关于断裂能量

关于断裂能量
关于断裂能量

wdsh1016助理工程师

精华0

积分60

帖子 5

水位51

技术分 3

你确定了

假如你确定了

根据

曲线三角形下的面积。#2

281819072助理工程师

精华0

积分85

帖子 2

水位85

技术分0

多谢

stiffness

要单元完全破坏时的应变或者位移值,实验吗?

另外,

数利用数

值积分算出

linear,exponential

sofening law,

#3

runyuwsh 助理工程师

精华0 要估算大体上

的。

law

traction-separation law

拟,国际上的专家们发表了不少关于确定

#4

tingtinghua

ge

助理工程师

精华 0

积分 91

帖子 19

水位 88

技术分 1

要是裂纹尖端的网格划分足够细的话,能释放率是等价的。的#5

sdsailing

助理工程师

精华 0

积分 95

帖子 19

水位 95

技术分 0

搞断裂的人渐渐多了,呵呵,讨论出真知。Energy release rate G 一定的情况下,mode #6

zzy41625

助理工程师

精华 0

积分 80

帖子 14 非常感谢stiffness 能确定的话,完整的也就能准确得到了。 基于线弹性断裂力学(release rate 由两部分组成,一部分是决定产生新的

#7

lqs196537

助理工程师

精华 0

积分 73

帖子 13

水位 73

技术分 0

有意思,回复你。yaooay Dugdale-Barenblatt energy dissipation mechanism #8

lixiaomei_1

106

助理工程师

精华 0

积分 47

帖子 2

水位 47

技术分 0 呵呵,难得今天有点时间,我就来抛砖引玉一下把。我们知道从到留在线弹性断裂力学后用和先提出了plastic zone,个概念还没引起学术界的轰动。直到LEFM 是等于间就推导出对断裂力学有重要意义的随后在

工程中发现了越来越多的

LEFM

无法解释的问题。

cohesive fracture mechnics

开始

引起更多的关注。在研究以混凝土为代表的quassi-brittle material 时,

cohesive

fracture mechnics 提供了非常好的结果,所以在70年代到90年代,

cohesive fracture

mechnics 被大量应用于混凝土研究中。目前比较常用的方法主要是

fictitious crack

approach 和effective-elastic crack approach 或是称为equivalent-elastic

crack

approach. 其中fictitious crack approach 只考虑了Dugdale-Barenblatt

energy

mechanism 而effective-elastic crack approach 只考虑了基於LEFM 的

Griffith-Irwin

energy dissipation mechanism ,但作了一些修正。简单来说,我读了一

下ABAQUS

cohesive element 的理论帮助,个人觉得ABAQUS 的cohesive element

采用的是广泛

应用于混凝土的类似fictitious crack 的方法。只考虑了Dugdale-Barenblatt

energy

mechanism 。这其中softening law 的影响是非常重要的。但ABAUQS 似

乎只提供了

linear 或者exponential 的softening law ,复杂的本构关系还需要另想办

法。至

於基於Griffith-Irwin energy dissipation mechanism 的J-integral 值可以

在LEFM 分

析中单独算。(ABAQUS 用的是SuoZhigang 和Hutchinson 在1990一篇论

文中提出的方

法) 目前cohesive fracture mechnics 已经被应用于各种材料。不过在使

用到纳米

或者更小数量级的研究中碰到了不少问题,可能需要结合位错和分子动力

学的一些

理论,我现在的研究中也碰到类似的一些问题,希望和大家一起讨论。

2007-9-21

02:25 #9

jfeng990

助理工程师

精华 0 yaooay 说的的确很有道理,其实在ABAQUS 文档中,也说cohesive elements 实际上是看作可以法向和切向移动的两个面,因此它所模拟的裂纹扩展也只是考虑了两个面的相互作用力,而没有考虑产生新裂纹面所消耗的能量。

#10

hansenzj 助理工程师

精华0

积分44 帖子8

水位44 技术分0

总结得不错!

这里有篇

等于

前提条件,即

Energy variation during crack growth in cohesive fracture model Wang CY, SUun CT.

ECCOMAS 2004

#11

cohesive element和cohesive material

在6.5使用cohesive element,定义cohesive材料属性的时候主要步骤:

1.定义一个材料的名字,比如cohesive,不要去定义任何属性(弹性,弹塑性等等)。

2.打开工具栏model--edit keywords,在inp中手动添加材料的各种属性。

PS: 定义section的时候选cohesive,element control选sweep,element type选cohesive,这些是

使用cohesive element的基本步骤。

zero thickness的cohesive section设定

abaqus所谓的zero-thickness,其实就是定义cohesive section的initial thickness=1.0。你可以在定义section的时候定义(specify),也可以用系统默认的thickness(也是1.0),这样有关cohesive element的计算当中,就有displacement(位移)=strain (应变)*thickness ( 1.0 )=strain的数值。

我们知道从1914年Ingless和1921年Griffith提出断裂力学开始,一直到60年

代都停留在线弹性断裂力学(LEFM)的层次。后来由於发现在裂纹尖端进入塑性

区后用LEFM仍然无法解决stress singularity的问题。1960年由Barenblatt和Dugdale率先提出了nonlinear/plastic fracture mechnics的概念,在裂纹前端引入

了plastic zone,这也就是我们现在用的cohesive fracture mechnics的前身。当时这个概念还没引起学术界的轰动。直到1966年Rice发现J-integral及随后发现在LEFM中J-integral是等于energy release rate的关系(赞大牛Rice一个,在读Ph.D 期间就推导出对断裂力学有重要意义的J-integral了。。。,实令我辈汗颜)。随后在工程中发现了越来越多的LEFM无法解释的问题。cohesive fracture mechnics 开始引起更多的关注。在研究以混凝土为代表的quassi-brittle material时,cohesive fracture mechnics提供了非常好的结果,所以在70年代到90年代,cohesive fracture mechnics被大量应用于混凝土研究中。目前比较常用的方法主要是fictitious crack approach和effective-elastic crack approach或是称为

equivalent-elastic crack approach. 其中fictitious crack approach只考虑了

Dugdale-Barenblatt energy mechanism而effective-elastic crack approach只考虑了

基於LEFM的Griffith-Irwin energy dissipation mechanism,但作了一些修正。简

单来说,我读了一下ABAQUS cohesive element的理论帮助,个人觉得ABAQUS 的cohesive element采用的是广泛应用于混凝土的类似fictitious crack的方法。只考虑了Dugdale-Barenblatt energy mechanism。这其中softening law 的影响是非常重要的。但ABAUQS似乎只提供了linear 或者exponential 的softening law,复杂的本构关系还需要另想办法。至於基於Griffith-Irwin energy dissipation mechanism的J-integral值可以在LEFM分析中单独算。(ABAQUS用的是SuoZhigang和Hutchinson在1990一篇论文中提出的方法) 目前cohesive fracture mechnics已经被应用于各种材料。不过在使用到纳米或者更小数量级的研究中碰到了不少问题,可能需要结合位错和分子动力学的一些理论,我现在的研究中也碰到类似的一些问题,希望和大家一起讨论。

做裂纹ABAQUS有几种常见方法。

最简单的是用debond命令, 定义*FRACTURE CRITERION, TYPE=XXX, 参数。。。** *DEBOND, SLAVE=XXX, MASTER=XXX, time

incre ment=XX0,1, ……......time,0要想看到开裂特别注意需要在指定的开裂路径上定义一个*Nset,然后在*INITIAL CONDITIONS, TYPE=CONTACT中定义master, slave, 及指定的Nset这种方法用途其实较为有限。另一种方法,在interaction模块,special, 定义crack seam, 网格最好细化,用collapse element模拟singularity. 这种方法可以计算J积分,应力强度因子等常用的断裂力学参数.裂尖及奇异性定义:在interaction-special,先定义crack, 定义好裂尖及方向, 然后在singularity选择:midside node parameter: 输入0.25, 然后选Collapsed element side, duplicate nodes,8节点单元对应(1/r)+(1/r^1/2)奇异性。这里midside node parameter选0.25对应裂尖collapse成1/4节点单元。如果midside nodes不移动到1/4处, 则对应(1/r)奇异性, 适合perfect plasticity的情况.网格划分:裂尖网格划分有一些技巧需要注意,partition后先处理最外面的正方形,先在对角线和边上布点,记住要点constraint, 然后选第三个选项do not allow the number of elements to change不准seed变化,密度可以自己调整. 最里面靠近圆的正方形可以只在对角线上布点. 也可以进一步分割内圆及在圆周上布点. 里面裂尖周围的内圆选free mesh, element type选cps6或者cpe6,外面四边形选sweep mesh, element type 选cps8或者cpe8, 记住把quad下那个缩减积分的勾去掉。

补充一下这种方法的几个常见问题,见不少朋友问过。主要是对断裂力学的理解问题,顺便一起回答一下。1.为什么我设置理想弹塑性(epp)分析的时候得到的xx,yy方向或者最大应力值Sxx, Syy会超过材料的屈服强度Sy呢, 这分析结果可能吗?这是因为在ABAQUS中对应等于材料的屈服强度的是von Mises等效应力Se=Sy,因此在平面应变的条件下,xx方向的应力Sxx=Sy*pi/SRQT(3)>Sy, 而Syy=Sy*(2+pi)/SRQT(3), 大概是3倍的屈服应力。所以得到大于材料的屈服强度的xx及yy方向应力是正常的。2.为什么设置collapse element的时候对弹性分析在中间就一个点而要把单元边上的中点移到1/4处,但弹塑性分析却要在中间设置一圈点并且保持单元边上的中点位置不变呢?这个其实不是随便定的,在有限元中分析裂纹时,对弹性分析需要模拟裂尖1/SQRT(r)的奇异性,这样在把单元边上的中点移到1/4处后计算出来的等参单元拉格郎日型函数对应的u field正好包含1/ SQRT(r)项,事实上这一方法在断裂力学的数值模拟发展史上是很巧妙的一个发现,至今仍然被广泛采用。至于理想弹塑性分析需要模拟裂尖1/r的奇异性, 这样大家都知道在把单元边上的点放在到1/2处后计算出来的正常的等参单元拉格郎日型函数对应的u field包含1/ r项, 可以模拟弹塑性分析需要的裂尖1/r的奇异性。所以在看似动手点几下就能实现的分析模式后面有很清楚漂亮的理论作支持。还有就是比较新的cohesive element单元。需要定义damage initiation 和evolution的准则,softening准则目前只有linear和exponential,但对一般材料也够用了。然后通过设置后处理display group可以看到裂纹扩展情况。裂纹扩展不是ABAQUS的强项,目前比较方便的只能用cohesive element,我做过几个模型效果还可以,但对应的参数需要一定的实验数据支持,否则做出来了也不知道对不对。或者使用python控制seam尺寸,然后移动partition和网格,比较麻烦,我也没尝试过。但有一些学者有类似的结果:FRANC/FAM - A software system for the prediction of crack propagation.In: Journal of Structural Engineering 26, No. 1, 1999, pp. 39-48.再不就是用一些专业的断裂力学软件如zencrack,感兴趣的可以自己看看:

[url]https://www.360docs.net/doc/dc6715245.html,.au/publications/2355/DSTO-TR-1158.pdf[/url]还有

自己编写cohesive Uel, 可以更加灵活的定义cohesive element的T-S law, 也有不少人做过,就不细说了。

功能关系能量守恒定律专题

功能关系能量守恒定律专题 一、功能关系 1.内容 (1)功是的量度,即做了多少功就有发生了转化. (2)做功的过程一定伴随着 ,而且必通过做功来实现. 2.功与对应能量的变化关系 说明 每一种形式的能量的变化均对应一定力的功. 二、能量守恒定律 1.内容:能量既不会消灭,也 .它只会从一种形式为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量 . 2.表达式:ΔE减= . 说明ΔE增为末状态的能量减去初状态的能量,而ΔE减为初状态的能量减去末状态的能量. 热点聚焦 热点一几种常见的功能关系 1.合外力所做的功等于物体动能的增量,表达式:W合=E k2-E k1 , 即动能定理. 2.重力做正功,重力势能减少;重力做负功,重力势能增加.由于“增量”是终态量减去始态量,所以重力的功等于重力势能增量的负值,表达式: WG=-ΔEp=Ep1-Ep2. 3.弹簧的弹力做的功等于弹性势能增量 的负值,表达式:W F=-ΔEp=Ep1-Ep2.弹力做多少正功,弹性势能减少多少;弹力做多少负功,弹性势能增加多少. 4.除系统内的重力和弹簧的弹力外,其他力做的总功等于系统机械能的增量,表达式: W其他=ΔE. (1)除重力或弹簧的弹力以外的其他力做多少正功,物体的机械能就增加多少. (2)除重力或弹簧的弹力以外的其他力做多少负功,物体的机械能就减少多少. (3)除重力或弹簧的弹力以外的其他力不做功, 物体的机械能守恒.

特别提示 1.在应用功能关系解决具体问题的过程中,若只涉及动能的变化用“1”,如果只涉及重力势能的变化用“2”,如果只涉及机械能变化用“4”,只涉及弹性势能的变化用“3”. 2.在应用功能关系时,应首先弄清研究对象,明确力对“谁”做功,就要对应“谁”的位移,从而引起“谁”的能量变化.在应用能量的转化和守恒时,一定要明确存在哪些能量形式,哪种是增加的,哪种是减少的,然后再列式求解. 热点二对能量守恒定律的理解和应用1.对定律的理解 (1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量一定相等. (2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等. 这也是我们列能量守恒定律方程式的两条基本思路. 2.应用定律解题的步骤 (1)分清有多少形式的能[如动能、势能(包括重力势能、弹性势能、电势能)、内能等]在变化. (2)明确哪种形式的能量增加,哪种形式的能量减少,并且列出减少的能量ΔE减和增加的能量ΔE增的表达式. (3)列出能量守恒关系式:ΔE减=ΔE增. 特别提示 1.应用能量守恒定律解决有关问题,关键是准确分析有多少种形式的能量在变化,求出减少的总能量ΔE减和增加的总能量ΔE增,然后再依据能量守恒定律列式求解. 2.高考考查该类问题,常综合平抛运动、圆周运动以及电磁学知识考查判断、推理及综合分析能力. 热点三摩擦力做功的特点

第二章-材料的断裂强度

第二章 2.1固体的理论结合强度 2.2 材料的断裂强度 2.3 裂纹的起源与快速扩展 2.4 材料的断裂韧性 2.5显微结构对脆性断裂的影响 2.6无机材料强度的统计性质 2.7材料的硬度 第二章 材料的脆性断裂与强度 2.1固体的理论结合强度 无机材料的抗压强度约为抗拉强度的10倍。所以一般集中在抗拉强度上进行研究,也就是研究其最薄弱环节。 要推导材料的理论强度,应从原子间的结合力入手,只有克服了原子间的结合力,材料才能断裂。如果知道原子间结合力的细节,即知道应力-应变曲线的精确形式,就可算出理论结合强度。这在原则上是可行的,就是说固体的强度都能够根据化学组成、晶体结构与强度之间的关系来计算。但不同的材料有不同的组成、不同的结构及不同的键合方式,因此这种理论计算是十分复杂的,而且对各种材料都不一样。 为了能简单、粗略的估计各种情况都适应的理论强度,Orowan 提出了以正弦曲线来近似原子间约束力随原子间距离X 的变化曲线(见图2.1),得出 λ πσσX th 2sin ?= 2-1 式中,σ th 为理论结合强度;λ为正弦曲线的波长。 图2.1 原子间约束力与距离的关系 将材料拉断时,产生两个新表面,因此单位面积的原子平面分开所做的功应等于产生两个单位面积的新表面所需的表面能,材料才能断裂。设分开单位面积原子平面所做的功为w,则

π λπλλ πσλ πσσλ λ th th th x dx x w ===-?]2cos [2 20 22sin 2-2 设材料形成新表面的表面能为γ(这里是断裂表面能,不是自由表面能),则w=2γ,即 γπλο2=th ,λ πγ σ2= th 2-3 接近平衡位置o 的区域,曲线可以用直线代替,服从虎克定律: E a x E ==εσ 2-4 a 为原子间距。X 很小时 sin λ πλ πx x 22≈ 2-5 将(2.3),(2.4)和(2.5)式代入(2.1)式,得 a E th γ σ = 2-6 式中a 为晶格常数,随材料而异。可见理论结合强度只与弹性模量、表面能和晶格距离等材料常数有关,属于材料的本证性能。(2.6)式虽然是粗略的估计,但对所有固体均能应用而不涉及原子间的具体结合力。通常γ约为aE/100,这样,(2.6)式可写成 10 E th = σ 2-7 更精确的计算说明(2.6)式的估计稍偏高。 一般材料性能的典型数值为:E=300GPa,/1J =γm 2 ,a=3?10-10 m,代入(2.6)式算出 σ th =30GPa ≈10 E 2-8 要得到高强度的固体,就要求E 和γ大,a 小。实际材料中只有一些极细的纤维和晶须其强度接近理论强度值.例如熔融石英纤维的强度可达24.1GPa,约为E/3(E,72Gpa),碳化硅晶须强度 6.47GPa,约为E/70(E,470Gpa),氧化铝晶须强度为15.2GPa,约为E/25(E,380Gpa)。尺寸较大的材料实际强度比理论强度低的多,,约为E/100-E/1000,而且实际材料的强度总在一定范围内波动,即使是用同样的材料在相同的条件下制成的试件,强度值也有波动。一般试件尺寸大,强度偏低。为了解释这种现象,人们提出了各种假说,甚至怀疑理论强度的推导过程等,但都没有抓住断裂的本质。直到1920年,Griffith 为了解释玻璃的理论强度与实际强度的差异,提出了微裂纹理论,才解决了上述问题。后来经过不断的发展和补充,逐渐成为脆性断裂的主要理论基础。 §2.2 材料的断裂强度

岩爆破坏过程能量释放的数值模拟

第29卷第3期 岩 土 力 学 V ol.29 No.3 2008年3月 Rock and Soil Mechanics Mar. 2008 收稿日期:2007-09-21 作者简介:王耀辉,男,1971年生,博士,主要从事岩石力学与地基基础方面的研究。E-mail: wangyaohui@https://www.360docs.net/doc/dc6715245.html, 文章编号:1000-7598-(2008) 03-0790-05 岩爆破坏过程能量释放的数值模拟 王耀辉1,陈莉雯2,沈 峰3 (1.中国科学院武汉岩土力学研究所,武汉 430071;2.武汉市洪山建筑质量监督管理站,武汉 430074;3.武英高速公路项目建设部,武汉 430071) 摘 要:岩爆是地下岩石开挖中的一种工程灾害现象,是岩体结构发生破坏时,由于内部储存的弹性能释放并转换为动能而造成动力形式的破坏。岩爆破坏过程中的能量释放与岩体在应力峰值前后的应力-应变特性紧密相关。另外,施工中开挖速度引起的加载速率的变化也会对岩爆的产生有明显影响。以岩体全过程应力-应变曲线试验为基础分析岩爆破坏过程。分析中采用的模型考虑了岩石峰值后应力-应变特性及加载速率的影响。运用数值方法对岩石洞室的开挖过程进行了模拟,在模拟中对岩体破坏的发生及弹性能释放过程进行了分析。数值分析结果显示,岩体洞室开挖过程中岩石破坏由岩体表面向岩体内部发展,岩石的弹性能释放率也随着破坏的发展而不断增加。分析结果还显示,岩体破坏时的弹性能释放速率会随着开挖速率的提高而明显增加。 关 键 词:岩爆;数值模拟;应力-应变特性 中图分类号:O 382 文献标识码:A Numerical modeling of energy release in rockburst WANG Yao-hui 1, CHEN Li-wen 2, SHEN Feng 3 (1. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. Hongshan Station for Supervision and Test of Building Engineering, Wuhan 430074, China; 3. Construction Department of Wuying Expressway, Wuhan 430071, China) Abstract: Rockburst is one of the disasters can occurr in deep mining and rock excavation. It is a kind of dynamic fracture excited by the released elastic energy previously stored in the rock mass. The elastic energy releasing is correlated to the post peak behavior of the excavated rock mass. On the other hand, the rockburst phenomenon is also correlated with the excavation rate. A numerical modeling for rockburst is presented. The modeling is based on the complete stress-strain behavior of rocks obtained in laboratory. The post peak stress-strain behavior is specially considered in the analysis. Furthermore, the influences of loading rates are also included. The excavation process of a tunnel in rock mass is simulated in the study. The fracture development and the elastic energy releasing rates under different loading rates are computed in the simulation. The computed results indicate that the fracture is likely to initially occur near the rock surface and then propagate towards the internal zone of the rock mass. It is also demonstrated that rockburst is more likely to be occurred under a higher excavation rate than that under a lower excavation rate. Key words: rock burst; numerical modeling; stress-strain behavior 1 引 言 岩爆是地下岩体工程施工中的一种灾害现象,它是在岩体开挖过程中,由于岩体内部储存的弹性能突然释放并大量转化为动能所形成的一种动力破坏现象。由于岩爆发生突然而且强烈,对施工人员和机械设备的安全构成了严重威胁[1-3] 。对岩爆的 研究不仅在理论上,而且在工程实践中都具有重大 意义。 为解释岩爆的机制和预测其发生,学者们提出 了许多理论及预测方法,包括强度理论、刚度理论、能量理论及失稳理论等等。强度理论是通过建立围岩内部应力与围岩强度间的特定关系来判断岩爆是否发生及发生的强烈程度。强度理论包括理论公式例如格里菲斯理论、剪切理论,以及根据工程实践总结出来的经验公式[4, 5]。强度理论具有直观、便于应用的特点,但由于它仅考虑岩石强度因素而不考虑岩石的变形特性,因而显得有些片面。 刚度理论是根据普通试验机压缩岩石产生动力破坏的现象提出的。A. M. Linkov [6]等提出,岩石发

实验一脆性断裂和韧性断裂断口失效分析

实验一脆性断裂和韧性断裂断口失效分析 一、实验目的 了解模具脆性断裂和韧性断裂断口失效分析步骤以及模具脆性断裂和韧性断裂断口的宏观和微观特征。 二、实验内容及步骤 1、模具脆性断裂和韧性断裂宏观断口的观察 (1)操作前的准备工作 a.选定失效模具的待分析部位; b.选定并切割试样、清洗并擦拭干净。 (2)操作步骤 a.用放大镜或低倍显微镜观察脆性断裂和韧性断裂断口; b.记录上述所观察到的脆性断裂和韧性断裂宏观断口形貌。 2、模具脆性断裂和韧性断裂微观断口的观察 (1)操作前的准备工作 a.选定失效模具的待分析部位; b.选定并切割试样、将试样严格清洗干净; (2)操作步骤 a.将试样放入扫描电子显微镜工作室并将扫描电子显微镜调整到 工作状态; b.用扫描电子显微镜观察脆性断裂和韧性断裂断口 c.记录上述所观察到的脆性断裂和韧性断裂微观断口形貌。 三、实验设备器材 1、放大镜、低倍显微镜、扫描电子显微镜、试样切割机、无水酒精、丙酮 2、脆断失效模具和韧性断裂失效模具各一副。 四、实验注意事项 1、实验前,试样表面要严格请洗; 2、使用显微镜时要细心操作,以免损坏机件。 3、遇故障及时报告指导教师。

实验二模具表面磨损失效分析 一、实验目的 了解模具磨损失效分析步骤以及模具磨损表面的宏观和微观特征。 二、实验内容及步骤 1、模具磨损表面宏观形貌的观察 i.操作前的准备工作 1.选定失效模具的待分析部位; 2.清洗并擦拭干净。 ii.操作步骤 1.用放大镜或低倍显微镜观察模具磨损表面形貌; 2.记录上述所观察到的磨损表面形貌。 2、模具磨损表面微观形貌的观察 i.操作前的准备工作 1.选定失效模具的待分析部位; 2.将试样严格清洗干净; ii.操作步骤 1.将试样放入扫描电子显微镜工作室并将扫描电子显微镜调整到 工作状态; 2.用扫描电子显微镜观察模具(或40Cr)磨损表面微观形貌; 3.记录上述所观察到的模具(或40Cr)磨损表面微观形貌。 3、磨损失效机理分析 ⅰ根据模具表面磨损失效的宏观断口分析结果,初步判定模具磨损失效的类型和失效机理。 ⅱ根据模具表面磨损失效的微观断口分析结果,准确判定模具磨损失效的类型和失效机理。 三、实验设备器材 1、放大镜、低倍显微镜、扫描电子显微镜、高纯氩气、无水酒精、丙酮 2、磨损失效模具一副或40Cr经表面强化试样。 四、实验注意事项 1、实验前,试样表面要严格请洗; 2、使用显微镜时要细心操作,以免损坏机件。 3、遇故障及时报告指导教师。

功能关系能量守恒定律

一.几种常见的功能关系及其表达式 二、两种摩擦力做功特点的比较 [深度思考] 一对相互作用的静摩擦力做功能改变系统的机械能吗?

答案 不能,因做功代数和为零. 三、能量守恒定律 1.内容 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式 ΔE 减=ΔE 增. 3.基本思路 (1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等; (2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等. 1.上端固定的一根细线下面悬挂一摆球,摆球在空气中摆动,摆动的幅度越来越小,对此现象下列说法是否正确. (1)摆球机械能守恒.( ) (2)总能量守恒,摆球的机械能正在减少,减少的机械能转化为内能.( ) (3)能量正在消失.( ) (4)只有动能和重力势能的相互转化.( ) 2.如图所示,在竖直平面内有一半径为R 的圆弧形轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 至B 的运动过程中( ) A .重力做功2mgR B .机械能减少mgR C .合外力做功mgR D .克服摩擦力做功1 2 mgR 3.如图所示,质量相等的物体A 、B 通过一轻质弹簧相连,开始时B 放在地面上,A 、B 均处于静止状态.现通过细绳将A 向上缓慢拉起,第一阶段拉力做功为W 1时,弹簧变为原长;第二阶段拉力再做功W 2时,B 刚要离开地面.弹簧一直在弹性限度内,则( ) A .两个阶段拉力做的功相等

能量释放率&断裂能(摘自simwe论坛)

能量释放率的计算是基于最小势能原理推导来的,而势能=应变能-外载荷做功- 摩擦力做功(可能转化为热能)-其他能(如声能等)。一般情况下,如果没有转化为其他能量的话,那么此时的裂纹扩展的断裂力学参量就是应变能释放率;如果不是,则称为能量释放率。 断裂能是材料固有的特性,和断裂韧性是一致的。能量释放率是实际的裂纹扩展参数,是一个动态演化的变量,它表明了裂纹推进一定长度需要的能量。 [断裂与失效] abaqus断裂韧性扫盲贴[复制链接] 最近论坛上很多人都开始搞xfem,里面有几个参数比较令人痛苦,比如断裂韧性KIC(fracture thoughness)和裂纹表面能G(fracture energy)。 首先要知道的是,这两个参数都不是通过abaqus仿真能得到的,而是材料本身的特性,跟密度一样,是先天决定的。所以你要想得到这两个数值,只有两个途径:查文献,或者做实验。 第二,解释一下这两个属性的定义。 早在1920年,格里菲斯就从能量平衡的观点研究了玻璃的脆断。他证明了,对于弹性体中预先存在的一条裂纹,当总位能的减小等于或超过两个新的裂纹表面的表面能时,裂纹就会发生扩展。之后他又研究了裂纹尖端附近的应力场,发现当裂纹前端的应力场强度达到材料的某一临界值时,裂纹就将发生扩展。前者的临界能量就是裂纹表面能,后者的临界应力场就是断裂韧度。 众所周知,裂纹大体分为三类,I,II,III,文献3中有详述。这里只对第一类裂纹举例。 如上图所示的裂纹中,应力强度因子的表达式为

由此可知,应力强度因子与裂纹尖端附近区域内点的坐标无关,它与应力场有关,与裂纹的形状和裂纹的尺寸及方向有关,与载荷的大小和作用方向有关,与材料的某些常数有关,所以应力强度因子可以有效地反映裂纹尖端应力场强度。用abaqus可以算出裂纹尖端的应力强度因子如下图所示,但是临界应力强度因子既断裂韧性却是一个固定的常数,是材料本身的属性,需要做试验确定。 裂纹表面能与应力强度因子的关系为

第七章 能量的释放与呼吸

第七章能量的释放与呼吸 一、设计思路: 能量是一个抽象的概念,虽然存在于我们的每一个活动之中,但是看不到,摸不着,而且初一的学生缺少物理和化学方面的知识,理解起来有一定的困难,因此开头设置了一个童话故事《卖火柴的小女孩》的情境,吸引学生的注意力,引导学生发现生物体的能量都是从有机物中释放出来的,另外通过卡通图片,让学生对能量建立一个感性的认识。接着通过一个学生全体实验体验能量释放与呼吸的关系引导学生得出能量的释放与呼吸密切相关的结论。验证呼吸过程中气体的变化实验可以帮助学生进一步发现能量的释放需要氧,这一部分内容是本节的重点。 在设计上可以通过学生演示和教师动画演示相结合,帮助学生理解呼吸过程中气体的变化,从而对呼吸和呼吸作用进行区别,使学生深刻地理解什么是呼吸作用。这是本课的难点。 能量以什么形式释放出来,可以举一些生活中的实例,结合探究实验的设计,通过观察不通状态种子的温度发生的变化了解热量的释放。这个探究实验可能效果不佳,可通过动画演示来弥补。 能量的利用可以更多的跟生活实际联系起来,重点解决DIY中的现象解释,讲解过程中学生自然会体会到能量的利用。 二、学习目标: 1.知识目标: (1)从生物体进行生命活动需要能量这个角度了解能量的释放与呼

吸的关系 (2)描述什么叫呼吸作用,和呼吸有什么区别。了解呼吸释放的能量在生命活动中被利用的问题。 2.能力目标: (1)学会测定呼吸频率的简单方法,初步学会将测定结果进行分析,尝试得出能量释放与呼吸有关的结论。 (2)初步学会验证植物呼吸消耗氧气,释放二氧化碳的方法。(3)初步尝试探究萌发的种子能释放能量。初步学会运用所学的生物学知识能够对呼吸作用的原理在人类生产、生活中的应用作出解释。 3.情感态度与价值观目标 运用一个悲伤的童话故事“卖火柴的小女孩”,教导学生应当伸出援助之手,关心、关爱他人。从学生在日常生活中遇到的一些生理现象和生活实际入手,用正确的科学研究方法,逐渐深入地发现能量的释放与呼吸之间的关系。懂得更进一步地珍爱绿色植物,并能运用所学的能量和呼吸相关的知识,解决生活、生产实践中新鲜果品、蔬菜贮存等实际问题。 三、学习重点和难点 学习的重点:引导学生从体验——分析——实验,揭示能量的释放需要氧。 学习的难点:呼吸作用和呼吸的不同,以及呼吸作用的实质。指导学生尝试“探究萌发的种子释放能量”实验方案的设计。

燃料燃烧释放的热量

§2.2.2.3燃料燃烧释放的热量 【教学理念】 抓住新课程的精髓,本着提高学生的科学素养、促进学生全面发展的宗旨,结合现代教学理念,始终遵循“教为主导”和“学为主体”相结合的原则与“从生活走进化学,从化学走向社会”的基本理念,用多样化的教学方式激发学生的学习兴趣,提高学生的积极性,让学生自主参与探究活动,充分体现学生的主体地位,最终达到学生勤于学习,乐于学习的教学目标。 【教材分析】 本节课内容选自苏教版化学必修二专题二第二单元第三课时。从知识内容来看,本节课通过键能的计算,研究燃料燃烧释放的热量的学习,旨在向学生介绍热值在生产生活中的广泛应用及其开发价值;从知识结构来看,本节课之前学生已经学习了化学反应中的热量变化,这为学习本节课燃料燃烧释放的热量的学习打下良好基础。 【学情分析】 本节课的教学对象为普通高中高一年级的学生。本节课的知识内容是生活中较为常见的,无论是农村还是城镇燃料燃烧随处可见,因此学生学习本节课内容较为熟悉。但他们并未系统地学习热量计算的知识。处于此年龄段学生思维敏捷、活跃,缺乏科学的学习方法,需要老师的指导。 【教学目标】 《学科教学指导意见》对本课教学内容的基本要求是: 了解提高燃料的燃烧效率的方法,合理利用化石燃料,减少燃料燃烧时对环境的污染,认识开发高能清洁燃料的重要性; <知识与技能> 了解提高燃料的燃烧效率的方法,认识到合理利用化石燃料,开发高效、清洁能源的重要性。 <过程与方法> 利用图书、网络等工具认识能源是发展国民经济和提高人民生活水平所必需的重要物质基础;从学生熟悉的燃料的燃烧释放能量入手,进行化学反应热效应本质的研究——旧的化学键的断裂和新的化学键的生成是化学反应中能量变化的主要原因,从而学习发现问题和分析问题的方法。

第二章 材料的脆性断裂与强度

第二章材料的脆性断裂与强度 §2.1 脆性断裂现象 一、弹、粘、塑性形变 在第一章中已阐述的一些基本概念。 1.弹性形变 正应力作用下产生弹性形变,剪彩应力作用下产生弹性畸变。随着外力的移去,这两种形变都会完全恢复。 2.塑性形变 是由于晶粒内部的位错滑移产生。晶体部分将选择最易滑移的系统(当然,对陶瓷材料来说,这些系统为数不多),出现晶粒内部的位错滑移,宏观上表现为材料的塑性形变。3.粘性形变 无机材料中的晶界非晶相,以及玻璃、有机高分子材料则会产生另一种变形,称为粘性流动。 塑性形变和粘性形变是不可恢复的永久形变。 4.蠕变: 当材料长期受载,尤其在高温环境中受载,塑性形变及粘性形变将随时间而具有不同的速率,这就是材料的蠕变。蠕变的后当剪应力降低(或温度降低)时,此塑性形变及粘性流动减缓甚至终止。 蠕变的最终结果:①蠕变终止;②蠕变断裂。 二.脆性断裂行为 断裂是材料的主要破坏形式。韧性是材料抵抗断裂的能力。材料的断裂可以根据其断裂前与断裂过程中材料的宏观塑性变形的程度,把断裂分为脆性断裂与韧性断裂。 1.脆性断裂 脆性断裂是材料断裂前基本上不产生明显的宏观塑性变形,没有明显预兆,往往表现为突然发生的快速断裂过程,因而具有很大的危险性。因此,防止脆断一直是人们研究的重点。2.韧性断裂 韧性断裂是材料断裂前及断裂过程中产生明显宏观塑性变形的断裂过程。韧性断裂时一般裂纹扩展过程较慢,而且要消耗大量塑性变形能。 一些塑性较好的金属材料及高分子材料在室温下的静拉伸断裂具有典型的韧性断裂特征。 3.脆性断裂的原因 在外力作用下,任意一个结构单元上主应力面的拉应力足够大时,尤其在那些高度应力集中的特征点(例如内部和表面的缺陷和裂纹)附近的单元上,所受到的局部拉应力为平均应力的数倍时,此过分集中的拉应力如果超过材料的临界拉应力值时,将会产生裂纹或缺陷的扩展,导致脆性断裂。虽然与此同时,由于外力引起的平均剪应力尚小于临界值,不足以产生明显的塑性变形或粘性流动。因此,断裂源往往出现在材料中应力集中度很高的地方,并选择这种地方的某一个缺陷(或裂纹、伤痕)而开裂。 各种材料的断裂都是其内部裂纹扩展的结果。因而,每种材料抵抗裂纹扩展能力的高低,表示了它们韧性的好坏。韧性好的材料,裂纹扩展困难,不易断裂。脆性材料中裂纹扩展所需能量很小,容易断裂;韧性又分断裂韧性和冲击韧性两大类。断裂韧性是表征材料抵抗其内部裂纹扩展能力的性能指标;冲击韧性则是对材料在高速冲击负荷下韧性的度量。二者间存在着某种内在联系。 三.突发性断裂与裂纹的缓慢生长 裂纹的存在及其扩展行为,决定了材料抵抗断裂的能力。 1.突发性断裂 断裂时,材料的实际平均应力尚低于材料的结合强度(或称理论结合强度)。在临界状态下,断裂源处的裂纹尖端所受的横向拉应力正好等于结合强度时,裂纹产生突发性扩展。一旦扩展,引起周围应力的再分配,导致裂纹的加速扩展,出现突发性断裂,这种断裂往往并无先兆。 2.裂纹的生长

化学反应中的能量关系

2009-2010学年第一学期无机化学期末考试试卷 班级:_____________学号:_____________姓名:_____________得分:_____________ (卷面共有38题,总分100分,各大题标有题量和总分,每小题标号后有小分) 一、是非题(25小题,共25分) [1分](1)氨的沸点是-33℃,可将100kPa、-20℃时的氨气看作理想气体。()[1分](2)通常,高温低压下的真实气体可被看作理想气体。()[1分](3)在相同温度和压力下,气体的物质的量与它的体积成反比。()[1分](4)在理想气体状态方程式中,R为8.314J·mol-1·K-1。若体积的单位为m3,则压力的单位是kPa。() [1分](5)在一定温度和压力下,混合气体中某组分的摩尔分数与体积分数不相等。() [1分](6)含有N 2和H 2 的混合气体中,N 2 的分体积V(N2)=n(N2)RT/p(总)。() [1分](7)气体膨胀或被压缩所做的体积功是状态函数。() [1分](8)系统的焓变等于恒压反应热。() [1分](9)由于CaCO 3 的分解是吸热的,故它的生成焓为负值。() [1分](10)298.15K时由于Na+(g)+Cl-(g)→NaCl(s)的△ r Θ m H=-770.8kJ·mol-1,则 NaCl(s)的标准摩尔生成焓是-770.8kJ·mol-1。()[1分](11)298K时石墨的标准摩尔生成焓为零。() [1分](12)已知在某温度和标准态下,反应2KClO 3(s)→2KCl(s)+3O 2 (g)进行时,有 2.0molKClO 3分解,放出89.5kJ的热量,则在此温度下该反应的△ r Θ m H=- 89.5kJ·mol-1。() [1分](13)物质的量增加的反应不一定是熵增加的反应。 () [1分](14)△ r Θ m S为负值的反应均不能自发进行。() [1分](15)298K时,C(石墨)+O 2(g)→CO 2 (g)的△ r Θ m S<Θ m S (CO2,g)。()

功能关系能量守恒定律

第4课时功能关系能量守恒定律 学习目标: 1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系. 2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题. 【课前知识梳理】 一、几种常见的功能关系 功能量的变化 合外力做正功动能增加 重力做正功重力势能减少 弹簧弹力做正功弹性势能减少 电场力做正功电势能减少 其他力(除重力、弹力外)做正功机械能增加 二、能量守恒定律 1.容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式:ΔE减=ΔE增. 【预习自测】 1、用恒力F向上拉一物体,使其由地面处开始加速上升到某一高度.若该过程空气阻力不能忽略,则下列说法中正确的是 A.力F做的功和阻力做的功之和等于物体动能的增量 B.重力所做的功等于物体重力势能的增量 C.力F做的功和阻力做的功之和等于物体机械能的增量 D.力F、重力、阻力三者的合力所做的功等于物体机械能的增量 2、如图1所示,美国空军X-37B无人航天飞机于2010年4月首飞,在X-37B由较低轨道飞到较高轨道的过程中 A.X-37B中燃料的化学能转化为X-37B的机械能 B.X-37B的机械能要减少 C.自然界中的总能量要变大 D.如果X-37B在较高轨道绕地球做圆周运动,则在此轨道上其机械能不变 3、如图2所示,ABCD是一个盆式容器,盆侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B、

C在水平线上,其距离d=0.5 m.盆边缘的高度为h=0.3 m.在A处放一个质量为m的小物块并让其由静止下滑.已知盆侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.1.小物块在盆来回滑动,最后停下来,则停下的位置到B的距离为 A.0.5 m B.0.25 m C.0.1 m D.0 【课堂合作探究】 考点一功能关系的应用 【例1】如右上图所示,在升降机固定一光滑的斜面体,一轻弹簧的一端连在位于斜面体上方的固定木板B上,另一端与质量为m的物块A相连,弹簧与斜面平行.整个系统由静止开始加速上升高度h的过程中 A.物块A的重力势能增加量一定等于mgh B.物块A的动能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和 C.物块A的机械能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和 D.物块A和弹簧组成的系统的机械能增加量等于斜面对物块的支持力和B对弹簧的拉力做功的代数和 【突破训练1】物块由静止从粗糙斜面上的某点加速下滑到另一点,此过程中重力对物块做的功等于A.物块动能的增加量 B.物块重力势能的减少量 C.物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和 D.物块动能的增加量与物块克服摩擦力做的功之和 考点二摩擦力做功的特点及应用 1.静摩擦力做功的特点 (1)静摩擦力可以做正功,也可以做负功,还可以不做功. (2)相互作用的一对静摩擦力做功的代数和总等于零. (3)静摩擦力做功时,只有机械能的相互转移,不会转化为能. 2.滑动摩擦力做功的特点 (1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.

材料力学性能课后习题答案

材料力学性能课后答案(整理版) 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有哪些? 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。 2、试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 3、剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同? 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 4、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。5、论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论 的局限性。

功能关系能量守恒定律

第 4 课时功能关系能量守恒定律 学习目标: 1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系. 2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题.【课前知识梳理】 一、几种常见的功能关系 功能量的变化 合外力做正功动能增加 重力做正功重力势能减少 弹簧弹力做正功弹性势能减少 电场力做正功电势能减少 其他力(除重力、弹力外)做正功机械能增加 二、能量守恒定律 1.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式:ΔE减=ΔE增. 【预习自测】 1、用恒力F向上拉一物体,使其由地面处开始加速上升到某一高度.若该过程空气阻力不能忽略,则下列说法中正确的是 A.力F做的功和阻力做的功之和等于物体动能的增量B.重力所做的功等于物体重力势能的增量C.力F做的功和阻力做的功之和等于物体机械能的增量D.力F、重力、阻力三者的合力所做的功等于物体机械能的增量2、如图 1 所示,美国空军X-37B无人航天飞机于2010 年 4 月首飞,在X-37B 由较低轨道飞到较高轨道的过程中 A.X-37B 中燃料的化学能转化为X-37B 的机械能 B.X-37B 的机械能要减少C.自然界中的总能量要变大 D.如果X-37B 在较高轨道绕地球做圆周运动,则在此轨道上其机械能 不变 3、如图2 所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,

B 、 C 在水平线上,其距离 d =0.5 m .盆边缘的高度为 h =0.3 m .在 A 处放一个质量为 m 的小物块并 让其由静止下滑.已知盆内侧壁是光滑的,而盆底 BC 面与小物块间的动摩擦因数为 μ=0.1.小物块在 盆内来回滑动,最后停下来,则停下的位置到 B 的距离为 课堂合作探究】 考点一 功能关系的应用 【例 1】 如右上图所示,在升降机内固定一光滑的斜面体,一轻弹簧的一端连在位于斜面体上方的 固定木板B 上,另一端与质量为m 的物块A 相连,弹簧与斜面平行.整个系统由静止开始加速上升 高度 h 的过程中 A .物块A 的重力势能增加量一定等于 mgh B .物块A 的动能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和 C .物块A 的机械能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和 D .物块 A 和弹簧组成的系统的机械能增加量等于斜面对物块的支持力和 B 对弹簧的拉力做功的代数 和 【突破训练 1】物块由静止从粗糙斜面上的某点加速下滑到另一点,此过程中重力对物块做的功等于 A .物块动能的增加量 B .物块重力势能的减少量 C .物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和 D .物块动能的增加量与物块克服摩擦力做的功之和 考点二 摩擦力做功的特点及应用 A .0.5 m B .0.25 m C . 0.1 m

案例24 能量意外释放理论

案例24 能量意外释放理论 某厂进行职工安全教育,由主管安全生产的厂长甲为大家系统讲解了我国安全管理方针以及安全生产管理的原理与原则、事故致因理论、事故预防原理与基本原则等。甲讲,所谓系统是由相互作用和相互依赖的若干部分组成的有机整体。甲进一步说,所谓能量意外释放理论,是“人受伤害的原因只能是某种能量的转移”,能量逆流作用于人体造成伤害可分为两类:第一类伤害是由于施加了超过局部或全身性损伤阈值的能量引起的;第二类伤害是由影响了局部或全身性能量交换引起的。在一定条件下,某种形式的能量能否产生造成人员伤亡事故的伤害及伤害的严重程度取决于能量大小、能量集中程度、接触能量的人体部位、接触能量时间长短和频率以及能量的种类。根据上述情况,回答下列问题。 单项选择题 下列说法正确的有(B)。 A.我国安全生产管理方针是:“安全第一,预防为主,以人为本。” B.我国的安全生产管理,坚持“安全第一,预防为主”的方针。所谓“安全第一”,就是在生产经营活动中,要始终把安全放在首要位置,优先考虑从业人员和其他人员的人身安全 C.所谓“预防为主”,就是预防事故的扩大,尽量减少事故

所造成的损失 D.所谓“以人为本”,就是按照个人的意志开展生产活动,保证生产过程的安全 多项选择题 l.按照甲对系统的解释,下列说法正确的有(A、C)。 A.整个厂是一个系统 B.厂中的一个班组不能成为一个系统 C.整个厂的生产工艺构成一个系统 D.整个厂生产工艺的一部分不能构成一个系统 2.按照能量意外释放理论,下列说法正确的有(B、C)。 A.中毒属于第一类伤害 B.中毒属于第二类伤害 C.在其他条件不变时,能量作用于人体的时间越长,对人体的伤害越严重 D.在其他条件不变时,能量作用于人体的时间越短,对人体的伤害越严重 【相关知识】: 1.《安全生产法》将“安全第一,预防为主”规定为我国安全生产工作的基本方针。所谓“安全第一”,就是在生产经营活动中,在处理保证安全与实现生产经营活动的其他各项目标的关系上,要始终把安全特别是从业人员和其他人员的人身安全放在首要位置,实行“安全优先”的原则。所谓“预防为主”,就是对

2020版高考物理一轮复习第五章能量和动量第4节功能关系能量守恒定律

第4节功能关系能量守恒定律 (1)力对物体做了多少功,物体就具有多少能。(×) (2)能量在转移或转化过程中,其总量会不断减少。(×) (3)在物体的机械能减少的过程中,动能有可能是增大的。(√) (4)既然能量在转移或转化过程中是守恒的,故没有必要节约能源。(×) (5)节约可利用能源的目的是为了减少污染排放。(×) (6)滑动摩擦力做功时,一定会引起机械能的转化。(√) (7)一个物体的能量增加,必定有别的物体能量减少。(√) 突破点(一) 功能关系的理解和应用 1.对功能关系的理解 (1)做功的过程就是能量转化的过程。不同形式的能量发生相互转化是通过做功来实现的。 (2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一 一对应关系,二是做功的多少与能量转化的多少在数值上相等。 2.几种常见的功能关系

3.两个特殊的功能关系 (1)滑动摩擦力与两物体间相对位移的乘积等于产生的内能,即F f x 相对=ΔQ 。 (2)感应电流克服安培力做的功等于产生的电能,即W 克安=ΔE 电。 [多角练通] 1.(2016·上海高考)在今年上海的某活动中引入了全国首个户外风洞飞行体验装置,体验者在风力作 用下漂浮在半空。若减小风力,体验者在加速下落过程中( ) A .失重且机械能增加 B .失重且机械能减少 C .超重且机械能增加 D .超重且机械能减少 解析:选B 据题意,体验者漂浮时受到的重力和风力平衡;在加速下降过程中,风力小于重力,即重力对体验者做正功,风力做负功,体验者的机械能减小;加速下降过程中,加速度方向向下,体验者处于 失重状态,故选项B 正确。 2.(2017·唐山模拟)轻质弹簧右端固定在墙上,左端与一质量m =0.5 kg 的物块相连,如图甲所示。弹簧处于原长状态,物块静止且与水平面间的动摩擦因数μ=0.2。以物块所在处为原点,水平向右为正方向建立x 轴。现对物块施加水平向右的外力F ,F 随x 轴坐标变化的关系如图乙所示。物块运动至x =0.4 m 处时速度为零。则此时弹簧的弹性势能为(g 取10 m/s 2 )( ) A .3.1 J B .3.5 J C .1.8 J D .2.0 J 解析:选A 物块与水平面间的摩擦力为F f =μmg =1 N 。现对物块施加水平向右的外力F ,由F -x 图像面积表示外F 做的功,可知F 做功W =3.5 J ,克服摩擦力做功W f =F f x =0.4 J 。由功能关系可知,W -W f =E p ,此时弹簧的弹性势能为E p =3.1 J ,选项A 正确。 选)(2017·佛山模拟)如图所示,质量为m 的物体(可视为质点)以某 3.(多冲上倾角为30°的固定斜面,其减速运动的加速度 一速度从A 点

第17讲功能关系能量守恒定律

第17讲功能关系能量守恒定律 1.功能关系 (1)功是__能量转化__的量度,即做了多少功就有__多少能量__发生了转化. (2)做功的过程一定伴随着__能量的转化__,__能量的转化__可以通过做功来实现. 2.能量守恒定律 (1)能量守恒定律的内容:能量既不会凭空__产生__,也不会凭空消失,它只能从一种形式__转化__为另一种形式,或者从一个物体__转移__到别的物体,在转化或转移的过程中,能量的总量__保持不变__. (2)能量守恒定律的表达式:ΔE减=__ΔE增__. (3)对定律的理解 ①某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量一定相等. ②某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等. 这也是我们列能量守恒定律方程式的两条基本思路. 1.请判断下列表述是否正确,对不正确的表述,请说明原因. (1)力对物体做了多少功,物体就有多少能.(×) 解析功是能量“转化”的量度,力对物体做了多少功,物体就改变了多少能. (2)能量在转化或转移的过程中,其总量有可能增加.(×) 解析根据能量守恒定律知,能量在转化或转移的过程中,其总量保持不变. (3)能量在转化或转移的过程中,其总量会不断减少.(×) 解析同(2). (4)能量在转化或转移的过程中总量保持不变,故没有必要节约能源.(×) 解析能量虽然守恒,但能量的转化具有方向性,在能源的利用过程中,即在能量转化的过程中,能量从便于利用的变成不便于利用的,故应节约能源. (5)能量的转化和转移具有方向性,且现在可利用的能源有限,故必须节约能源.(√) (6)滑动摩擦力做功时,一定会引起能量的转化.(√) 一对功能关系的理解

相关文档
最新文档