汉诺塔问题与递归思想教学设计

汉诺塔问题与递归思想教学设计
汉诺塔问题与递归思想教学设计

-、教学思想(包括教学背景、教学目标)

1、教学背景

本课程“递归算法”,属于《数据结构与算法》课程中“栈和队列” 章节的重点和难点。数据结构与算法已经广泛应用于各行各业的数据存储和信息处理中,与人们的社会生活密不可分。该课程是计算机类相关专业核心骨干课程,处于计算机学科的核心地位,具有承上启下的作用。不仅成为全国高校汁算机类硕士研究生入学的统考科U,还是各企业招聘信息类员工入职笔试的必考科口。数据结构与算法课程面向计算机科学与技术、软件工程等计算机类学生,属于专业基础课。

2、教学大纲

通过本课程的学习,主要培养学生以下儿个方面的能力:

1)理解递归的算法;

2)掌握递归算法的实现要素;

3)掌握数值与非数值型递归的实现方法。

根据学生在学习基础和能力方面的差异性,将整个课程教学U标分成三个水平:合格水平(符合课标的最低要求),中等以上水平(符合课标的基本要求),优秀水平(符合或超出课标提出的最高要求)。具体如下表:

二、课程设计思路(包括教学方法、手段)

“递归算法”课程以故事引入、案例驱动法、示范模仿、启发式等多元化教学方法,设计?课程内容。具体的课堂内容如下所示:

(析hanoi的移动步骤,并总结递归函数的分解方法和递归

出口。

设计思想(三步法):

1)把A塔上的n-l个盘片借助C塔移至B塔;

2)把第n个盘片从A塔移至C塔;

3)把B塔上的n-1个盘片借助A塔移至C塔。

递归出口:当n“时,无需借助,直接移动即可。编

写代码:根据算法设计思想编写程序代码。

#inelude <>

int count二0;

void movefint n,char x,char z)

{ printf(,,%d:%c->%c\n,,,n,x,z);

cou nt++;

}

void hanoi(int n,char x,char y,char z)

{

if(n==l)

I

move ⑴x’z);

else

{

hanoi(n-lpc,z,y);

move(n z x,z);

hanoi(n J MX’Z);

}

}

main()

{

int n;

printf(N please input n:H);

scanf(“%d”,&n);

hanoifn/A'/B'/C');

printf("\nthe count is %d\n蔦count);

I

}

示范模仿法、

实物n=3的实

例演示、

启发式教学法

环境下实际演示

代码分析

Y

课程总结思考拓展

运行程序:为了查看运行执行次数,增加count 计数

器以便统计移动次数。观察n和count之间的数值关系。

n count

1 1

23

37

415

531

?

count = 2n-l

思考:若移动速度为1个/秒,则需要

(264-1)/^65/24^600 >= 5849 亿年。

四、总结和思考

总结:

对于阶乘这类数值型问题,可以表达成数学公式,

然后从相应的公式入手推导,解决这类问题的递归定义,

同时确定这个问题的边界条件,找到结束递归的条件。

对于汉诺塔这类非数值型问题,虽然很难找到数学

公式表达,但可将问题进行分解,问题规模逐渐缩小,直

至最小规模有直接解。

思考:

?

数值型问题:斐波那契数列的递归设计。非数值型

问题:八皇后问题的递归设计。

1

算法深入分析

利用计算器计

算次数

阐述总结知识

拓展

三、教学特色(总结教学特色和效果)

递归算法课程主要讨论递归设讣的思想和实现。从阶乘实例入手,111 浅入深,层层深入介绍了递归的设计要点和算法的实现。从汉诺塔问题,通过“边提问,边思考”的方式逐层深入地给出算法的分析和设计过程。通过故事引入、案例导入、实例演示、PPT展示、实现效果等“多元化教学

方式”,努力扩展课堂教学主战场。加上逐步引导、问题驱动,启发学生 对算法的理解,并用实例演示展示算法的分析过程,在编译环境下实现该 算法,加深对算法实现过程的认识。

1、知识点的引入使用故事诱导法讲授

通过''老和尚讲故事”引入函数的递归调用,并通过'‘世界末日问题” 故事引入非数值型问题的递归分析,激发学习积极性,挖掘学生潜能。

2>重点.难点内容采用案例驱动式教学方法

课程内容通过案例驱动,培养学生计算思维能力和设计能力:学生不 但可以激发学习积极性和主动性,提高学生独立思考,深入研究,分析问 题、解决问题的能力,从而促进学生综合能力发展。

汉诺塔(hanoi)问题 ______

设有三座塔座(A 「B 、C),在一个塔座(设为A )上有64个盘片? 盘片不镖r 按小盘在上K

樓在工的顺序依次豊放。现要将A 塔上 的盘片借助于B 塔,移?jc 塔王弃葆痔商样廠斥蛊排,移动盘片时 必须遵守以下规则:

3. 注重应用性的实例教学法

整个教学实例都围绕递归分析的寻找分解方法和递归出口设计这两

从的给e 几人里令T 从

的令才丄

试 fciM.

⑶圆盘可以插在人B. C 任意一个塔座上。 (1)每次只能移动一个圆盘;

个要素展开引导、分析、演示和总结。通过实际问题的解决,使学生不但 掌握“递归算法”这一知识点,同时锻炼学生分析和解决复朵问题的能力, 将两者结合完成分析和程序设计实现,满足应用型人才的培养要求。

hanoi(nxyN )

if (n==1) x —>z ;递归结束条件 if (n>1)

'①把x 上的n /个盘借助z 移到y:

hanoi

(n ?1x 乙w );'

巴最下面的盘子从x 直接移到z , gpx-->z ; .递归分解

③}巴y 上的个盘借助x 移到z:

4、用启发引导式教学法实现知识点的拓展和延续

本课程中的“递归算法”是以阶乘这类数值型问题和汉诺塔这类非数 值型问题分别讨论。对于现实生活中,斐波那契数列这类数值型和八皇后 这类非数值型情况,在设汁中提出了不同的分析策略,在课程结束启发大 家思考,实现知识点的拓展和延续。

1.斐波纳契数列(Fibonacci 函数)

5、运用现代化教学手段丰富教学形式

在讲授相关知识的时候,釆用动画演示、视频资料、编译环境、

Windows 讣算器以及相关的图片资料等多元化方式。这样在增加学习兴 趣的同

时,更容易让学生深入理解和清晰把握。例如:在汉诺塔讲解时, 借助实物演示、PPT 逐步动画展示递归分解过程、编译环境下实现、修改

Fib(n)= - 1

n=l

n=2

n>2

Fib(n ?l)+Fib(n ?2) 2、八皇后问题

等。

程序讨论算法效率,加深学生对算法分析过程、实现细节的理解。

“递归算法”课程在基础理论知识教学的基础上,注重知识的实践和 应用,

力求理论与实践相联系,将原理与实现有机结合。辅以课后思考题, 延伸知识点的理解。

A "S K ■

?加

■ U0 ?

£>? C S* *

? ?

t ” ■

审hanoi

nove(1.x. 2): pluiK? input n 3 ■ ■

\

1 A —X ; I a Ise

2 A —冷 (

1 C —冷

1

hanoi (n-1. x. z. y); 3:A —X :

nove (n.x.z):

>A Hanoi (ivl. y. x.z);

2 8-X : 1:A~>C

1

Pro“ any key to cont inua

nwinQ (

I

? nt n :

pr intf("please i nput n "): ?

scanf (*%d".In):

h ?WA . B . C);

? -*hanoi

Hanoi (n-1. x. z. y). 8V6 (n. m. z): hanoi (n-1. y. x. z).

""lA--d

mainO

int n;

printf("please input n scanf CW.&n):

hanoi(n. A B*.'C') print*C\Mhc count is the SQt it 7 MT / k#y to

contirve

\d\n count?:

fSl

M imx*

M

|

?!

《递归算法与递归程序》教学设计

递归算法与递归程序 岳西中学:崔世义一、教学目标 1知识与技能 (1) ?认识递归现象。 (2) ?使用递归算法解决冋题往往能使算法的描述乘法而易于表达 (3) ?理解递归三要素:每次递归调用都要缩小规模;前次递归调用为后次作准备:递归调用必须有条件进行。 (4) ?认识递归算法往往不是咼效的算法。 (5) ? 了解递归现象的规律。 (6) ?能够设计递归程序解决适用于递归解决的问题。 (7) ?能够根据算法写出递归程序。 (8) ? 了解生活中的递归现象,领悟递归现象的既有重复,又有变化的特点,并且从中学习解决问题的一种方法。 2、方法与过程 本节让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。然后让学生做练习(2) 和练习(3)这两道题目的形式相差很远,但方法和答案却是完全相同的练习,体会其中的奥妙,加深对递归算法的了解。最后用子过程解决汉诺塔的经典问题。 3、情感态度和价值观 结合高中生想象具有较强的随意性、更富于现实性的身心发展特点,综合反映出递归算法的特点,以及递归算法解答某些实践问题通常得很简洁,从而激发学生对程序设计的追求和向往。 二、重点难点 1、教学重点 (1) 了解递归现象和递归算法的特点。 (2) 能够根据问题设计出恰当的递归程序。 2、教学难点 (1) 递归过程思路的建立。 (2) 判断冋题是否适于递归解法。 (3) 正确写出递归程序。 三、教学环境 1、教材处理 教材选自《浙江省普通高中信息技术选修:算法与程序设计》第五章,原教材的编排是以本节以斐波那契的兔子问题引人,导出递归算法,从而自 定义了一个以递归方式解决的函数过程。然后利用子过程解决汉诺塔的经典问题。 教材经处理后,让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。然后让学生做练习⑵ 和练习

汉诺塔问题的三种实现

// test_project.cpp : 定义控制台应用程序的入口点。//汉诺塔问题的 // //递归实现 /*#include "stdafx.h" #include using namespace std; int count=0;//记录移动到了多少步 void Move(int n,char From,char To); void Hannoi(int n,char From, char Pass ,char To); //把圆盘从From,经过pass,移动到To int main() { int n_count=0; cout<<"请输入圆盘个数:"; cin>>n_count; Hannoi(n_count,'A','B','C'); } void Move(int n,char From,char To)

{ count++; cout<<"第"<

/*后来一位美国学者发现一种出人意料的简单方法,只要轮流进行两步操作就可以了。首先把三根柱子按顺序排成品字型,把所有的圆盘按从大到小的顺序放在柱子A上,根据圆盘的数量确定柱子的排放顺序:若n为偶数,按顺时针方向依次摆放A B C; 若n为奇数,按顺时针方向依次摆放A C B。 ()按顺时针方向把圆盘从现在的柱子移动到下一根柱子,即当n为偶数时,若圆盘在柱子A,则把它移动到B;若圆盘在柱子B,则把它移动到C;若圆盘在柱子C,则把它移动到A。 ()接着,把另外两根柱子上可以移动的圆盘移动到新的柱子上。即把非空柱子上的圆盘移动到空柱子上,当两根柱子都非空时,移动较小的圆盘。这一步没有明确规定移动哪个圆盘,你可能以为会有多种可能性,其实不然,可实施的行动是唯一的。 ()反复进行()()操作,最后就能按规定完成汉诺塔的移动。 所以结果非常简单,就是按照移动规则向一个方向移动金片: 如阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C 汉诺塔问题也是程序设计中的经典递归问题,下面我们将给出递归和非递归的不同实现源代码。*/ /*#include "stdafx.h" #include #include

汉诺塔问题与递归思想教学设计

一、教学思想(包括教学背景、教学目标) 1、教学背景 本课程“递归算法”,属于《数据结构与算法》课程中“栈和队列”章节的重点和难点。数据结构与算法已经广泛应用于各行各业的数据存储和信息处理中,与人们的社会生活密不可分。该课程是计算机类相关专业核心骨干课程,处于计算机学科的核心地位,具有承上启下的作用。不仅成为全国高校计算机类硕士研究生入学的统考科目,还是各企业招聘信息类员工入职笔试的必考科目。数据结构与算法课程面向计算机科学与技术、软件工程等计算机类学生,属于专业基础课。 2、教学大纲 通过本课程的学习,主要培养学生以下几个方面的能力: 1)理解递归的算法; 2)掌握递归算法的实现要素; 3)掌握数值与非数值型递归的实现方法。 根据学生在学习基础和能力方面的差异性,将整个课程教学目标分成三个水平:合格水平(符合课标的最低要求),中等以上水平(符合课标的基本要求),优秀水平(符合或超出课标提出的最高要求)。具体如下表:

二、课程设计思路(包括教学方法、手段) “递归算法”课程以故事引入、案例驱动法、示范模仿、启发式等多元化教学方法,设计课程内容。具体的课堂内容如下所示:

1 1 2 3 3 7 4 15 5 31 count = 2n-1 思考:若移动速度为1个/秒,则需要 (264-1)/365/24/3600 >= 5849亿年。 四、总结和思考 总结: 对于阶乘这类数值型问题,可以表达成数学公式,然后从相应的公式入手推导,解决这类问题的递归定义,同时确定这个问题的边界条件,找到结束递归的条件。 对于汉诺塔这类非数值型问题,虽然很难找到数学公式表达,但可将问题进行分解,问题规模逐渐缩小,直至最小规模有直接解。 思考: 数值型问题:斐波那契数列的递归设计。 非数值型问题:八皇后问题的递归设计。阐述总结知识拓展 三、教学特色(总结教学特色和效果) 递归算法课程主要讨论递归设计的思想和实现。从阶乘实例入手,由浅入深,层层深入介绍了递归的设计要点和算法的实现。从汉诺塔问题,通过“边提问,边思考”的方式逐层深入地给出算法的分析和设计过程。通过故事引入、案例导入、实例演示、PPT展示、实现效果等“多元化教学方式”,努力扩展课堂教学主战场。加上逐步引导、问题驱动,启发学生对算法的理解,并用实例演示展示算法的分析过程,在编译环境下实现该算法,加深对算法实现过程的认识。 1、知识点的引入使用故事诱导法讲授 通过“老和尚讲故事”引入函数的递归调用,并通过“世界末日问题” 故事引入非数值型问题的递归分析,激发学习积极性,挖掘学生潜能。

汉诺塔课程设计

汉诺塔课程设计 一、教学内容: 1、了解汉诺塔的历史。 2、讲解汉诺塔的游戏规则。 二、课程设计目的: 1、让伙伴们了解汉诺塔的历史,勾起孩子们的学习兴趣,让伙伴们更加热爱数学。 2、在掌握汉诺塔玩法的基础上,锻炼伙伴们的观察力,变通里,和右脑开发。 3、增强伙伴们的空间想象能力和动手能力。 4、让伙伴们体会到数学的神奇,从而对数学产生更加浓厚的兴趣。 三、培养技能:观察力、想象力、变通里、右脑开发。 四、所需工具:汉诺塔、记号笔。 五、教学流程概述: 第一节课:1、讲一个关于汉诺塔的故事。2、带领伙伴们一起观察和了解汉诺塔的游戏规则。(以三盘为例说明)(30分钟) 第二节课:汉诺塔4盘的移法。(30分钟) 第三节课:汉诺塔5盘的移法。(30分钟) 第四节课: 汉诺塔月底考核。(30分钟) 六、教学流程详细解读: 第一节课:让伙伴们了解汉诺塔的历史,勾起孩子们的学习 兴趣,让伙伴们更加热爱数学。 1、讲关于汉诺塔的故事: 在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄 铜板上插着三根宝石针。印度教的主神梵天在创造世界的时 候,在其中一根针上从下到上地穿好了由大到小的64片金 片,这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣在 按照下面的法则移动这些金片:一次只移动一片,不管在哪 根针上,小片必须在大片上面。僧侣们预言,当所有的金片都从梵天穿好的那根针上移

、告诉伙伴们游戏规则: 以三个环为例说明: (一)先让伙伴们自己观察有几个柱子,有几个盘,并且盘是怎么排列的? 答:有三根相邻的柱子,第一根柱子上从下到上放着3个不同大小的圆盘,并且顺序是由大到小依次叠放。 (二)分别为这3个相邻的柱子编号A柱、B柱、C柱;在为这3个圆盘编号盘1、盘2、盘3。 让伙伴们自己动脑想想:如何要把A柱上的3个盘子一个一个移动到C柱上,并且每次移动同一根柱子上都必须保持大点的盘子在下,小点的盘子在上。最后也要使移动到C 柱的圆盘从下到上按照盘3,2,1金字塔的形状排列。 (三)带领伙伴们一起动手操作: (1)、盘1移动到C柱。 (2)、盘2移动到B柱。 (3)、盘1在移动到B柱上,这时盘1在盘2上。 (4)、盘3移动到C柱上。 (5)、再将盘1移动到A柱,这时B柱就只剩盘2。 (6)、将盘2移动到C柱,在盘3上边。 (7)、再将盘1移动到C柱,这时就成功了。 (四)鼓励伙伴们再来一次,按照刚才的移动方法 将C柱的圆盘移动到A柱。 (五)等所有伙伴都移动成功都移动成功后,引导伙伴们仔细思考,看看各位伙伴在移动的过程中有发现什么规律和技巧没有? 带领伙伴再来熟悉一遍: 第一步:盘1移动到C柱;第二步:盘2移动到B柱;......第四步:盘3移动到C柱上......

汉诺塔非递归算法C语言实现

汉诺塔非递归算法C语言实现 #include #include #define CSZL 10 #define FPZL 10 typedef struct hanoi { int n; char x,y,z; }hanoi; typedef struct Stack { hanoi *base,*top; int stacksize; }Stack; int InitStack(Stack *S) { S->base=(hanoi *)malloc(CSZL*sizeof(hanoi)); if(!S->base) return 0; S->top=S->base; S->stacksize=CSZL; return 1; } int PushStack(Stack *S,int n,char x,char y,char z) { if(S->top-S->base==S->stacksize) { S->base=(hanoi *)realloc(S->base,(S->stacksize+FPZL)*sizeof(hanoi)); if(!S->base) return 0; S->top=S->base+S->stacksize; S->stacksize+=FPZL; } S->top->n=n; S->top->x=x; S->top->y=y; S->top->z=z; S->top++; return 1; } int PopStack(Stack *S,int *n,char *x,char *y,char *z) { if(S->top==S->base)

汉诺塔课程设计

学 号: 200840420149 课 程 设 计 题 目 汉诺塔 教 学 院 计算机学院 专 业 计算机 班 级 网络技术 姓 名 指导教师 2010 年 12 月 17 日

课程设计任务书 2009 ~2010 学年第一学期 学生姓名:专业班级:网络技术 指导教师:工作部门:计算机学院 一、课程设计题目 汉诺威塔 二、课程设计内容(含技术指标) 1.在移动盘子的每一步骤,形象直观地显示各针上的盘子。 2.考虑到学“VC 语言”课程的学生同时学习了“数据结构”课程,所以用灵活的数据结构解决汉诺威塔问题,灵活的处理数据结构中的经典问题。 3.使用VC++,因用面向对象的方法去处理数据结构已经是当今的潮流。 三、进度安排 1. 初步完成总体设计,搭好框架,确定人机对话的界面,确定函数个数; 2. 完成最低要求:实现5层汉诺威塔的调整过程; 3.进一步要求:直至实现n=9时的情况。 四、基本要求 1.界面友好,函数功能要划分好 2.总体设计应画流程图 3.程序要加必要的注释 4.要提供程序测试方案 5.程序一定要经得起测试,宁可功能少一些,也要能运行起来。 教研室主任签名: 2010年12 月 17 日

目录 1、概述 (3) 2、设计目的 (4) 3、问题分析 (4) 4、逻辑设计 (5) 5、流程图 (5) 6、程序代码: (6) 7、程序调试与测试 (9) 8、结果分析 (12) 9、总结 (13) 一、概述 数据结构是计算机学科非常重要的一门专业基础理论课程,要想编写针对非数值计算问题的高质量程序,就必须要熟练的掌握这门课程设计的知识。另外,他与计算机其他课程都有密切联系,具有独特的承上启下的重要位置。拥有《数据结构》这门课程的知识准备,对于学习计算机专业的其他课程,如操作系统、数据库管理系统、软件工程的都是有益的。

汉诺塔问题

实验二知识表示方法 梵塔问题实验 1.实验目的 (1)了解知识表示相关技术; (2)掌握问题规约法或者状态空间法的分析方法。 2.实验内容(2个实验内容可以选择1个实现) (1)梵塔问题实验。熟悉和掌握问题规约法的原理、实质和规约过程;理解规约图的表示方法; (2)状态空间法实验。从前有一条河,河的左岸有m个传教士、m个野人和一艘最多可乘n人的小船。约定左岸,右岸和船上或者没有传教士,或者野人数量少于传教士,否则野人会把传教士吃掉。搜索一条可使所有的野人和传教士安全渡到右岸的方案。 3.实验报告要求 (1)简述实验原理及方法,并请给出程序设计流程图。 我们可以这样分析: (1)第一个和尚命令第二个和尚将63个盘子从A座移动到B座; (2)自己将底下最大的盘子从A移动到C; (3)再命令第二个和尚将63个盘子从B座移动到C;(4)第二个和尚命令第三个和尚重复(1)(2)(3);以此类推便可以实现。这明显是个递归的算法科技解决的问

题。 (2)源程序清单: #include #include using namespace std; void main() { void hanoi(int n,char x,char y,char z);

int n; printf("input the number of diskes\n"); scanf("%d",&n); hanoi(n,'A','B','C'); } void hanoi(int n,char p1,char p2,char p3) { if(1==n) cout<<"盘子从"<

汉诺塔问题实验报告

1.实验目的: 通过本实验,掌握复杂性问题的分析方法,了解汉诺塔游戏的时间复杂性和空间复杂性。 2.问题描述: 汉诺塔问题来自一个古老的传说:在世界刚被创建的时候有一座钻石宝塔(塔A),其上有64个金碟。所有碟子按从大到小的次序从塔底堆放至塔顶。紧挨着这座塔有另外两个钻石宝塔(塔B和塔C)。从世界创始之日起,婆罗门的牧师们就一直在试图把塔A 上的碟子移动到塔C上去,其间借助于塔B的帮助。每次只能移动一个碟子,任何时候都不能把一个碟子放在比它小的碟子上面。当牧师们完成任务时,世界末日也就到了。 3.算法设计思想: 对于汉诺塔问题的求解,可以通过以下三个步骤实现: (1)将塔A上的n-1个碟子借助塔C先移到塔B上。 (2)把塔A上剩下的一个碟子移到塔C上。 (3)将n-1个碟子从塔B借助于塔A移到塔C上。 4.实验步骤: 1.用c++ 或c语言设计实现汉诺塔游戏; 2.让盘子数从2 开始到7进行实验,记录程序运行时间和递 归调用次数; 3.画出盘子数n和运行时间t 、递归调用次数m的关系图, 并进行分析。 5.代码设计: Hanio.cpp #include"stdafx.h" #include #include #include void hanoi(int n,char x,char y,char z) { if(n==1) { printf("从%c->搬到%c\n",x,z); } else { hanoi(n-1,x,z,y); printf("从%c->%c搬到\n",x,z); hanoi(n-1,y,x,z); }

校本课程《汉诺塔游戏》【教学设计】.doc

《汉诺塔游戏》教学设计 学习内容:数学游戏“汉诺塔”第一课时 学习目标: 1.了解汉诺塔游戏的传说以及汉诺塔游戏的基本规则。 2.经历汉诺塔游戏的游玩过程,在“玩”中掌握汉诺塔游戏的基本规则,初步发现游戏中的规律。 3.在收集信息、整理归纳、猜测验证的数学思维过程,发展归纳推理能力和逻辑思维能力。 4.在解决问题的过程中,体会与他人合作获得更多的成功体验。 学习重点: 经历汉诺塔游戏的游玩过程,在“玩”中掌握汉诺塔游戏的基本规则初步发现游戏中的规律。 学习难点: 在收集信息、整理归纳、猜测验证的数学思维过程,发展归纳推理能力和逻辑思维能力。

学习过程: 课前活动 大家喜欢玩游戏么?玩过什么游戏? 我为大家带来一位游戏高手,一起来认识一下。播放录像。这 只黑猩猩聪明吧?它的表现太神奇了!你知道它玩的什么? 板书课题:汉诺塔 接下来,就让我们一起步入汉诺塔游戏的世界。 一、认识汉诺塔 1.关于汉诺塔,你想了解些什么?(规则,来历,玩法……) 同学们的问题太棒了!相信上完了这节课,能解决你的许多问题! 咱们就从汉诺塔的来历说起。Ppt 播放相关介绍。 2.认识汉诺塔各部分。 到了现代,汉诺塔演变成了这个样子。出示教具。 咱们一起来认识一下汉诺塔:下面是一个托盘,上面竖着3 根柱子,从左到右依次为A 柱、B 柱、C 柱。A 柱是起始柱,游戏开始的时候所有的圆片摆放的位置;C 柱是目标柱,游戏结束时,所有的金片都按照顺

序排列在上面;B 柱是中转柱。 3.了解游戏规则。 大家想不想看一看,老师玩汉诺塔游戏的录像?请你一边看一边想:汉诺塔游戏的规则是什么?出示录像。 谁来说一说,汉诺塔游戏的规则是什么? (1)从一边到另一边板书:1.从A 到C (2)一次只能移动一个金片板书:2.一次一片 (3)大金片不能放到小金片的上面板书:3.大不压小 二、动手实践玩游戏 知道了规则,接下来,咱们就开始玩汉诺塔的游戏吧。 1.咱们从1 个圆片开始研究。 请你拿出学具,在A 柱上摆放1 个圆片。其它圆片放在旁边桌上。 1 个圆片,可以怎么玩?动手试一试。说一说。 生1:可以从A 直接到C,移动一次。生 2:可以从A 到B 再到C,移动两次。 两种方法都可以。我们来看规则:从A 到C,如果可以直接一步到

汉诺塔问题的重点是分析移动的规则

汉诺塔问题的重点是分析移动的规则,找到规律和边界条件。 若需要将n个盘子从A移动到C就需要(1)将n-1个盘子从A移动到B;(2)将你第n个从A移动到C;(3)将n-1个盘子再从B 移动到C,这样就可以完成了。如果n!=1,则需要递归调用函数,将A上的其他盘子按照以上的三步继续移动,直到达到边界条件n=1为止。 思路清楚了,程序就好理解了。程序中的关键是分析好每次调用移动函数时具体的参数和对应的A、B、C塔的对应的关系。下面来以实际的例子对照程序进行说明。 ①move(int n,int x,int y,int z) ②{ ③if (n==1) ④printf("%c-->%c\n",x,z); ⑤else ⑥{ ⑦move(n-1,x,z,y); ⑧printf("%c-->%c\n",x,z); ⑨{getchar();}//此句有必要用吗?感觉可以去掉的吧 ⑩move(n-1,y,x,z); } }

比如有4个盘子,现在全部放在A塔上。盘子根据编号为1、2、3、4依次半径曾大。现在要将4个盘子移动到C上,并且是按原顺序罗列。首先我们考虑如何才可以将4号移动到C呢?就要以B为中介,首先将上面的三个移动到B。此步的操作也就是程序中的①开始调入move函数(首次调用记为一),当然现在的n=4,然后判断即③n!=1所以不执行④而是到⑤再次调用move函数(记为二)考虑如何将3个盘移动到B的方法。此处是递归的调用所以又一次回到①开始调入move函数,不过对应的参数发生了变化,因为这次要考虑的不是从A移动4个盘到C,而是要考虑从A如何移动移动3个盘到B。因为n=3,故不可以直接移动要借助C做中介,先考虑将两个移动到C的方法,故再一次到⑤再一次递归调用move函数(记为三)。同理两个盘还是不可以直接从A移动到C所以要以B为中介考虑将1个移动到B的过程。这次是以B为中介,移动到C为目的的。接下来再一次递归调用move函数(记为四),就是移动到B一个,可以直接进行。程序执行③④句,程序跳出最内一次的调用(即跳出第四次的调用)返回上一次(第三次),并且从第三次的调用move 函数处继续向下进行即⑧,即将2号移动到了C,然后继续向下进行到 ⑩,再将已经移到B上的哪一个移回C,这样返回第二次递归(以C 为中介将3个盘移动到B的那次)。执行⑧,将第三个盘从A移动到B,然后进入⑩,这次的调用时因为是将C上的两个盘移到B以A

汉诺塔问题的非递归算法分析

汉诺塔递归与非递归算法研究 作者1,作者2,作者33 (陕西师范大学计算机科学学院,陕西西安 710062) 摘要: 摘要内容(包括目的、方法、结果和结论四要素) 摘要又称概要,内容提要.摘要是以提供文献内容梗概为目的,不加评论和补充解释,简明,确切地记述文献重要内容的短文.其基本要素包括研究目的,方法,结果和结论.具体地讲就是研究工作的主要对象和范围,采用的手段和方法,得出的结果和重要的结论,有时也包括具有情报价值的其它重要的信息.摘要应具有独立性和自明性,并且拥有与文献同等量的主要信息,即不阅读全文,就能获得必要的信息. 关键词:关键词1; 关键词2;关键词3;……(一般可选3~8个关键词,用中文表示,不用英文 Title 如:XIN Ming-ming , XIN Ming (1.Dept. of ****, University, City Province Zip C ode, China;2.Dept. of ****, University, City Province Zip C ode, China;3.Dept. of ****, University, City Province Zip C ode, China) Abstract: abstract(第三人称叙述,尽量使用简单句;介绍作者工作(目的、方法、结果)用过去时,简述作者结论用一般现在时) Key words: keyword1;keyword2; keyword3;……(与中文关键词对应,字母小写(缩略词除外)); 正文部分用小5号宋体字,分两栏排,其中图表宽度不超过8cm.。设置为A4页面 1 引言(一级标题四号黑体加粗) 这个问题当时老和尚和众僧们,经过计算后,预言当所有的盘子都从基柱A移到基座B上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。其实,不管这个传说的可信度有多大,如果考虑把64个盘子,由一个塔柱上移到另一根塔柱上,并且始终保持上小下大的顺序。假设有n个盘子,移动次数是f(n).显然f(1)=1,f(2)=3,f(3)=7,且f(k+1)=2*f(k)+1。此后不难证明f(n)=2n-1。n=64时, f(64)= 2^64-1=18446744073709551615 假如每秒钟一次,共需多长时间呢?一年大约有 31536926 秒,计算表明移完这些金片需要5800多亿年,比地球寿命还要长,事实上,世界、梵塔、庙宇和众生都早已经灰飞烟灭。 对传统的汉诺塔问题,目前还有不少的学者继续研究它的非递归解法,本文通过对递归算法的研究……. 提示:(1)可以定义问题的规模n,如盘子的数量;(2)塔柱的数量(目前有部分理论可以支撑,不妨用计算机实现)分析规模的变化与算法的复杂度比较。(3)可以对经典的汉诺塔问题条件放松、加宽,如在经典的汉诺塔问题中大盘只能在小盘下面,放松其他条件可以定义相邻两个盘子必须满足大盘只能在小盘下面。其它盘子不作要求。 2 算法设计 2.1 汉诺塔递归算法描述(二级标题小五黑体加粗) 用人类的大脑直接去解3,4或5个盘子的汉诺塔问题还可以,但是随着盘子个数的增多,问题的规模变的越来越大。这样的问题就难以完成,更不用说吧问题抽象成循环的机器操作。所以类似的问题可用递归算法来求解。下面n个盘的汉

2016上公开课用的河内塔问题教案

河内塔问题 ------教学设计 新建三小徐珍珠 教学内容: 新人教版四年级上册第111页,河内塔问题。 教学目标: 1、让学生在学习过程中,根据解决问题的需要,经过自己的探索,体验化繁为简找规律这一解决数学问题的基本策略。 2、经历收集有用的信息进行归纳、类比与猜测、再验证猜测,这一系列数学思维过程,发展学生的归纳推理能力。 3、能用有条理的、清晰的语言阐述自己的想法。 4、在解决问题的活动中,学习与他人合作,懂得谦让,能相互帮助。 5、在老师的鼓励与引导下,能积极地应对活动中遇到的困难,在学习活动中获得成功体验。 教学重点: 在教学过程中,渗透化归的思想,指导学生根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力。 教学难点: 在解决问题过程中,引导学生进行有条理的思考,训练学生对自己的结论做出条理清晰的说明。 教学具准备: PPT课件、河内塔教具、河内塔学具、游戏记录表。

教学过程: 课前谈话:孩子们,这节课是一节游戏与数学相结合的课,将会是一节很有趣的数学课,那你们有没有准备好要积极思考,大胆发言呀?准备好了,老师非常期待你们的精彩表现! 首先,我们先来学习一个简单的数学知识:2我们可以写成2一次方,2乘2也就是两个2相乘可以写成2的2次方等于4,2乘2乘2可以写成2的3次方等于8,以此类推:4个2相乘可以写成2的4次方等于8再乘以2得16.同学们学得很好,现在请同学们做一道找规律填空题:2 4 8 16 ……()第10数是几?()第N数是几?请同学们拿出草稿本,想想,算算,找找规律。我们不要怕失败,因为失败是成功之母。找到了,规律是第几个数,就是几个2相乘的积。那第20个数呢,你们再想一想,??? 游戏引入 同学们都喜欢玩游戏,老师这儿就有一种很好玩的游戏你们肯定想试试。这个游戏要用到的玩具叫河内塔。(出示课件)(它是由一块底盘,三根杆子和一些圆盘组成的)大家现在还想知道什么呢,是不是怎么玩呢?大家别着急,它的游戏规则和一个传说有关,请同学们认真听老师讲一个关于河内塔的古老的传说,游戏规则就在这个传说里面。出示课件讲传说。 二、介绍传说 1、听了传说后,你们担心不担心河内塔上的64块圆盘很快就会移完,世界末日很快就会到来呀! 到底有没有这个担心的必要呢?这个传说究竟蕴含了什么样的奥秘呢? 今天我们就来研究河内塔问题,找到移完64个圆盘最少所花的时间,揭开这个古老传说的奥秘。(出示课题) 2、探索玩法: 听了刚才的传说,你懂得了玩这个河内塔规则吗?看谁听得认真看得仔细。(出示白屏。)请你说出其中的一条。 同学们看看是不是有这四点:(出示课件)游戏规则: (1)、把第一根杆上的珠子全部移到第三根杆上;

scratch图解汉诺塔问题

scratch图解汉诺塔问题 汉诺塔:汉诺塔(Tower of Hanoi)源于印度传说中,大梵天创造世界时造了三根金钢石柱子,其中一根柱子自底向上叠着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘 在进行转移操作时,都必须确保大盘在小盘下面,且每次只能移动一个圆盘,最终c柱上有所有的盘子且也是从上到下按从小到大的顺序。 当a柱子上只有一个盘子时只要把那个盘子直接移到c就行了, 有两个盘子的话把1号盘先移到b柱,在把2号盘移到c柱,最后把b柱上的1号盘移到c柱就行了, 那么如果有n个盘子呢? 这里我们先把上方的n-1个盘子看成整体,这下就等于只有两个盘子,自然很容易了,我们只要完成两个盘子的转移就行了,再把前n-2个盘子看作一个整

体,就这样一步步向前找到可以直接移动的盘子,n-3......,2,1,最终,最上方的盘子是可以直接移动到c柱的。 看到这里其实就已经有了程序的设计思路,那就是递归,这个时候只要理解递归最终的解决的问题是什么就行了,中间的事交给程序,递归可以很绕也可以很直接,我们按照最直接的理解就行了。

如果你想想清楚每一步执行过程,那么你可以继续往下看,确实有点乱,切记别把自己绕晕了。 举个例子:当n=7时,前6个要想办法成功移动到b柱上,7号是Boss,他不管上面的6个小弟用什么办法,我可以先等着,于是7号在等着上面6个完成移到b柱,现在6是临时老大,他也想去c柱,于是他命令前5个移到b 柱,他等着,5号也采取之前两个的做法,于是这个命令一直往前传,没办法,上面被压着自己也没法动啊。 终于到了1号,他是现在唯一能动的,于是1号移动到了b柱,好了,2号可以到c柱。不过a柱上还有3号,于是让1号移到c柱,3号可以到b柱了,之后1号和2号在想办法到b柱,于是1,2,3号在b柱,4号也要得到b柱啊,1,2,3号你们按照刚才的办法到c柱,空出b柱给4号。后面的5号、6号都重复这样的操作,终于前6号移动到b柱,7号直接跑到了c柱,于是剩下在b 柱的6个小弟还要再干一遍他们在a柱上干的事。 程序截图:

课程实践报告_汉诺塔

课程实践报告 题目:汉诺塔 姓名: 学号: 班级: 日期:

一实践目的 1、初步具备根据应用需求选择合理数据结构并进行算法设计的能力; 2、进一步提升C语言的应用能力; 3、初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能; 4、提高综合运用所学的理论知识和方法独立分析和解决问题的能力; 5、训练用系统的观点和软件开发一般规范进行软件开发,培养软件工作者所应具备的科学的工作方法和作风; 6、提升文档写作能力。 二问题定义及题目分析 汉诺塔(又称河内塔)问题是印度的一个古老的传说。开天辟地的神勃拉玛在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不倦地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为帮助,但每次只能搬一个,而且大的不能放在小的上面。这是一个著名的问题,几乎所有的教材上都有这个问题。由于条件是一次只能移动一个盘,且不允许大盘放在小盘上面,所以64个盘的移动次数是:18,446,744,073,709,551,615 这是一个天文数字,若每一微秒可能计算(并不输出)一次移动,那么也需要几乎一百万年。我们仅能找出问题的解决方法并解决较小N值时的汉诺塔,但很难用计算机解决64层的汉诺塔。后来,这个传说就演变为汉诺塔游戏: 1.有三根杆子A,B,C。A杆上有若干圆盘。2.每次移动一块圆盘,小的只能叠在大的上面。3.把所有圆盘从A杆全部移到C杆上。经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动圆盘:如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C。 程序所能达到的功能: 用户只需要输入所需的层数即可,程序会自动计算出最终需要的步骤,并同时给出中间移动的过程。 三概要设计 1、设计思想 如果盘子为1,则将这个盘子从塔座A移动到塔座C;如果不为1,则采用递归思想。将塔座A的前n-1个盘子借助C盘(即目的盘)移到塔座B,移后,此时C为空座,那我们就可以将塔座A的第n个盘子移到塔座C了。接下来就将塔座B的n-1个盘子借助A移到塔座C,从而完成盘子的移动。 2、数据类型 结构体:用来存放盘子的栈。同时,在函数的参数中还用到了结构体类型的引用。 其他类型:基本的数据类型,包括整形,字符型。用来存放临时变量。 3、主要模块

汉诺塔程序实验报告

实验题目: Hanoi 塔问题 一、问题描述: 假设有三个分别命名为 A , B 和C 的塔座,在塔座 B 上插有n 个直径大小各不相同、从小到 大编号为1, 2,…,n 的圆盘。现要求将塔座 B 上的n 个圆盘移至塔座 A 上并仍按同样顺序 叠排,圆盘移动时必须遵守以下规则: (1 )每次只能移动一个圆盘; (2)圆盘可以插在 A , B 和C 中任一塔上; ( 3)任何时刻都不能将一个较大的圆盘压在较小的圆盘之上。 要求: 用程序模拟上述问题解决办法,并输出移动的总次数, 圆盘的个数从键盘输入; 并想 办法计算出程序运行的时间。 二、 算法思路: 1 、建立数学模型: 这个问题可用递归法解决,并用数学归纳法又个别得出普遍解法: 假设塔座B 上有3个圆盘移动到塔座 A 上: (1) "将塔座B 上2个圆盘借助塔座 A 移动到塔座C 上; (2) "将塔座B 上1个圆盘移动到塔座 A 上; (3) "将塔座C 上2个圆盘借助塔座 B 移动到塔座A 上。 其中第 2步可以直接实现。第 1步又可用递归方法分解为: 1.1"将塔座B 上1个圆盘从塔座 1.2"将塔座B 上1个圆盘从塔座 1.3"将塔座A 上1个圆盘从塔座 第 3 步可以分解为: 3.1将塔座C 上1个圆盘从塔座 3.2将塔座C 上1个圆盘从塔座 3.3将塔座B 上1个圆盘从塔座 综上所述:可得到移动 3 个圆盘的步骤为 B->A,B->C, A->C, B->A, C->B, C->A, B->A, 2、算法设计: 将n 个圆盘由B 依次移到A , C 作为辅助塔座。当 n=1时,可以直接完成。否则,将塔 座B 顶上的n-1个圆盘借助塔座 A 移动到塔座C 上;然后将圆盘B 上第n 个圆盘移到塔 座A 上;最后将塔座 C 上的n-1个圆盘移到塔座 A 上,并用塔座B 作为辅助塔座。 三、原程序 #include #include #include int times = 0; void move(char a, char b) { printf("%c > %c \n", a,b); } void hno(int n,char a , char b, char c) { if (n==1) { move(a,c); times ++; } X 移动到塔座 A ; X 移动到塔座 C ; Z 移动到塔座 C 。 Y 移动到塔座 Y 移动到塔座 X 移动到塔座 B ; A ;

汉诺塔问题非递归算法详解

Make By Mr.Cai 思路介绍: 首先,可证明,当盘子的个数为n 时,移动的次数应等于2^n - 1。 然后,把三根桩子按一定顺序排成品字型(如:C ..B .A ),再把所有的圆盘按至上而下是从小到大的顺序放在桩子A 上。 接着,根据圆盘的数量确定桩子的排放顺序: 若n 为偶数,按顺时针方向依次摆放C ..B .A ; 若n 为奇数,按顺时针方向依次摆放B ..C .A 。 最后,进行以下步骤即可: (1)首先,按顺时针方向把圆盘1从现在的桩子移动到下一根桩子,即当n 为偶数时,若圆盘1在桩子A ,则把它移动到B ;若圆盘1在桩子B ,则把它移动到C ;若圆盘1在桩子C ,则把它移动到A 。 (2)接着,把另外两根桩子上可以移动的圆盘移动到新的桩子上。 即把非空桩子上的圆盘移动到空桩子上,当两根桩子都非空时,移动较小的圆盘。 (3)重复(1)、(2)操作直至移动次数为2^n - 1。 #include #include using namespace std; #define Cap 64 class Stake //表示每桩子上的情况 { public: Stake(int name,int n) { this->name=name; top=0; s[top]=n+1;/*假设桩子最底部有第n+1个盘子,即s[0]=n+1,这样方便下面进行操作*/ } int Top()//获取栈顶元素 { return s[top];//栈顶 } int Pop()//出栈 { return s[top--];

} void Push(int top)//进栈 { s[++this->top]=top; } void setNext(Stake *p) { next=p; } Stake *getNext()//获取下一个对象的地址 { return next; } int getName()//获取当前桩子的编号 { return name; } private: int s[Cap+1];//表示每根桩子放盘子的最大容量 int top,name; Stake *next; }; void main() { int n; void hanoi(int,int,int,int); cout<<"请输入盘子的数量:"; cin>>n; if(n<1) cout<<"输入的盘子数量错误!!!"<

汉诺塔的递归求解分析

汉诺塔的递归求解分析 学完函数,就马上出了道经典的汉诺塔来,书里说是把递归提前拿来研究学习了,这题目实在是把我弄晕了。几天都在时时想这个题目。 递归是数学归纳法的逆过程。 递归函数是直接或通过另一个函数间接调用自己的函数。C语言的特点就是允许函数的递归调用。 如果一个问题要用递归解决,得符合以下的条件: 1,该问题要能转换成一个新问题,而新问题的解决方法要和原来的问题相同,只是复杂度有所减少而已。既是要有一定的规律。如求n!。 2、这个问题当简单到一定程度就可以解决,而不用再继续简化。(即需要一个结束递归的条件。否则无限的递归下去,最终会导致系统资源枯竭系统崩溃)。 3、问题用其他方法解决非常困难或不如用递归解决来的简单,(所有递归能解决的问题都能用迭代{非递归}来解决)这个条件是非必要的,但人总需要简单。 ? 要用递归解决问题,我们必须分析下列问题: 1、递归的参数,用递归解决的问题通常都比较复杂,规模比较大,要找出决定递归复杂度,规模的参数,比如n!,决定的递归复杂度、规模的就是n。 2、找出递归结束的标志,没有递归结束的条件,将无限循环。造成的后果是严重的。 3、找出递归的通式,才可以进一步简化问题。(通常这是比较困难的)(比如:n!的通式就是n*(n-1)!,而且是可以不断简化直到到达结束递归的边界值) ? ? ? 一般的格式是: ? if 结束条件1 表达式1(赋予边界值1) else if 结束条件2 表达式2(赋予边界值2) . . . else 递归的解决问题的通式。 ? ? 汉诺塔的问题; 这个问题对于我这个初学者来说,确实棘手,对于执行的步骤很不理解,虽然递归不用去了解执行的步骤的。但是,不用去了解不等同于不了解。 一个庙里有三个柱子,第一个有64个盘子,从上往下盘子越来越大。要求庙里的老和尚把这64个盘子全部移动到第三个柱子上。移动的时候始终只能小盘子压着大盘子。 1、此时老和尚(后面我们叫他第一个和尚)觉得很难,所以他想:要是有一个人能把前

七层汉诺塔的解法

七层汉诺塔的解法 1、把1号从a挪动到c 2、把2号从a挪动到b 3、把1号从c挪动到b 4、把3号从a挪动到c 5、把1号从b挪动到a 6、把2号从b挪动到c 7、把1号从a挪动到c 8、把4号从a挪动到b 9、把1号从c挪动到b 10、把2号从c挪动到a 11、把1号从b挪动到a 12、把3号从c挪动到b 13、把1号从a挪动到c 14、把2号从a挪动到b 15、把1号从c挪动到b 16、把5号从a挪动到c 17、把1号从b挪动到a 18、把2号从b挪动到c 19、把1号从a挪动到c 20、把3号从b挪动到a 21、把1号从c挪动到b 22、把2号从c挪动到a 23、把1号从b挪动到a 24、把4号从b挪动到c 25、把1号从a挪动到c 26、把2号从a挪动到b 27、把1号从c挪动到b 28、把3号从a挪动到c 29、把1号从b挪动到a 30、把2号从b挪动到c 31、把1号从a挪动到c 32、把6号从a挪动到b 33、把1号从c挪动到b 34、把2号从c挪动到a 35、把1号从b挪动到a 36、把3号从c挪动到b 37、把1号从a挪动到c 38、把2号从a挪动到b 39、把1号从c挪动到b 40、把4号从c挪动到a 41、把1号从b挪动到a 42、把2号从b挪动到c 43、把1号从a挪动到c 44、把3号从b挪动到a 45、把1号从c挪动到b 46、把2号从c挪动到a 47、把1号从b挪动到a 48、把5号从c挪动到b 49、把1号从a挪动到c 50、把2号从a挪动到b 51、把1号从c挪动到b 52、把3号从a挪动到c 53、把1号从b挪动到a 54、把2号从b挪动到c 55、把1号从a挪动到c 56、把4号从a挪动到b 57、把1号从c挪动到b 58、把2号从c挪动到a 59、把1号从b挪动到a 60、把3号从c挪动到b 61、把1号从a挪动到c 62、把2号从a挪动到b

汉诺塔C递归算法详细解答

汉诺塔C递归算法详细解答 程序如下: void move(char x,char y){ printf("%c-->%c\n",x,y); } void hanoi(intn,charone,chartwo,char three){ /*将n个盘从one座借助two座,移到three座*/ if(n==1) move(one,three); else{ hanoi(n-1,one,three,two); move(one,three); hanoi(n-1,two,one,three); } } main(){ int n; printf("input the number of diskes:"); scanf("%d",&n); printf("The step to moving %3d diskes:\n",n); hanoi(n,'A','B','C'); } Hanoi塔问题, 算法分析如下,设A上有n个盘子。 如果n=1,则将圆盘从A直接移动到C。 如果n=2,则: (1)将A上的n-1(等于1)个圆盘移到B上; (2)再将A上的一个圆盘移到C上; (3)最后将B上的n-1(等于1)个圆盘移到C上。 如果n=3,则: A)将A上的n-1(等于2,令其为n`)个圆盘移到B(借助于C),步骤如下:(1)将A上的n`-1(等于1)个圆盘移到C上。 (2)将A上的一个圆盘移到B。 (3)将C上的n`-1(等于1)个圆盘移到B。 B)将A上的一个圆盘移到C。 C)将B上的n-1(等于2,令其为n`)个圆盘移到C(借助A),步骤如下:(1)将B上的n`-1(等于1)个圆盘移到A。 (2)将B上的一个盘子移到C。 (3)将A上的n`-1(等于1)个圆盘移到C。到此,完成了三个圆盘的移动过程。

相关文档
最新文档