第5章格林函数法

第5章格林函数法

格林(Green)函数,又称为点源影响函数,是数学物理中

的一个重要概念.格林函数代表一个点源在一定的边界条件下和初始条件下所产生的场.知道了点源的场,就可以用叠加的方法计算出任意源所产生的场.

格林函数法是解数学物理方程的常用方法之一.

5.1 格林公式

T Σ

上具有连续一阶导数,

在区域及其边界

中具有连续二阶导数,应用矢量分析的高斯定理

d d T

T

div =

?∫∫∫

∫∫∫

i A V =

A V

(5.1.1)

单位时间内流体流过边界闭曲面S 的流量

单位时间内V 内各源头产生的流体的总量

将对曲面

Σ

的积分化为体积分

d ()d d d T

T

T

u u V u V u V

Σ

?=??=Δ+??∫∫∫∫∫∫∫∫∫∫∫i i i S v v v v (5.1.2)

()uv u v u v

?=??+?以上用到公式称上式为第一格林公式.同理有

d ()d d d T

T

T

u u V u V u V

Σ

?=??=Δ+??∫∫

∫∫∫∫∫∫∫∫∫i i i S v v v v (5.1.3)

上述两式相减得到

()d ()d T

u u u u V

Σ

???=Δ?Δ∫∫

∫∫∫i S v v v v

的外法向偏导数.

5.1.4)为第二格林公式.

进一步改写为

()d ()d T

u S u u V n Σ???=Δ?Δ??∫∫∫∫∫ v u v v v n (5.1.4)

5.2 泊松方程的格林函数法

讨论具有一定边界条件的泊松方程的定解问题.泊松方程()()

u f Δ=?r r (5.2.1)(5.2.2)

是区域边界

Σ

上给定的函数.

是第一、第二、第三类边界条件的统一描述

典型的泊松方程(三维稳定分布)边值问题

()()[]()u f u u n αβ?ΣΣΔ=???

??

+=???

r r r (5.2.3)

上沿界面外法线方向的偏导数格林函数的引入及其物理意义

引入:为了求解定解问题(5.2.3),我们必须定义一个与此定解问题相应的格林函数0(,)

G r r 它满足如下定解问题,边值条件可以是第一、二、三类

(,)()[]0G G G n δαβΣΔ=????

??

+=???

00r r r r (5.2.4)

()δ?0r r 代表三维空间变量的δ函数,在直角坐标系中其形式为

0()()()()

x x y y z z δδδδ?=???r r 函数前取负号是为了以后构建格林函数方便

格林函数的物理意义【2】:在物体内部(T 内)0

r 处放置一个单位点电荷,而该物体的界面保持电位为零, 那么

该点电荷在物体内产生的电势分布,就是定解问题(5.2.4)的解――格林函数.由此可以进一步理解通常人们为什么称格林函

格林函数互易定理:因为格林函数0(,)G r r 代表0

r 处的脉冲(或点源)在

r

处所产生的影响(或所产生的场),

所以它只能是距离0||?r r 的函数,故它应该遵守如下的互易定理:

(,)()

G G ,=r r r r (5.2.5)

)得到

()

)d (()())d T u S u G G u V

n ??=Δ?Δ?∫∫∫r r r (5.2.6)

0()]d (()())d ())()()]d T G

u S G u u G V f u V

δ???=Δ?Δ??+?∫∫∫r r r r r r r n (5.2.7)

根据δ函数性质有:

00()()]d ()

T

u V u δ?=∫∫∫

r r r r (5.2.8)

故有

0(,)()]d G u S ???r r r)

r n

(5.2.9)

泊松方程的基本积分公式.

000000

00

((,))d [(,)()]d u G V G u S n Σ??+???∫∫ r )r r r r r n 格林函数满足互易定理并利用格林函数的对称性则得到

(5.2.10)

解的基本思想:通过上面解的形式(5.2.9)我们容易观

察出引用格林函数的目的:主要就是为了使一个非齐次方程(5.2.1)与任意边值问题(5.2.2)所构成的定解问题转化为求解一个特定的边值问题(5.2.4). 一般后者的解容易求得,通(5.2.9)即可求出(5.2.1)和(5.2.2)定解问题的解.

考虑格林函数所满足的边界条件讨论如下:1.第一类边值问题:

()()|()

u f u ?ΣΣΔ=???

=?r r r (5.2.11)

相应的格林函数0(,)G r r 是下列问题的解:

000(,)(-)(,)|0

G G δΣΔ=???

=?r r r r r r (5.2.12)

考虑到格林函数的齐次边界条件,由公式(5.2.9)可得第一类边值问题的解

000(,)

()(,)()d ()d T G u G f V S ?Σ?=??∫∫∫∫∫ n

r r r r r r r (5.2.13)

另一形式的第一类边值问题的解

000(,)()d G S ??0

n r r r (5.2.5)

2.第二类边值问题

()()|()p u f u

n

?ΣΔ=?????=???r r r 是下列问题的解:

(5.2.15)

00,)

|0n Σ=r (5.2.16)

5.2.9)可得第二类边值问题解

00(,)()d ()(,)d G f V G S

+∫∫ r r r r r r (5.2.17)

3.第三类边值问题

()() []()p u f u u n αβ?ΣΔ=???

??

+=???

r r r 是下列问题的解:

(5.2.18)

0(,)]0G G n βΣ?+=?r r (5.2.19)

边值条件,两边同乘以格林函数

G

(5.2.19)的边值条件的两边同乘以函数

u

[]0

G

u G n

αβΣ?+=?G ?

[]()

p u

G u G n

αβ?Σ?+=?r )得到第三类边值问题的解

00

1

,)()d ((,)d f V G S ?β

Σ

+

∫∫ r r r r)r r (5.2.20)

格林函数的互易性则得到

000001

)()d ()(,)d 0

f V G S ?βΣ

+

∫∫

r r r r r (5.2.21)

这就是第三边值问题解的积分表示式.

右边第一个积分表示区域

T 中分布的源0()f r 在

r

点产生的场的总和.第二个积分则代表边界上的状况对

r

点场的影响的总和.两项积分中的格林函数相同.这说明泊松方程的格林函数是点源在一定的边界条件下所产生的对于拉普拉斯方程0()0

f ≡r 第一边值问题的解为0000(,)

()()]d G u S ?Σ?=??∫∫ r r r r n (5.2.22)第三边值问题的解为

1

()()(,)d u G S ?β

Σ

=

∫∫ r r r r (5.2.23)

5.3 无界空间的格林函数基本解

无界区域这种情形公式(5.2.10)中的面积分应为零,故有

000

()(,)()d T u G f V =∫∫∫r r r r (5.3.1)

选取()u r 和0(,)G r r 分别满足下列方程

()()

u f Δ=?r r (5.3.2)00(,)(-)

G δΔ=?r r r r (5.3.3)

5.3.1 三维球对称

对于三维球对称情形,我们选取00

=r 对(5.3.3)式两边在球内积分

)d V

(5.3.4)T

∫∫∫

(5.3.5)

5.1.1)得到

2

(,0)d (,0)d sin d d S S G G V G r r θθ?

???=??=?∫∫∫∫ r r S (5.3.6)

故有

2sin d d (,0)d 1

S T G r G V r θθ??=Δ=??∫∫∫∫∫ r 使上式恒成立,有

2

(,0)

4π1

G r r

?=??r 1

4πc

r

=+0G →因此0c =,,故得到

1(,0)4πG r

=

r

对于三维无界球对称情形的格林函数可以选取为

001

(,)4π||

G =

?r r r r (5.3.7)

代入(5.3.1)得到三维无界区域问题的解为

0(5.3.8)

上式正是我们所熟知的静电场的电位表达式

5.3.2 二维轴对称情形

用单位长的圆柱体来代替球.积分在单位长的圆柱体内进行,即

(,0)d ()d T

T

G V V

δΔ=?∫∫∫

∫∫∫r r ()d 1

V δ=∫∫∫

r ,0)d (,0)d S

V G =?∫∫i r S

G

只是垂直于轴,且向外的分量,所以上式在

圆柱体上、下底的面积分为零,只剩下沿侧面的积分,即

d d ()d 1

T G

r z V r ?δ=?=?∫∫∫r

格林函数法求解场的问题

格林函数法求解稳定场问题 1 格林函数法求解稳定场问题(Green ’s Function) Green ’s Function, 又名源函数,或影响函数,是数学物理中的一个重要概念。 从物理上看,一个数学物理方程表示一种特定的场和产生这种场的源之间关系: Heat Eq.: ()2222 ,u a u f r t t ?-?=? 表示温度场u 与热源(),f r t 之间关系 Poission ’s Eq.: ()20 u f r ρε?=-=- 表示静电场u 与电荷分布()f r 之间的关系 场可以由一个连续的体分布源、面分布源或线分布源产生,也可以由一个点源产生。但是,最重要的是连续分布源所产生的场,可以由无限多个电源在同样空间所产生的场线性叠加得到。 例如,在有限体内连续分布电荷在无界区域中产生的电势: () ' '0 4r d V r r ρφπεΩ=-? 这就是把连续分布电荷体产生的电势用点电荷产生的电势叠加表示。 或者说,知道了一个点源的场,就可以通过叠加的方法算出任意源的场。所以,研究点源及其所产生场之间的关系十分重要。这里就引入Green ’s Functions 的概念。 Green ’s Functions :代表一个点源所产生的场。普遍而准确地说,格林函数是一个点源在一定的边界条件和初始条件下所产生的场。所以,我们需要在特定的边值问题中来讨论 Green ’s Functions. 下面,我们先给出Green ’s Functions 的意义,再介绍如何在几个典型区域求出格林函数,并证明格林函数的对称性,最后用格林函数法求解泊松方程的边值问题。实际上,只限于讨论泊松方程的第一类边值问题所对应的 Green ’s Functions 。 2 泊松方程的格林函数 静电场中常遇到的泊松方程的边值问题: ()()()()()201 f s u r r u r u r r n ρεαβ???=-??? ????+=??????? 这里讨论的是静电场()u r , ()f r ρ 代表自由电荷密度。

格林函数()

§2.4 格林函数法 解的积分公式 在第七章至第十一章中主要介绍用分离变数法求解各类定解问题,本章将介绍另一种常用的方法——格林函数方法。 格林函数,又称点源影响函数,是数学物理中的一个重要概念。格林函数代表一个点源在一定的边界条件和(或)初始条件下所产生的场。知道了点源的场,就可以用迭加的方法计算出任意源所产生的场。 一、 泊松方程的格林函数法 为了得到以格林函数表示的泊松方程解的积分表示式,需要用到格林公式,为此,我们首先介绍格林公式。 设u (r )和v (r )在区域 T 及其边界 上具有连续一阶导数,而在 T 中具 有连续二阶导数,应用矢量分析的高斯定理将曲面积分 ??∑ ??S d v u 化成体积积分 . )(??????????????+?=???=??∑ T T T vdV u vdV u dV v u S d v u (12-1-1) 这叫作第一格林公式。同理,又有 . ???????????+?=??∑ T T vdV u udV v S d u v (12-1-2) (12-1-1)与(12-1-2)两式相减,得 , )()(??????-?=??-?∑ T dV u v v u S d u v v u 亦即

.)(??????-?=??? ????-??∑T dV u v v u dS n u v n v u (12-1-3) n ?? 表示沿边界 的外法向求导数。(12-1-3)叫作第二格林公式。 现在讨论带有一定边界条件的泊松方程的求解问题。泊松方程是 )( ),(T r r f u ∈=? (12-1-4) 第一、第二、第三类边界条件可统一地表为 ),( M u n u ?βα=??????+??∑ (12-1-5) 其中 (M )是区域边界 上的给定函数。=0, ≠0为第一类边界条件, ≠0,=0是第二类边界条件,、 都不等于零是第三类边界条件。泊松方程与第一类边界条件构成的定解问题叫作第一边值问题或狄里希利问题,与第二类边界条件构成的定解问题叫作第二边值问题或诺依曼问题,与第三类边界条件构成的定解问题叫作第三边值问题。 为了研究点源所产生的场,需要找一个能表示点源密度分布的函数。§5.3中介绍的 函数正是描述一个单位正点量的密度分布函数。因此,若以v (r ,r 0 ) 表示位于r 0 点的单位强度的正点源在r 点产生的场,即v (r ,r 0 )应满足方程 ).() ,(00r r r r v -=?δ (12-1-6) 现在,我们利用格林公式导出泊松方程解的积分表示式。以v (r ,r 0)乘(12-1-4), u (r )乘(12-1-6),相减,然后在区域T 中求积分,得 . )( )(0?????????--=?-?T T T dV r r u vfdV dV v u u v δ (12-1-7) 应用格林公式将上式左边的体积分化成面积分。但是,注意到在r =r 0 点,v 具有 函数的奇异性,格林公式不能用。解决的办法是先从区域T 中挖去包含r 0 的小体 积,例如半径为 的小球K (图12-1), 的边界面为 。对于剩下的体积,

第四章 Laplace方程的格林函数法

第四章 Laplace 方程的格林函数法 在第二、三两章,系统介绍了求解数学物理方程的三种常用方法—分离变量法、行波法与积分变换法,本章来介绍Laplace 方程的格林函数法。先讨论此方程解的一些重要性质,在建立格林函数的概念,然后通过格林函数建立Laplace 方程第一边值问题解的积分表达式。 §4.1 Laplace 方程边值问题的提法 在第一章,从无源静电场的电位分布及稳恒温度场的温度分布两个问题推导出了三维Laplace 方程 2 2 2 2 2 2 2 u u u u u x y z ????=?≡ + + =??? 作为描述稳定和平衡等物理现象的Laplace 方程,它不能提初始条件。至于边界条件,如第一章所述的三种类型,应用得较多的是如下两种边值问题。 (1)第一边值问题 在空间(,,)x y z 中某一个区域Ω的边界Γ上给定了连续函数f ,要求这样一个函数(,,)u x y z ,它在闭域Ω+Γ(或记作Ω)上连续,在Ω内有二阶连续偏导数且满足Laplace 方程,在Γ上与已知函数f 相重合,即 u f Γ = (4.1) 第一边值问题也称为狄利克莱(Dirichlet )问题,或简称狄氏问题,§2.3中所讨论过的问题就是圆域内的狄氏问题。

Laplace 方程的连续解,也就是所,具有二阶连续偏导数并且满足Laplace 方程的连续函数,称为调和函数。所以,狄氏问题也可以换一种说法:在区域Ω内找一个调和函数,它在边界Γ上的值为已知。 (2)第二边值问题 在某光滑的闭曲面Γ上给出连续函数f ,要求寻找这样一个函数(,,)u x y z ,它在Γ内部的区域Ω中是调和函数,在 Ω+Γ 上连续,在Γ上任一点处法向导数 u n ??存在,并且等于已知函数f 在该点的值: u f n Γ ?=? (4.2) 这里n 是Γ的外法向矢量。 第二边值问题也称纽曼(Neumann )问题。 以上两个问题都是在边界Γ上给定某些边界条件,在区域内部要求满足Laplace 方程的解,这样的问题称为内问题。 在应用中我们还会遇到Dirichlet 问题和Neumann 问题的另一种提法。例如,当确定某物体外部的稳恒温度场时,就归结为在区域Ω的外部求调和函数u ,使满足边界条件u f Γ =,这里Γ是Ω的边界,f 表示物体表面的温度分布。像这样的定解问题称为Laplace 方程的外问题。 由于Laplace 方程的外问题是在无穷区域上给出的,定解问题的解是否应加以一定的限制?基于电学上总是假定无穷远处的电位为零,所以在外问题中常常要求附加如下条件: lim (,,)0(r u x y z r →∞ == (4.3) (3)狄氏外问题 在空间(,,)x y z 的某一闭曲面Γ上给定连续函数

数学物理方程-第五章格林函数法

第五章 格林函数法 在第二章中利用分离变量法求出了矩形区域和圆域上位势方程Dirichlet 问 题的解.本章利用Green 函数法求解一些平面或空间区域上位势方程Dirichlet 问题. 另外,也简单介绍利用Green 函数法求解一维热传导方程和波动方程半无界问题. 应指出的是:Green 函数法不仅可用于求解一些偏微分方程边值问题或初边值问题,特别重要的是,它在偏微分方程理论研究中起着非常重要的作用. §5?1 格林公式 在研究Laplace 方程或Poisson 方程边值问题时,要经常利用格林(Green )公式,它是高等数学中高斯(Gauss )公式的直接推广. 设Ω为3R 中的区域,?Ω充分光滑. 设k 为非负整数,以下用()k C Ω表示在 Ω上具有k 阶连续偏导的实函数全体,()k C Ω表示在Ω上具有k 阶连续偏导的实 函数全体. 如()10()()()()u C C C C ∈Ω?ΩΩ=Ω,表示(,,)u x y z 在Ω具有一阶连续偏导数而在Ω上连续. 另外,为书写简单起见,下面有时将函数的变量略去. 如将(,,)P x y z 简记为P ,(,,)P x y z x ??简记为P x ??或x P 等等. 设(,,)P x y z ,(,,)Q x y z 和(,,)R x y z 1()C ∈Ω,则成立如下的Gauss 公式 ( )P Q R dV Pdydz Qdydx Rdxdy x y z Ω ?Ω ???++=++???????? (1.1) 或者 ( )(cos cos cos )P Q R dV P Q R ds x y z αβγΩ ?Ω ???++=++???????? (1.2) 如果引入哈米尔顿(Hamilton )算子: ( ,,)x y z ??? ?=???,并记(,,)F P Q R = ,则Gauss 公式具有如下简洁形式 ???????=??Ω Ω ds n F dv F (1.3) 其中(cos ,cos ,cos )n αβγ= 为?Ω的单位外法向量. 注1 Hamilton 算子是一个向量性算子,它作用于向量函数(,,)F P Q R = 时,其运算定义为 (,,)(,,) , F P Q R x y z P Q R x y z ??? ??=???????=++???

格林函数(免费)

§2.4 格林函数法 解的积分公式 在第七章至第十一章中主要介绍用分离变数法求解各类定解问题,本章将介绍另一种常用的方法——格林函数方法。 格林函数,又称点源影响函数,是数学物理中的一个重要概念。格林函数代表一个点源在一定的边界条件和(或)初始条件下所产生的场。知道了点源的场,就可以用迭加的方法计算出任意源所产生的场。 一、 泊松方程的格林函数法 为了得到以格林函数表示的泊松方程解的积分表示式,需要用到格林公式,为此,我们首先介绍格林公式。 设u (r )和v (r )在区域 T 及其边界 ∑ 上具有连续一阶导数,而在 T 中具有连续二阶导数,应用矢量分析的高斯定理将曲面积分 ??∑ ??S d v u ? 化成体积积分 . )(??????????????+?=???=??∑ T T T vdV u vdV u dV v u S d v u ? (12-1-1) 这叫作第一格林公式。同理,又有 . ???????????+?=??∑ T T vdV u udV v S d u v ? (12-1-2) (12-1-1)与(12-1-2)两式相减,得 , )()(??????-?=??-?∑ T dV u v v u S d u v v u ? 亦即 .)(??????-?=??? ????-??∑T dV u v v u dS n u v n v u (12-1-3) n ?? 表示沿边界 ∑ 的外法向求导数。(12-1-3)叫作第二格林公式。 现在讨论带有一定边界条件的泊松方程的求解问题。泊松方程是 )( ),(T r r f u ∈=?? ? (12-1-4)

格林函数以及拉普拉斯方程

格林函数 格林函数的概念及其物理意义 格林函数法是求解导热问题的又一种分析解法。 从物理上看,一个数学物理方程是表示一种特定的"场"和产生这种场的"源"之间的关系。例如,热传导方程表示温度场和热源之间的关系,泊松方程表示静电场和电荷分布的关系,等等。这样,当源被分解成很多点源的叠加时,如果能设法知道点源产生的场,利用叠加原理,我们可以求出同样边界条件下任意源的场,这种求解数学物理方程的方法就叫格林函数法.而点源产生的场就叫做格林函数。 物体中的温度分布随时间的变化是由于热源、边界的热作用以及初始温度分布作用的结果。这些热作用都可以看做广义上的热源。从时间的概念上说,热源可以使连续作用的,如果作用的时间足够短,则可以抽象为瞬时作用的热源。同样的热源在空间上是有一定分布的,但如果热源作用的空间尺度足够小,也可以抽象为点热源、线热源和面热源。在各种不同种类的热源中,瞬时点热源虽然仅是一种数学上的抽象,却有着重要的意义,因为在其他的各种热源都可以看作是许多瞬时热源的集合,即把空间中的热源看成是在空间中依次排列着的许多点热源,在特定的几何条件的导热系统中,在齐次边界条件和零初始条件下单位强度的瞬时点热源所产生的温度场称为热源函数,或称格(Green)函数。对于二维和一维导热问题,也把由线热源和面热源引起的温度场称为相应的格林函数。对于线性的导热问题,由各种复杂的热源引起的温度场可以由许多这样的瞬时热源引起的温度场叠加得到,数学上即成为某种几分。这就是热源法,或称格林函数法,求解非稳态导热问题的基本思路。采用格林函数法可以求解带有随时间变化的热源项且具有非齐次边界条件的导热微分方程,对于一维、二维和三维问题的解在形式上都可以表示的非常紧凑,而且解的物理意义比较清楚。格林函数法可以来求解不同类型的偏微分方程,包括线性的椭圆形的偏微分方程(如带有热源项的稳态导热问题)以及双曲型偏微分方程(如力学中的震动问题)。在此仅讨论用格林函数法求解非稳态导热问题。 用格林函数法求解的困难在于找到格林函数,而格林函数的形式取决于特定问题的具体条件,包括几何条件(即有限大、半无限大或无限大)、边界条件和坐标系的选取。因此用格林函数法求解非稳态导热问题首先需要对特定定解条件的导热系统确定其格林函数。本方法的第二个要点是确定有热源和非齐次边界条件的一般导热问题的温度分布与格林函数的关系。本节从几个较简单的例子开始介绍格林函数法在解决稳态导热问题中的应用,再推广到更为一般的情况。 “瞬时”和“点”热源的概念在数学上都可用狄克拉δ分布函数,简称δ函数,来表示。δ函数的定义为

格林函数法

§3.4 格林函数法 利用一个点电荷的边值问题的解,可以解决同类边值问题:对于给定空间区域V 内的电荷分布ρ和V 的边界S 上(第一类边值问题)各点的电势S ?,或者(第二类边值问题)各点的电场法向分量S n ???。 静电场的电势函数满足泊松(Simeon Denis Poisson, 1781-1840)方程 20 ρ ?ε?=? 其中()r ρG 为电荷密度。位于r ′G 处的单位点电荷的密度分布函数为()r r δ′?G G ,它所产生的静电势(,)G r r ′G G 满足类似的微分方程 2 ()(,)r r G r r δε′?′?=?G G G G , (3.15) 和相应的边条件。以此Green 函数取代格林公式(0.12)中的函数()r ψG ,可得积分方程 0()(,)()(,)()(,)(),V S r G r r r G r r r dV G r r r dS n n ??ρε?′′????′′′′′′=+???′′??? ?∫∫∫∫∫G G G G G G G G G G w (3.16) 第一类边值问题的Green 函数:在边界S 上各点的电势为零的条件下,空间区域V 内x ′G 的单位点电荷产生的电势分布就是第一类Green 函数,记为1(,)G x x ′G G 。利用(3.16)式可以得到第一类边值问题的解,即 0(,)()(,)()().V S G r r r G r r r dV r dS n ?ρε?′?′′′′′=?′?∫∫∫∫∫G G G G G G G w (3.17) 第二类边值问题的Green 函数:在边界S 上各点的电场法线分量为常数01 S ε的条件下,空间区域V 内x ′G 的单位点电荷产生的电势分布就是第二类Green 函数,记为2(,)G x x ′G G 。利用(3.16)式可以得到第二类边值问题的解,即 0()1()(,)()(,)().V S S r r G r r r dV G r r dS r dS n S ??ρε?′?′′′′′′′=++′?∫∫∫∫∫∫∫G G G G G G G G w w (3.18) 【无界空间的格林函数】(P58) 【半无限空间的格林函数】(P59) 【球外空间的格林函数】(P60) 【球内空间的格林函数】(补充题)

§10 格林函数法求解稳定场问题

第十讲 格林函数法求解稳定场问题 1 格林函数法求解稳定场问题(Green ’s Function) Green ’s Function, 又名源函数,或影响函数,是数学物理中的一个重要概念。 从物理上看,一个数学物理方程表示一种特定的场和产生这种场的源之间关系: 热传导方程(Heat Eq.): ()2 22 2 ,u a u f r t t ?-?=? 表示温度场 u 与热源(),f r t 之间关系 Poission ’s Eq.: ()20 u f r ρ ε?=-=- 表示静电场 u 与电荷分布()f r 之间的关系 场可以由一个连续的体分布源、面分布源或线分布源产生,也可以由一个点源产生。但是,最重要的是连续分布源所产生的场,可以由无限多个电源在同样空间所产生的场线性叠加得到。 例如,在有限体内连续分布电荷在无界区域中产生的电势:

() ' ' ' 04V r dV r r ρ φπε=-? 这就是把连续分布电荷体产生的电势用点电荷产生的电势叠加表示。 或者说,知道了一个点源的场,就可以通过叠加的方法算出任意源的场。所以,研究点源及其所产生场之间的关系十分重要。这里就引入Grenn ’s Functions 的概念。 Green ’s Functions :代表一个点源所产生的场。 下面,我们先给出Green ’s Functions 的意义,再介绍如何在几个典型区域求出格林函数,并证明格林函数的对称性,最后用格林函数法求解泊松方程的边值问题。 (我们将不介绍格林函数法在热传导问题和波动方程求解中的应用。) 普遍而准确地说,格林函数是一个点源在一定的边界条件和初始条件下所产生的场。所以,我们需要在特定的边值问题中来讨论 Green ’s Functions. 我们只限于讨论泊松方程的第一类边值问题所对应的 Green ’s Functions. 2 泊松方程的格林函数 静电场中常遇到的泊松方程的边值问题:

第5章格林函数法

第5章格林函数法

格林(Green)函数,又称为点源影响函数,是数学物理中 的一个重要概念.格林函数代表一个点源在一定的边界条件下和初始条件下所产生的场.知道了点源的场,就可以用叠加的方法计算出任意源所产生的场. 格林函数法是解数学物理方程的常用方法之一. 5.1 格林公式 T Σ 上具有连续一阶导数, 在区域及其边界 中具有连续二阶导数,应用矢量分析的高斯定理 d d T T div = ?∫∫∫ ∫∫∫ i A V = A V (5.1.1) 单位时间内流体流过边界闭曲面S 的流量 单位时间内V 内各源头产生的流体的总量

将对曲面 Σ 的积分化为体积分 d ()d d d T T T u u V u V u V Σ ?=??=Δ+??∫∫∫∫∫∫∫∫∫∫∫i i i S v v v v (5.1.2) ()uv u v u v ?=??+?以上用到公式称上式为第一格林公式.同理有 d ()d d d T T T u u V u V u V Σ ?=??=Δ+??∫∫ ∫∫∫∫∫∫∫∫∫i i i S v v v v (5.1.3) 上述两式相减得到 ()d ()d T u u u u V Σ ???=Δ?Δ∫∫ ∫∫∫i S v v v v

的外法向偏导数. 5.1.4)为第二格林公式. 进一步改写为 ()d ()d T u S u u V n Σ???=Δ?Δ??∫∫∫∫∫ v u v v v n (5.1.4)

5.2 泊松方程的格林函数法 讨论具有一定边界条件的泊松方程的定解问题.泊松方程()() u f Δ=?r r (5.2.1)(5.2.2) 是区域边界 Σ 上给定的函数. 是第一、第二、第三类边界条件的统一描述

格林函数(免费)

§2.4 格林函数法解的积分公式 在第七章至第十一章中主要介绍用分离变数法求解各类定解问题,本章将介绍另一 种常用的方法— —格林函数方法。 格林函数,又称点源影响函数,是数学物理中的一个重要概念。格林函数代表一个 点源在一定的边界条件和(或)初始条件下所产生的场。知道了点源的场,就可以 用迭加的方法计算出任意源所产生的场。 一、 泊松方程的格林函数法 为了得到以格林函数表示的泊松方程解的积分表示式,需要用到格林公式,为此,我们首先介绍格林公式。 设 u ( r )和 v (r )在区域 T 及其边界 上具有连续一阶导数,而在 T 中具有连续二阶 导数,应用矢量分析的高斯定理将曲面积分 u v dS 化成体积积分 u v dS (u v)dV u vdV u vdV . T T T (12-1-1) 这叫作第一格林公式 。同理,又有 v u dS v udV u vdV. T T ( 12-1-1)与( 12-1-2)两式相减,得 (u v v u) dS (u v v u) dV , T 亦即 u v v u dS (u v v u)dV . n n T n 表示沿边界 的外法向求导数。( 12-1-3)叫作 第二格林公式 。 现在讨论带有一定边界条件的泊松方程的求解问题。泊松方程是 (12-1-2) (12-1-3)

第一、第二、第三类边界条件可统一地表为 u u (M ), n (12-1-5) 其中 (M )是区域边界 上的给定函数。 = 0, ≠0 为第一类边界条件, ≠0, = 0 是第二类边界条件, 、 都不等于零是第三类边界条件。泊松方程与第一类边界条件构成的定解问题叫作 第一边值问题或狄里希利问题 ,与第二类边界条件构成的定解问题叫作 第二边值问题或诺依曼问题 ,与第三类边界条件构成的定解问题叫作第三边值问题 。 为了研究点源所产生的场,需要找一个能表示点源密度分布的函数。 §5.3 中介 绍的 函数正是描述一个单位正点量的密度分布函数。因此,若以 v ( r , r 0)表示位 于 r 0 点的单位强度的正点源在 r 点产生的场,即 v (r , r 0 )应满足方程 v(r , r 0 ) (r r 0 ). (12-1-6) 现在,我们利用格林公式导出泊松方程解的积分表示式。 以 v ( r ,r 0)乘(12-1-4), u (r )乘( 12-1-6),相减,然后在区域 T 中求积分,得 (v u u v) dV z T vfdV u (r r 0 )dV . T T T (12-1-7) 应用格林公式将上式左边的体积分化 K r 0 成面积分。但是,注意到在 r =r 0 点, v 具有 函数的奇异性,格林公式不 能用。解决的办法是先从区域 T 中挖 O y 去包含 r 0 的小体积,例如半径为 的小 球 K (图 12-1), 的边界面为 。 x 图 12-1 对于剩下的体积,格林公式成立, (v u u v) dV v u u v dS v u u v dS. T K n n n n (12-1-8) 把( 12-1-8)代入挖去 K 的( 12-1-7),并注意 r ≠ r 0 ,故 (r -r 0 )= 0,于是 v u u v dS v u u v dS vfdV . n n n n T K (12-1-9) 当 r r 0 1 ,方程( 12-1-6)的解 v ( r ,r 0)—→ 位于点 r 0 而电量为- 0 的点电 r r

相关文档
最新文档