Cu,Ni-Cr,Ni-Mo,Ni-Cr-Mo(W),Ni-Cr-Mo-Cu和Ni-Fe-Cr,Ni-Fe-Cr-Mo等合金系列,共十多种牌号。中国在50年代开始研制镍基和铁-镍基耐蚀合金,到70年代末,已有十多种牌号。 类别镍基耐蚀合金多具有奥氏体组织。在固溶和时效处理状态下,合金的奥氏体基体和晶界上还有金属间相和金属的碳氮化物存在,各种耐蚀合金按成分分类及其特性如下: Ni-Cu合金在还原性介质中耐蚀性优于镍,而在氧化性介质中耐蚀性又优于铜,它在无氧和氧化剂的条件下,是耐高温氟气、氟化氢和氢氟酸的最好的材料(见金属腐蚀)。 Ni-Cr合金主要在氧化性介质条件下使用。抗高温氧化和含硫、钒等气体的腐蚀,其耐蚀性随铬含量的增加而增强。这类合金也具有较好的耐氢氧化物(如NaOH、KOH)腐蚀和耐应力腐蚀的能力。 Ni-Mo合金主要在还原性介质腐蚀的条件下使用。它是耐盐酸腐蚀的最好的一种合金,但在有氧和氧化剂存在时,耐蚀性会显著下降。 Ni-Cr-Mo(W)合金兼有上述Ni-Cr合金、Ni-Mo合金的性能。主要在氧化-还原混合介质条件下使用。这类合金在高温氟化氢气中、在含氧和氧化剂的盐酸、氢氟酸溶液中以及在室温下的湿氯气中耐蚀性良好。 Ni-Cr-Mo-Cu合金具有既耐硝酸又耐硫酸腐蚀的能力,在一些氧化-还原性混合酸中也有很好的耐蚀性。 什么是超级不锈钢?镍基合金? 超级不锈钢、镍基合金是一种特种的不锈钢,首先在化学成分上与普通不锈钢304不同,是指含高镍,高铬,高钼的一种高合金不锈钢。其次在耐高温或者耐腐蚀的性能上,与304相比,具有更加优秀的耐高温或者耐腐蚀性能,是304不可取代的。另外,从不锈钢的分类上,特殊不锈钢的金相组织是一种稳定的奥氏体金相组织。 由于这种特种不锈钢是一种高合金的材料,所以在制造工艺上相当复杂,一般人们只能依靠传统工艺来制造这种特种不锈钢,如灌注,锻造,压延等等。 在许多的领域中,比如 1,海洋:海域环境的海洋构造物,海水淡化,海水养殖,海水热交换等。 2,环保领域:火力发电的烟气脱硫装置,废水处理等。 3,能源领域:原子能发电,煤炭的综合利用,海潮发电等。 4,石油化工领域:炼油,化学化工设备等。 5,食品领域:制盐,酱油酿造等 在以上的众多领域中,普通不锈钢304是无法胜任的,在这些特殊的领域中,特种不锈钢是不可缺少的,也是不可被替代的。近几年来,随着经济的快速发达,随着工业领域的层次的不断提高,越来越多的项目需要档次更高的不锈钢。。。。。特种不锈钢(超级不锈钢、镍基合金)。

GH2132化学成分A286机械性能SUH660生产厂家S66286是什么材料GH2132哪家质量好SUH660法兰锻造镍铬铁合金

1 镍基合金 SUH660(UNS S66286/A286/SUH660/GH2132/1.4980)材料简介 SUH660(UNS S66286/A286/SUH660/GH2132/1.4980)是Fe-25Ni-15Cr 基高温合金,加入钼、钛、铝、钒及微量硼综合强化。有可时效硬化高的机械性能。该合金在温度高达约1300°F(700℃)保持良好的强度和抗氧化性能。在700℃以下具有优于奥氏体不锈钢的高温强度,属于沉淀析出硬化耐热不锈钢。与含量多,且添加有Ti、Al 等硬化元素。因此,通过时效硬化处理,会有γ’相(fcc_Ni3(Al,Ti))析出,高温强度将得到显著提高。在650℃以下具有高的屈服强度和持久、蠕变强度,并且具有较好的加工塑性和满意的焊接性能。 高强度和优异的加工特性使该合金用于飞机的各种部件和有用工业燃气涡轮机。它也用于汽车发动机紧固件和应用多方面受到高层次的热量和压力的元器件,和近海石油和天然气行业。适合制造在650℃以下长期工作的航空发动机高温承力部件,如涡轮盘、压气机盘、转子叶片、紧固件、承力环、机匣、轴类、紧固件、和板材焊接承力件等。 SUH660/A286/GH2132/GH2132相近牌号 GH2132(中国),UNS S66286(美国),A286(美国),SUH660(日本),1.4980(德国)技术文件 SUH660/A286/GH2132材料特性

·铁基高温 ·高强度合金 SUH660/A286/GH2132主要应用 ·燃气涡轮机锻件 ·适用于使用高达约1300°F的腐蚀环境,如燃气涡轮机 ·于1500°F的温度连续服务于氧化环境 ·飞机部件 ·汽车发动机紧固件 ·石油和天然气行业 SUH660/A286/GH2132溶炼与铸造工艺 SUH660/A286/GH2132合金可采用非真空感应+电渣,电弧炉+电渣和电弧炉+真空电弧以及真空感应+真空电弧等工艺溶炼。 SUH660/A286/GH2132生产执行标准 标准棒材 条材 锻件 板材 带材 丝材 线材 无缝管 对焊 管件 锻制 管件 法兰标准件 美国材料与试验 协会 美国机械工程师 协会 ASTM/ASME A638 A453 A638B16.9 B366 B16.11B16.5 B16.47 B16.48 B18.2.1 - B18.2.4 美国航空航天材料技术规范 AMS 572657315525 5858 5895 2612-1996《焊接用高温合金冷拉丝材规范》 GJB3020-1997《航空用高温合金环坯规范》 GJB3165-1998《航空承力件用高温合金热轧和锻制棒材规范》GJB3167-1998《冷镦用高温合金冷拉丝材规范》 GJB3317-1998《航空用高温合金热轧板规范》 GJB3782-1999《航空用高温合锻制圆饼规范》 GB/T14992-2005《高温合金牌号标准》 GB/T14993-1994《转动部件用高温合金热轧棒材》 2

镍基合金的耐蚀性

Ni基合金的耐蚀性展 望 姓名:余丽鹏 学号:20140910009 班级:材料14-1 学院:物理科学与技术学院 日期:2016年12月12日

摘要:在我们的生产生活中镍基合金对腐蚀性环境具有有效的抵抗能力,基于防腐蚀问题,镍基合金的介绍,,镍合金的化学成分,各类镍合金耐腐蚀性能,及与其它材料耐腐蚀性能的比较,对不同环境选用不同镍合金提出了建议。 一.腐蚀对经济社会的影响 例1.2006年3月某核电站土建处执行设备腐蚀状态检查时发现,除盐水分配系统除盐水箱的地脚螺栓出现严重的腐蚀,锈蚀掉已接近的1/3,地脚螺栓腐蚀与地面接触腐蚀若进一步加剧,则影响设备的稳定性和抗震性,带来严重的安全隐患,将会影响电站的安全运行。 例2.2010年7月22日上午,贵州某化工厂车间工作人员发现变换工段管道有泄漏现象,随后组织公司安全检修人员到现场查看,并制定处理方案,之后不久,变换系统副线管道泄漏气体处突然发生空间爆炸,造成现场5人死亡、6人受伤,预计经济损失约500万元。 腐蚀带来的危害是多方面的,而大部分腐蚀是从渐变到突变,是“慢性病”,不易引起人们的重视,等积累到一定程度成为破坏性突发事故,才引起人们的关注。以上少数案例提醒我们腐蚀问题不容人们忽视。 2003年出版的《中国腐蚀调查报告》中指出:中国的腐蚀损失占GDP的5%(加上间接损失2001年约为5000亿人民币),2012年我国GDP为519,322亿人民币,以此计算腐蚀造成的损失25,966亿元

人民币。 据世界腐蚀组织(WCO)在《对于材料破坏和腐蚀控制世界必须进行知识传播与研究发展》的《白皮书》中指出:“在全世界,腐蚀对经济和环境的破坏方面(包括公路、桥梁、油气设施、建筑、水系统等)。目前,世界年腐蚀损失可达1.8万亿美元”,约合人民币11万亿元。 腐蚀给人类带来的损失是很大的,据有关资料统计,世界上每年因腐蚀而报废的金属材料和设备约相当于生产量的20%以上,在受力情况下钢结构被腐蚀后,若腐蚀1%,其强度下降10~15%。若双面腐蚀各达5%,其结构将报废。随着全球工业的发展,腐蚀的问题日趋严重。 二.Ni基合金的介绍 镍基耐蚀合金是重要的耐蚀材料,与一般不锈钢、其它耐蚀金属、非金属材料相比,它们在各种腐蚀环境(包括电化学腐蚀和化学腐蚀)中,具有耐各种形式腐蚀破坏(包括全面腐蚀、局部腐蚀以及应力腐蚀等)的能力,并且兼有很好的力学性能及加工性能,其综合耐蚀性能远比不锈钢和其它耐蚀金属材料优良,尤其适宜于现代工业技术下苛刻的介质环境,自1980年以来,镍基耐蚀合金的研究与应用范围正不断扩大。 镍基合金是指在650~1000℃高温下有较高的强度与一定的抗氧化腐蚀能力等综合性能的一类合金。按照主要性能又细分为镍基耐热合金,镍基耐蚀合金,镍基耐磨合金,镍基精密合金与镍基形状记忆合

Incoloy925(N09925、 alloy 925)铁镍铬基高温合金

『Incoloy 925常见问题』:Incoloy 925是什么材质?Incoloy 925执行标准是什么?Incoloy 925抗拉强度是什么?Incoloy 925是什么价格?Incoloy 925屈服强度是什么?Incoloy 925对应什么牌号?Incoloy 925硬度是什么? 『Incoloy 925形态』 Incoloy 925铁镍铬基高温合金棒材,Incoloy 925铁镍铬基高温合金板材,Incoloy 925铁镍铬基高温合金无缝管材,Incoloy 925铁镍铬基高温合金带材,Incoloy 925铁镍铬基高温合金卷材,Incoloy 925铁镍铬基高温合金盘丝,Incoloy 925铁镍铬基高温合金扁条,Incoloy 925铁镍铬基高温合金圆棒,Incoloy 925铁镍铬基高温合金厚板,Incoloy 925铁镍铬基高温合金光棒,Incoloy 925铁镍铬基高温合金圆钢,Incoloy 925铁镍铬基高温合金法兰, ?Incoloy925,131, Incoloy925,670, Incoloy925,22122,『Incoloy 925状态』 热轧、锻轧、精扎、机轧、挤压、连铸、冷拔、浇铸、冷拉等 『Incoloy 925物理性能』

『Incoloy 925对应牌号』 『前言』 Incoloy 925合金管材耐腐蚀性能的工艺,包括以下步骤:a)将Incoloy 925合金在960-990℃保温10-20分钟,然后降温至常温;b)进行冷轧变形,变形量为3-8%;c)进行再结晶退火,在960-990℃保温5-18分钟,然后降温至常温。本工艺方法既不需要非常高的退火温度,也不需要长时间的退火及反复冷轧变形,工艺简单,操作容易,能够有效的提高Incoloy 925合金耐腐蚀性能『产品介绍』 Incoloy925是一种铁镍铬基高温合金,由于具有高蠕变断裂强性、耐应力腐蚀开裂性能等,主要被应用于压水堆蒸汽发生器传热管。Incoloy925合金体为y 相,是典型的面心立方晶格。 Incoloy925材料的许多性能都与晶界的特性有关,例如晶间断裂、腐蚀、滑移、偏聚、扩散问题受到晶界结构的影响。在二十世纪八十年代出现了“晶界工程”这一研究领域。在晶界工程研究过程中,广泛使用的是重位点阵模型。重位点阵,即CSL(coincidencelattice) 点阵。在晶界工程研究中,低重位点阵(CSL)

镍基高温合金材料研究进展

镍基高温合金材料研究进展 姓名:李义锋1 镍基高温合金材料概述 高温合金是指以铁、镍、钴为基,在高温环境下服役,并能承受严酷的机械应力及具有良好表面稳定性的一类合金[1]。高温合金一般具有高的室温和高温强度、良好的抗氧化性和抗热腐蚀性、优异的蠕变与疲劳抗力、良好的组织稳定性和使用的可靠性[2]。因此,高温合金既是航空、航天发动机高温部件的关键材料,又是舰船、能源、石油化工等工业领域不可缺少的重要材料,已成为衡量一个国家材料发展水平的重要标志之一。 在整个高温合金领域中,镍基高温合金占有特殊重要的地位。与铁基和钴基高温合金相比,镍基高温合金具有更高的高温强度和组织稳定性,广泛应用于制作航空喷气发动机和工业燃气轮机的热端部件。现代燃气涡轮发动机有50%以上质量的材料采用高温合金,其中镍基高温合金的用量在发动机材料中约占40%。镍基合金在中、高温度下具有优异综合性能,适合长时间在高温下工作,能够抗腐蚀和磨蚀,是最复杂的、在高温零部件中应用最广泛的、在所有超合金中许多冶金工作者最感兴趣的合金。镍基高温合金主要用于航空航天领域950-1050℃下工作的结构部件,如航空发动机的工作叶片、涡轮盘、燃烧室等。因此,研究镍基高温合金对于我国航天航空事业的发展具有重要意义。 镍基高温合金是以镍为基体(含量一般大于50 )、在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金[2]。它是在Cr20Ni80合金基础上发展起来的,为了满足1000℃左右高温热强性(高温强度、蠕变抗力、高温疲劳强度)和气体介质中的抗氧化、抗腐蚀的要求,加入了大量的强化元素,如W、Mo、Ti、Al、Nb、Co等,以保证其优越的高温性能。除具有固溶强化作用,高温合金更依靠Al、Ti等与Ni形成金属问化合物γ′相(Ni3A1或Ni3Ti等)的析出强化和部分细小稳定MC、M23C6碳化物的晶内弥散强化以及B、Zr、Re等对晶界起净化、强化作用。添加Cr的目的是进一步提高高温合金抗氧化、抗高温腐蚀性能。镍基高温合金具有良好的综合性能,目前已被广泛地用于航空航天、汽车、通讯和电子工业部门。随着对镍基合金潜在性能的发掘,研究人员对其使用性能提出了更高的要求,国内外学者已开拓了针对镍基合金的新加工工艺如等温锻造、挤压变形、包套变形等。

inconel718合金是什么材质执行标准GH4169密度热处理工艺

Inconel 718 (UNS N07718/W.Nr.2.4668) T//E//L//://①//⑧//②//①//⑦//④//①//⑨//⑧//⑤//⑧Inconel 718 的化学成分: Inconel 718 的物理功能: Inconel 718 在常温下合金的机械功能的最小值: 718合金具有以下特性: 1.易加工性

2.在700℃时具有高的抗拉强度、疲劳强度、抗蠕变强度和断裂强度 3.在1000℃时具有高抗氧化性 4.在低温下具有安稳的化学功能 5.杰出的焊接功能 Inconel 718 的金相结构: 718合金为奥氏体结构,沉积硬化后生成的γ”相使之具有了优异的机械功能。在热处理过程中于晶界处生成的δ相使之具有了最佳的塑性。 Inconel 718 的耐腐蚀性: 不论在高温还是低温环境,718合金都具有极好的耐应力腐蚀开裂和点蚀的才能。718合金在高温下的抗氧化性特别超卓。 Inconel 718 应用规模应用领域有: 因为在700℃时具有高温强度和优异的耐腐蚀功能、易加工性,718可广泛应用于各种高要求的场合。 1.汽轮机 2.液体燃料火箭 3.低温工程 4.酸性环境 5.核工程 Inconel 718 Inconel718合金是含铌、钼的沉淀硬化型镍铬铁合金,在650℃以下时具有高强度、杰出的韧性以及在高低温环境均具有耐腐蚀性。其状况可所以固溶处理或沉积硬化态。 目录

1.概述 2.具有以下特性 3.应用领域 4.化学成分 5.接近牌号 6.化学成分 1.物理功能 2.密度 3.熔化温度 4.加工和热处理 5.预热 6.热加工 1.冷加工 2.热处理 3.打磨 4.机加工 5. 焊接

(译)铌对镍基合金耐腐蚀性能的影响

铌对镍基合金耐腐蚀性能的影响 Gaylord D. Smith and Nathan C. Eisinger Special Metals Corporation 3200 Riverside Drive Huntington, WV 25705 摘要:在技术文献中,已经很好地证实了铌在提高镍基合金力学性能的作用。但是,对于它在镍基合金中提高耐腐蚀性的作用还没有较好的证明和了解。本论文回顾了关于含铌的镍基合金的耐腐蚀性的文献,给出了某些含有不同铌的镍基合金的腐蚀性能方面一些内部数据。主要的焦点将集中在铌对提高高温含硫环境下-如化学制药,石油化工,电力,和炼油厂-抗硫化性能提高的贡献。除了高温合金中添加铌,也研究了增加铌含量通过增加局部耐腐蚀性而提高耐水溶液腐蚀性。 为了有助于说明铌通过何种机制有效的提高耐腐蚀性,总结了文献研究中的关键问题。本文将报道两个趋向于解释铌的作用的两个重要原因。第一,曾假定铌降低了在氧化/硫化环境中形成保护膜如Cr2O3所需要的时间。第二,铌的添加会倾向于在外层的膜中形成一种块状的析出物,可以作为硫穿过膜缺陷向内扩散的障碍。 接下来给出了关于几种商用的含有显量铌的合金在典型工业环境中的腐蚀数据。这些应用包括在高温和水溶液腐蚀环境及废物回收和燃煤的锅炉的石油化工和化学制药。为了完成本论文,也讨论了铌在服役于水溶液的镍基合金中的作用和提高铌含量的合金的发展。 1 引言 铌被公认为是几种主要镍基锻造合金中关键的合金化元素。研究铌在某些合金和环境中能够和确实所起的提高耐腐蚀性的作用是本文的目的。为了清楚地说明是通过添加铌而获得的提高,选择了一种水溶液和高温无铌耐腐蚀合金,并且耐腐蚀性作为添加铌含量的函数而提高。较早文献研究认为铌改善高温硫化环境的耐腐蚀性,所以这成分本研究的焦点。高温下形成的膜显微组织研究有助于说明铌的作用。另外的文献表明铌会提高镍基合金的局部耐腐蚀性。为了研究添加铌对水溶液耐腐蚀性的影响,选用了商用Ni-Cr-Mo-W合金(Inconel622)并且确定了添加铌对两种恶劣环境中临界蚀损斑(CPT)和裂纹腐蚀温度(CCT)。除了实验室研究,也给出了商用中含铌的镍基合金数据来和实验研究相对应和补充。由于它们属于铌在镍基合金中的应用,以研究铌的相关性能作为开始似乎更合适。

镍基高温合金(waspaloy加工工艺)

镍基高温合金(如In718、Waspaloy等)具有热稳定性好、高温强度与硬度高、耐腐蚀、抗磨损等特点,就是典型得难加工材料,常用于制作涡轮盘等发动机关键部件。由于涡轮盘就是航空发动机得关键部件之一,在应力、温度与恶劣得工作环境条件下容易产生疲劳失效,因此涡轮盘材料及制造技术就是研制高性能航空发动机得关键。由于涡轮盘上得异形孔由若干圆弧与直线组成,形状复杂,加工时要求各组成段位置准确、过渡圆滑而不产生加工转折痕迹,表面粗糙度符合工艺要求,因此该高温合金异形孔得加工就是涡轮盘加工得难点。目前,航空发动机制造商均采用电火花加工方法加工镍铬耐热合金异形孔,但就是电火花加工过程中产生得热影响层难以用普通得磨削、研磨方法去除,往往需要用磨料射流等特殊工艺去除该变质层,加工效率低,生产成本高。因此,对高效低成本得镍基高温合金异形孔加工方法得研究越来越受到人们得高度重视。 本文通过钻削、铣削与磨削工艺得不同组合、选用新型涂层刀具及适当得加工参数加工镍基高温合金异形孔得工艺试验,讨论了用铣削与磨削加工方法代替电火花方法加工镍基高温合金异形孔得可行性。 2工艺试验与分析 1.试验条件 切削试验在加工中心上进行,被加工异形孔得形状与尺寸见图1:异形孔得截面由6段圆弧与2段直线组成,孔深10mm.试验中分别采用以下工艺:①钻削?6mm圆孔→铣削异形孔;②钻削?6mm圆孔→磨削异形孔;③钻削?6mm圆孔→铣削异形孔→磨削异形孔.三种不同工艺过程得加工条件、工艺参数见表1.

铣削↓磨削 铣磨孔 2 刃,刃长25mm,铣刀总长100 mm,柄部直径?6mm,直柄 104666 磨削 直径?4mm、长6mm得圆柱 形氧化铝砂轮(铬刚玉),等级 RA120,柄部直径?3mm 1883330、05工件材料:In718镍基高温合金?冷却液:浓度为9%得乳化液,压力30Bar ?图1 异形孔得截面形状与 尺寸 图2采用不同工艺获得得异形孔表面粗糙度 1.分别采用工具显微镜与图像采集系统测量铣刀与砂轮得磨损,记录磨损形貌。用Taylor—HobsonSurtroni c3p型表面粗糙度仪沿异形孔得轴线方向测量孔得表面粗糙度Ra。 2.结果与分析 a.对三种加工工艺过程获得得异形孔表面粗糙度进行对比,结果如图2所示:在三种工艺过程中,采用钻削→铣 削→磨削(钻削加工?6mm圆孔→低用量铣削加工异形孔→磨削异形孔)工艺所获得得异形孔得表面粗糙度最小,而钻削→磨削(钻削加工?6mm圆孔→磨削异形孔)工艺所获得得异形孔表面粗糙度最大。试验证明:在该试验条 件下采用铣削加工也能获得满足表面粗糙度要求得异形孔;钻孔后磨削加工比钻孔后铣削加工所获得得异形孔表面 粗糙度精度低;铣削后再进行磨削加工可在一定程度上提高异形孔加工得表面粗糙度精度,但会增加成本,降低效率。 b.不同加工条件下得铣刀磨损与破损情况:在钻削→铣削过程中,铣削1个孔后,两把铣刀得转角处均产生 了严重得沟槽磨损与破损.采用低切削用量铣削异形孔时(v=52m/min,f=333mm/min),铣刀产生比较明显得破 损(见图3a);而用高切削用量铣削异形孔时(v=104m/min,f=666mm/min),铣刀得沟槽磨损更为显著(见图3b)。 ?(a)铣削孔1得铣刀

相关文档
最新文档