第4章 数字集成电路的基本单元电路1

第4章  数字集成电路的基本单元电路1
第4章  数字集成电路的基本单元电路1

数字集成电路设计_笔记归纳..

第三章、器件 一、超深亚微米工艺条件下MOS 管主要二阶效应: 1、速度饱和效应:主要出现在短沟道NMOS 管,PMOS 速度饱和效应不显著。主要原因是 TH G S V V -太大。在沟道电场强度不高时载流子速度正比于电场强度(μξν=) ,即载流子迁移率是常数。但在电场强度很高时载流子的速度将由于散射效应而趋于饱和,不再随电场 强度的增加而线性增加。此时近似表达式为:μξυ=(c ξξ<),c s a t μξυυ==(c ξξ≥) ,出现饱和速度时的漏源电压D SAT V 是一个常数。线性区的电流公式不变,但一旦达到DSAT V ,电流即可饱和,此时DS I 与GS V 成线性关系(不再是低压时的平方关系)。 2、Latch-up 效应:由于单阱工艺的NPNP 结构,可能会出现VDD 到VSS 的短路大电流。 正反馈机制:PNP 微正向导通,射集电流反馈入NPN 的基极,电流放大后又反馈到PNP 的基极,再次放大加剧导通。 克服的方法:1、减少阱/衬底的寄生电阻,从而减少馈入基极的电流,于是削弱了正反馈。 2、保护环。 3、短沟道效应:在沟道较长时,沟道耗尽区主要来自MOS 场效应,而当沟道较短时,漏衬结(反偏)、源衬结的耗尽区将不可忽略,即栅下的一部分区域已被耗尽,只需要一个较小的阈值电压就足以引起强反型。所以短沟时VT 随L 的减小而减小。 此外,提高漏源电压可以得到类似的效应,短沟时VT 随VDS 增加而减小,因为这增加了反偏漏衬结耗尽区的宽度。这一效应被称为漏端感应源端势垒降低。

4、漏端感应源端势垒降低(DIBL): VDS增加会使源端势垒下降,沟道长度缩短会使源端势垒下降。VDS很大时反偏漏衬结击穿,漏源穿通,将不受栅压控制。 5、亚阈值效应(弱反型导通):当电压低于阈值电压时MOS管已部分导通。不存在导电沟道时源(n+)体(p)漏(n+)三端实际上形成了一个寄生的双极性晶体管。一般希望该效应越小越好,尤其在依靠电荷在电容上存储的动态电路,因为其工作会受亚阈值漏电的严重影响。 绝缘体上硅(SOI) 6、沟长调制:长沟器件:沟道夹断饱和;短沟器件:载流子速度饱和。 7、热载流子效应:由于器件发展过程中,电压降低的幅度不及器件尺寸,导致电场强度提高,使得电子速度增加。漏端强电场一方面引起高能热电子与晶格碰撞产生电子空穴对,从而形成衬底电流,另一方面使电子隧穿到栅氧中,形成栅电流并改变阈值电压。 影响:1、使器件参数变差,引起长期的可靠性问题,可能导致器件失效。2、衬底电流会引入噪声、Latch-up、和动态节点漏电。 解决:LDD(轻掺杂漏):在漏源区和沟道间加一段电阻率较高的轻掺杂n-区。缺点是使器件跨导和IDS减小。 8、体效应:衬底偏置体效应、衬底电流感应体效应(衬底电流在衬底电阻上的压降造成衬偏电压)。 二、MOSFET器件模型 1、目的、意义:减少设计时间和制造成本。 2、要求:精确;有物理基础;可扩展性,能预测不同尺寸器件性能;高效率性,减少迭代次数和模拟时间 3、结构电阻:沟道等效电阻、寄生电阻 4、结构电容: 三、特征尺寸缩小 目的:1、尺寸更小;2、速度更快;3、功耗更低;4、成本更低、 方式: 1、恒场律(全比例缩小),理想模型,尺寸和电压按统一比例缩小。 优点:提高了集成密度 未改善:功率密度。 问题:1、电流密度增加;2、VTH小使得抗干扰能力差;3、电源电压标准改变带来不便;4、漏源耗尽层宽度不按比例缩小。 2、恒压律,目前最普遍,仅尺寸缩小,电压保持不变。 优点:1、电源电压不变;2、提高了集成密度 问题:1、电流密度、功率密度极大增加;2、功耗增加;3、沟道电场增加,将产生热载流子效应、速度饱和效应等负面效应;4、衬底浓度的增加使PN结寄生电容增加,速度下降。 3、一般化缩小,对今天最实用,尺寸和电压按不同比例缩小。 限制因素:长期使用的可靠性、载流子的极限速度、功耗。

《数字集成电路基础》试题C

《数字集成电路基础》试题C (考试时间:120分钟) 班级:姓名:学号:成绩: 一、填空题(共30分) 1.三极管有NPN和PNP两种类型,当它工作在放大状态时,发射结____,集电 结______;NPN型三极管的基区是______型半导体,集电区和发射区是______型半导体。 2.把高电压作为逻辑1,低电平作为逻辑0的赋值方法称作_______逻辑赋 值。一种电路若在正逻辑赋值时为与非门,则在负逻辑赋值时为________。 3.四位二进制编码器有____个输入端;____个输出端。 4.将十进制数287转换成二进制数是________;十六进制数是_____ __。 5.根据触发器功能的不同,可将触发器分成四种,分别是____触发器、___ _触发器、____触发器和____触发器。 3=______。 A.发射结和集电结均处于反向偏置 B.发射结正向偏置,集电结反向偏置 C.发射结和集电结均处于正向偏置 2.在下列三个逻辑函数表达式中,____是最小项表达式。 A.B C ) A BC ,B ,A = + Y+ ( A B B ) A B ,A ( C B = B. C Y+ A

C. C AB ABC B C A C B A )D ,C ,B ,A (Y +++??= 3.用8421码表示的十进制数45,可以写成__________ A .45 B. [101101]BCD C. [01000101]BCD D. [101101]2 4.采用OC 门主要解决了_____ A .TTL 与非门不能相与的问题 B. TTL 与非门不能线与的问题 C. TTL 与非门不能相或的问题 5.已知某触发的特性表如下(A 、B 为触发器的输入)其输出信号的逻辑表达式为___ A . Q n+1 =A B. n n 1n Q A Q A Q +=+ C. n n 1n Q B Q A Q +=+ 三、化简下列逻辑函数,写出最简与或表达式:(共20分) 1. BC A C B A C B B A Y 1+?++= 2. Y 2=Σm (0,1,8,9,10,11) 3. Y 3见如下卡诺图

#《数字集成电路设计》复习提纲

《数字集成电路设计》复习提纲(1-7章) 2011-12 1. 数字集成电路的成本包括哪几部分? ● NRE (non-recurrent engineering) costs 固定成本 ● design time and effort, mask generation ● one-time cost factor ● Recurrent costs 重复性费用或可变成本 ● silicon processing, packaging, test ● proportional to volume ● proportional to chip area 2. 数字门的传播延时是如何定义的? 一个门的传播延时tp 定义了它对输入端信号变化的响应有多快。 3. 集成电路的设计规则(design rule)有什么作用? ? Interface between designer and process engineer ? Guidelines for constructing process masks ? Unit dimension: Minimum line width ? scalable design rules: lambda parameter (可伸缩设计规则,其不足:只能在有限 的尺寸范围内进行。) ? absolute dimensions (micron rules,用绝对尺寸来表示。) 4. 什么是MOS 晶体管的体效应? 5. 写出一个NMOS 晶体管处于截止区、线性区、饱和区的判断条件,以及各工作区的源漏电流表达式(考虑短沟效应即沟道长度调制效应,不考虑速度饱和效应) 注:NMOS 晶体管的栅、源、漏、衬底分别用G 、S 、D 、B 表示。 6. MOS 晶体管的本征电容有哪些来源? 7. 对于一个CMOS 反相器的电压传输特性,请标出A 、B 、C 三点处NMOS 管和PMOS 管各自处于什么工作区? V DD 8. 在CMOS 反相器中,NMOS 管的平均导通电阻为R eqn ,PMOS 管的平均导通电阻为R eqp ,请写出该反相器的总传播延时定义。 9. 减小一个数字门的延迟的方法有哪些?列出三种,并解释可能存在的弊端。 ? Keep capacitances small (减小CL ) ? Increase transistor sizes(增加W/L) ? watch out for self-loading! (会增加CL ) ? Increase VDD (????) V out V in 0.5 11.522.5

数字集成电路复习指南..

1. 集成电路是指通过一系列特定的加工工艺,将晶体管、二极管、MOS管等有源器件和阻、电容、电感等无源器件,按一定电路互连,“集成”在一块半导体晶片(硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能的一种器件。 2.集成电路的规模大小是以它所包含的晶体管数目或等效的逻辑门数目来衡量。等效逻辑门通常是指两输入与非门,对于CMOS集成电路来说,一个两输入与非门由四个晶体管组成,因此一个CMOS电路的晶体管数除以四,就可以得到该电路的等效逻辑门的数目,以此确定一个集成电路的集成度。 3.摩尔定律”其主要内容如下: 集成电路的集成度每18个月翻一番/每三年翻两番。 摩尔分析了集成电路迅速发展的原因, 他指出集成度的提高主要是三方面的贡献: (1)特征尺寸不断缩小,大约每3年缩小1.41倍; (2)芯片面积不断增大,大约每3年增大1.5倍; (3)器件和电路结构的改进。 4.反标注是指将版图参数提取得到的分布电阻和分布电容迭加到相对应节点的参数上去,实际上是修改了对应节点的参数值。 5.CMOS反相器的直流噪声容限:为了反映逻辑电路的抗干扰能力,引入了直流噪声容限作为电路性能参数。直流噪声容限反映了电流能承受的实际输入电平与理想逻辑电平的偏离范围。 6. 根据实际工作确定所允许的最低输出高电平,它所对应的输入电平定义为关门电平;给定允许的最高输出低电平,它所对应的输入电平为开门电平 7. 单位增益点. 在增益为0和增益很大的输入电平的区域之间必然存在单位增益点,即dV out/dVin=1的点 8. “闩锁”现象 在正常工作状态下,PNPN四层结构之间的电压不会超过Vtg,因 此它处于截止状态。但在一定的外界因素触发下,例如由电源或 输出端引入一个大的脉冲干扰,或受r射线的瞬态辐照,使 PNPN四层结构之间的电压瞬间超过Vtg,这时,该寄生结构中就 会出现很大的导通电流。只要外部信号源或者Vdd和Vss能够提供 大于维持电流Ih的输出,即使外界干扰信号已经消失,在PNPN四 层结构之间的导通电流仍然会维持,这就是所谓的“闩锁”现象 9. 延迟时间: T pdo ——晶体管本征延迟时间; UL ——最大逻辑摆幅,即最大电源电压; Cg ——扇出栅电容(负载电容); Cw ——内连线电容; Ip ——晶体管峰值电流。

数字集成电路教学大纲

《数字集成电路》课程教学大纲 课程代码:060341001 课程英文名称:digital integrated circuits 课程总学时:48 讲课:44 实验:4 上机:0 适用专业:电子科学与技术 大纲编写(修订)时间:2017.05 一、大纲使用说明 (一)课程的地位及教学目标 数字集成电路是为电子科学与技术专业开设的学位课,该课程为必修专业课。课程主要讲授CMOS数字集成电路基本单元的结构、电气特性、时序和功耗特性,以及数字集成电路的设计与验证方法、EDA前端流程等。在讲授基本理论的同时,重在培养学生的设计思维以及解决实际问题的能力。通过本课程的学习,学生将达到以下要求: 1.掌握CMOS工艺下数字集成电路基本单元的功能、结构、特性; 2.掌握基于HDL设计建模与仿真、逻辑综合、时序分析;熟悉Spice模型; 3.具备将自然语言描述的问题转换为逻辑描述的能力; 4. 具有解决实际应用问题的能力。 (二)知识、能力及技能方面的基本要求 1.基本知识:CMOS数字集成电路设计方法与流程;CMOS逻辑器件的静态、动态特性和Spice 模型;数字集成电路的时序以及互连线问题;半导体存储器的种类与性能;数字集成电路低功耗解决方法以及输入输出电路;数字集成电路的仿真与逻辑综合。 2.基本理论和方法:在掌握静态和动态CMOS逻辑器件特性基础上,理解CMOS数字集成电路的特性和工作原理;掌握真值表、流程图/状态机、时序图的分析方法和逻辑设计的基本思想。 3.基本技能:掌握器件与系统的建模仿真方法;具备逻辑描述、逻辑与时序电路设计能力;熟悉电路验证与综合软件工具。 (三)实施说明 1.教学方法:课堂讲授中要重点对基础概念、基本方法和设计思路的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;增加习题和讨论课,并在一定范围内学生讲解,调动学生学习的主观能动性;注意培养学生提高利用网络资源、参照设计规范及芯片手册等技术资料的能力。讲课要联系实际并注重培养学生的创新能力。 2.教学手段:本课程属于技术基础课,在教学中采用电子教案、CAI课件及多媒体教学系统等先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。 3.计算机辅助设计:要求学生采用电路建模语言(SPICE/HDL)和仿真模拟工具软件进行电路分析与设计验证;采用逻辑综合工具软件进行电路综合;采用时序分析工具进行时序验证。(四)对先修课的要求 本课程主要的先修课程有:大学物理、电路、线性电子线路、脉冲与逻辑电路、EDA技术与FPGA应用、微机原理及应用,以及相关的课程实验、课程设计。 (五)对习题课、实践环节的要求 1.对重点、难点章节(如:MOS反相器静态特性/开关特性和体效应、组合与时序MOS电路、动态逻辑电路、数字集成电路建模与仿真验证、数字集成电路逻辑综合)应安排习题课,例题的选择以培养学生消化和巩固所学知识,用以解决实际问题为目的。 2.课后作业要少而精,内容要多样化,作业题内容必须包括基本概念、基本理论及分析设

数字集成电路必备考前复习总结

Digital IC:数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路 或系统 第一章引论 1、数字IC芯片制造步骤 设计:前端设计(行为设计、体系结构设计、结构设计)、后端设计(逻辑设计、电路设计、版图设计) 制版:根据版图制作加工用的光刻版 制造:划片:将圆片切割成一个一个的管芯(划片槽) 封装:用金丝把管芯的压焊块(pad)与管壳的引脚相连 测试:测试芯片的工作情况 2、数字IC的设计方法 分层设计思想:每个层次都由下一个层次的若干个模块组成,自顶向下每个层次、每个模块分别进行建模与验证 SoC设计方法:IP模块(硬核(Hardcore)、软核(Softcore)、固核(Firmcore))与设计复用Foundry(代工)、Fabless(芯片设计)、Chipless(IP设计)“三足鼎立”——SoC发展的模式 3、数字IC的质量评价标准(重点:成本、延时、功耗,还有能量啦可靠性啦驱动能力啦 之类的) NRE (Non-Recurrent Engineering) 成本 设计时间和投入,掩膜生产,样品生产 一次性成本 Recurrent 成本 工艺制造(silicon processing),封装(packaging),测试(test) 正比于产量 一阶RC网路传播延时:正比于此电路下拉电阻和负载电容所形成的时间常数 功耗:emmmm自己算 4、EDA设计流程 IP设计系统设计(SystemC)模块设计(verilog) 综合 版图设计(.ICC) 电路级设计(.v 基本不可读)综合过程中用到的文件类型(都是synopsys版权): 可以相互转化 .db(不可读).lib(可读) 加了功耗信息

《数字集成电路基础》试题D

《数字集成电路基础》试题D (考试时间:120分钟) 班级: 姓名: 学号: 成绩: 一、填空题(共30分) 1. 当PN 结外加正向电压时,PN 结中的多子______形成较大的正向电流。 2. NPN 型晶体三极管工作在饱和状态时,其发射结和集电结的外加电压分别处于_ _____偏置和_______偏置。 3. 逻辑变量的异或表达式为:_____________________B A =⊕。 4. 二进制数A=1011010;B=10111,则A -B=_______。 5. 组合电路没有______功能,因此,它是由______组成。 6. 同步RS 触发器的特性方程为:Q n+1 =______,其约束方程为:______。 7. 将BCD 码翻译成十个对应输出信号的电路称为________,它有___个 输入端,____输出端。 8. 下图所示电路中,Y 1 Y 3 =______。 二、选择题(共 20分) 1. 四个触发器组成的环行计数器最多有____个有效状态。 A.4 B. 6 C. 8 D. 16 2. 逻辑函数D C B A F +=,其对偶函数F * 为________。 A .( )()D C B A ++ B. ()()D C B A ++ C. ()()D C B A ++ 3. 用8421码表示的十进制数65,可以写成______。 A .65 B. [1000001]BCD C. [01100101]BCD D. [1000001]2 1 A B 3

4. 用卡诺图化简逻辑函数时,若每个方格群尽可能选大,则在化简后的最简表达式 中 。 A .与项的个数少 B . 每个与项中含有的变量个数少 C . 化简结果具有唯一性 5. 已知某电路的真值表如下,该电路的逻辑表达式为 。 A .C Y = B. A B C Y = C .C AB Y += D .C C B Y += 三、化简下列逻辑函数,写出最简与或表达式:(共20分) 1. 证明等式:AB B A B A B A +?=+ 2. Y 2=Σm (0,1,2,3,4,5,8,10,11,12) 3. Y 3=ABC C AB C B A C B A +++? 四、分析设计题 (共 30分)

数字集成电路基础试题E

《数字集成电路基础》试题E (考试时间:120分钟) 班级:姓名:学号:成绩: 一、填空题(共30分) 1.PN结具有单向导电性。正向偏置时,多子以 __________________运动为主, 形成正向电流;反向偏置时,少子____________________运动,形成反向饱电流。 2.双极型晶体三极管输出特性曲线的三个工作区是放大区、_____、___ __。 3.已知三态与非门输出表达式C AB F? =,则该三态门当控制信号C为___电平时,输出为高阻态。 4.十进制数211转换成二进制数是______;十六进制数是_______。 5.将若干片中规模集成电路计数器串联后,总的计数容量为每片计数容量的__ __。 6.若用触发器组成某十一进制加法计数器,需要____个触发器,有__个无 效状态。 7.同步RS触发器的特性方程为Q n+1=____________;约束方程为_______ __。8.下图所示电路中,Y1=__________;Y2=___________ _;Y3=____________。 二、选择题(共 18分) 1. 下列函数中,是最小项表达式形式的是_________。 A. Y=A+BC B. Y=ABC+ACD C. C B A C B A Y+ ? = D. BC A C B A Y+ ? = 2.要实现n 1 n Q Q= +,JK触发器的J、K取值应为_____。 A. J=0,K=0 B. J=0,K=1 C. J=1,K=0 D. J=1,K=1 3.数值[375]10与下列哪个数相等___。 A. [111011101]2 B. [567]8 C. [11101110]BCD D. [1F5]16 4.属于组合逻辑电路的是___________ A.触发器 B. 全加器 C. 移位寄存器 D. 计数器 B 2 B V CC Y1

数字集成电路设计流程

《ic设计流程与使用工具介绍》 我认为IC设计流程按照功能和应用场合不同大致可以划分为三个部分进行介绍,分别是数字IC、模拟IC和FPGA。这三者之间既有相同点又有相异点。在进行设计时,所使用的软件工具也有相同和不同的。 1、数字Asic设计流程前端到后端使用工具 通用型数字Asic(从上到下) 在验证算法时一般使用C语言或者verilog来对系统算法进行建模,使用行为级描述来对算法功能的正确与否进行仿真。一般比较常用的方法是使用C语言在Matlab软件环境下进行算法验证。 算法验证完成之后,需要进行的工作就是将算法转化为对应的行为级或者寄存器传输级描述,并且对其进行功能仿真验证。在该阶段可以使用的工具有很多,常用的有Active—HDL、Mentor的Modelsim 系列软件和QuestaSim系列(前者使用三个核进行仿真,后者使用一个核,因此后者可以对不同语言环境下的描述进行混合仿真)。 完成功能仿真之后需要进行的工作就是根据foundry提供的标准数字单元工艺库,对前面得到的表述一定功能的代码进行综合,得到代码对应的由标准单元库中的门电路组成的实际电路映射。在综合的过程中,要根据设计规范来制定各种约束以使综合得到的电路映射能够满足设计的要求,同时也要注意综合报告中所给出的违反约束的各个信息,并且利用这些信息来修改代码或者算法。在综合的过程中使用的工具最主要是Synopsys的DC和PC。 做完综合之后,利用综合得到的实际电路映射、时序约束与foundry提供的与版图有关的工艺库就可以进行自动布局布线的操做了。此时常用的软件有Synopsys的ASTRO和Cadence的Se工具。 自动布局布线完成后就可以根据产生的版图文件信息提取寄生参数来进行包含寄生参数与互联延迟的后仿真了。一般常用的寄生参数提取工具有A V ANTI的STAR-RC和Cadence的DRECULA或Diva,两者都需要将自动布局布线得到的版图和工艺库文件导入软件中进行寄生参数提取。Cadence的软件还可以通过导入版图,来对自动布局布线得到的版图中不满意的地方进行修补。 寄生参数提取结束后将得到的寄生参数信息与自动布局布线得到的网表导入PT进行包含寄生参数的时序参数提取,然后利用所提取的时序参数在底层网表中反标进行后仿真,观察后仿真的时序是否满足设计规范的要求。如果满足则设计基本完成,不满足还需要进行迭代修改。产生反标需要的时序文件的软件是PT,而将时序反标文件反标回综合后的网表并且进行后仿真的软件比较多,比如Modelsim 和Nclaunch(NC主要针对大型系统,而Modelsim则主要是针对小的设计,因为前者的工作平台是工作站后者是PC)。 全定制数字Asic或者混合信号ASIC(从下到上与从上到下结合) 当需要制作全定制的数字芯片时,传统的从上到下的设计流程就不完全奏效了。其中最大的不同就是全定制芯片为了实现更小的体积与功耗,更高的集成度将可能不采用厂家提供的标准数字单元库而是通过与foundry沟通自己设计满足自己需要的工艺库。比如Xilinx的FPGA芯片的设计采用的就是全定制的设计方法。 对于全定制设计而言,也需要采用算法验证、功能描述与仿真验证、综合、寄生参数提取与后仿真的过程,但是相对通用型Asic的设计而言,在做后仿真时全定制可以使用模拟仿真的方法进行后仿真而不需要进行时序反标的过程,因为在设计全定制Asic时使用的不是foundry提供的标准数字工艺库而是根据设计需要自己设计的数字工艺库。因此对于全定制的Asic设计而言,它的后仿真需要采用foundry提供的标准模拟库,由于不使用时序的反标而采用模拟仿真的方法后仿真得到最终版图对应信息,因此耗时可能比设计通用型的Asic更长。 全定制设计流程的使用软件有,算法验证与功能仿真的软件同通用型使用的基本相同。但是在综合这

集成电路设计基础

集成电路设计基础复习提纲 一EDA常用命令 ls 显示当前目录下的文件和路径。Pwd显示当前文件的绝对路径.。Cd进入指定目录。More显示文件内容。Cp拷贝。Mkdir创建目录。tar 打包。zip压缩。unzip解压。ftp传送文件。 二基本概念 1版图设计 CIW命令解释窗口, Library 库,Reference Library相关库, Library Path库路径,Cell单元,View视图,Techfiler.tf工艺文件, cds.lib库管理文件, techfile.cds ASCII 文件,LSW图层选择窗口,display.drf图层显示文件。LayerPurpose Pair层次用途配对,Cellview Attributes and Properties单元视图属性,Instance单元,Snap Mode 光标按钮画线条或图形的模型。Stream。数据流(一个标准数据格式用在cad系统间传递物理设计数据) parameterized cells,参数化单元。Flatten,打平 设计方法 1 CIC设计流程 ①设计规划。②建库。③原理图输入。④电路仿真。⑤单元模块版图。⑥TOP 版图。⑦验证。⑧输出GDSII。⑨制掩膜。⑩流片封装测试。 2CIC建库的步骤,工艺文件和显示文件的使用。 建库进入设计项目所在的文件夹,打开名利窗口输入icfb,在ciw菜单栏中选择file-creat-creat new library,选择要连接的Techfiler.tf或者选择相应库作为链接库,后根据指示完成余下的操作 工艺文件p1-40说明图层连接,等效连接,不可被重叠,自动布线,设计规则等情况 ciw-technology-file-dump ,design,layout definations,ascll 命名.Tf,ok;/techpurposes /techlayers;/techdisplays;/techlayerpurposepriorities(图层目的优先);:q!(保存退出):wq!(写后保存退出);/ptap File-load 显示文件的使用:在显示资源编辑窗口里编辑并保存(display。drf)长期有效 添加新包,先编辑显示文件再在显示资源编辑窗口里编辑其填充等;file—save;tools-display resources-mergefile;分配图层目的配对。 3单元版图绘图方法及编辑基本方法, 新建,根据设计要求选择图层用不同的绘图命令绘制和按参数编辑、连接,测试4绘图及编辑常用命令的使用: Create— Rectangle 。create-rectangle left点拉升点 Instance、create-instance(名字不可改)填写库cell view 坐标等 Path、create-path 1点2点+回车/双击 Pcell、edit-hierarchy(分层)-make cell 填写,画长方形区域,ok Polygon、create- Polygon(F3),选择图层,点,点等,回车 Conics create-arc,点,点,点回车

数字集成电路设计课程教学大纲

数字集成电路设计课程教学大纲 英文名称:Digital Integrated Circuits 课程编码:B09062 课程类别:必修 学分数:48 学时数(理论、实验分别表示):48/0 周学时:3 课内学时/课外学时:1/1 授课学期:第六学期 适用专业:电子科学与技术 先修课程:微电子物理基础、数字电路与系统 考核方式:闭卷考试 一、教学目的要求。 本课程是电子科学与技术专业四年制本科生的一门必修课。通过学习,使学生能掌握数字CMOS 集成电路的基本原理及其分析与设计方法,了解集成电路的发展动态,初步熟悉集成电路的设计流程。 二、课程主要内容及基本要求。(标“*”者为重点内容;标“△”者为难点)(一)TTL集成电路 分析:TTL集成电路的基本电路。 (二)TTL集成电路版图设计*△ TTL集成电路版图设计规则、设计要求。 (三)NMOS逻辑集成电路 NMOS的直流特性、瞬态特性和功耗。 (四)CMOS逻辑电路△* CMOS逻辑门的构成特点;CMOS与非门和或非门的分析及其设计;组合逻辑电路的设计;类NMOS电路;传输门逻辑电路计。 (五)MOS集成电路版图设计△ MOS集成电路版图设计、设计要求。

(六)双极电路的基本器件结构 双极电路的基本器件结构、应用举例。 (七)MOS电路的基本器件结构* MOS电路的基本器件结构、举例分析。 (八)MOS电路的分析△* MOS电路的直流分析、交流分析等。 (九)版图设计*△ VLSI的设计方法;门阵列和标准单元设计方法;版图设计。 三、课程主要环节及时数分配见下表: 四、教学的深度与广度 通过本课程的授课,使学生掌握双极和MOS两种工艺条件下的数字电路的设计和分析方法。分析部分包括器件结构、电气参数和电路功能的分析;设计部分包括双极和MOS基本组合电路和时序电路的设计及其对应的版图设计。五、对知识、能力结构、综合素质的要求 了解数字集成电路的设计与分析,包括TTL集成电路、TTL集成电路版图设计、NMOS逻辑集成电路、CMOS逻辑电路、MOS集成电路版图设计、对双

数字集成电路知识点整理

Digital IC :数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路或系统 第一章 引论 1、数字IC 芯片制造步骤 设计:前端设计(行为设计、体系结构设计、结构设计)、后端设计(逻辑设计、电路设计、版图设计) 制版:根据版图制作加工用的光刻版 制造:划片:将圆片切割成一个一个的管芯(划片槽) 封装:用金丝把管芯的压焊块(pad )与管壳的引脚相连 测试:测试芯片的工作情况 2、数字IC 的设计方法 分层设计思想: 每个层次都由下一个层次的若干个模块组成, 自顶向下 每个层次、每个模块分别进行建模与验证 SoC 设计方法:IP 模块(硬核(Hardcore)、软核(Softcore)、固核(Firmcore ))与设计复用 Foundry (代工)、Fabless (芯片设计)、Chipless (IP 设计)“三足鼎立”——SoC 发展的模式 3、 数字IC 的质量评价标准(重点:成本、延时、功耗,还有能量啦可靠性啦驱动能力啦之类的) NRE (Non-Recurrent Engineering) 成本 设计时间和投入,掩膜生产,样品生产 一次性成本 Recurrent 成本 工艺制造(silicon processing ),封装(packaging ),测试(test ) 正比于产量 一阶RC 网路传播延时:正比于此电路下拉电阻和负载电容所形成的时间常数 功耗:emmmm 自己算 4、EDA 设计流程 IP 设计 系统设计(SystemC ) 模块设计(verilog ) 版图设计(.ICC) 电路级设计(.v 基本不可读) 综合过程中用到的文件类型(都是synopsys 版权): .db

5大规模数字集成电路习题解答

自我检测题 1.在存储器结构中,什么是“字”什么是“字长”,如何表示存储器的容量 解:采用同一个地址存放的一组二进制数,称为字。字的位数称为字长。习惯上用总的位数来表示存储器的容量,一个具有n字、每字m位的存储器,其容量一般可表示为n ×m位。 2.试述RAM和ROM的区别。 解:RAM称为随机存储器,在工作中既允许随时从指定单元内读出信息,也可以随时将信息写入指定单元,最大的优点是读写方便。但是掉电后数据丢失。 ROM在正常工作状态下只能从中读取数据,不能快速、随时地修改或重新写入数据,内部信息通常在制造过程或使用前写入, 3.试述SRAM和DRAM的区别。 解:SRAM通常采用锁存器构成存储单元,利用锁存器的双稳态结构,数据一旦被写入就能够稳定地保持下去。动态存储器则是以电容为存储单元,利用对电容器的充放电来存储信息,例如电容器含有电荷表示状态1,无电荷表示状态0。根据DRAM的机理,电容内部的电荷需要维持在一定的水平才能保证内部信息的正确性。因此,DRAM在使用时需要定时地进行信息刷新,不允许由于电容漏电导致数据信息逐渐减弱或消失。 4.与SRAM相比,闪烁存储器有何主要优点 解:容量大,掉电后数据不会丢失。 ) 5.用ROM实现两个4位二进制数相乘,试问:该ROM需要有多少根地址线多少根数据线其存储容量为多少 解:8根地址线,8根数据线。其容量为256×8。 6.简答以下问题: (1)CPLD和FPGA有什么不同 FPGA可以达到比CPLD更高的集成度,同时也具有更复杂的布线结构和逻辑实现。FPGA更适合于触发器丰富的结构,而CPLD更适合于触发器有限而积项丰富的结构。 在编程上FPGA比CPLD具有更大的灵活性;CPLD功耗要比FPGA大;且集成度越高越明显;CPLD比FPGA有较高的速度和较大的时间可预测性,产品可以给出引脚到引脚的最大延迟时间。CPLD的编程工艺采用E2 CPLD的编程工艺,无需外部存储器芯片,使用简单,保密性好。而基于SRAM编程的FPGA,其编程信息需存放在外部存储器上,需外部存储器芯片,且使用方法复杂,保密性差。 (2)写出三家CPLD/FPGA生产商名字。 Altera,lattice,xilinx,actel 7.真值表如表所示,如从存储器的角度去理解,AB应看为地址,F0F1F2F3应看为数据。 表

《数字集成电路》期末试卷A(含答案)

浙江工业大学 / 学年第一学期 《数字电路和数字逻辑》期终考试试卷 A 姓名 学号 班级 任课教师 一、填空题(本大题共10小题,每空格1分,共10分) 请在每小题的空格中填上正确答案。错填、不填均无分。 1.十进制数(68)10对应的二进制数等于 ; 2.描述组合逻辑电路逻辑功能的方法有真值表、逻辑函数、卡诺图、逻辑电路图、波形图和硬件描述语言(HDL )法等,其中 描述法是基础且最直接。 3.1A ⊕可以简化为 。 4.图1所示逻辑电路对应的逻辑函数L 等于 。 A B L ≥1 & C Y C 图1 图2 5.如图2所示,当输入C 是(高电平,低电平) 时,AB Y =。 6.两输入端TTL 与非门的输出逻辑函数AB Z =,当A =B =1时,输出低电平且V Z =0.3V ,当该与非门加上负载后,输出电压将(增大,减小) 。 7.Moore 型时序电路和Mealy 型时序电路相比, 型电路的抗干扰能力更强。 8.与同步时序电路相比,异步时序电路的最大缺陷是会产生 状态。 9.JK 触发器的功能有置0、置1、保持和 。 10.现有容量为210×4位的SRAM2114,若要将其容量扩展成211×8位,则需要 片这样 的RAM 。 二、选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 11.十进制数(172)10对应的8421BCD 编码是 。 【 】 A .(1111010)8421BCD B .(10111010)8421BCD C .(000101110010)8421BC D D .(101110010)8421BCD 12.逻辑函数AC B A C B A Z +=),,(包含 个最小项。 【 】

数字集成电路基础知识

功耗延时积(PDP ):功耗和延时的乘积一般为常数 NMOS 和PMOS 阈值电压和体效应系数均分别为正值和负值 若GS V 不变,MOSFET 随着DS V 的增大进入的所处的状态: 长沟道器件:亚阈值区(弱反型)— 线性区—饱和区(强反型) 短沟道器件:亚阈值区(弱反型)— 线性区 — 速度饱和区 — 饱和区(强反型) 在饱和区长沟道器件的GS V 与DS I 成平方关系,短沟道器件GS V 与DS I 成线性关系 中点电压M V = '( )()N P W kn L W kn L =,又'2n p kn kn μμ==, 保证( )W L 之比为0.5才能保证中点电压在1 2DD V 处,达到对称反相器设计的要求 上升时间是从0.1DD V 到0.9DD V 的时间, 2.2r t τ=最大信号频率1 max r f f t t = + 上升和下降延时用来描述输入输出本身的逻辑改变的快慢,传播延时则是输入逻辑传播到输出逻辑的时间,是输入和输出0.5DD V 翻转点时间的延迟平均值 0.69pr t τ= N 输入与非门M V = N 输入或非门M V = 用m 倍尺寸的N 输入NAND 可以写成:

012pu r r L N t t C m α+= + 0(1)nu f f L N t N t C m α=++ 用m 倍尺寸的N 输入NOR 可以写成: 0(1)pu r r L N t N t C m α=++ 012nu f f L N t t C m α+=+ 逻辑努力:电容对参照电容的比值 in ref C g C = ,(1)ref Gn C r C =+ 电气努力:输出电容与输入电容的比值 out in C h C = 路径延时D :各个分支归一化延时的和,11()N N i i i i i i D d g h p ====+∑∑ 路径逻辑努力:1N i i G g ==∏ 路径的电气努力:1N i i H h ==∏ 路径努力:112212()()...()...N N N F GH g h g h g h f f f === 分支努力:off C +=T path path path C C b C C = =节点上总电容 主逻辑路径电容 路径分支努力:1N i i B b ==∏ 修正F GHB =

数字集成电路——电路、系统与设计

数字集成电路——电路、系统与设计 目录 第一部分基本单元 第1章引论 1.1 历史回顾 1.2 数字集成电路设计中的问题 1.3 数字设计的质量评价 1.4 小结 1.5 进一步探讨 第2章制造工艺 2.1 引言 2.2 CMOS集成电路的制造 2.3 设计规则——设计者和工艺工程师之间的桥梁 2.4 集成电路封装 2.5 综述:工艺技术的发展趋势 2.6 小结 2.7 进一步探讨 设计方法插入说明A——IC版图 第3章器件 3.1 引言 3.2 二极管 3.3 MOS(FET)晶体管 3.4 关于工艺偏差 3.5 综述:工艺尺寸缩小 3.6 小结 3.7 进一步探讨 设计方法插入说明B——电路模拟 第4章导线 4.1 引言 4.2 简介 4.3 互连参数——电容、电阻和电感 4.4 导线模型 4.5 导线的SPICE模型 4.6 小结 4.7 进一步探讨 第二部分电路设计 第5章CMOS反相器 5.1 引言 5.2 静态CMOS反相器——直观综述 5.3 CMOS反相器稳定性的评估——静态特性 5.4 CMOS反相器的性能——动态特性 5.5 功耗、能量和能量延时 5.6 综述:工艺尺寸缩小及其对反相器衡量指标的影响 5.7 小结 本文由https://www.360docs.net/doc/de842150.html,整理提供

5.8 进一步探讨 第6章CMOS组合逻辑门的设计 6.1 引言 6.2 静态CMOS设计 6.3 动态CMOS设计 6.4 设计综述 6.5 小结 6.6 进一步探讨 设计方法插入说明C——如何模拟复杂的逻辑电路 设计方法插入说明D——复合门的版图技术 第7章时序逻辑电路设计 7.1 引言 7.2 静态锁存器和寄存器 7.3 动态锁存器和寄存器 7.4 其他寄存器类型 7.5 流水线:优化时序电路的一种方法 7.6 非双稳时序电路 7.7 综述:时钟策略的选择 7.8 小结 7.9 进一步探讨 第三部分系统设计 第8章数字IC的实现策略 8.1 引言 8.2 从定制到半定制以及结构化阵列的设计方法 8.3 定制电路设计 8.4 以单元为基础的设计方法 8.5 以阵列为基础的实现方法 8.6 综述:未来的实现平台 8.7 小结 8.8 进一步探讨 设计方法插入说明E——逻辑单元和时序单元的特性描述 设计方法插入说明F——设计综合 第9章互连问题 9.1 引言 9.2 电容寄生效应 9.3 电阻寄生效应 9.4 电感寄生效应 9.5 高级互连技术 9.6 综述:片上网络 9.7 小结 9.8 进一步探讨 第10章数字电路中的时序问题 10.1 引言 10.2 数字系统的时序分类 本文由https://www.360docs.net/doc/de842150.html,整理提供

电子技术相关 《数字集成电路基础》作业答案

《数字集成电路基础》作业答案 第一次作业 1、查询典型的TTL与CMOS系列标准电路各自的VIH、VIL、VOH和VOL, 注明资料出处。 2、简述摩尔定律的内涵,如何引领国际半导体工艺的发展。 第二次作业 1、说明CMOS电路的Latch Up效应;请画出示意图并简要说明其产生原因; 并简述消除“Latch-up”效应的方法。 答:在单阱工艺的MOS器件中(P阱为例),由于NMOS管源与衬底组成PN结,而PMOS 管的源与衬底也构成一个PN结,两个PN结串联组成PNPN结构,即两个寄生三极管(NPN 和PNP),一旦有因素使得寄生三极管有一个微弱导通,两者的正反馈使得电流积聚增加,产生自锁现象。 影响:产生自锁后,如果电源能提供足够大的电流,则由于电流过大,电路将被烧毁。 消除“Latch-up”效应的方法:版图设计时:为减小寄生电阻Rs和Rw,版图设计时采用双阱工艺、多增加电源和地接触孔数目,加粗电源线和地线,对接触进行合理规划布局,减小有害的电位梯度;工艺设计时:降低寄生三极管的电流放大倍数:以N阱CMOS为例,为降低两晶体管的放大倍数,有效提高抗自锁的能力,注意扩散浓度的控制。为减小寄生PNP管的寄生电阻Rs,可在高浓度硅上外延低浓度硅作为衬底,抑制自锁效应。工艺上采用深阱扩散增加基区宽度可以有效降低寄生NPN管的放大倍数;具体应用时:使用时尽量避免各种串扰的引入,注意输出电流不易过大。 2、什么是器件的亚阈值特性,对器件有什么影响? 答:器件的亚阈值特性是指在分析MOSFET时,当Vgs

数字集成电路设计_复习要点

《数字集成电路设计》课程复习要点 一、CMOS逻辑设计 1. 开关与逻辑,高、低电平有效; 2. MOSFET如何实现两种开关,进而实现逻辑关系MOSFET作为开关的非理想特性;为何用CMOS实现开关逻辑;CMOS逻辑实质上均为反向门。 3. 基本逻辑门:非、与及或的电路结构; 4. 组合逻辑门:AOIAOI 、OAIOAI 及XORXOR 的逻辑函数、电路结构及应用;的逻辑函数、电路结构及应用; 5. 传输管、传输门的构成及特点,二选一逻辑函数电路、应用。 二、MOSFET 物理与特性 1. 半导体集成电路基本材料构、作用; 2. 半导体的定义、特性载流子及电类型; 3. MOSFET的基本结构、类型及开关特点,MOSFET的阈值电压、IV 特性(工作区域、输出特性曲线等) 5. 了解MOSFET缩小尺寸的原因,按比例方式缩小尺寸的原因; 6. MOSFET的开关特性:电容电阻来源、RC 模型; 7. CMOS物理结构,MOSFET的器件模型概念,器件模型的分类。 三、CMOS IC制造工艺 1. IC 工艺的基本任务; 2. 各层材料的生长与淀积; 3. 光刻的基本流程; 4. CMP 工艺的概念和特点。

四、基本逻辑门分析 1. 反相器的直流特性:逻辑摆幅、电压传输及参数,反相器VTC中MOSFET 的工作状态变化、反相器噪声容限,反相器中点电压计算以及与器件比的关系; 2. 反相器的开关特性:反相器的开关状态、上升时间(下降时间)定义与计算、传播延迟的定义,RC 参数、负载电容对延迟的影响; 3. 与非门(或非门)的直流特性:电路结构、版图、VTC、中点电压及功耗; 4. 与非门(或非门)的开关特性:电路模型、上升(下降)时间及扇入扇出对延迟的影响; 5. 逻辑门尺寸设计原则、方法。 五、组合逻辑电路 1. 静态CMOS电路与动态CMOS电路、有比与无的区别; 2. 静态CMOS电路的设计步骤,延迟的计算; 3. 准NMOS电路的结构、特点、设计方法; 4. 动态CMOS电路的结构、特点,设计方法,了解其信号完成性问题; 5. 多米诺逻辑:特点、单元构成,能够分析各部的作用,逻辑链工作时序; 6. DCVSL电路的特点,基本逻辑门设计。 六、高速CMOS逻辑电路设计 1. 逻辑门延时的优化方法; 2. 反相器链设计方法; 3.逻辑努力、电路努力及路径努力的概念,优化目标、优化步骤,理解不同逻辑门组成的逻辑链延迟优化方法和过程;

相关文档
最新文档