1 相对论的诞生

1 相对论的诞生
1 相对论的诞生

素材一:

宇宙

广义的宇宙定义是万物的总称,是时间和空间的统一。狭义的宇宙定义是地球大气层以外的空间和物质。“宇宙航行”的“宇宙”定义就是狭义的“宇宙”定义,宇宙航行意思就是在大气层以外的空间航行。

古代对宇宙的定义,有西汉的《淮南子》:“往古来今谓之宙,四方上下谓之宇”。

通过宇宙微波背景辐射的观测发现我们的宇宙已经膨胀了138.2亿年,最新的研究认为宇宙的直径可达到920亿光年,甚至更大。

人类所观察到的部分宇宙的物件大约是由4.9%的普通物质(构成恒星、行星、气体和尘埃的物质)或“重子”,26.8%的暗物质和68.3%的暗能量构成。重子物质构成星系际的“蛛网”。

在宇宙中,地球是目前人类所知唯一一颗有生命存在的星球。

宇宙大爆炸是描述宇宙诞生初始条件及其后续演化的宇宙学模型,这一模型得到了当今科学研究和观测最广泛且最精确的支持。宇宙学家通常所指的大爆炸观点为:宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的,并经过不断的膨胀到达今天的状态。

暗物质和暗能量分别通过对普通物质产生的引力作用和推动宇宙做加速膨胀而表明它们的存在。如果暗能量不存在,那么物质间的万有引力作用就会减慢宇宙的膨胀,但是天文观测表明我们的宇宙在做加速膨胀运动。宇宙由一切天体组成。

素材二:

狭义相对论

狭义相对论建立在如下的两个基本假设上:

狭义相对性原理(狭义协变性原理):一切的惯性参考系都是平权的,即物理规律的形式在任何的惯性参考系中是相同的。这意味着物理规律对于一位静止在实验室里的观察者和一个相对于实验室高速匀速运动着的电子是相同的。

光速不变原理:真空中的光速在任何参考系下是恒定不变的,这用几何语言可以表述为光子在时空中的世界线总是类光的。也正是由于光子有这样的实验性质,在国际单位制中使用了“光在真空中1/299,792,458秒内所走过的距离”来定义长度单位“米”(米)。光速不变原理是宇宙时空对称性的体现,而中微子的超光速现象可能只是时空对称性的对称破缺而决不能推翻相对论(已证实该实验有误)。

在狭义相对论提出以前,人们认为时间和空间是各自独立的绝对的存在,自伽利略时代以来这种绝对时空的观念就开始建立,牛顿创立的牛顿经典力学和经典运动学就是在绝对时空观的基础上创立。而爱因斯坦的相对论在牛顿经典力学、麦克斯韦经典电磁学等的基础上首次提出了“四维时空”的概念,它认为时间和空间各自都不是绝对的,而绝对的是一个它们的整体——时空,在时空中运动的观者可以建立“自己的”参照系,可以定义“自己的”时间和空间(即对四维时空做“3+1分解”),而不同的观者所定义的时间和空间可以是不同的。具体的来说,在闵氏时空中:如果一个惯性观者(G)相对于另一个惯性观者(G')在做匀速运动,则他们所定义的时间(t与t')和空间({x,y,z}与{x',y',z'})之间满足洛伦兹变换。而在这一变换关系下就可以推导出“尺缩”、“钟慢”等效应,具体见狭义相对论条目。因为爱因斯坦之前的科学家们并没有高速运动的观测和体验,所以绝对时空观在古代科技水平下无疑是真理,而爱因斯坦的狭义相对论更新了人们的世界观,为广义相对论的诞生奠定了坚实的基础。

在爱因斯坦以前,人们广泛的关注于麦克斯韦方程组在伽利略变换下不协变的问题,也有人(如庞加莱和洛伦兹)注意到爱因斯坦提出狭义相对论所基于的实验(如迈克尔孙-莫雷干涉仪实验等),也有人推导出过与爱因斯坦类似的数学表达式(如洛伦兹变换),但只有爱因斯坦将这些因素与经典物理的时空观结合起来提出了狭义相对论,并极大的改变了我们的时空观。在这一点上,狭义相对论是革命性的。

素材三:

迈克耳孙莫雷实验

迈克尔逊-莫雷实验(Michelson-Morley Experiment),是1887年迈克尔逊和莫雷在美国克利夫兰做的用迈克尔逊干涉仪测量两垂直光的光速差值的一项著名的物理实验。但结果证明光速在不同惯性系和不同方向上都是相同的,由此否认了以太(绝对静止参考系)的存在,从而动摇了经典物理学基础,成为近代物理学的一个发端,在物理学发展史上占有十分重要的地位。

在1887年到1905年之间,人们曾经好几次企图去解释迈克尔逊——莫雷实验。

1.乔治·菲茨杰拉德(GeorgeFitzGerald)根据麦克斯韦电磁理论在1889年对迈克尔逊-莫雷实验提出了一种解释。菲茨杰拉德指出如果物质是由带电荷的粒子组成,一根相对于以太静止的量杆的长度,将完全由量杆粒子间取得的静电平衡决定,而量杆相对于以太在运动时,量杆就会缩短,因为组成量杆的带电粒子将会产生磁场,从而改变这些粒子之间的间隔平衡。这一来,迈克尔逊-莫雷实验所使用的仪器,当它指向地球运动的方向时就会缩短,而缩短的程度正好抵消光速的减慢。有些人曾经试行测量菲茨杰拉德的缩短值,但都没有成功。这类实验表明菲茨杰拉德的缩短,在一个运动体系内是不能被处在这个运动体系内的观察者测量到的,所以他们无法判断他们体系内的绝对速度,光学的定律和各种电磁现象是不受绝对速度的影响的。再者,动系中的短缩,乃是所有物体皆短缩,而动系中的人,是无法测量到自己短缩值的。

2.里茨在1908年设想光速是依赖于光源的速度的,即运动光源所发射出来的光线速度与光源速度以矢量方式相加,光速,也就是以太流的影响被以太内的光速和光源的速度所抵消。一般称为弹道假说,企图以此解释迈克尔逊-莫雷实验。弹道假说由天文学上观测双星运动结果易于排除,德·希特于1931年在莱顿大学指出,如果是这样的话,那么一对相互环绕运动的星体将会出现表观上的异常运动,而这种现象并没有观察到。观测发现,光的速度与光源的速度无关。由此也证明了爱因斯坦提出的光速和不受光源速度和观察者的影响是正确的,而且既然没有一种静止的以太传播光波振动,牛顿关于光速可以增加的看法就必须抛弃。

3.1892年,荷兰物理学家洛仑兹也提出了与乔治·菲茨杰拉德相同的量杆收缩解释。这一观点可以解释迈克尔逊-莫雷实验,并承认以太存在,光速变化。1895年洛仑兹提出了更为精确的长度收缩公式,顺手把时间也调慢了一点,这就是著名的洛仑兹变换。通过以太的运动物体,纵向线度发生收缩(平行运动方向),其收缩的比例恰好符合迈克尔逊——莫雷实验的计算。同时这个方向的时间也变慢,这样这个方向的光的速度保持不变。这是光速不变的最早模型。为什么要改动时间?没有人知道,也没有理论依据。这个光速不变的版本,承认以太存在。没有悖论。根据他的设想,观察者相对于以太以一定速度运动时,长度在运动方向上发生收缩,以解释迈克尔逊-莫雷实验,时间变慢,以满足光速在量杆运动方向没有发生变化。这样洛仑兹就在不抛弃以太概念的前提下,提出光速不变。 [2-3]

4.1905年,在洛仑兹提出光速不变观点10年后,爱因斯坦认为既然光速不变,作为静止参考系的以太就没有理由存在。于是抛弃静止参考系以太、以光速不变原理和狭义相对性原理为基本假设的基础上建立了狭义相对论。同时保留洛仑兹变换来解释迈克尔逊-莫雷实验和光速不变。爱因斯坦的洛仑兹变换是指纯数学的空间缩短,不再是组成量杆的带电粒子距离缩短。而且这种空间缩短不具有任何实质性的物理意义。(比如两辆速度不同的火箭经过太阳系,那么从慢速火箭上看地球与太阳的空间距离与快速火箭上的看到的空间距离不同,空间距离的物理意义在于引力大小,和阳光辐射强度紧密相关。而实际地球与太阳引力大小和阳光辐射强度与两辆火箭的速度没有任何关系。)

相对论认为空间和时间并不相互独立,而是一个统一的四维时空整体。在狭义相对论中,整个时空仍然是平直的、各向同性的和各点同性的。结合狭义相对性原理和上述时空的性质,也可以推导出洛仑兹变换。几个星期之后,一位法国最重要的数学家亨利·庞加莱也提出类似的观点。爱因斯坦的论证比庞加莱的论证更接近物理,因为后者将此考虑为数学问题。通常这个新理论是归功于爱因斯坦,但庞加莱的确在其中起了重要的作用。

(素材均来自百度百科)

高中物理相对论知识点总结

高中物理选修3-4——相对论简 介知识点总结 1、惯性系:如果牛顿运动定律在某个参考系中成立,这个参考系叫做惯性系。相对于一个惯性系做匀速直线运动的另一个参考系也是惯性系。相对于一个惯性系做变速运动的另一个参考系是非惯性系,在非惯性系中牛顿运动定律不成立。 2、伽利略相对性原理:力学规律在任何惯性系中都是相同的。 3、狭义相对性原理:一切物理定律在任何惯性系中都是相同的。 4、广义相对性原理:物理规律在任何参考系中都是相同的。 5、经典速度变换公式:。(是矢量式) 6、狭义相对论的两个基本假设: (1)狭义相对性原理,如3所述; (2)光速不变原理:真空中的光速在不同的惯性参考系中都是相同的。 7、广义相对论的两条基本原理: (1)广义相对性原理,如4所述; (2)等效原理:一个均匀的引力场与一个做匀加速运动的参考系等价。

8、由狭义相对论推出的六个重要结论(所有结论都已经完全得到证实): (1)“同时”是相对的。 (2)长度是相对的。。是相对被测物静止的参考系中测得的长度,是相对被测物以速度运动的参考系中测得的长度,且的方向与速度的方向平行。 (3)时间是相对的。。是相对某参考系(如地面)运动的参考系中(如飞船内)的钟所测得的时间,是静止的参考系中(地面上)的钟所测得的时间。 (4)质量是相对的。。(静质量)是在相对被测物静止的参考系中所测得的质量,(动质量)是在相对被测物以速度运动的参考系中所测得的质量。 (5)相对论速度变换公式:。(是矢量式)(6)相对论质能关系公式:。其中是物体的动质量。 9、由广义相对论得出的几个结论: (1)物质的引力场使光线弯曲。如远处的星光经过太阳附近时发生偏折。

量子力学与狭义相对论之间的不协调

量子力学与狭义相对论之间的不协调 物理规律中,物质的变换总是根据当前状态的各种参数决定的,没有对历史的记忆,而且由于光速最大原理,能影响一个质点运动的信息只能是这个点邻近无穷小范围内的信息,这两个特点决定了微分方程适用于大多数的物理规律描述.用微分来描述瞬时的变化率,实际上是一个极限的过程,能对瞬时变化给出很好的描述.就目前来看,用微分来描述变化率是最好的方法.物理上的“定域性”原则现在已经受到了越来越多的挑战,基本可以认为真实的物理至少在一定程度和能级条件下是不满足定域性原则的,这是一系列物理实验的论证结果.从物理上来说,能用微分方程描述的另一个潜在依据就是不存在稳定的时间与空间最小单元.如果存在最小单元,在这个单元中的一切不可取分,状态不可分辨,那么最后我们要用的就可能是差分函数与差分方程,而不是微分方程. 大量实验证实,非定域性是量子力学的一个基本属性,但是非定域性将意味着超光速传播,这与狭义相对论的基本假设矛盾.当前,量子引力理论中的超弦理论的时空背景相关性,与圈量子引力理论中的时空背景无关性同时存在,是物理学中潜在的对于时空本质不同态度的一次大碰撞,这种困难预示着物理学需要一次概念的变革,首当其冲的就是时空.时空观念是物理学中最基本的也是最重要的概念,不同的时空观念将导致不同的理论研究方向,任何对于时空概念的更新和深化,势必对整个物理学产生巨大的革命性的影响. 作为量子论和狭义相对论的结合的量子电动力学和量子场论更是如此.一方面,量子电动力学取得了巨大成功,可以给出与实验精确符合的微扰论计算结果,例如关于电子反常磁矩的微扰论计算结果与实验结果可以符合到十几位有效数字;格拉肖-温伯格-萨拉姆(Glashow-Weinberg-Salam)的弱电模型在很大程度上统一了微观尺度上的电磁作用和弱作用,在相当于1000倍质子质量的能量尺度下与几乎所有实验符合;包括量子色动力学在内的标准模型对于强作用的一些性质也能给出令人满意的结果等.另一方面,与实验精确符合的微扰论计算在理论上却并不成立,微扰级数本身一定会发散.标准模型中有20几个自由参数需要实验输入,其中包括一些极重要的无量纲参数,如精细结构常数、μ介子与电子质量之比等.为了减少参数的大统一理论或超对称大统一理论,往往会导致质子衰变.可是,实验上一直没有观测到质子衰变现象,也没有观测到超对称粒子,这是为什么?超对称如何破缺?为什么有夸克禁闭和色禁闭?为什么夸克质量谱中存在极大的质量间隙?为什么会有三代夸克-轻子及其质谱?理论上作用极大的“真空”到底是什么?理论上计算的“真空”能量,与宇宙学常数观测值相应的“真空能”相比,高出几十到一百多个数量级,这又是为什

高中物理第十五章相对论简介第1节相对论的诞生第2节时间和空间的相对性课下作业新人教版选修3_4

第1节相对论的诞生第2节时间和空间的相对性 1.根据伽利略相对性原理,可以得到下列结论( ) A.任何力学规律在惯性系中都是相同的 B.同一力学规律在不同的惯性系中可能不同C.在一个惯性参照系里不能用力学实验判断该参照系是否在匀速运动 D.在一个惯性参照系里可以用力学实验判断该参照系是否在匀速运动 解析:伽利略的相对性原理是:力学规律在任何惯性系中都是相同的,故选项A正确, B错误;根据伽利略相对性原理的另一种表述,选项C正确,D错误。 答案:AC 2.在狭义相对论中,下列说法中哪些是正确的( ) ①一切运动物体相对于观察者的速度都不能大于真空中的光速 ②长度、时间的测量结果都是随物体与观察者的相对状态而改变 ③惯性系中的观察者观察一个与他做匀速相对运动的时钟时,会看到这个时钟比与他相 对静止的时钟走得慢些 A.①③B.①② C.①②③D.②③ 解析:根据狭义相对论可知,光速是物体的极限速度,①正确;长度相对性和时间间隔 的相对性可知②、③均正确。故选C。 答案:C 3.(2011·江苏高考)如图1所示,沿平直铁路线有间距相等的三座铁塔A、B和C。假 想有一列车沿AC方向以接近光速行驶,当铁塔B发出一个闪光,列车上的观测者测得A、C 两铁塔被照亮的顺序是( ) 图1 A.同时被照亮B.A先被照亮 C.C先被照亮 D.无法判断 解析:列车上的观察者看到的是由B出发后经过A和C反射的光,由于列车在这段时间 内向C运动靠近C,而远离A,所以C反射光先到达列车上的观察者,看到C先被照亮,故只 有C正确。

答案:C 4.某宇航员要到离地球5光年的星球上去旅行,如果希望把这段路程缩短为3光年,则 他所乘飞船相对地球的速度为( ) A .0.5 c B .0.6 c C .0.8 c D .0.9 c 解析:由l =l 0 1-v2c2,且l l0=35,可得v =4 5 c =0.8 c ,故选项C 正确。 答案:C 5.惯性系S 中有一边长为l 的正方形(如图2A 所示)。从相对S 系沿x 方向以接近光速 飞行的飞行器上测得该正方形的图像是( ) 图2 解析:由相对论知识l =l 0 1- v c 得运动方向上的边的边长变短,垂直运动方向 的边的边长不变,C 图像正确。 答案:C 6.爱因斯坦狭义相对论的两个假设: (1)爱因斯坦相对性原理:_________________________________________________。 (2)光速不变原理:_______________________________________________________。 解析:(1)在不同惯性参考系中,一切物理规律都是相同的;(2)真空中的光速在不同的 惯性参考系中都是相同的。 答案:见解析 7.如图3所示,在列车车厢的光滑水平面上有一质量为m =5 kg 的小球,正随车厢一起以20 m/s 的速度匀速前进。现在给小球一个水平向前的F T =5 N 的拉力作用,求经10 s 时间,车厢里的观察者看到小球的速度为________m/s ,地面上的观察者看到小球的速度为 ________m/s 。 图3 解析:对车上的观察者: 小球的初速度为0,加速度a =FT m =1 m/s 2, 10 s 末小球的速度v 1=at =10 m/s 。

经典力学和相对论

牛顿经典力学 牛顿经典力学认为质量和能量各自独立存在,且各自守恒,它只适用于物体运动速度远小于光速的范围。牛顿 力学较多采用直观的几何方法,在解决简单的力学问题 时,比分析力学方便简单。 广义相对论 广义相对论(General Relativity?),是爱因斯坦于1915年以几何语言建立而成的引力理论,统合了狭义相对论和牛顿的万有引力定律,将引力改描述成因时空中的物质与能量而弯曲的时空,以取代传统对于引力是一种力的看法。 广义相对论的相对性原理:所有非惯性系和有引力场存在的惯性系对于描述物理现象都是等价的。 爱因斯坦狭义相对论 相对论是20世纪物理学史上最重大的成就之一,它包括狭义相对论和广义相对论两个部分,狭义相对论颠复了从牛顿以来形成的时空概念,提示了时间与空间的统一性和相对性,建立了新的时空观。广义相对论把相对原理推广到非惯性参照系和弯曲空间,从而建立了新的引力理论。在相对论的建立过程中,爱因斯坦起了主要的作用。 物理经典力学和爱因斯坦的相对论有什么区别物理经典力学是牛顿时期的力学那时候的坐标系是忽略时间的,只有空间

爱因斯坦的相对论时期是考虑了时间的是时间和空间都考虑的 相对论与经典力学的区别与联系。 可以这样高度总结地来看: 经典力学是狭义相对论在低速(v<

相对论1

相对论(1)——从欧式空间到黎曼空间 我们对空间的认识有两个基础,一个是居住的四四方方的房间,另一个就是初中的几何课程。在欧几里得创立的几何学里,你绝对不会认为地球的赤道是直线,因为那是圆。于是我们所认识的空间就被初中的几何课塑造的四四方方,在三维坐标系中,x、y、z三轴沿着三个互相垂直的方向无限延伸,直到宇宙的尽头还是不能有丝毫的弯曲。在这样的空间内,过直线外一点有且仅有一条唯一的直线与之平行,任意平面三角形的内角和必然是180度…… 欧几里得给我们塑造的空间 这些在我们看来是天经地义的事情。这种均匀分布的空间经过欧几里得的系统归纳 已经成为一门近乎完美的学科,到了牛顿那里就被称作是绝对空间。在牛顿看来,绝对空间是脱离物质而存在,是人类生活以及天体运动的大背景,而且遥远的宇宙中心是真正意义上的绝对静止,以此建立的参考系就是绝对惯性参考系。 真的是这样吗?那么就重新认识一下空间的定义。利用坐标系定义空间首先我们要 搞清楚直线和长度这两个概念。时光回到欧几里得的时代,埃及的尼罗河流域内人们需要分配土地,在大量划界丈量的实践活动中,欧几里得总结出了直线和长度的概念:铲刀在地面上方向不变的运动所留下的痕迹就是直线(今天几何学中的线段),再截取一个固定长度的木棍,规定这个木棍的长度就是单位,再通过记录直线上能容纳的木棍数量就得到长度概念。以上是我对埃及人和欧几里得的猜测,虽然无从考证,但我在也找不出直线和长度更加原始的定义方式了。总结起来,要确定直线,就离不开物体方向不变的运动;要确定长度,也离不开用实际物体来规定单位长度(注:1889年的第一界国际计量大会确定“米原器”为国 际长度基准,它规定1米就是米原器在0摄氏度时两端的两条刻线间的距离。)

相对论和量子论

相对论和量子论 量子论和相对论是二十世纪最伟大的两个改变世界的理论,于今他们仍然深深的影响和改变着我们的世界。量子论是现代物理学的两大基石之一。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。所以我们就不难确定它们各自的适用范围:量子力学适用于微观亚原子,量子论给我们提供了新的关于自然界的表述方法和思考方法。量子论揭示了微观物质世界的基本规律,为原子物理学、固体物理学、核物理学和粒子物理学奠定了理论基础。它能很好地解释原子结构、原子光谱的规律性、化学元素的性质、光的吸收与辐射等。相对论是关于时空和引力的基本理论,主要由阿尔伯特·爱因斯坦(Albert Einstein)创立,依据研究的对象不同分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,共同奠定了近代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。 相对论分为:狭义相对论和广义相对论,狭义相对论适用于惯性系,广义相对论适用于惯性系和非惯性系。狭义相对论是建立在四维时空观上的一个理论 狭义相对论有两个原理,一是相对性原理:物理规律在所有的惯性系中有相同的表达形式,二是光速不变原理:真空中的光速是常量,于光源或者观测者的运动无关。狭义相对论的结论有:①长度收缩;②时间延续;③相对质量;④相对论多普勒效应。狭义相对论的重要性;①建立了是用于高速运动的更加精确的时空观;②促进了原子能的利用;③导致了广义相对论的建立,在天体观测中有重要应用。广义相对论是爱因斯坦继狭义相对论之后,深入研究引力理论,于1913年提出的引力场的相对论理论。这一理论完全不同于牛顿的引力论,它把引力场归结为物体周围的时空弯曲,把物体受引力作用而运动,归结为物体在弯曲时空中沿短程线的自由运动。因此,广义相对论亦称时空几何动力学,即把引力归结为时空的几何特性。广义相对论的两个基本原理是:一,等效原理:引力与惯性力等效;二,广义相对性原理:等效原理,所有的物理定律在任何参考系中都取相同的形式。 量子论给我们提供了新的关于自然界的表述方法和思考方法。量子论揭示了微观物质世界的基本规律,为原子物理学、固体物理学、核物理学和粒子物理学奠定了理论基础。它能很好地解释原子结构、原子光谱的规律性、化学元素的性质、光的吸收与辐射等。 量子论:光电效应、康普顿效应、德布罗意波长、波粒二象性。1923年,德布罗意提出了物质波假说,将波粒二象性运用于电子之类的粒子束,把量子论发展到一个新的高度。 1925年-1926年薛定谔率先沿着物质波概念成功地确立了电子的波动方程,为量子理论找到了一个基本公式,并由此创建了波动力学。 几乎与薛定谔同时,海森伯写出了以“关于运动学和力学关系的量子论的重新解释”为题的论文,创立了解决量子波动理论的矩阵方法。

价格相对论

价格相对论 “人人都能被收买,只不过各有不同的价码。”特里·索恩泽在《奇妙基督徒》中写道。此话虽过于夸张,但谁又能否认金钱确实重要——至少我们知道,消费者总在克制自己的欲望,不为商家各种花哨的推销 所诱惑,试图理性消费。 正所谓“道高一尺,魔高一丈”,无论消费者如何理性,总是难免迷失在由商家们设计的种种价格“合理化烟雾”之中。这是我们难以克服的自身缺陷——尽管我们都试图保持理性而客观,却未必掌握了足够多的信息,也未必拥有足够的知识储备,在特定的环境影响下难免陷入情绪化漩涡。这也是经济学意义上所谓的“有限理性”。 消费者的“有限理性”往往被商家所操纵,一个最为重要的表现就是,他们对价格之间的相对差距非常敏感,而对价格的绝对数值却没怎么敏感。相对差距稳定而一致,具体的数额却无比随意。也就是说,在消费者眼里,商品的价值是“相对存在的”,这件商品到底值不值这么多钱,这个定价到底实惠与否,都需要一个可供参照的标准。 这就是价值的“相对存在”。对于消费者而言,一瓶标价为10块钱的矿泉水摆在面前,他并不知道是否物有所值。但一旦旁边放着一瓶20块钱的矿泉水,他便会对10元的矿泉水十分放心——原来10块钱 的矿泉水是那么的合理。

消费者对于商品价值与价格的独特认知方式给了商家可乘之机。许多商家都绞尽脑汁的去迎合,甚至操纵这种人类的非理性思维习惯。其中最为常见的方式便是为商品设定种种“锚点”。也就是“通过各种锚定招数,或者利用对比和暗示来营造幻觉的手段,动摇人们对于货币价 值的评估”。 关于“锚点”招数,我们最为常见的一种就是隐藏在奢侈品中的销售秘密吧。在奢侈品行业中,有很多“锚点商品”——其中一些价格高得离谱、令人咋舌的商品,所起到的作用就是充当“锚点”,操纵消费者的心理。当然,“锚点商品”本身也供出售,但有没有人买它,其实并不重要,它的存在价值就在于与其他价格相对便宜的商品形成对比,在消费者的心中挠痒痒——“好吧,十几万的限量款皮包太过于昂贵,但一件1000出头的T恤总该不算过分吧?” 实际上,菜单是另一个最常见的“锚点”的例子。回想下你上次就餐的场景,或许接下来的一幕会十分眼熟——当你在某家装修精美的餐厅坐下时,你翻开菜单,冷菜、热菜、酒水,菜单的前几页充满了卖相精致,价格却令人望而却步的“私家珍厨”,有几百上千一客的鲍、参、翅、肚,酒水单也的同样位置也有几千的白兰地、茅台、五粮液。倘若自己买单,谁也知道这是在做冤大头。那……好吧,那我就点几个家常 菜,百八十块的“招牌菜”。

相对论的哲学意义

相对论的哲学意义 一、相对论与二十世纪哲学 2005年是爱因斯坦相对论诞生一百周年。 正如牛顿力学为代表的古典科学影响了尔后二、三百年西方近代哲学发展一样,二十世纪初突破牛顿力学而创立的爱因斯坦相对论也深刻影响了近百年来世界哲学的发展。 相对论问世不久,就引起各个哲学流派的强烈反应,出版了不少论著,例如新康德主义哲学家卡西勒的《实体和函数:爱因斯坦的相对论》、新实证主义哲学家石里克的《现代物理学中的空间和时间》和赖欣巴哈的《相对论和先验认识》等。其中石里克于1917年出版的这本书受到了爱因斯坦的好评。它对于将实证主义观点和爱因斯坦(广义)相对论统一起来,形成逻辑实证主义哲学起了重要的作用。同样,布里奇曼的操作主义、波普尔的证伪主义以及法国著名哲学家巴什拉尔的认识论,也都和相对论的思想与方法有密切的联系。 在分析哲学中,罗素的哲学、奎因的哲学和古德曼的哲学渗透了相对论的精神,这是众所周知的。 在思辨形而上学传统中,象柏格森和马里坦等人就曾被相对论的革命吓坏了(皮亚杰语)。胡塞尔特别是海德格尔的现象学虽然将相对论的概念视为处于经验的、流俗的层面,但在更深层的思考中,如理性直观(寻求变换中的不变性)和"视域"等观念,仍有极具启发性的可比性。而怀特海则是第一个依据相对论的科学成果,提出了过程哲学体系,使二十世纪的形而上学获得了新的发展,幷影响了米德(时间哲学)和莫利斯等人的"客观相对主义"的形成。 在前苏联,从二十年代初开始,对爱因斯坦相对论进行了持续数十年的批评和讨论,表现出苏联正统的马克思主义哲学体系对于当代科学发展的不适应性。 进入二十世纪下半叶,对相对论哲学意蕴的阐发和传播获得了更深入的进展。除了上面已提到的奎因的本体论相对性学说提出,怀特海的过程哲学东山再起,以及一些哲学家试图将相对论的观点与东方思想进行比较和融通以外,这里还应当着重提出后现代主义哲学(包括后现代科学哲学)对相对论哲学意义的阐发(如"透视主义"等等)。著名的后现代主义思想家伊·哈桑宣称:"后现代主义的基本特征发轫于爱因斯坦的物理学和尼采的阐释学"。后现代主义哲学家如利奥塔、德勒兹、拉脱尔等人常引用相对论观点,而法国解构主义大师德里达有关相对论哲学意义的评论还成了二十世纪末由于"索卡尔事件"引发的、在全球学术界爆发的一场科学家与后现代哲学家之间的大论战的一个热点话题。有些学者认为,爱因斯坦的时空相对论观点正是德里达的去中心 (decentered) 的游戏和相关性思想的雏形。这就有可能为人们打开一个从现代科学的角度理解德里达乃至整个后现代主义哲学的窗口。 与马克思主义哲学研究有关的方面,除了苏联和俄国哲学界继续总结上半世纪的经验教训,逐步修改和放弃原有的哲学信条之外,更值得重视的是日本著名的新马克思主义哲学家广松涉在最近二、三十年里发展起来的关系主义本体论。这个理论的提出,在自然科学方面主要依据了相对论的成果。他依据相对论和量子力学的观点,对旧唯物主义即实体主义本体论展开了深入的批判。他认为,马克思主义哲学变革的真谛正是一种从实体本体论向关系存在论的转变。

新人教版高中物理选修3-4第十五章相对论简介第1节第2节相对论的诞生时间和空间的相对性学案

第1节 相对论的诞生 第2节 时间和空间的相对性 1.知道经典的相对性原理,知道狭义相对论的实验基础和它的两个基本假设。 2.知道狭义相对论的几个主要结论,“同时”的相对性、长度的相对性、时间间隔的相对性。 3.了解时空相对性的验证,了解经典时空观与相对论时空观的主要区别,体会相对论的建立对人类认识世界的影响。 一、相对论的诞生 1.经典的相对性原理 (1)惯性系:□01牛顿运动定律成立的参考系。相对于一个惯性系做□02匀速直线运动的另一个参考系,也是惯性系。 (2)伽利略相对性原理:力学规律在任何□03惯性系中都是相同的。 2.狭义相对论的两个基本假设 (1)狭义相对性原理:在不同的惯性参考系中,一切物理规律都是□04相同的。 (2)光速不变原理:真空中的光速在不同的惯性参考系中都是□05相同的。 二、时间和空间的相对性 1.“同时”的相对性 (1)经典的时空观:在同一个惯性系中不同地点同时发生的两个事件,在另一个惯性系中观察也是□ 01同时的。 (2)相对论的时空观:“同时”具有相对性,即在同一个惯性系中不同地点同时发生的两个事件,在另一个惯性系中观察不一定是同时的。 2.长度的相对性 (1)经典的时空观:一条杆的长度不会因为观察者是否与杆做□ 02相对运动而不同。 (2)相对论的时空观:“长度”也具有相对性,一条沿自身长度方向运动的杆,其长度总比杆静止时的长度□ 03小。设与杆相对静止的观察者认为杆的长度为l 0,与杆有相对运动的人认为杆的长度为l ,则两者之间的关系是:l =□ 04l 0 1-? ?? ??v c 2 。 3.时间间隔的相对性 (1)经典的时空观:某两个事件,在不同的惯性参考系中观察,它们的时间间隔总是□05相同的。 (2)相对论的时空观:某两个事件,在不同的惯性参考系中观察,它们的时间间隔是□06不同的。设Δτ表示相对事件发生地静止的惯性系中观测的时间间隔,Δt 表示相对事件发生地以v 高速运动的参考系中观察同样两事件的时间间隔,则它们的关系是:Δt =□ 07Δτ 1-? ?? ??v c 2。

相对论与量子力学的矛盾问题

论多维空间中量子力学与相对论的矛盾问题 阿尔伯特·爱因斯坦一生发现了很多东西,最重要的是提出了量子力学和广义的相对论。广义相对论代表了现代物理学中引力理论研究的最高水平,在天体物理学中有着非常重要的应用,还提出了引力和引力波的存在,是现代宇宙学膨胀宇宙论的理论基础。并且它是能够与实验数据相符合的最简洁的理论。量子力学是研究原子和次原子等“量子领域”的运动规律的物理学分支学科,基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。与相对论一起被认为是现代物理学的两大基本支柱。不过,仍然有一些问题至今未能解决,典型的即是如何将广义相对论和量子物理的定律统一起来,或者说怎样理解这两大理论的统一? 这个矛盾问题在科学家们提出的多维空间里有了解释。首先我们先来了解一下我们的多维空间。"维"是一种度量,在三维空间坐标上,加上时间,时空互相联系,就构成四维时空。现在科学家的理论认为整个宇宙是十一维的,只是人类的理解只能理解到三维。零维是点,一维是线,二维是面,三维是静态空间,四维是动态空间(因为有了时间)。在这个四维时间线上任何一点都有无限种发展趋势,从四维上的某一点分出无限多的时间线,构成了五维空间。五维空间上两条时间线如同二维空间(如报纸上的两个对角点)不能直接到达,而把报纸对折就可以直接到达报纸上的对角点。五维空间也可以弯曲,产生了六维空间,在六维空间中可以直接到达五维时间线上的任意一点。七维空间包括了从宇宙大爆炸开始到宇宙结束,所有空间维,所有时间维上的所有可能性,以及在任意两点直接到达的可行性。五维空间是某一点产生无限个发展趋势,七维是所有点即无限点上产生无限个时间线。,八维空间中包括了从大爆炸处产生的无限多个宇宙,这些宇宙中有不同的物理定律,不同的引力常数,或许有没有万有引力也说不定,不同的光速。九维空间则是八维空间的弯曲,在八维空间中,不到直接在各个宇宙中到达不同的两点,而九维空间中则可以在八维空间中的两点间直接到达。根据超弦理论,最小粒子不是实体的物质,而是由不同振动频率的超弦形成的物质,不同的频率产生了不同外在表现。在十维空间中,物质已经没有差别,或是已经没有物质。只存在不同振动频率的弦。在十维空间中一切皆有可能。在超弦理论的研究中,发现十维空间还有理论漏洞,新的膜理论就在超弦的线上展拓成超膜,以十一维空间来解释宇宙。 理解了宇宙的空间有更多维存在,再回过来看相对论与量子理论是如何产生矛盾的,我们就很容易理解了:这两个理论在日常的三维空间里是不可能统一的,它们的矛盾是必然的,只有在高维空间里才能得到统一。

量子力学与广义相对论无法统一

量子物理实际上包含两个方面。一个是原子层次的物质理论:量子力学,正是它我们才能理解和操纵物质世界;另一个是量子场论,它在科学中起到一个完全不同的作用。 作为一个基本理论,量子力学原则上,应该适用于任何大小的物理系统,也就是说不仅限于微观系统,那么,它应该提供一个过渡到巨观「古典」物理的方法。量子现象的存在提出了一个问题,即怎样从量子力学的观点,解释巨观系统的古典现象。尤其无法直接看出的是,量子力学中的叠加状态,如何应用到巨观世界上来。 在量子力学中,一个物理系统仅通过同时可以被测量的可观察量来定义,是它与古典力学最主要的区别。只有通过彻底地使用这样的状态定义,才能够理论性地描写许多量子物理现象。量子力学与古典力学的另一个主要区别,在于测量过程在理论中的地位。在古典力学中,量子世界除了其线度极其微小之外(10-10~10-15m量级),另一个主要特征是它们所涉及的许多宏观世界所对应的物理量往往不能取连续变化的值,(如:坐标、动量、能量、角动量、自旋),甚至取值不确定。许多实验事实表明,量子世界满足的物理规律不再是经典的牛顿力学,而是量子物理学。 量子力学可以算作是被验证的最严密的物理理论之一了。至今为止,所有的实验数据均无法推翻量子力学。大多数物理学家认为,它「几乎」在所有情况下,正确地描写能量和物质的物理性质。虽然如此,量子力学中,依然存在着概念上的弱点和缺陷,除上述的万有引力的量子理论的缺乏外,至今为止对量子力学的解释存在着争议。 1)微观粒子的基本运动方程(非相对论形式)--薛定谔方程。微观粒子的二象性,由此而引起的描述微观粒子状态的特殊方法--波函数,以及微观粒子不同于经典粒子的基本特征--不确定关系。不过,在今天的理论中,不确定性不是单一粒子的属性,而是一个系综相同的粒子的属性。一个物理系统的位置和动量,可以无限精确地被确定和被预言。至少在理论上,测量对这个系统本身,并没有任何影响,并可以无限精确地进行。在量子力学中,测量过程本身对系统造成影响。要描写一个可观察量的测量,需要将一个系统的状态,线性分解为该可观察量的一组本征态的线性组合。测量过程可以看作是在这些本征态上的一个投影,测量结果是对应于被投影的本征态的本征值。假如,对这个系统的无限多个拷贝,每一个拷贝都进行一次测量的话,我们可以获得所有可能的测量值的机率分布,每个值的机率等于对应的本征态的系数的绝对值平方。量子力学中的测量是不可逆的,测量后系统处于该测量值的一个特征向量上。 2)至今为止,仅仅万有引力无法使用量子力学来描述。因此,在黑洞附近,或者将整个宇宙作为整体来看的话,量子力学可能遇到了其适用边界。目前使用量子力学,或者使用广义相对论,均无法解释,一个粒子到达黑洞的奇点时的物理状况。广义相对论预言,该粒子会被压缩到密度无限大;而量子力学则预言,由于粒子的位置无法被确定,因此,它无法达到密度无限大,而可以逃离黑洞。因此20 世纪最重要的两个新的物理理论,量子力学和广义相对论互相矛盾。寻求解决这个矛盾的答案,是目前理论物理学的一个重要目标(量子重力)。但是至今为止,找到重力的量子理论的问题,显然非常困难。虽然,一些亚古典的近似理论有所成就,比如对霍金辐射的预言,但是至今为止,无法找到一个整体的量子重力的理论。目前,这个方面的研究包括弦理论等。 3)根据量子力学原理建立的场的理论,是微观现象的物理学基本理论。场是物质存在的

狭义相对论的基本原理

第五章相对论 第一节狭义相对论的基本原理 基础知识 1.下列说法中正确的是( ) A电和磁在以太这种介质中传播 B相对不同的参考系,光的传播速度不同 C.牛顿定律仅在惯性系中才能成立 D.时间会因相对速度的不同而改变 2.爱因斯坦相对论的提出,是物理学思想的一场重大革命,他( ) A.否定了牛顿的力学原理 B.提示了时间、空间并非绝对不变的属性 C.认为时间和空间是绝对不变的 D.承认了“以太”是参与电磁波传播的重要介质 3.爱因斯坦狭义相对论的两个基本假设: (1)爱因斯坦的相对性原理:_____________________________. (2)光速不变原理:_____________________________________. 4.下列哪些说法符合狭义相对论的假设( ) A在不同的惯性系中,一切力学规律都是相同的 B.在不同的惯性系中,一切物理规律都是相同的 C.在不同的惯性系中,真空中的光速都是相同的 D.在不同的惯性系中,真空中的光速都是不同的 5.在一惯性系中观测,两个事件同时不同地,则在其他惯性系中观测,它们( ) A.一定同时 B.可能同时 C.不可能同时,但可能同地 D.不可能同时,也不可能同地 6.假设有一列很长的火车沿平直轨道飞快匀速前进,车厢中央有一个光源发出了一个闪光,闪光照到了车厢的前后壁,根据狭义相对论原理,下列说法中正确的是( ) A地面上的人认为闪光是同时到达两壁的 B车厢里的人认为闪光是同时到达两壁的 C.地面上的人认为闪光先到达前壁 D.车厢里的人认为闪光先到达前壁 能力测试 7.关于牛顿力学的适用范围,下列说法正确的是( ) A.适用于宏观物体 B.适用于微观物体 C.适用于高速运动的物体 D.适用于低速运动的物体 8.下列说法中正确的是( ) A.相对性原理能简单而自然的解释电磁学的问题 B.在真空中,若物体以速度v背离光源运动,则光相对物体的速度为c-v C在真空中,若光源向着观察者以速度v运动,则光相对于观察者的速度为c+v D.迈克耳逊一莫雷实验得出的结果是:不论光源与观察者做怎样的相对运动,光速都是一样的 9.地面上的A、B两个事件同时发生,对于坐在火箭中沿两个事件发生地点连线,从A到B方向飞行的人来说哪个事件先发生( ) A.两个事件同时发生 B.A事件先发生 C.B事件先发生 D.无法判断 10.关于电磁波,下列说法正确的是( ) A.电磁波与机械波一样有衍射、干涉现象,所以它们没有本质的区别 B.在一个与光速方向相对运动速度为u的参考系中,电磁波的传播速度为c+u或c-u C电磁场是独立的实体,不依附在任何载体中 D.伽利略相对性原理包括电磁规律和一切其他物理规律 11.一列火车以速度v相对地面运动,如果地面上的人测得,某光源发出的闪光同时到达车厢的前壁和后壁(如图5-1-1).那么按照火车上人的测量,闪光先到达前壁还是后壁?火车上的人怎样解释自己的测量结果? 12.如图5-1-2所示,在地面上M点,固定一光源,在离光源等距的A、B两点上固定有两个光接收器,今使光源发出一闪光,问 (1)在地面参考系中观察,谁先接收到光信号?

相对论是谁提出的

相对论是谁提出的 试题: 相对论是由谁提出的? A.爱因斯坦 B.牛顿 c.霍金 D.达尔文 答案:(A)。 相关阅读: 相对论是关于时空和引力的基本理论,相对论的基本假设是相对性原理,即物理定律与参照系的选取无关。狭义相对论和广义相对论的区别是,前者讨论的是匀速直线运动的参照系(惯系参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。相对论提出了“时间和空间的相对性”“四维时 空”“弯曲空间”等概念。狭义相对论最著名的推论是质能公式,它能够用来计算核反应过程中所释放的能量,并导致了原子弹的诞生。而广义相对论预言的引力透镜和黑洞,也被天文观测证实。 提出过程

除了量子理论以外,1905年刚刚得到博士学位的爱因斯坦发表的一篇题为《论动体的电动力学》的引发了二十世纪物理学的另一场革命。研究的是物体的运动对光学现象的影响,这是当时经典物理学应对的另一个难题。 电磁波-内部结构模型图十九世纪中叶,麦克斯韦建立了电磁场理论,并预言了以光速c传播的电磁波的存在。到十九世纪末,实验完全证实了麦克斯韦理论。电磁波是什么?它的传播速度c是对谁而言的呢?当时流行的看法是整个宇宙空间充满一种特殊物质叫做“以太”,电磁波是以太振动的传播。但人们发现,这是一个充满矛盾的理论。如果认为地球是在一个静止的以太中运动,那么根据速度叠加原理,在地球上沿不一样方向传播的光的速度必定不一样,但是实验否定了这个结论。如果认为以太被地球带着走,又明显与天文学上的一些观测结果不符。 1887年迈克尔逊和莫雷利用光的干涉现象进行了十分精确的测量,仍没有发现地球有相对于以太的任何运动。对此,洛仑兹提出了一个假设,认为一切在以太中运动的物体都要沿运动方向收缩。由此他证明了,即使地球相对以太有运动,迈克尔逊也不可能发现它。爱因斯坦从完全不一样的思路研究了这一问题。他指出,只要摒弃牛顿所确立的绝对空间和绝对时间的概念,一切困难都能够解决,根本不需要什么以太。电磁场理论 1887年迈克尔逊和莫雷利用光的干涉现象进行了十分精确的测量,仍没有发现地球有相对于以太的任何运动。对此,洛仑兹提出了一个假设,认为一切在以太中运动的物体都要沿运动方向收缩。由此他证明了,即使地球相对以太有运动,迈克尔逊也不可能发现它。爱因斯坦从完全不一样的思路研究了这一问题。他指出,只要摒弃牛顿所确立的绝对空间和绝对时间的概念,一切困难都能够解决,根本不需要什么以太。 爱因斯坦提出了两条基本原理作为讨论运动物体光学现象的基础。第一个叫做相对性原理。它是说:如果坐标系k'相对于坐标系k作匀速运动而没有转动,则相对于这两个坐标系所做的任何物理实验,都不可能区分哪个是坐标系k,哪个是坐标系k′。第二个原理叫光速不变原理,它是说光(在真空中)的速度c是恒定的,它不依靠于发光物体的运动速度。 从表面上看,光速不变似乎与相对性原理冲突。因为按照经典力学速度的合成法则,对于k′和k这两个做相对匀速运动的坐标系,光速就应不一样。爱因斯坦认为,要承认这两个原理没有抵触,就务必重新分析时间与空间的物理概念。

相对论与量子力学之间的矛盾

相对论的研究对象和适用范围是那些大尺度,高速度的宏观物体.爱因斯坦的相对论分为两个阶段,第一个阶段叫狭义相对论,他研究的是物体在惯性系中(也就是我们初中,高中物理中的理想状态)的高速运动状态,第二个阶段叫广义相对论,主要是研究物体在非惯性系(也就是万有引力场)中的运动状态.相对论的推导过程相当复杂,是个超级的数学推导过程,需要相当高的数学工具才可以理解,所以在研究广义相对论的时候爱因斯坦本人也遇到了困难,找了他一个朋友,当时的一位数学家帮他的忙才得到的结论,据说到目前为止全世界能真正理解相对论的原由的人也不到100人,既然楼主说了不要太复杂,要通俗的可以直接理解的话来解释的话,就不谈由来,只谈结果,相对论的几个重要的结论.第一个是光速不变,我们初中,高中所学的物理学都是牛顿的经典力学,牛顿的经典力在我们日常生活当中的低速,小尺度的环境里是适用的,我们的观念里的速度是叠加的,比如当我们骑自行车前进的过程中向前开了一枪,那么这个子弹的速度是自行车的速度和子弹本身的速度相加,而光则不然,光速恒定不变,你骑自行车打手电筒和站在地上打手电桶,光的速度不发生变化,即便是你以很快的速度向着光射出的放行追逐,光速依然不变. 第二,时间的膨胀,对于运动的物体,物体运动的速度越快,时间就走的越慢.第三尺度的缩短,一个刚性杆在运动的时候长度是缩短的,速度越块长度越短.第四光速是所有有质量的物体的极限,也就是说无论你怎么折腾,有质量的物体永远不可能超过光速,只能无限的接近.第五,在万有引力场附近的空间是弯曲的,第七E=MC ∧2.就是著名的爱因斯坦质能方程.能量等于质量乘以光速的平方.也就是广意的质能守恒,爱因斯坦说,质量(也就是有型物质)和能量其实本身就是同一种物质,他们在一定条件下可以相互转化,而物质具有的能量可以被看作是他的质量,运动的物体的质量要大过它静止的时候的质量,这是因为物体由于运动而具有了动能,而这些动能可以通过上面的质能方程换算成物体的质量,只不过一般的情况下我们宏观世界运动的物体速度都太慢了,这个质量增加太不明显,所以你感觉不到质量的变化而已尽而推导下去,会发现当物体的速度很大了的时候质量的增加就会越来越大,当快接近光速的时候质量几乎是无限大,想要让无限大的质量继续加速你需要的推动力就是无限大,所以才有了第五个结论的光速是物体的速度极限.应该把这个推导过程给你写上的,这个公式我会,打了这么多字太累了就不说这个了.上面这六点就是用最通俗直接的语言来说相对论的结论.看起来似乎很荒谬?别怀疑,用霍金的话说,从我们一出生开始,一直到高中,大学,无论是我们的生活经验也好,还是课本上的教材也好都给了我们一个假象,因为我们处于一种低速的状态下,所以很多东西都被忽略了.上面说的光速不变,时间膨胀,空间尺度的压缩,等等都是事实.只是因为我们的速度太低了,感觉不到而已.再和你说说经典力学和相对论的关系吧!因为我们最开始学的先是经典力学,后来才知道的相对论,所以通常在一些应用情况下叫相对论效应,再说其本质,相对论才是真正描述这个世界规律的真理,而经典力学只是相对论的近似而已,在一般的低速情况下还适用,举了例子,一个1kg的物体假如你推了他一把他以1m/s的速度前进那么他所具有的动能mv^2/2 =0.5焦耳他具有了0.5焦耳的动能这个时候由于他的运动而具有的能量使得他质量增加了质量增加了多少呢把能量0.5焦耳代入爱因斯坦质能方程中去E=m*C^2 0.5=m*C^2 我用计算机算了一下质量增加 m=0.0000000000000000055kg,这个质量非常小,小到平时我们根本感觉不到,

爱因斯坦和量子论与相对论的诞生答案

物理学的开端:经验物理时期已完成成绩:100.0分 1 “给我一个支点,我就可以耗动地球”这句话是谁说的?() A、欧几里得 B、阿基米德 C、亚里士多德 D、伽利略 我的答案:B 得分:20.0分 2 相对论是关于()的基本理论,分为狭义相对论和广义相对论。 A、时空和引力 B、时空和重力 C、时间和空间 D、引力和重力 我的答案:A 得分:20.0分 3 下列人物中最早使用“物理学”这个词的是谁?() A、牛顿 B、伽利略 C、爱因斯坦 D、亚里斯多德 我的答案:D 得分:20.0分 4 欧洲奴隶社会比中国时间长,中国封建社会比西方时间长。

我的答案:√得分:20.0分 5 阿基米德是欧几里得的学生的学生。 我的答案:√ 伽利略与经典物理的诞生已完成成绩:100.0分 1 以下不属于伽利略的成就的是() A、重述惯性定律 B、发现万有引力 C、阐述相对性原理 D、自由落体定律 我的答案:B 得分:20.0分 2 《关于托勒密和哥白尼两大世界体系的对话》与《天体运行论》都是伽利略的著作我的答案:×得分:20.0分 3 伽利略是奥地利物理学家,近代实验科学的先驱者。() 我的答案:×得分:20.0分 4 伽利略认为斜面上的运动是冲淡了的自由落体运动。() 我的答案:√得分:20.0分 5 伽利略的逝世和牛顿的出生都是在1642年。()

我的答案:√ 经典物理的三大支柱:经典力学、经典电动力学、经典热力学和统计力学已完成成绩:100.0分 1 物理学家焦耳是哪个国家的人?() A、德国 B、奥地利 C、英国 D、意大利 我的答案:C 得分:20.0分 2 “热力学第三定律”的发现者是谁?() A、克劳修斯 B、能斯特 C、开尔文 D、焦耳 我的答案:B 得分:20.0分 3 以下哪一项属于经典物理的范畴 A、万有引力定律 B、热质学说 C、量子论 D、狭义相对性原理 我的答案:A 得分:20.0分

相对论

相对论(关于时空和引力的基本理论) 相对论是关于时空和引力的基本理论,主要由阿尔伯特·爱因斯坦创立,依据研究的对象不同分为狭义相对论和广义相对论。相对论的基本假设是相对性原理,即物理定律 与参照系的选择无关。 狭义相对论和广义相对的区别是,前者讨论的是匀速直线运动的参照系(惯性参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理 的假设下,广泛应用于引力场中。相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。它发 展了牛顿力学,推动物理学发展到一个新的高度。 狭义相对性原理是相对论的两个基本假定,在目前实验的观测下,物体的运动与相对 论是吻合很好的,所以目前普遍认为相对论是正确的理论。 研究发展编辑 研究历程 广义相对论 1905年5月的一天,爱因斯坦与一个朋友贝索讨论这个已探索了十年的问题,贝索按照马赫主义的观点阐述了自己的看法,两人讨论了很久。突然,爱因斯坦领悟到了什么,回到家经过反复思考,终于想明白了问题。第二天,他又来到贝索家,说:谢谢你,我的问题解决了。原来爱因斯坦想清楚了一件事:时间没有绝对的定义,时间与 光信号的速度有一种不可分割的联系。他找到了开锁的钥匙,经过五个星期的努力工作,爱因斯坦把狭义相对论呈现在人们面前。[1] 1905年6月30日,德国《物理学年鉴》接受了爱因斯坦的论文《论动体的电动力学》,在同年9月的该刊上发表。这篇论文是关于狭义相对论的第一篇文章,它包含 了狭义相对论的基本思想和基本内容。这篇文章是爱因斯坦多年来思考以太与电动力 学问题的结果,他从同时的相对性这一点作为突破口,建立了全新的时间和空间理论,并在新的时空理论基础上给动体的电动力学以完整的形式,以太不再是必要的,以太 漂流是不存在的。[2] 1907年,爱因斯坦撰写了关于狭义相对论的长篇文章《关于相对性原理和由此得出的结论》,在这篇文章中爱因斯坦第一次提到了等效原理,此后,爱因斯坦关于等效原 理的思想又不断发展。他以惯性质量和引力质量成正比的自然规律作为等效原理的根

狄拉克与相对论量子力学

狄拉克与相对论量子力学 物理与工程V o1.17No.62007 狄拉克与相对论量子力学 王长荣桂金莲 (浙江科技学院理学院,浙江杭州31OO23) (广东技术师范学院基础部,广东广州510075) (收稿日期:2007—03—19) 摘要以2O世纪2O年代物理学发展所遇到的困难为科学背景,从3个方面阐述了狄拉克相 对论量子力学形成的过程及其深刻的物理内涵;作为完全相对论量子理论中的一种单 粒子理论,狄拉克方程的建立又进一步推动了量子电动力学和量子场论等新理论的建 立与发展. 关键词狄拉克;相对论量子力学;科学含义DIRACANDRELATIVEQUANTUMMECHANICS WangChangrongGuiJinlian (ZheiiangUniversityofScienceandTechnology.Hangzhou,Zheiiang,310023) (GuangdongPolytechnicNormalUniversity.Guangzhou,Guangdong,510075) AbstractThepaperexpatiatedonthebirthprocessofDirac'Srelativequantummechanics andrevealedtheinherentphysicalmeaningfromthreeaspects,basingonthedifficultiesofthe developmentofphysicsin1920s.Asamonparticletheoryofthecompleterelativequantum mechanics,Dirac'Sequationboostedtheestablishmentanddevelopmentofquantumelectro — dynamicsandquantumfieldtheory. KeyWordsDirac;relativequantummechanics;scientificmeaning 1科学背景

相关文档
最新文档