湍流理论介绍

湍流理论介绍
湍流理论介绍

湍流理论

湍流理论

theory of turbulence

研究湍流的起因和特性的理论,包括两类基本问题:①湍流的起因,即平滑的层流如何过渡到湍流;②充分发展的湍流的特性。

湍流的起因层流过渡为湍流的主要原因是不稳定性。在多数情况下,剪切流中的扰动会逐渐增长,使流动失去稳定性而形成湍流斑,扰动继续增强,最后导致湍流。这一类湍流称为剪切湍流。两平板间的流体受下板面加热或由上板面冷却达到一定程度,也会形成流态失稳,猝发许多小尺度的对流;上下板间的温差继续加大,就会形成充分发展的湍流。这一类湍流称热湍流或对流湍流。边界层、射流以及管道中的湍流属于前一类;夏天地球大气受下垫面加热后产生的流动属于后一类。

为了弄清湍流过渡的机制,科学家们开展了关于流动稳定性理论(见流体运动稳定性)分岔(bifurcation)理论和混沌(chaos)理论的研究,还进行了大量实验研究(见湍流实验)。

对于从下加热流层而向湍流过渡的问题,原来倾向于下述观点:随着流层温差的逐渐增加,在发生第一不稳定后,出现分岔流态;继而发生第二不稳定,流态进一步分岔;然后第三、第四以及许多更高程度的不稳定接连发生;这种复杂的流动称为湍流。实验结果支持这一论点。但是,这一运动过程在理论上得不出带有连续谱的无序运动,而与实验中观察到的连续谱相违。最近,对不稳定系统的理论分析提出了另一种观点:在发生第一、第二不稳定之后,第三不稳定就直接导致一个可解释为湍流的无序运动。这一观点也得到实验的支持。

剪切流中湍流的发生情况更为复杂。实验发现,平滑剪切流向湍流过渡常会伴有突然发生的、作奇特波状运动的湍流斑或称过渡斑。可以设想,许多逐渐形成的过渡斑,由于一再出现的新的突然扰动而互相作用和衰减,使混乱得以维持。把过渡斑作为一种孤立的非线性波动现象来研究,有可能对湍流过渡现象取得较深刻的理解。因此,存在着不止一条通向湍流的途径。

过去认为,一个机械系统发生无序行为往往是外部干扰或外部噪声影响的结果。然而,最近观察到:在某个系统里进行确定的基本操作会导致混乱的重复发生。这类系统可认为含有一个能吸引系统维持混乱的奇怪吸引子。这种混乱现象称为短暂混沌。预期对这种短暂混沌的可普遍化特性的研究将会得到说明完全发展的无序现象(湍流)的新线索。

湍流基本方程充分发展的湍流流动图像极其复杂,虽经一百多年的研究,成果并不显著。目前大多数学者都是从纳维-斯托克斯方程

[478-101] (1) 出发进行研究;近年来,有人从统计物理学中的玻耳兹曼方程或BBGKY谱系方程出发进行研究。

对充分发展的湍流,除考虑它的瞬时量外,更要考虑各种用以描述湍流概貌的平均量。从瞬时量导出平均量的平均方法有好多种。有了平均法,就可把任一瞬时量分解成平均量和脉动量之和。例如,

=+,=[kg2]+,式中[kg2]、[kg2]为速度和压力的瞬时量;、[kg2]

为其平均量;[kg2]和为其脉动量。对式(1)取平均,就得到平均速度和平均压力所满足的雷诺方程:

[479-01](2)

式中最后一项是雷诺方程对纳维-斯托克斯方程的附加项,[kg2]体现了脉动场对平均场的作用,而[479-07]则称为雷诺应力或湍流应力。式中最后一项中的量实质上是新未知量,所以式(2)和连续性方程

[479-102](3)所组成的方程组关于和[kg2]是不封闭的,因而无法求解。学者们一直努力寻求封闭方程组的办法;早年的普朗特混合长理论是一种尝试,后来发展的模式理论也是一种尝试。

湍流的半经验理论和模式理论 J.V.布森涅斯克早在1877年作出假设:二元湍流的雷诺应力正比于平均速度梯度,即

[479-02]

式中为涡粘性系数。这一假设是仿照牛顿粘性定律作出的。实际上,不是单由物性决定的常数,而是和流动有关的变量,尤其在近壁区,它的变化很大。后来,L.普朗特仿照气体分子运动论,提出了混合长理论,即令

[479-03](4)

式中取[kg2]、[kg2]坐标;为相应脉动速度分量;[kg2]称为混合长。显然,

=[479-1]。根据平板边界层的测量,和离壁之距[kg2][kg2]的关系可近似地表示为:[479-06]

式中=0.15~0.20;=0.40;=0.075~0.09;为边界层厚度[kg2]对于二元混合层和射流,[kg2]近似地和射流的宽度成比例。在二元情况下可用式(4)封闭式(2)、(3)。

对于直圆管湍流,由混合长理论可以得出用对数函数近似表示的水桶型的速度分布。经过实验修正后,这个对数分布律为:

[479-103]

式中[479-04]称动力速度;为壁面摩擦力。

除了混合长理论外。G.I.泰勒提出过一种模拟涡量输运的理论;T.von卡门也提出一种假定局部脉动场相似的理论。现在有人称这些半经验理论为平均场封闭模式或“0”方程模式。这种模式比较简单,且计算结果也比较符合某些工程实际。

上述半经验理论是近似的,适用范围有限。后来,经过改进和推广,出现了“1”方程模式,其中除了平均运动方程外,还补充一个湍能方程或一个关于混合长的微分方程;还有所谓“2”方程模式和应力输运模式,以及更高阶的封闭模式。

封闭是指一种解一连串方程的方法,这一连串方程把流动的一些平均量和另一些平均量联系起来。封闭需要有一种允许把这一连串方程截止在一个可以处理的数目上的假设。如果这假设是一个良好的近似,则所取的封闭模式就有适当的应用范围。近年来,二阶封闭较受

重视,而应用得较多的则是一种称为[kg]-[kg]模式的“2”方程模式。它用湍能[kg2][kg2]

和湍能耗散率[kg2][kg2]两个量来描写湍流的脉动场,用下式表示雷诺应力:[479-05](5)

式中=/,为比例常数。再对[kg2]和[kg2][kg2]分别补充一个方程,就

可组成同时计算平均速度场和湍流场的封闭方程组-[kg2]模式已用于计算一些平面平行湍流,但计算稍为复杂的湍流时,效果不好。

应力输运模式用六个关于雷诺应力分量的输运方程增补方程(2)、(3),并引进一些附加假定。周培源早在1945年发表了他对应力输运模式较系统的研究工作,当时没有电子计算机,只能作一般性讨论。从60年代起开始应用计算机研究这一模式。在应力输运模式中,

湍流的脉动场用七个量(六个雷诺应力分量和一个耗散率)描写,比只用[kg2]和[kg2][kg2]两个量似乎合理些,但同样存在封闭的困难。因耦合的方程数目增多,对边界条件和初始条件的要求也增多,从而给计算带来许多困难。

上述两种二阶封闭都立足于雷诺平均法则,湍流场被分解为平均场和脉动场。脉动场由

[kg2][479-010][kg2]和[kg2][kg2]来代表[479-010]中既有大涡的作用,也有小涡的作用,也就是把脉动场中的大涡和小涡同等看待,这可能是造成封闭方程组过分复杂的原因。此外,雷诺平均法则不能反映一些拟序性的大涡结构。为此,又开始探索新的平均方法和封闭模式。“滤波”平均(即将小涡滤去)和大涡模拟就是这一方面的尝试。

还有和封闭理论相反的、被称为开式理论的方法。它不是用假设来截断一连串的方程,而是在许多可能的解中寻求给出某些重特要征的上界的解。

上述模式理论和半经验理论都是对非均匀湍流作定量的预估,寻求用一个简单的统计模式来代替复杂的实际过程,以预测各种工程的或其他实用场合中的湍流特性。

湍流的统计理论研究湍流一般要用统计平均概念。统计的结果是湍流细微结构的平均,描述流体运动的某些概貌,而这些概貌对实际湍流细节应该是适当敏感的,因此可以认为,几乎所有湍流理论(包括上两节所述的理论)都是统计理论,但一般著作中所讲的统计理论实际上是指引进多点相关后的统计理论。

泰勒在20年代初研究湍流扩散时,引进了流场同一点在不同时刻的脉动速度的相关[kg2][480-01],从而开创了湍流统计理论的研究。这一相关称拉格朗日相关,可描

述流动的扩散能力。用扩散系数来表示这种能力,则

[480-02]

式中[480-03][kg2]称为相关系数。知道了拉格朗日相关,就可以算出

湍流扩散系数1935年泰勒又引进同一时刻不同点上速度分量的相关[479-09],用以描述湍流脉动场,此即所谓欧拉相关。相应的相关系数

[480-04]

泰勒利用这一类相关研究了一种理想湍流──均匀各向同性湍流。这种量简单的理想化湍流的定义是:平均速度和所有平均量都对空间坐标的平移保持不变,而且各相关函数沿任

何方向都是相同的。要在实验室中即使近似地模拟这种湍流也是很困难的。但在这种湍流中,不会有平均流动对脉动的交互作用,也不会有因不均匀性造成的湍能扩散效应和因各向异性造成的湍能重分配效应,因而可以利用这种湍流研究湍能衰减规律和湍流场中各级旋涡间的能量分配和交换规律。由于没有湍能产生和扩散,这种湍流一旦产生就逐渐衰减。泰勒导得湍能的衰减律为:

[480-09] (6)式中[kg2][kg2]为湍流的泰勒微尺度;为脉动

速度。

这种湍流的所有二阶速度相关可以由一个纵向相关函数

[480-05]表示,式中[kg2]表示[kg2]点和[kg2]点间连线的方向;

[kg2]为两点间的距离;(0)、()分别为[kg2]点和点上的脉动速度在方向的分量;[480-1]≡[480-1](0)为方向脉动速度的自相关,称纵向自相关,它的1.5倍就是湍能。卡门和L.豪沃思导出关于()的动力学方程:

[480-06](7)

式(7)称为卡门-豪沃思方程,它描述相关随时间的变化。解出[kg2][kg2]就可求出流场

的衰减规律。把此方程按[kg2][kg2]的幂次展开,其第一项就是式(6),以后各项和[kg2] [kg2]有关。[kg2]为三阶相关系数,它也是未知量,因而方程不封闭。早期的均匀各向同性相关理论就是研究这一方程的各种封闭方法和解的形式。

对[479-09]进行傅里叶变换,得三维能谱函数:

[479-08],

式中为波数。记(,)=2(,),它也是个三维能谱函数。同卡门-豪沃思方程相对应的能谱方程为:

[480-104],(8)

式中[kg2][kg2]和三阶速度相关函数有关。因而能谱方程也不封闭,它包含有两个未

知量[kg2][kg2]和[kg2]。

将能谱函数[kg2][kg2]对[kg2][kg2]积分就得湍能:

[480-08]因此,(,)d[kg2]就是那些波数处于[kg2][kg2]和d[kg2]之间的湍动涡的能量。如图[能谱曲线示意图]所示,在能谱曲线(对的曲线)中,小波数对应于大湍动涡,大波数对应于小湍动涡。对于中间尺度的涡,A.H.柯尔莫戈罗夫给出它的能

谱是按[kg2][kg2]的-5/3次幂变化的,即在图中的惯性子区,能谱曲线可表示为=A,式中为湍能耗散率。这一形式称为柯尔莫戈罗夫谱定律。大量观察到的数据支持这一定性结果。

对各级湍涡的关系有一种级串观点。湍流一旦形成,总的变化趋势是大涡逐渐向中涡演

变,中涡又向小涡演变。反映在能谱曲线的演变上,小[kg2][kg2]处的[kg2][kg2]值因大

涡减弱而逐渐减小;中[kg2][kg2]处的[kg2][kg2]值一方面接受从较小[kg2][kg2]值区传

来的能量,一方面又向较大[kg2][kg2]值区输送能量,最后因流体粘性的作用,能量在一些微小尺度的涡上转化为热而耗散掉。均匀各向同性湍流的谱理论就是从研究谱方程(8) 的封闭方法来导出能谱曲线的具体形式及其衰减规律的。

1941年,柯尔莫戈罗夫提出局部各向同性概念他认为实际流动总有边界的影响,因此受边界影响较大的大尺度涡旋的运动不可能是各向同性的,而受边界影响较少的小尺度涡旋

则可能是各向同性的。为了消除大涡旋的影响,他研究了相对速度=-和由此导出的结

构函数[480-10],并认为由脉动场[kg2]确定的平均性质具有各向同性,因此称这种湍

流为局部均匀各向同性湍流。周培源等从另一途径,先解纳维-斯托克斯方程,然后对所得的基元涡进行统计平均来研究均匀各向同性湍流,得出了相关量的衰减规律。此外,也有人开展了均匀剪切湍流的研究。R.H.克赖希南提出了直接相互作用理论;S.格罗斯曼把重正化群论方法引进湍流研究;S.楚格、M.B.刘易斯和B.B.斯特鲁明斯基等开展了湍流的气体动力论研究,但都未取得重要进展。

湍流经过一百多年的研究只得到极少量的定量预测。一、二十年来关于湍流结构的一些新发现,关于由不稳定、分岔而导致混沌的机械系统和数学系统的发现,有可能为理解湍流的发生提供新途径。科学家和工程师们开始更多地考虑湍流机理。但是,这种对机理的思考不会很快地对完全发展的湍流作出彻底的了解,而只可能为构造更精确反映湍流过程基本机理的统计假设提供条件。

建立湍流理论是一个非常艰巨的任务。近期和中期的任务是提高控制不稳定的技术和增强关于湍流统计模式的预测能力,由此推进工业新产品的设计,并且增强对天气和海流等的预报能力。

参考书目

J.O.Hinze,Turbulence,McGraw-Hill,New York,1975.

D. J. Tritton, Physical Fluid Dynamics, van Nostrand Reinhold Co., New York, 1977.

C.C.Lin,ed., Turbulent Flows and Heat Transfer, Princeton Univ.Press,Princeton, 1959.

H. L.Swinney and J.P.Gollub, ed., Hydrodynamic Instabilities and the Transition to Turbulence, Springer-verlag,Berlin, 1981.

叶敬棠蔡树棠

湍流模式在工程中的应用

食品工程原理论文 工程湍流模式的开发及 其应用 姓名:曹文梁 班级、年级: 10 级食品班 专业: 食品科学与工程

工程湍流模式的开发及其应用 引言:湍流运动的形态普通存在于大气、海洋、化学、生物、电学、声学等问题中.湍流是对空间不规则和对时间无秩序的一种非线性、多尺度的流体运动,这种运动与不规则的流动边界一起产生了非常复杂的流动状态.多年来国内外的许多研究者从不同角度对它们的机理进行了研究,诸如:混沌、分形、重整化群的方法;切变湍流的拟序结构、湍流大涡模拟、直接数值模拟等.这些湍流理论,概念及机理清晰,但由于所解的偏微分方程组过于庞大、复杂,所以距解决工程中实际问题为期甚远.所以,工程上最常用的方法仍然是各种湍流模型.故研究湍流对工业有不可忽视的作用。 摘要:湍流是空间上不规则和时间上无秩序的一种非线性的流体运动,这种运动表现出非常复杂的流动状态百余年来,世界上不少学者为了探索其中奥秘,化费了巨大精力,创造了一些实际可用的湍流模式理论和湍流统计理论为了对自然界中普遍存在的湍流运动的机理和规律进行研究,使之在工程实践中得到应用。工程湍流模式是非常实用而且有效的方法,本文总结了几种工程湍流模式,以及这些模式在冷却水工程、环境工程和铸件充型过程数值模拟中的应用。 关键词:工程湍流模式、应用、铸件充型、数值模拟 正文: 湍流模型名称繁多,一般可进行如下的分类:(1)按发展历史来分,有零方程模式(混合长度模式),主要用于模拟射流、边界层流动、管流

等简单流动;单方程模式(k方程模式),主要解决剪切层问题;双方程模式(k-模式),可用于平面射流、平壁边界层、管流、通道流、喷管内流动、无旋和弱旋的二维和三维回流流动;雷诺应力模式能准确地计算各向异性效应,如浮力效应、旋转效应等.(2)按湍流流动特征来分有:射流与羽流、分离流、回流、环流、旋流、温差异重流、泥沙异重流、两相及多相流等湍流模式.(3)根据流体运动的特点来分有:近区湍流模型、远区湍流模型、全场湍流模型等.(4)按所应用的工程领域有:生态、环境、化工、能源、水利水电、航空航天等湍流模型.本文首先介绍倪浩清等近年开发并经实际运用的几种工程湍流模型,最后着重介绍最新的深度平均的代数应力湍流全场新模式(DASM). 一、湍浮力回流模型在明渠温差异重流中的应用 1、在对浅水明渠温差异重流流动特点及界面掺混规律分析的基础上,对k-双方程模式中考虑了浮力及密度变化,在Reynolds动量方程中浮力项成 为方程中浮力项成为: 程中的浮力项成为: 经多次检验计算, 方程计及浮力项效果不甚显著,至于湍流的Prantal数则由 如下的经验公式加以修正: 作此修正后,计算的温度分布与实验资料符合良好.成功地模拟了温差异重流形成和消失过程.

湍流模型概述

大多数飞行器都是在高Re数下飞行,表面的流态是湍流。为了准确地确定湍流流态下的摩阻、热流,湍流成为一个重要而困难的研究课题。 (一)DNS 目前处理湍流数值计算问题有三种方法,第一种方法即所谓直接数值模拟方法(DNS方法),直接求解湍流运动的N-S方程,得到湍流的瞬时流场,即各种尺度的随机运动,可以获得湍流的全部信息。随着现代计算机的发展和先进的数值方法的研究,DNS方法已经成为解决湍流的一种实际的方法。但由于计算机条件的约束,目前只能限于一些低Re数的简单流动,不能用于工程应用。目前国际上正在做的湍流直接数值模拟还只限于较低的需诺数(Re~200)和非常简单的流动外形,如平板边界层、完全发展的槽道流,以及后台阶流动等。用直接数值模拟方法处理工程中的复杂流动问题,即使是当前最先进的计算机也还差三个量级。 (二)LES 另一种方法称做大涡模拟方法(LES方法)。这是一种折衷的方法,即对湍流脉动部分直接地模拟,将N-S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程。小涡对大涡的影响会出现在大涡方程中,再通过建立模型(亚格子尺度模型)来模拟小涡的影响。由于湍流的大涡结构强烈地依赖于流场的边界形状和边界条件,难以找出普遍的湍流模型来描述具有不同的边界特征的大涡结构,宜做直接模拟。相反地,小尺度涡对边界条件不存在直接依赖关系,而且一般具有各向同性性质。所以亚格子模型具有更大的普适性,比较容易构造,这是它比雷诺平均方法要优越的地方。自从1970年Deardorff第一次给出具有工程意义的LES计算以来,LES方法已经成为计算湍流的最强有力的工具之一,应用的方向也在逐步扩展,但是仍然受计算机条件等的限制,使之成为解决大量工程问题的成熟方法仍有很长的路要走。 (三)RANS 目前能够用于工程计算的方法就是模式理论。所谓湍流模式理论,就是依据湍流的理论知识、实验数据或直接数值模拟结果,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭。随着计算流体力学的发展,湍流模式理论也有了很大的进步,有了非常丰硕的成果。从对模式处理的出发点不同,可以将湍流模式理论分类成两大类:一类称为二阶矩封闭模式,另一类称涡粘性封闭模式。 (1)雷诺应力模式 所谓二阶矩封闭模式,是从Reynolds应力满足的方程出发,将方程右端未知的项(生成项,扩散项,耗散项等)用平均流动的物理量和湍流的特征尺度表示出来。典型的平均流动的变量是平均速度和平均温度的空间导数。这种模式理论,由于保留了Reynolds应力所满足的方程,如果模拟的好,可以较好地反映Reynolds应力随空间和时间的变化规律,因而可以较好地反映湍流运动规律。因此,二阶矩模式是一种较高级的模式,但是,由于保留了Reynolds应力的方程,加上平均运动的方程整个方程组总计15个方程,是一个庞大的方程组,应用这样一个庞大的方程组来解决实际工程问题,计算量很大,这就极大地限制了二阶矩模式在工程问题中的应用。 (2)涡粘性模式

湍流模型概述

大多数飞行器都是在高Re数下飞行,表面的流态是湍流.为了准确地确定湍流流态下的摩阻、热流,湍流成为一个重要而困难的研究课题。 (一)DNS 目前处理湍流数值计算问题有三种方法,第一种方法即所谓直接数值模拟方法(DNS方法),直接求解湍流运动的N-S方程,得到湍流的瞬时流场,即各种尺度的随机运动,可以获得湍流的全部信息。随着现代计算机的发展和先进的数值方法的研究,DNS方法已经成为解决湍流的一种实际的方法。但由于计算机条件的约束,目前只能限于一些低Re数的简单流动,不能用于工程应用.目前国际上正在做的湍流直接数值模拟还只限于较低的需诺数(Re~200)和非常简单的流动外形,如平板边界层、完全发展的槽道流,以及后台阶流动等。用直接数值模拟方法处理工程中的复杂流动问题,即使是当前最先进的计算机也还差三个量级.(二)LES 另一种方法称做大涡模拟方法(LES方法).这是一种折衷的方法,即对湍流脉动部分直接地模拟,将N—S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程.小涡对大涡的影响会出现在大涡方程中,再通过建立模型(亚格子尺度模型)来模拟小涡的影响。由于湍流的大涡结构强烈地依赖于流场的边界形状和边界条件,难以找出普遍的湍流模型来描述具有不同的边界特征的大涡结构,宜做直接模拟。相反地,小尺度涡对边界条件不存在直接依赖关系,而且一般具有各向同性性质。所以亚格子模型具有更大的普适性,比较容易构造,这是它比雷诺平均方法要优越的地方。自从1970年Deardorff第一次给出具有工程意义的LES计算以来,LES方法已经成为计算湍流的最强有力的工具之一,应用的方向也在逐步扩展,但是仍然受计算机条件等的限制,使之成为解决大量工程问题的成熟方法仍有很长的路要走。 (三)RANS 目前能够用于工程计算的方法就是模式理论。所谓湍流模式理论,就是依据湍流的理论知识、实验数据或直接数值模拟结果,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭.随着计算流体力学的发展,湍流模式理论也有了很大的进步,有了非常丰硕的成果。从对模式处理的出发点不同,可以将湍流模式理论分类成两大类:一类称为二阶矩封闭模式,另一类称涡粘性封闭模式。 (1)雷诺应力模式 所谓二阶矩封闭模式,是从Reynolds应力满足的方程出发,将方程右端未知的项(生成项,扩散项,耗散项等)用平均流动的物理量和湍流的特征尺度表示出来。典型的平均流动的变量是平均速度和平均温度的空间导数.这种模式理论,由于保留了Reynolds应力所满足的方程,如果模拟的好,可以较好地反映Reynolds应力随空间和时间的变化规律,因而可以较好地反映湍流运动规律。因此,二阶矩模式是一种较高级的模式,但是,由于保留了Reynolds应力的方程,加上平均运动的方程整个方程组总计15个方程,是一个庞大的方程组,应用这样一个庞大的方程组来解决实际工程问题,计算量很大,这就极大地限制了二阶矩模式在工程问题中的应用。 (2)涡粘性模式

湍流与层流_湍流研究概述

第一篇 大气的组成与物理特性 第一章 第二章 第三章 第四章 第五章 大气的气体成份 大气中的粒子群 大气的运动、能量与构造 大气的光学特性 大气的电学特性
1

第二篇 大气湍流
粘性流体的两种形态: 层流和湍流。 层流是流体运动中较简单的状态, 普遍的却是湍流。
2

湍流研究的意义
湍流的研究与国防建设和国民经济中 的航空、船运、环境保护、气象、化工、 冶金、水利、医学等学科密切相关,如果 能掌握它的运动规律,对它进行合理的应 用和有效的控制,那么对基础研究与实际 应用将有重大的意义。
3

湍流研究的成果
人们对湍流结构、湍流边界层、湍流 剪切流、湍流的传热传质、湍流扩散、湍 流统计模型、大气湍流、晴空湍流、等离 子湍流、湍流测量等问题进行了广泛的研 究,并取得了丰硕的成果。
4

本节的内容
湍流的一般定义和描述; 湍流与层流的区别; 湍流理论发展的历史; 湍流理论简介; 湍流的特点; 大气湍流的复杂性; 湍流研究技术的发展。
5

湍流的一般定义和描述
1. 湍流是随机的(Reynolds,Taylor,Von Karman ,Hinze等),又具有拟序结 构。 2. 流体的湍流运动是由各种大小和涡量 不同的涡旋叠加而成的,其中最大涡 尺度与流动环境密切相关,最小涡尺 度则由粘性确定;流体在运动过程中, 涡旋不断破碎、合并,流体质点轨迹 不断变化。
6

湍流模型发展综述

湍流模型发展综述 摘要:在概述了湍流问题的基础上,本文简要介绍了湍流的四种模型,对湍流模型在不同情况下的模拟能力进行了对比,最后简述了湍流模型的发展方向。 关键词:湍流模型;Navier-Stokes方程组;J-K模型 Abstract:On the basis of introducing the problems of turbulence, this paper briefly analyzed four kinds of turbulence models and compared their ability of simulation in different situations. At last, the paper expounded the development direction of the turbulence model. Key words:Turbulence model; Navier-Stokes equations; J-K model 一、引言 湍流又称紊流,是自然界中常见的一种很不规则的流动现象。当粘性阻尼无法消除惯性的影响时,自然界中的绝大部分流动都是湍流。 湍流运动的实验研究表明,虽然湍流结构十分复杂,但它仍然遵循连续介质的一般动力学规律,湍流流动的各物理量的瞬时值也应该服从一般的N-S方程。对粘性流体服从的N-S方程进行时均化,就可以得到雷诺平均方程。与定常的N-S方程相比,不同之处是在该式右边多了九项与脉动量有关的项,这脉动量的乘积的平均值与密度的乘积是湍流流动中的一种应力,称为湍流应力或雷诺应力。其中,法向雷诺应力和切向雷诺应力各有三个。 湍流问题就是在给定的边界条件下解雷诺方程。由于雷诺平均方程中未知数个数远多于方程个数而出现了方程不封闭的问题,这就需要依据各种半经验理论提出相应的补充方程式,即各种湍流模型。一般按照所用湍流量偏微分方程的物理含义或者数量进行区分,分别称为梅罗尔—赫林方法和雷诺方法。而后者又将湍流模型分成四类。(1)零方程模型;(2)一方程模型;(3)二方程模型;(4)应力方程模型。下面就对这些模型进行简单的描述。 二、湍流模型简介 1、零方程模型 最初的湍流模型只考虑了一阶湍流计算统计量的动力学微分方程,即平均方程,没有引进高阶统计量的微分方程,因而称之为一阶封闭模式或零方程模型。零方程模型又称为代数模型,代数模型又可以分成以下几种模型:(1)Cebeci —Smith 模型,(2)Baldwin—Lomax 模型,(3)Johnson—King 模型。 其中,B-L与C-S模型的不同之处在于外层湍流粘性系数取法不同。后者适用于湍流边界层,而前者则可用于 N-S方程的计算。此两模型已在工程计算中

湍流理论发展概述

. 湍流理论发展概述

一、湍流模型的研究背景 自然环境和工程装置中的流动常常是湍流流动,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。对于某些简单的均匀时均流场,如果湍流脉动是各向均匀及各向同性的,可以用经典的统计理论来分析,但实际上的湍流往往是不均匀的,这就给理论分析带来了极大地困难。这也就引发了对湍流过程进行模拟的想法。 对湍流最根本的模拟方法是在湍流尺度的网格尺寸内求解瞬态的三维N-S 方程的全模拟方法,此时无需引进任何模型。然而由于计算方法及计算机运算水平的限制,该种方法不易实现。另一种要求稍低的方法是亚网格尺寸度模拟即大涡模拟(LES),也是由N-S方程出发,其网格尺寸比湍流尺度大,可以模拟湍流发展过程的一些细节,但由于计算量仍然很大,只能模拟一些简单的情况,直接应用于实际的工程问题也存在很多问题[1]。目前数值模拟主要有三种方法:1.平均N-S方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS),而模拟的前提是建立合适的湍流模型。 所谓的湍流模型,就是以雷诺平均运动方程与脉动运动方程为基础,依靠理论与经验的结合,引进一系列模型假设,而建立起的一组描写湍流平均量的封闭方程组。目前常用的湍流模型可根据所采用的微分方程数进行分类为:零方程模型、一方程模型、两方程模型、四方程模型、七方程模型等。对于简单流动而言,一般随着方程数的增多,精度也越高,计算量也越大、收敛性也越差。但是,对于复杂的湍流运动,则不一定。湍流模型可根据微分方程的个数分为零方程模型、一方程模型、二方程模型和多方程模型。这里所说的微分方程是指除了时均N-S 方程外,还要增加其他方程才能是方程封闭,增加多少个方程,则该模型就被成为多少个模型。 二、基本湍流模型 常用的湍流模型有: 零方程模型:C-S模型,由Cebeci-Smith给出;B-L模型,由Baldwin-Lomax 给出。 一方程模型:来源由两种,一种从经验和量纲分析出发,针对简单流动逐步发展起来,如Spalart-Allmaras(S-A)模型;另一种由二方程模型简化而来,如Baldwin-Barth(B-B)模型。

湍流的数值模拟方法进展

《高等计算流体力学》课程作业 湍流的数值模拟方法进展

1概述 自然环境和工程装置中的流动常常是湍流,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。对于某些简单的均匀时均流场,如果湍流脉动是各向均匀及各向同性的,可以用经典的统计理论来分析,但实际上的湍流往往是不均匀的,给理论分析带来了极大困难。 湍流是空间上不规则和时间上无秩序的一种非线性的流体运动,表现出非常复杂的流动状态,主要表现在湍流流动的随机性、有旋性、统计性。传统计算流体力学中描述湍流的基础是Navier-Stokes(N-S)方程,根据N-S方程中对湍流处理尺度的不同,湍流数值模拟方法主要分为:直接数值模拟(DNS)、雷诺平均方法(RANS)和大涡模拟(LES)。 直接数值模拟可以获得湍流场的精确信息,是研究湍流机理的有效手段,但现有的计算资源往往难以满足对高雷诺数流动模拟的需要,从而限制了它的应用范围。雷诺平均方法可以计算高雷诺数的复杂流动,但给出的是平均运动结果,不能反映流场脉动的细节信息。大涡模拟基于湍动能传输机制,直接计算大尺度涡的运动,小尺度涡运动对大尺度涡的影响则通过建立模型体现出来,既可以得到比雷诺平均方法更多的诸如大尺度涡结构和性质等的动态信息,又比直接数值模拟节省计算量,从而得到了越来越广泛的发展和应用。 2 雷诺平均方法(RANS) 雷诺平均模拟(RANS)即应用湍流统计理论,将非定常的N - S方程对时间作平均,求解工程中需要的时均量。利用湍流模式理论,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭。 2.1控制方程 对非定常的N - S 方程作时间演算,并采用Boussinesp 假设,得到Reynolds 方程

湍流调研报告——高等流体力学

高等流体力学 湍流调研报告 学生姓名:********** 学号:********** 专业班级:********** 2015年 12月1日

前言 自1839年G.汉根在实验室中首次观察到由层流向湍流的转变现象以来,对湍流的研究已有近两百年历史,但由于湍流流动的复杂性,至今仍存在一些基本问题亟待解决。但从检索有关湍流文章过程中发现,绝大多数文章均是介绍有关湍流的数值模拟问题,鲜有文章报道关于湍流理论的基础研究。一方面的原因是由于湍流理论研究其固有的困难性,我想还有另一方面的原因便是当今学术界乃至整个社会风气的浮躁。物欲横流金钱至上的社会风气下,Paper至上的学术氛围下,基础学科的发展及基础理论的研究深受其害。基础研究学者得不到应有的精神上、物质上的尊重,青年科学家为了将来的发展避开基础学科,中年科学家为了避免家庭经济上的负担放弃理论研究,当今只有部分老一辈的科学家坚持着自己的原则和理想,我想这也是他们为什么仍是我国科学技术发展中流砥柱的原因吧。纵然如今之风气已被众多学者所诟病,但已根深蒂固,不可能将之迅速扭转,当下应从政策上给予基础研究支持和鼓励,予现行之风以纠正,方可促我民族之复兴。在前任上海交通大学校长谢绳武先生给杨本洛先生《湍流及理论流体力学的理性重构》[1]一书的序中以及施红辉先生《湍流初级教程》[2]的前言中均提到切实支持原创性基础研究的重要性。 本文首先查阅文献了解了湍流的定义,以及人们目前对湍流的认识;然后通过调研梳理了湍流理论的发展过程;最后,就湍流的数值模拟极其未来的发展方向做了简要介绍。

一、湍流的定义 什么是湍流?查阅相关书籍、论著,关于湍流的论述相当多的部分是从1883年Reynolds的圆管内流动实验引出的,通过实验观察,给出了湍流的描述性定义:湍流是复杂的、无规则的、随机的不定常运动。随后详细说明了湍流的一些主要特征,包括其扩散性、耗散性、大雷诺数、记忆性、间歇性等等,但对湍流严格意义的科学定义没有叙述,我想这也是湍流能成为跨世纪难题的一个反映吧。从各论著的叙述来看,随着湍流理论的发展,湍流的定义是不断修正和补充的,19世纪初,湍流被认为是完全不规则的随机运动,Reynolds称之为“波动”[3],首创统计平均法描述湍流运动;1937年,Taylor 和von Karman则认为湍流是一种不规则运动,于流体流过固壁或相邻不同速度流体层相互流过时产生;Hinze认为湍流除了不规则运动外,其各个量在空间、时间上具有随机性;我国著名科学家周培源先生则主张湍流为一种不规则的涡旋运动;自20世纪70年代开始,很多学者又指出湍流不是完全的随机运动,其存在一种可以被检测和显示的拟序结构。由清华大学出版社出版,林建忠等人编著的《流体力学》[4]一书中提到,目前大多数学者的观点是:湍流场有各种大小和涡量不同的漩涡叠加而成,其中最大涡尺度与流体环境密切相关,最小涡尺度则由粘性确定;流体在运动过程中,涡旋不断破碎、合并,流体质点轨迹不断变化;在某些情况下,流场做完全随机的运动,在另一些情况下,流场随机运动与拟序运动并存。 值得一提的是,杨本洛先生所著的《湍流及理论流体力学的理性重构》一书中从形式逻辑考虑,对湍流的本质,包括其物理本质、物理机制、形式特征做了论述,并提出一切宏观物质总是粒子的(宏观力学中基本假设之一是连续介质假设),认为流体是大数粒子的集合,湍流研究困难的本质在于基于微分方程所表现的连续宏观表象与宏观流体的粒子本质之间存在的根本矛盾,著作中含有大量的逻辑讨论及哲学层次的思考。二、湍流理论发展简史 1839年,G.汉根在实验中首次观察到流动由层流到湍流的转变,这便揭开了湍流这一科学难题的第一幕。在其后百余年的理论发展中Reynolds、Prandtl、von Karman、Taylor、Kolmogorov、Landau、Heisenberg、Onsager、Chandrasekhar、Hopf、周培源、李政道、林家翘、谈镐生等如雷贯耳的大师们纷纷登上这一广阔的舞台,在湍流的金色大厅里演

湍流简史

湍流简史精选 已有 3889 次阅读2012-9-22 10:40|个人分类:学术探讨|系统分类:科研笔记|关键词:湍流简介 湍流理论发展简史: N-S方程的导出: 描述粘性不可压缩流体动量守恒的运动方程,简称N-S方程。因1821年由 C.-L.-M.-H.纳维(基于分子运动)和1845年由G.G.斯托克斯(基于连续介质假定)分别导出而得名。后人在此基础上又导出适用于可压缩流体的N-S方程。N-S方程包含两个假设:第一连续介质假定;第二是所有涉及到的场,全部是可微的假定。N-S方程和连续方程共同构成了一个闭合的非线性方程组。该方程组是质量守恒定律和牛顿运动定律在流体力学中的一种应用形式,由于其高度非线性,因此很难求得其解析解。一般认为无论流体运动多么复杂,方程组都能够描述流体的运动。 湍流的发现: 1839年,G.汉根在实验中首次观测到了流动由层流向紊流的转变。 层流向湍流转变的雷诺实验: 1883年英国科学家雷诺(Reynolds)通过实验研究并展示了液体在流动中存在两种内部结构完全不同的流态:层流和紊流。雷诺揭示了重要的流体流动机理,即根据流速的大小,流体有两中不同的形态,并提出了著名的层流向紊流转变的雷诺数(包括分层流动的情况)。当流体流速较小时,流体质点只沿流动方向作一维的运动,与其周围的流体间无宏观的混合即分层流动这种流动形态称为层流或滞流。流体流速增大到某个值后,流体质点除流动方向上的流动外,还向其它方向作随机的运动,即存在流体质点的不规则脉动,这种流体形态称为湍流。并在1885年提出了著名的雷诺平均方法。 湍动能串级过程: 1922年Richardson发现湍动能串级过程。大尺度涡流脉动犹如一个很大的蓄能池,它不断从外界获得能量并输出给小尺度涡能量;小尺度湍流就像一个耗能机械,从大尺度湍流涡输出来的动能在这里全部耗散掉,流体的惯性犹如一个传送机械,把大尺度脉动传给小尺度脉动。流动的雷诺数越大,蓄能的大尺度和耗能的小尺度之间的惯性区域越大。 各项同性湍流理论: 1935年G. I. Taylor在风洞实验的均匀气流中设置一排或者几排规则的格栅,均匀气流垂直流过格栅时产生不规则扰动。这种不规则扰动向下游运动过程中,由于没有外界干扰,逐渐演化为各项同性湍流。发展了各项同性理论。 Karman-Howarth方程的导出: 1938年基于Taylor的各项同性理论导出了著名的K-H方程。但方程中含有的未知数的个数比方程数多,因此无法求解。 Kolmogorov空间尺度标度率: 1941年莫斯科的数学家Kolmogorov更进一步地把G.I.Taylor的均匀各向同性理论发展成局地均匀各向同性统计理论,并在人类历史上第一次导出了湍流微结构的规律:结构函数的-p/3定律。第一次揭示了湍流的空间分布特性。但该理论存在着一些缺陷。

湍流模型介绍

湍流模型介绍 因为湍流现象是高度复杂的,所以至今还没有一种方法能够全面、准确地对所有流动问题中的湍流现象进行模拟。在涉及湍流的计算中,都要对湍流模型的模拟能力以及计算所需系统资源进行综合考虑后,再选择合适的湍流模型进行模拟。FLUENT 中采用的湍流模拟方法 包括Spalart-Allmaras模型、standard(标准)k ?ε模型、RNG(重整化群)k ?ε模型、Realizable(现实)k ?ε模型、v2 ?f 模型、RSM(Reynolds Stress Model,雷诺应力模型)模型和LES(Large Eddy Simulation,大涡模拟)方法。 7.2.1 雷诺平均与大涡模拟的对比 因为直接求解NS 方程非常困难,所以通常用两种办法对湍流进行模拟,即对NS 方程进行雷诺平均和滤波处理。这两种方法都会增加新的未知量,因此需要相应增加控制方程的数量,以便保证未知数的数量与方程数量相同,达到封闭方程组的目的。雷诺平均NS 方程是流场平均变量的控制方程,其相关的模拟理论被称为湍流模式理论。湍流模式理论假定湍流中的流场变量由一个时均量和一个脉动量组成,以此观点处理NS 方程可以得出雷诺平均NS 方程(简称RNS 方程)。在引入Boussinesq 假设,即认为湍流雷诺应力与应变成正比之后,湍流计算就归结为对雷诺应力与应变之间的比例系数(即湍流粘性系数)的计算。根据计算中使用的变量数目和方程数目的不同,湍流模式理论中所包含的湍流模型又被分为二方程模型、一方程模型和零方程模型(代数模型)等大类。 FLUENT 中使用的三种k ?ε模型、Spalart-Allmaras 模型、k ?ω模型及雷诺应力模型RSM)等都属于湍流模式理论。 大涡模拟(LES)方法是通过滤波处理计算湍流的,其主要思想是大涡结构(又称拟 序结构)受流场影响较大,小涡则可以认为是各向同性的,因而可以将大涡计算与小涡计算分开处理,并用统一的模型计算小涡。在这个思想下,大涡模拟通过滤波处理,首先将小于某个尺度的旋涡从流场中过滤掉,只计算大涡,然后通过求解附加方程得到小涡的解。过滤尺度一般就取为网格尺度。显然这种方法比直接求解NS 方程的DNS 方程效率更高,消耗系统资源更少,但却比湍流模式方法更精确。尤其应该注意的是,湍流模式理论无法准确模拟大涡结构,因此在需要模拟大涡结构时,只能采用LES 方法1。 尽管大涡模拟理论比湍流模式理论更精确,但是因为大涡模拟需要使用高精度的网格,对计算机资源的要求比较高,所以还不能在工程计算中被广泛使用。在绝大多数情况下,湍流计算还要采用湍流模式理论,大涡模拟则可以在计算资源足够丰富的时候尝试使用。 7.2.2 Spalart-Allmaras 模型 Spalart-Allmaras 模型是一方程模型里面最成功的一个模型,最早被用于有壁面限制情 况的流动计算中,特别在存在逆压梯度的流动区域内,对边界层的计算效果较好,因此经常被用于流动分离区附近的计算,后来在涡轮机械的计算中也得到广泛应用。 最早的Spalart-Allmaras 模型是用于低雷诺数流计算的,特别是在需要准确计算边界层 粘性影响的问题中效果较好。FLUENT 对Spalart-Allmaras 进行了改进,主要改进是可以在网格精度不高时使用壁面函数。在湍流对流场影响不大,同时网格较粗糙时,可以选用这个模型。 Spalart-Allmaras 模型是一种新出现的湍流模型,在工程应用问题中还没有出现多少成

湍流理论发展概述

湍流理论发展概述 一、湍流模型的研究背景 自然环境和工程装置中的流动常常是湍流流动,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。对于某些简单的均匀时均流场,如果湍流脉动是各向均匀及各向同性的,可以用经典的统计理论来分析,但实际上的湍流往往是不均匀的,这就给理论分析带来了极大地困难。这也就引发了对湍流过程进行模拟的想法。 对湍流最根本的模拟方法是在湍流尺度的网格尺寸内求解瞬态的三维N-S 方程的全模拟方法,此时无需引进任何模型。然而由于计算方法及计算机运算水平的限制,该种方法不易实现。另一种要求稍低的方法是亚网格尺寸度模拟即大涡模拟(LES),也是由N-S 方程出发,其网格尺寸比湍流尺度大,可以模拟湍流发展过程的一些细节,但由于计算量仍然很大,只能模拟一些简单的情况,直接应用于实际的工程问题也存在很多问题[1]。目前数值模拟主要有三种方法:1. 平均N-S方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS),而模拟的前提是建立合适的湍流模型。 所谓的湍流模型,就是以雷诺平均运动方程与脉动运动方程为基础,依靠理论与经验的结合,引进一系列模型假设,而建立起的一组描写湍流平均量的封闭方程组。目前常用的湍流模型可根据所采用的微分方程数进行分类为:零方程模型、一方程模型、两方程模型、四方程模型、七方程模型等。对于简单流动而言,一般随着方程数的增多,精度也越高,计算量也越大、收敛性也越差。但是,对于复杂的湍流运动,则不一定。湍流模型可根据微分方程的个数分为零方程模型、一方程模型、二方程模型和多方程模型。这里所说的微分方程是指除了时均N-S 方程外,还要增加其他方程才能是方程封闭,增加多少个方程,则该模型就被成为多少个模型。

中国湍流研究的发展史_中国科学家早期湍流研究的回顾

中国湍流研究的发展史 I 中国科学家早期湍流研究的回顾 黄永念 北京大学力学与工程科学系,湍流与复杂系统国家重点实验室,北京,100871 摘要总结了二十世纪三十年代到六十年代中国老一辈科学家(包括物理学家,力学家)周培源、王竹溪、张国藩、林家翘、谢毓章、张守廉、黄授书、胡宁、柏实义、陈善模、庄逢甘、陆祖荫、李政道、蔡树棠、是勋刚、李松年、谈镐生、包亦和等诸位先生的湍流研究工作。介绍他们对流体力学中最为困难的湍流问题所作出的努力和贡献。 关键词湍流统计理论,能量衰变规律,均匀各向同性湍流,剪切湍流。 引言 湍流一直被认为是物理学中最难而又久未解决的基础理论研究的一个课题。从1883年Reynolds圆管湍流实验研究算起已经跨越了两个世纪,湍流问题仍未得到解决。在跨入二十一世纪时,很多从事湍流研究工作的科学家都在思考这样的问题:二十世纪的湍流研究留给我们哪些宝贵财富?二十一世纪又应该如何面对这个老大难问题?Yaglom在2000年法国举行的一次湍流讲习班上回顾了二十世纪的湍流理论发展过程[1],指出了其中两个最重要的成就:一个是Kolmogorov的局部均匀各向同性湍流理论,另一个是von Karman的湍流平均速度的对数分布律。同时又一次向世人介绍著名科学家Lamb在临终前对解决湍流问题的悲观看法。由于中国与世界各国在文字和语言上的差异和长期缺乏国际间的交流,历次湍流研究工作的总结和回顾中,人们往往忽略了中国科学家的作用。只有周培源教授在1995年流体力学年鉴上发表了“中国湍流研究50年”才打破了这种隔阂[2]。但是这篇文章也只局限于周培源教授率领的北京大学研究组所做的系列研究工作。实际上有很多中国科学家在上一世纪中做了非常出色的工作。本文仅就半个世纪前的三十年代到六十年代他们的湍流研究工作做一个简单的介绍,目的是要引起大家关注中国科学家的湍流研究和对湍流研究所做的贡献。 中国科学家的湍流研究工作可以分成两个方面,一是在国内极其困难的条件下坚持开展的研究工作,这方面的工作国际上鲜为人知。另一方面是在国外开展的研究工作,这部分工作国内也不很熟悉。因此,本文将把他们的不懈努力介绍给大家。 胡非在1995年发表的专著《湍流,间隙性与大气边界层》中曾专门介绍了中国学者的湍流研究工作[3],但他的介绍还不够全面,特别是缺少对早期工作的报道。本文可以弥补其中的不足。 1 三十年代的研究工作 在我国最早发表湍流论文的是当时在清华大学的王竹溪先生。他在周培源先生的指导下

湍流的研究进展

湍流的研究进展 XXX (XXX大学化工学院,青岛 266042) 摘要:本文对一百多年来湍流研究的进展作了简要回顾,并概述了湍流产生的原因及湍流对流体造成的影响,从不同的方向阐述了当今流体湍流的研究成果,展现了湍流研究的深入对于科学技术与社会发展产生的重要作用,展望了对于湍流研究的前景,并对湍流研究的发展提出了一些建议和设想。 关键词:湍流;湍流模式;流体湍流;湍流强度; The Turbulence of Research Progress XXXXX (Qingdao University of Science and Technology, Qingdao 266042) Abstract: Stupid hundred years Turbulence Research progress made brief review and an overview of the the turbulence causes and turbulent fluid caused today's fluid turbulence research, elaborated from a different direction, to show the turbulentdepth study of the important role of science and technology and social development, the future prospects for turbulence research, development and turbulence research has made some suggestions and ideas. Keywords: Turbulence; Turbulence models; Fluid turbulence; Turbulence intensity; 一、湍流研究的历史进程 人类很久前就已经观察到湍流运动了,但对它系统地进行研究则仅仅有一百多年的历史。经过一百多年的研究工作,人们的认识日益深化, 预测方法不断改进。回顾一下湍流研究取得进展的历程对于进一步揭示这一十分复杂流动现象是有益的。 涡团粘度概念首先是由波希尼斯克(Boussinesq)于1877年提出的,他的观点是湍流是一团杂乱无章的涡团。而现代湍流理论的创始人O.Reynolds则认为,湍流是由层流不稳定性发展起来的。这两位湍流研究的先驱者对湍流的认识有所不同。 本世纪二十年代湍流研究取得了巨大进展,有电子管补偿线路的热线风速计为湍流实验研究提供了有效的手段。 从四十年代到六十年代末湍流研究在理论和实验两方面都没有很大的突破。但是应用热线风速计测量各种湍流特性的资料大大充实了湍流的数据库。 六十年代末以后, 湍流研究又出现了一个新高潮,切变湍流中拟序结构的发现,复杂的湍流模式的建立和发展。湍流的直接数值模拟的尝试以及在方程中发现奇异吸引子或其它混沌现象的探索是近二十多年来湍流研究中的重大突破。

湍流理论若干问题研究进展

第15卷第4期水利水电科技进展1995年8月 湍流理论若干问题研究进展 刘兆存 金忠青 (河海大学 南京 210098) 摘要 本文对近年来湍流理论在某些方面的研究进展作了概要介绍,对拟序结构发现后人们对湍流内部结构的新认识和近年来发展很快的从微分方程分析角度出发对湍流机理新的探索进行了评价,说明引入混沌后在时、空演化方面对湍流机理的模拟,最后阐述了流动稳定性和层流向湍流的转捩。 关键词 湍流 N-S方程 流动结构 流动机理 封闭性 近年来,在围绕湍流结构和统计两条主线的研究工作中出现了新观点和新趋势,虽然从历史的观点来看有些可能是错的——在科学容忍的范围内,但在现阶段却是研究的主流。 1 简要回顾及发展 1.1 半经验理论和模式理论 湍流的控制方程是N-S方程,但和层流相比,方程不封闭。为满足工程需要,发展了一系列的以普朗特混合长理论为代表的湍流半经验理论或早期模式理论。这种理论虽然对于增进对湍流机理的了解没有提供更多的贡献,但对解决工程实际问题却起了重大的作用[1]。半经验理论是一种唯像理论,并不涉及湍流内部机理。以速度分布公式为例,半经验理论的速度分布公式大致有对数型和指数型。对数型速度分布得到的假定是充分发展的剪切湍流中主流区(不含边界层的)的流速梯度和分子粘性无关,指数型(或渐近指数型)则假定分子粘性不能忽略[2],两种类型的流速分布公式在工程实践中都获得了非常广泛的应用。半经验理论的一个发展方向是吸收统计理论的成果,用统计理论的精细成果丰富半经验理论不足并保留便于应用的优点,如文[3]所作的工作。 近代的模式理论在封闭湍流基本方程组时特别吸收了统计理论的成果,如二方程模型、应力通量代数模型、应力通量方程模型等。关于这方面的详细论述,将另文给出。 1.2 统计理论 湍流的统计理论的目标则是从最基本的物理守恒定律——N-S方程和连续性方程出发,探讨湍流的机理。理查逊-柯尔莫哥洛夫湍流图像部分被实验所证实。统计理论中湍流的能量传递关系被更符合实际的U. Fr isch等所提出的B-模型所代替。湍流统计理论历时半个多世纪的发展,经泰勒、陶森德等人的努力,取得丰硕的成果,但仍不能绕过封闭性的困难,所得成果都还是很不完善的。湍流统计理论的重要性目前已有所下降[1]。我国周培源等提出了均匀各向同性湍流的准相似性条件以及相应均匀各向同性湍流的涡旋结构统计理论并得到实验的验证[4],进一步将在均匀各向同性湍流中得到的准相似性条件推广到一般的剪切湍流中,然后对关联方程的耗散项作出假定,利用逐级近似方法发展了湍流的统计理论[5],所得结果部分经实验证实。文[6]采用逐级迭代法对湍流平均运动方程和脉动速度关联方程 · 12·

关于湍流理论研究进展

关于湍流理论研究进展 摘要本文对近年来湍流理论在某些方面的研究进展作了概要介绍,对具有代表性的理论假设的思想方法,进行了扼要阐述,指出了相应的实用价值和局限性。 关键词湍流湍流统计理论混沌理论湍流拟序结构湍流剪切流动 1 无处不在的湍流现象 湍流是自然界中流体的一种最普遍的运动现象,它广泛的存在于我们生活周围。在大风吹过地面障碍物的旁边,在湍急的河水流过桥墩的后面,在烟囱中冒出的浓烟随风渐渐扩散等地方,都能观察到湍流运动现象。简单地说,湍流运动就是流体的一种看起来很不规则的运动。由于湍流现象广泛存在于自然界和工程技术的各个领域,因此湍流基础理论研究取得的进展就可能为经济建设和国防建设的广泛领域带来巨大的效益。例如,提高各种运输工具的速度以大量节约能源,提高各种流体机械的效益;改善大气和水体的环境质量,降低流体动力噪声,防止流体相互作用引发的结构振动乃至破坏;加强反应器内部物质的热交换与化学反应的速度等等。 然而像湍流这样,虽经包括许多著名科学家在内长达一个世纪多的顽强努力,正确反映客观规律的系统的湍流理论至今还没有建立,在整个科学研究史上也是不多见的。因此,可以说湍流是力学中没有解决的最困难的难题之一。因此,世界上许多国家一直坚持把湍流研究列为需要最优先发展的若干重大基础研究课题之一。 2 湍流理论的发展历史 湍流理论从它的思路来说大体可分为两类[1]。一类是先把流体动力学方程组平均以后,然后再设法使方程组封闭,求解后再和实验结果比较,看封闭办法是否正确。湍流中绝大部分理论是属于这一类型。另一类是先求解,取特殊模型,再引进平均,得到要求的物理量,和相应的实验结果进行比较。 2.1 Reynolds方程和混合长度理论 十九世纪70年代是Maxwell-Boltzmann分子运动理论取得辉煌成果的时代。它成功地解释了气体状态方程、气体粘性、气体热传导和气体扩散等一系列现象。湍流理论开始发展的时候,就受着这种思想支配。1877年T.V.Bonssinesq[2]又开始

湍流的研究进展论文

湍流的研究进展 丁立新 (青岛科技大学) 摘要本文重点就湍流的理论研究进展作一阐述,从湍流的相干结构、表征及发展由来,到上世纪末湍流研究进展的雷诺方程,本世纪湍流的统计理论和半经验理论发展,湍流的模式理论,湍流的高级数值模拟分别论述,并为主要的工程应用做简要的介绍。 关键词湍流理论研究工程应用 Research process of turbulence Dinglixin Qingdao University of Science & technology Abstract This article focuses on the turbulence of research process as elaborated. From coherent structure of turbulence, characterization and development of turbulence to Reynolds equation about research process of turbulence on the end of the century, the development of semi-empirical theory and statistical theory of turbulence of this century, mode theory of turbulence, advanced numerical simulation of turbulence. Finally, brief description of turbulence industrial applications is suggested. Keywords Turbulence, Theoretical research of turbulence, Engineering applications 湍流是自然界和工程中最常出现的流动形态,湍流的出现将使动量、质量、能量的输送速率极大地加快,一方面造成能量消耗加快,污染物加快扩散等严重消极

湍流模型理论(DOC)

湍流模型理论 §3.1 引言 自然界中的实际流动绝大部分是三维的湍流流动,如河流,血液流动等。湍流是流体粘性运动最复杂的形式,湍流流动的核心特征是其在物理上近乎于无穷多的尺度和数学上强烈的非线性,这使得人们无论是通过理论分析、实验研究还是计算机模拟来彻底认识湍流都非常困难。回顾计算流体力学的发展,特别是活跃的80年代,不仅提出和发展了一大批高精度、高分辨率的计算格式,从主控方程看相当成功地解决了Euler方程的数值模拟,可以说Euler方程数值模拟方法的精度已接近于它有效使用范围的极限;同时还发展了一大批有效的网格生成技术及相应的软件,具体实现了工程计算所需要的复杂外形的计算网格;且随着计算机的发展,无论从计算时间还是从计算费用考虑,Euler方程都已能适用于各种实践所需。在此基础上,80年代还进行了求解可压缩雷诺平均方程及其三维定态粘流流动的模拟。90年代又开始一个非定常粘流流场模拟的新局面,这里所说的粘流流场具有高雷诺数、非定常、不稳定、剧烈分离流动的特点,显然需要继续探求更高精度的计算方法和更实用可靠的网格生成技术。但更为重要的关键性的决策将是,研究湍流机理,建立相应的模式,并进行适当的模拟仍是解决湍流问题的重要途径。 要反映湍流流场的真实情况,目前数值模拟主要有三种方法:1.平均N-S 方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS)。但是由于叶轮机械内部结构的复杂性以及目前计算机运算速度较慢,大涡模拟和直接数值模拟还很少用于叶轮机械内部湍流场的计算,更多的是通过求解平均N-S方程来进行数值模拟。因为平均N-S方程的不封闭性,人们引入了湍流模型来封闭方程组,所以模拟结果的好坏很大程度上取决于湍流模型的准确度。自70年代以来,湍流模型的研究发展迅速,建立了一系列的零方程、一方程、两方程模型和二阶矩模型,已经能够十分成功的模拟边界层和剪切层流动。但是,对于复杂的工业流动,比如航空发动机中的压气机动静叶相互干扰问题,大曲率绕流,激波与边界层相互干扰,流动分离,高速旋转以及其他一些原因,常常会改变湍流的结构,使那些能够预测简单流动的湍流模型失效,所以完善现有湍流模型和寻找新的湍流模型在实际工作中显得尤为重要。 §3.2 湍流模型概述 §3.2.1 湍流模型的引入

相关文档
最新文档