聚合物太阳能电池

文献综述 ——GaAsSb热光伏电池

文献综述 ——GaAsSb热光伏电池开路电的优化仿真分析 1. 引言 1.1 热光伏技术 当前,能源问题已经越来越成为制约人类社会进步和发展的阻力,而现在大规模使用的化石能源,由于其不可再生和对环境的高污染性,使得开发可持续的绿色能源已经是迫在眉睫。作为一种新颖的能源利用方法,热光伏电池(thermophotovoltaic,TPV)的研究始于上世纪60年代,但是由于当时理论和工艺水平的限制,直到90年代末开始才又重新引起了人们的重视。 相比较于太阳能光伏电池,热光伏电池系统首先是具有较高的系统效率和输出能量密度,这主要因为热光伏电池后端的光伏电池的带宽能量要小一些,这样在同等的温度条件下,系统的效率和能量密度会比较高。另外,热光伏电池系统中热发射源离后端光伏电池的距离也相对于太阳能光伏电池离太阳的距离要近得多,所以这样就减少了能量在传播路径上的传递损失,而增大了能量利用的效率。另外,热光伏电池系统的噪音也比较低,并且没有移动的部件,因而可以便携使用。还有,热光伏电池系统的热源也很广泛,除过常规的太阳能外,各种工业废热、余热以及附加热等都可以作为热光伏电池系统的热量来源[1],所以热光伏电池系统的性能受天气和环境的影响不大。近年来,随着微细加工技术的发展,人们有可能去制造微型的热光伏电池系统去取代传统的化学电池作为工业和科技界的能源,因而热光伏电池系统必将是未来微型电力系统研究的重点方向之一。 一般来讲,热光伏电池系统就是一种通过光伏电池把热辐射源辐射的热能转化成电能的静态能量转换器件[2]。典型的热光伏电池系统包括一个前端的热辐射源,一个后端的光伏电池和位于它们之间的光谱控制元件,如光谱滤波器等。 整个热光伏电池系统的工作原理是:首先是热源的热量直接加到热辐射源上,然后热辐射源辐射出的能量到达滤波片,接着滤波片过滤掉能量小于PV 电池带宽能量的低能光子,而使得大于PV电池带宽能量的高能光子到达PV电池,最后PV电池由于光生伏特效应产生光生电子,而电子以电流的方式输出到外电路作为电源使用[3]。由于滤波片不可能是理想的,所以那些到达PV电池的不能产生电子的低能光子的能量将作为热损耗损失掉。

(完整版)量子点太阳能电池简介

量子点太阳能电池简介 摘要:量子点太阳能电池是第三代太阳能电池,也是目前最尖端、最新的太阳能电池之一,这种电池在使用半导体材料的普通太阳能电池之中,引入了纳米技术与量子力学理论,尽管目前尚没有制作出这种超高转换效率的实用化太阳能电池,但是大量的理论计算和实验研究已经证实,量子点太阳能电池将会在未来的太阳能转换中显示出巨大的发展前景。简述了量子点太阳能电池的物理机理及研究内容。 关键词:量子点,太阳能电池,机理 随着人类面临的环境与能源问题的持续恶化,加强环境保护和开发清洁能源是人类高度关注的焦点。因此,近年来人们对太阳能开发和利用的研究进展极为迅速。作为一种重要的光电能量转换器件,太阳能电池的研究一直受到人们的热切关注。 太阳能电池可以分为两大类:一类是基于半导体p-n结中载流子输运过程的无机固态太阳能电池;另一类则是基于有机分子材料中光电子化学过程的光电化学太阳能电池。单晶GaAs太阳能电池、晶体Si太阳能电池和Si基薄膜太阳能电池属于第一类,而染料敏化太阳能电池和聚合物太阳能电池属于第二类。第一类太阳能电池已经产业化或商业化,而第二类太阳能电池正处于研究与开发之中。目前太阳能电池存在能耗高、光电转换效率低等缺点。尽管人们已采用各种方法使太阳能电池的转换效率得到了一定改善,但尚不能使其大幅度提高。找到一种更有效的途径或对策,使太阳能电池的实际能量转换效率接近其理论预测值,成为材料物理、光伏器件与能源科学的一项重大课题。 量子点是指三维方向尺寸均小于相应物质块体材料激子的德布罗意波长的纳米结构。理论研究指出,采用具有显著量子限制效应和分立光谱特性的量子点作为有源区设计和制作的量子点太阳能电池,可以使其能量转换效率获得超乎寻常的提高,其极限值可以达到66%左右,而目前太阳能电池的主流晶体硅技术的光电转换效率理论上最多仅为30%。尽管目前尚没有制作出这种超高转换效率的实用化太阳能电池,但是大量的理论计算和实验研究已经证实,量子点太阳能电池将会在未来的太阳能转换中显示出巨大的发展前景。 1 量子点太阳能电池的物理机理 人们针对太阳能电池存在的能耗高、光电转换率低等缺点,提出了三套解决方案[1]:1)增加带隙数量,制作多带隙叠层太阳能电池;2)热载流子冷却前进行俘获;3)一个高能光子产生多个电子空穴对或者多个低能光子产生一个高能电子空穴对。目前,方案1已经得到实际应用,后两套方案基于量子点产生的量子限制效应正处于研究之中。 半导体量子点太阳能电池作为第三代太阳能电池具有潜在的优势,它通过以下两个效应可以大大增加光电转换效率:第一个效应是来自具有充足能量的单光子激发产生多激子;第二个效应是在带隙里形成中间带,可以有多个带隙起作用,来产生电子空穴对。这两个效应的产生是因为量子点中的能级量子化。能级量子化还会产生其它效应:减缓热电子-空穴对的冷却;提高电荷载流子之间的俄歇复合过程和库仑耦合;并且对于三维限制的载流子,动量不再是一个好量子数,跃迁过程不必满足动量守恒。提高转换效率的两种基本的方式(增加光电压或者增加光电流)理论上在三维量子点太阳能电池的结构中能够实现。 1.1 量子点多激子太阳能电池的机理

有机太阳能电池实验报告

有机太阳能电池实验报告 实验项目名称P3HT-PC61BM 体异质结聚合物太阳能 电池器件制作与性能测试 实验日期 指导老师 实验者 学号 专业班级 第一部分:实验预习报告 一、实验目的 通过在实验室现场制作P3HT-PC61BM 聚合物体异质结太阳能电池器件以及开展电池性能测试,了解有机太阳能电池的制作工艺与流程,熟悉相关的加工处理与分析测试设备工作原理与使用方法,加深对有机太阳能电池的感性认识,提高学生的实际操作能力,培养学生对科学研究的兴趣。 二、实验仪器 电子分析天平、加热磁力搅拌器、超声仪、紫外臭氧清洗系统、旋涂仪、 惰性气体操作系统、真空蒸镀系统、太阳光模拟器、数字源表、台阶仪 三、实验要求 1、严格按照实验室要求与规范开展实验,未经允许不得随意触摸或按动设备开关或按钮以及设备控制系统。 2、实验期间保持室内安静,保持实验室内清洁卫生。 3、熟悉有机太阳能电池加工与测试相关设备、原理与方法。 四、实验内容与实验步骤 1.聚合物体异质结加工溶液的配制(活性层P3HT:PCBM 溶液的配制) 在手套箱外称取所需的P3HT 5、6mg 与PCBM 5、6mg,混合好装入带有磁子的5mL 瓶子中,转移到手套箱中;用一次性注射器吸取0、33mL oDCB(邻二氯苯)溶剂,配成17mg mL-1的溶液,放到加热台(加热台需要 5 分钟的稳定时间)上,设置温度为85℃,搅拌1h 后,冷却至室温待用。 2.导电玻璃表面清洁与处理。 A.首先确认ITO 面,用万用电表(打到Ω档)测试其表面电阻,有电阻的一面为ITO,在其反面的边缘处刻‘上’字(见下图)。将ITO 依次放到去离子水、丙酮与异丙醇中超声清洗10 分钟。每次超声完毕,用镊子取出ITO,用同样的溶剂反复冲洗两面三次,之后用氮气枪迅速吹干,立刻放到盛有下一种溶剂的容器中清洗。最后将用氮气枪吹干的ITO 转移到六孔板中转移至紫外/臭氧清洗机(操作详见其说明)中,将ITO面朝上,表面清洁处理10 分钟后,将ITO 取出并置于六孔板中待旋涂PEDOT:PSS(ITO 面朝下)。

太阳能电池发展现状综述

太阳能电池发展现状综述 摘要:随着社会的发展,传统能源消耗殆尽,能源越来越收到重视。其中发展前景最为广阔的莫过于太阳能。太阳能绿色环保,因此逐渐受到了人们的普遍重视。太阳能已成为新能源领域最具活力的部分,世界各国都致力于发展太阳能。本文主要阐述了太阳能电池的发展历程,太阳能电池的种类,太阳能电池的现状以及发展前景. 关键词:太阳能电池;太阳能电池种类;发展现状; Narration on the Current Situation of Solar Battery Abstract:With the development of society, traditional energy will be used up in a short time.Eneygy are being payed more and more attention.And the solar energy is the most promising.Because of its’environmental protection,it gets widespread attention. Solar energy has become the most vibrant part among the new energy field,and all countrise tried their best to develop solar energy.This article mainly explains the development of solar battery,the types of solar battery,curent situation of solar battery and its’ prospect. Key Words:solar battery; types of solar battery; curent situation of solar battery 1引言 随着经济的发展,能源的重要性日趋凸显。但是石油、煤等不可生起源消耗殆尽,人们开始探索新的能源。太阳能取之不尽用之不竭,因此受到了人们的亲睐。在太阳能电池领域中,太阳能的光电利用是近些年来发展最快、最具活力的研究领域[1].太阳能电池的研制和开发日益得到重视.制作太阳能电池主要是以半导体材料为基础.其工作原理是利用光电材料吸收光能后发生的光电子转化反应。根据所用材料的不同,太阳能电池可分为:①硅太阳能电池;②以无机盐如砷化镓Ⅲ一V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;③纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:①半导体材料的禁带不能太宽;②要有较高的光电转换效率;③材料本身对环境不造成污染;④材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料[2].这也是太阳能电池以硅材料为主的主要原因. 本文简要地综述了太阳能电池发展进程,太阳能电池的种类,以及发展现状,并讨论了太阳能电池的发展趋势。 2太阳能电池现状及其前景

有机聚合物太阳能电池中二元和三元组分给体- 受体(D-A)型聚合物的性能研究

Material Sciences 材料科学, 2018, 8(1), 1-10 Published Online January 2018 in Hans. https://www.360docs.net/doc/de9758638.html,/journal/ms https://https://www.360docs.net/doc/de9758638.html,/10.12677/ms.2018.81001 Comparative Investigation of Binary and Ternary Donor-Acceptor Conjugated Polymer for Photovoltaic Application Xuejiao Wang1, Weijuan Xu1, Jianjun Wang1, Jianyu Yuan2 1Department of Materials Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Jiangsu 2Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou Jiangsu Received: Dec. 4th, 2017; accepted: Dec. 21st, 2017; published: Jan. 4th, 2018 Abstract Narrow band gap D-A conjugated polymer P1 and D1-A-D2-A ternary conjugated polymer P2 with regioregular backbone structure were designed and synthesized. By precisely controlling the ar-rangement of the third building block, the polymer properties can be comprehensively and deli-cately tuned, resulting in more balanced optical bandgap and highest occupied molecular orbital (HOMO) energy levels, planar structure and strong intermolecular packing. Here, the influence of third unit on material microcosmic and macrocosmic properties was examined exclusively. By using [70]PCBM as the electron acceptor, the optimized polymer solar cells without any additive demonstrated an increased open circuit voltage (V oc), short-circuit current density (J sc) and fill factor (FF) in ternary polymer P2 based device, and a best PCE of 5%, which is significantly en-hanced in comparison with D-A polymer P1 based device. Our results highlight the importance of ternary molecular designing strategy and may achieve control of desirable device properties by optimizing molecular structure in the future. Keywords Ternary Conjugated Polymers, Polymer Solar Cells, Morphology 有机聚合物太阳能电池中二元和三元组分给体-受体(D-A)型聚合物的性能研究 王雪娇1,徐炜娟1,王建军1,袁建宇2 1苏州大学材料与化学化工学部,江苏苏州

异质结太阳能电池综述

异质结太阳能电池研究现状 一、引言: 进入21世纪,传统的化石能源正面临枯竭,人们越来越认识到寻求可再生能源的迫切性。据《中国新能源与可再生能源发展规划1999白皮书统计,传统化石能源随着人们的不断开发已经趋于枯竭的边缘,各种能源都只能用很短的时间,石油:42年,天然气:67年,煤:200年。而且,由于大量过度使用这些能源所造成的环境污染问题也日益严重,每年排放的二氧化碳达210万吨,并呈上升趋势,二氧化碳的过度排放是造成全球气候变暖的罪魁祸首;空气中大量二氧化碳、粉尘含量已严重影响人们的身体健康和人类赖以生存的自然环境。正是因为这些问题的存在,人们需要一种储量丰富的洁净能源来代替石油等传统化石能源。而太阳能作为一种可再生能源正符合这一要求。太阳能每秒钟到达地面的能量高达80万千瓦,若把地球表面0.1%的太阳能转为电能,转变率5%,每年发电量就可达5.6×1012千瓦小

时。而我国太阳能资源非常丰富,理论储量达每年1700亿吨标准煤,太阳能资源开发利用的前景非常广阔。在太阳能的有效利用中,太阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。太阳能电池的研制和开发日益得到重视。本文简要地综述了各种异质结太阳能电池的种类及其国内外的研究现状。 二、国外异质结太阳能电池 1、TCO/TiO2/P3HT/Au三明治式结构的p-n异质结的太阳能电池 2005年5月份,Kohshin Takahashi等发表了TCO/TiO2/P3HT/Au三明治式结构的p-n异质结的太阳能电池,电池结构如图1。 图1 ITO/PEDOT:PSS/CuPc/PTCBI/Al结构太阳能电池 简图 图2 TCO/TiO2/P3HT/Au电池结构示意图 同时采用了卟啉作为敏化剂吸收光子,产生的电子注入

有机太阳能电池简介

有机太阳能电池简介 随着社会的发展,能源危机在近几十年变得越来越突出,传统的化石能源有着随时枯竭的危险,同时化石能源的使用造成的环境污染也越来越突出。在此背景之下,寻找可代替的新能源成为当下研究的热点,而在众多备选的替代者中,太阳能电池由于其清洁性,可持续性等优点得到了大量的关注。 在1954年贝尔实验室制作了光电转化效率达6%的太阳能电池,标志着商业化太阳能电池研究的开始。到20世纪70年代,用于卫星的半导体硅太阳能的光电转化效率已达到15%~20%。但硅系列太阳能电池材料纯度要求很高且制作工艺复杂,因此成本高,难以大规模生产。其它类型半导体材料的太阳能电池因存在材料来源及工艺等问题也同样难以得到推广。而有机太阳能电池以其材料来源广泛、制作成本低、耗能少、可弯曲、易于大规模生产等突出优势显示了其巨大开发潜力,成为近十几年来国内外各高校及科研单位研究的热点。但有机太阳能电池从其诞生以来,一直面临着效率低下的问题,至今为止,在实验室内的效率才刚刚突破10%,与硅太阳能电池相距甚远,因此提高电池效率是有机太阳能电池的主要研究方向。 一.有机太阳能电池原理及构造 1有机太阳能电池的光生电原理 对于一个有机OPV(有机太阳能电池),其基本原理就是利用光电材料的光生伏特效应产生电流,其基本的物理过程如图一所示。不同于无机材料能直接吸收光子产生自由电子,有机光敏材料在吸收光子之后会产生一个激子对,即电子空穴对,必须使激子解离之后才能形成光电流。而解离产生的电子必须到达电极才能对器件的光电流产生贡献。也就是说,产生光电流需要经过吸收光子,产生激子,激子解离扩散,电极收集这些过程,这一过程相比较无机材料要困难的多,这也造成OPV的光电转化效率一直不高。

有机太阳能电池

2 有机太阳能电池综述 2.1有机太阳能电池材料简述 对于有机太阳能电池材料可以简单地分为两类,一类是小分子材料,另一类是聚合物材料。严谨一些的分法可以大致分为以下五类:⑴有机小分子化合物; ⑵有机大分子化合物;⑶D-A二元体系;⑷模拟叶绿素分子结构材料;⑸有机无机杂化体系。但鉴于本论文的工作内容和研究深度,在这里只对前面简单分类作主要介绍。 2.1.1小分子材料 有机小分子光电转换材料大部分是一些含共轭体系的染料分子,它们能够很好地吸收可见光从而表现出很好的光电转换性质。它们具有化合物结构可设计性、材料质量轻、生产成本低、加工性能好、便于制备大面积太阳能电池等优点。主要的小分子材料有酞菁[3]、卟啉[4-6]和苝菁[7,8]等,现简单介绍如下:酞菁类化合物是典型的p型有机半导体,具有离域的平面大π键,600~800nm 的光谱区域内有较大吸收。其合成已经工业化,是太阳能电池中很受重视、研究得最多的一类材料。这几十年来,人们主要研究了从金属酞菁在金属电极尤其是铂电极上的光电效应,探讨了如中心金属离子、掺杂及环境气氛等影响金属酞菁光伏效应的多种因素,到金属酞菁在无机半导体如ZnO、CdS、SnO2等上面的光伏效应。 卟啉由4个吡咯环通过亚甲基相连形成的具有18个π电子的共轭大环化合物,其中心的氮原子与金属原子配位形成金属卟啉衍生物。卟啉和金属卟啉都是高熔点的深色固体,多数不溶于水和碱,但能溶于无机酸,溶液有荧光,有非常好的光、热稳定性。卟啉体系最显著的化学特性是其易与金属离子生成1:1配合物,卟啉与元素周期表中各类金属元素(包括稀土金属元素)的配合物都已经得到。 苝属于n型半导体材料,其吸收范围在500nm左右,其在可见光区有强吸收。单线态电子从染料注入半导体的导带的速度通常比三线态快。菁染料是一种双极性分子,属p型半导体,是良好的光导体,在溶液中具有良好的溶解度。在光激发下,份菁分子的电荷分离效率较高。不过,菁染料存在稳定性差的缺陷。 此外,其它有机小分子材料还有:方酸类化合物[9,10]、罗丹明、并四苯等。

太阳能电池关于温度的综述

关于硅和砷化镓太阳能电池组件在热性能方面的综述 摘要: 本综述总结了近年来在结晶和非晶硅太阳能电池组件领域获得的温度性能。它给出了一个通用的结果分析和评论的应用程序构建集成光伏(PV)热系统,将光能转化成电能,热能等。空气冷却和水冷却以及“混合式”光伏热太阳能收集器也被提及到。本文还包括非晶硅太阳能模块在塑料薄膜,薄膜太阳能电池等方面的灵活应用以及对将来这方面的展望。其主要包括对光伏模块传热机制的实验结果的分析。 关键词:太阳能电池;光伏;太阳能;能量转换;混合系统 目录 1.介绍﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒408 1.1.太阳能电池早期研究的回顾﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒408 1.2.半导体硅和砷化镓的温度上限﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒410 2.高温太阳能电池和组件的影响:理论背景﹒﹒﹒﹒﹒﹒﹒﹒﹒411 2.1.热对硅太阳能电池的输出参数的影响﹒﹒﹒﹒﹒﹒﹒﹒41

1 2.2.硅太阳能电池的温度系数﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒411 2.2.1.短路电流﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒411 2.2.2.暗电流﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒412 2.2.3.开路电压﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒412 2.2.4.输出功率﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒412 2.3.照明光源对输出参数的影响﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒4 13 3.光伏热电混合太阳能系统﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 413 3.1.空气冷却﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒414 3.2.水冷却﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒414 3.2.1.冷却组件中的输出温度﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒

硅基太阳能电池的发展及应用

.. 硅基太阳能电池的发展及应用 摘要:太阳能电池是缓解环境危机和能源危机一条新的出路,本文介绍了硅基太阳能电池的原理,综述了硅基太阳电池的优点与不足,以及硅基太阳能电池和其他太阳能电池的横向比较,硅基太阳能电池在光伏产业中的地位,并展望了发展趋势及应用前景等。 关键词:硅基太阳能电池转换效率 1引言 二十一世纪以来,全球经济增长所引发的能源消耗达到了空前的程度。传统的化石能源是人类赖以生存的保障,可是如今化石能源不仅在满足人类日常生活需要方面捉襟见肘,而且其燃烧所排放的温室气体更是全球变暖的罪魁祸首。随着如今全球人口突破70亿,能源的需求也在过去30年间增加了一倍。特别是电力能源从上世纪开始,在总能源需求中的比重增长迅速。中国政府己宣布了其在哥本哈根协议下得承诺,至2020年全国单位国内生产总值二氧化碳排放量比2005年下降40% --45%,非化石能源占一次能源消费的比重提高至少15%左右【6】。 目前太阳能电池主要有以下几种:硅太阳能电池,聚光太阳能电池,无机化合物薄膜太阳能电池,有机化合物薄膜太阳能电池,纳米晶薄膜太阳能电池,叠层薄膜太阳能电池等,其材料主要包括产生光伏效应的半导体材料,薄膜衬底材料,减反射膜材料等【5】。

(图1:太阳能电池的种类) 太阳电池的基本工作原理是:在被太阳电池吸收的光子中,那些能量大于半导体禁带宽度的光子,可以使得半导体中原子的价电子受到激发,在p区、空间电荷区和n区都会产生光生电子左穴对,也称光生载流子。这样形成的光生载流子由于热运动,向各个方向迁移。光生载流子在空间电荷区中产生后,立即被内建电场分离,光生电子被推进n区,光生空穴被推进p区。因此,在p-n结两侧产生了正、负电荷的积累,形成与内建电场相反的光生电场。这个电场除了一部分要抵消内建电场以外,还使p型层带正电,n型层带负电,因此产生了光生电动势,这就是光生伏特效应(简称光伏)。

能源产业中的高分子之聚合物太阳能电池

能源产业中的高分子之聚合物太阳能电池 刘大柯 摘要由于环境污染和能源危机日益加重,太阳能在能源产业中异军突起,成为能源领域的新星。太阳能是一种理想的新能源,清洁、干净、无污染,其储量巨大,取之不尽,用之不竭,充满了诱人的前景。将太阳能转换为电能是解决环境污染和能源危机的重要途径之一,因此各类太阳能电池的研发和推广在世界各国备受关注。在目前商品化的太阳能电池市场中,尽管无机晶体硅太阳能电池占据主导地位,但聚合物太阳能电池因其独特的优势已成为太阳能电池研发的重要方向之一。柔性聚合物太阳能电池具有质轻、制作工艺简单、成本低等特点,现已成为近年太阳能利用方面研究的热点。有机太阳能电池是实现将太阳能直接转变为电能的最有前景的器件之一。文章综述了聚合物太阳能电池的基本原理,器件构型,电池材料及制备工艺,最后对柔性光伏器件的应用前景和商业化趋势进行了展望。 关键词能源聚合物太阳能电池工作原理给体受体 0.引言 新世纪以来,随着我国国民经济的快速发展,能源消费总量也在急速增长2011年我国能源消费总量已达34.8×108t标准煤[1],与美国相当。。庞大的能源消费总量给我国的“能源安全供应体系”和“环境保护工作”带来了沉重的压力。一方面,由于自有能源不能满足消费需求,我国有大量能源需要从国外进口,据海关总署统计,2011年我国石油和煤炭的进口量分别达到2.53×108t和1.82×108t[2],能源供应的整体“对外依存度”较高。另一方面,在我国能源消费结构中,近90%是传统化石能源[3]。这些化石能源在燃烧利用过程中向大气层及自然环境排放大量的温室气体、有毒有害物质和粉尘,严重影响了人们的生命安全和健康。当前,探索和开发其他新兴能源利用方式,解决日益严重的能源短缺和环境污染等问题,成为我国社会各界共同关注的话题。 在诸多新兴能源利用方式中,太阳能光伏发电被认为是最有前途的方式之一。然而目前占主导地位的光伏技术主要基于无机硅材料,其高昂的材料制备成本以及高能耗的加工工艺限制了它的广泛应用,并且其生产过程中的产生的大量副产物四氯化硅对于环境污染极大。聚合物太阳能电池制造成本低廉、材料质量轻、加工性能好,可以利用先进的卷对卷以及喷涂打印技术进行大规模生产,并具有柔性,可以加工成为半透明器件,易于携带,生产过程中能耗低,环境污染少[4],因此其具有更加广阔的应用前景。

太阳能电池的工作原理、工作效率、制造太阳能的材料及大致构造

引言太阳能是人类取之不尽用之不竭的可再生能源.也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。为此,人们研制和开发了太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:1、半导体材料的禁带不能太宽;②要有较高的光电转换效率:3、材料本身对环境不造成污染;4、材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它村料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 1 硅系太阳能电池 1.1 单晶硅太阳能电池硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是*单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCV D)和等离子增强化学气相沉积(PECVD)工艺。此外,液相外延法(LPPE)和

有机太阳能电池

有机太阳能电池 摘要有机太阳能电池因具有成本低、质轻、柔韧性好、可大面积印刷制备的优点而受到广泛关注,对电池原理,结构,材料的研究对提高有机太阳能电池的性能有重大意义。本文主要综述了有机太阳能电池的工作原理,电池结构以及电极材料。并对有机太阳能电池的应用前景做了展望。 关键词原理;结构;材料;应用前景 1.有机太阳能电池简介 有机太阳能电池,顾名思义,就是由有机材料构成核心部分的太阳能电池。主要是以具有光敏性质的有机物作为半导体的材料,以光伏效应而产生电压形成电流, 实现太阳能发电的效果.由于无机硅太阳能电池的材料生产成本高,污染大、能耗高,寻找新型太阳能电池材料和低成本制造技术便成为人们研究太阳能电池技术的目标。有机太阳能材料和电池制备技术有望成为低成本制造的选择之一。 世界上第一个有机光电转化器件是由Kearns和Calvin在1958年制备的,其主要材料为镁酞菁(MgPc)染料,染料层夹在两个功函数不同的电极之间。1986年,行业内出现了一个里程碑式的突破——有机半导体的发明。器件的核心结构是由四羧基苝的一种衍生物(PV)和铜酞菁(CuPc)组成的双层膜。双层膜的本质是一个异质结,其思路是用两种有机半导体材料来模仿无机异质结太阳能电池。1992年,土耳其人Sariciftci在美国发现,激发态的电子能极快地从有机半导体分子注入到C60分子中,而反向的过程却要慢得多。1993年,Sariciftci在此发现的基础上制成PPV/C60双层膜异质结太阳能电池。随后,研究人员在此类太阳能电池的基础上又提出了一个重要的概念:混合异质结(体异质结)。而所谓“混合异质结”,就是将给体材料和受体材料混合起来,通过共蒸或者旋涂的方法制成一种混合薄膜。给体和受体在混合膜里形成一个个单一组成的区域,在任何

有机光电材料综述资料

有机小分子电致发光材料在OLED的发展与应用的综述电致发光(electroluminescence,EL),指发光材料在电场的作用下,受到电流或电场激发而发光的现象,它是一个将电能直接转化为光能的一种发光过程。能够产生这种电致发光的物质有很多种,但目前研究较多而且已经达到实际应用水平的,主要还是无机半导体材料,无机 EL 器件的制作成本较高,制作工艺困难,发光效率低,发光颜色不易实现全色显示,而且由于很难实现大面积的平板显示,使得这种材料的进一步发展具有很严峻的局限性。由于现有的显示技术无法满足我们生产生活的需要,因此促使人们不断地寻求制备工艺成本更低、性能更好的发光材料。有机电致发光材料(organic light-emitting device,OLED)逐渐的进入了人们的视野,人们发现它是一种很有前途的、新型的发光器件。有机电致发光就是指有机材料在电流或电场的激发作用下发光的现象。根据所使用的有机材料的不同,我们将有机小分子发光材料制成的器件称为有机电致发光材料,即 OLED;而将高分子作为电致发光材料制成的器件称为高分子电致发光材料,即 PLED。不过,通常人们将两者笼统的简称为有机电致发光材料 OLED。 一.原理部分 与无机发光材料相比,有机电致发光材料具有很多优点:光程范围大、易得到蓝光、亮度大、效率高、驱动电压低、耗能少、制作工艺简单以及成本低。综上所述,有机电致发光材料在薄膜晶体管、

太阳能电池、非线性发光材料、聚合物发光二极管等方面存在巨大的需求,显示出广泛的应用前景,因而成为目前科学界和产业界十分热门的科研课题之一。虽然,世界上众多国家投入巨资致力于有机平板显示器件的研究与开发,但其产业化进程还远远低于人们的期望,主要原因是器件寿命短、效率低等。目前有很多关键问题没有解决:1. 光电材料分子结构、电子结构和电子能级与发光行为之间的关系,这是解决材料合成的可能性、调控材料发光颜色、色纯度、载流子平衡及能级匹配等关键问题的理论和实验依据; 2. 光电材料和器件的退化机制、器件结构与性能之间的关系、器件中的界面物理和界面工程等,这是提高器件稳定性和使用寿命的理论和实验基础,也是实现产业化、工业化的根本依据。 1.基态与激发态 “基态”在光物理和光化学中指的是分子的稳定态,即能量最低的状态。如果一个分子受到光或电的辐射使其能量达到一个更高的数值后,分子中的电子排布不完全遵从构造原理,这时这个分子即处于“激发态”,它的能量要高于基态。基态和激发态的不同并不仅仅在于能量的高低上,而是表现在多方多面,例如分子的构型、构象、极性、酸碱性等。在构型上主要表现在键长和二面角方面,与基态相比,激发态的一个电子从成键轨道或非成键轨道跃迁到反键轨道上,使得键长增长、键能级降低;同时,由于激发后共轭性也发生了变化,所以二面角即分子的平面性也发生了明显的改变。 2.吸收和发射

太阳能电池的研究与发展

太阳能电池的研究与发展 文献综述 摘要:能源是人类不可忽视的一个问题,因为它同我们的生活息息相关并且制约着未来经济的发展。面临非可再生能源被大规模地开采利用,其储量越来越少,总有枯竭之时这样一个现实问题,可再生能源显得尤为重要,因为可再生能源可以循环再生,不因长期使用而减少。而我国作为一个能耗大的国家,考虑到我国资源情况及国际环境和我国的环境状况,若到22世纪初不能用核能、太阳能等这些非化石能源代替化石能源,那么我们国家、我们民族的发展都会受到严重的影响。 太阳能具有环境友好、与之不尽用之不竭等特点,由此在可再生能源中的位置得以突显。而本文选择从光伏发电这个方面来说明太阳能电池的研究与发展。讲述了太阳能光伏发电的模式,输送方式及原理等。 关键词:太阳能;光伏发电;独立光伏发电;并网光伏发电;分布式光伏发电 1引言 能源是现今人类不得不考虑的一个重大问题,面临着严峻的能源形势和生态环境的恶化,人们对于绿色能源的需求显得迫切起来。改变现有能源结构、发展可持续发展的绿色能源已成为世界各国极为关注的课题。 化石燃料为不可再生能源,随着社会的进步与发展,人类对能源的需求量日益增大,所以化石燃料是无法满足的。除此之外,化石燃料煤、石油和天然气都是含碳元素的物质.其中还含硫元素等杂质。这些燃料燃烧时,会产生二氧化硫等污染空气的气体,燃料燃烧不充分,会产生一氧化碳和碳粒,加上未燃烧的碳氢化合物,如果直接排放到空气中必然对空气造成污染。因此,对于可再生能源的概念中最重要的要保证两点:第一,要求提供的可再生能源的源头是巨大的、无限制的。第二,从整体技术效率而言,要有明显的安全保障性。从这两点出发,显现了太阳能的利用在可再生能源中领域中的重要地位。 太阳能发电分光热发电和光伏发电。但不论产销量、发展速度和发展前景、光热发电都赶不上光伏发电。光伏发电设备极为精炼,可靠稳定寿命长、安装维护简便。理论上讲,光伏发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源可以无处不在。

聚合物太阳能电池材料的研究进展

课程名称:高等物理化学 论文题目:聚合物太阳能电池材料的研究进展姓名:廉萌 学号:3112106006

聚合物太阳能电池材料的研究进展 摘要:聚合物太阳能电池由于成本低廉、轻薄、材料分子结构的可设计性等优点成为近年来太阳能电池研究与开发的热点。但是,光电转化效率较低一直是制约此类电池商业化的关键问题。影响材料转化效率的因素主要为带隙的控制与出载流子的传输性能。本文介绍了聚合物太阳能电池的工作原理,结构,以及目前常见的几类分子材料,并对其应用现状与前景进行了展示。 关键字:聚合物太阳能电池工作原理结构受体材料给体材料 1.引言 有机太阳能电池,又称有机光伏电池。它是以有机半导体材料作为实现光电转化效应材料的太阳能电池。有机太阳能电池与无机太阳能电池的载流子产生过程不同。有机半导体材料吸收光子产生激子,激子再离解成自由载流子从而产生光电流。一般认为,有机太阳能电池的作用过程由三部分组成:(1)光激发产生激子;(2)激子再给体-受体界面解离;(3)电子和空穴的迁移及其在各自电极的收集,形成电流。其器件的结构图如图1所示: 图1-聚合物太阳能电池结构 从效率上看,目前的无机太阳能电池虽然早已达到应用标准,实现了产业化,但是发电成本高居不下,

因此限制了大规模推广。有机太阳能电池的出现将在不久的将来改变这一现象。因为能够在多种材质表面印制的有机太阳能电池不仅生产成本低,而且有机材料容易制成薄膜,甚至可以将有机薄膜制备在弯曲,乃至可折叠的基片上,便于制作成各种形状。制作方法简单,如可用涂布、喷墨打印等加工技术来制备。有机太阳能电池可广泛应用于通信、建筑、交通、照明等领域。例如用作手机太阳能充电电池;或直接贴在建筑物玻璃幕墙上,用于室内供电;甚至可以装在商店和居室户外的遮阳卷帘棚上,既可以遮阳,又可以供电。用于有机太阳能电池的有机半导体材料的另一个优点就是具有高的吸光效率。且吸收波长范围可通过分子结构的改变来调节,因此通常器件的活性层可以做到很薄,如约不到0.1μm的厚度即可达到光的完全吸收。这也是人们一直对有机分子材料寄予厚望的重要原因之一。 有机半导体材料的导电性能使其在制造薄型轻质电池、高分子聚合物电池方面有着极其广阔的应用前景。基于有机半导体材料的有机太阳能电池正在向能量转换效能的提升、器件寿命的延长及发展低成本制造技术的目标前进。一般认为,7%的转换效率是有机太阳能电池大规模商用的临界点。叠层型有机太阳能电池的理论转换效率高达15%。预计今后数年内,有机太阳能电池的能量转换效率可提高至10%以上,并将很快并大规模地进入商品化市场。如美国Konarka科技在德国法兰克福召开的有机半导体技术国际会议(OSC-08)上,该公司首席技术官ChristophBrabec介绍了正在开发之中的有机薄膜太阳能电池的前景,并乐观的表示“有机薄膜太阳能电池的电力转换效率达到20%不存在本质障碍”。 本综述将着重介绍有机聚合物光伏材料的研究进展。 2聚合物光伏材料 聚合物太阳能电池光伏材料主要包括电子给体和电子受体材料二大类,它们构成P/ N 结或本体异质结为此类电池的正常工作提供了保证。 受体材料 2.1.1 无机半导体纳米晶类受体材料 无机半导体纳米晶是一类常见的无机类电子受体。其作为电子受体材料与电子给体形成共混型的D/ A 型互穿网络结构综合了两种材料的优点,既利用了无机纳米晶载流子迁移率高、化学稳定性好,特别是某些纳米晶在近红外有较强吸收的特点,又保留了聚合物材料良好的柔韧性和可加工性。目前这方面的工作主要集中在对无机纳米晶CdS、Cdse、Zno、TiO2 等共混型器件的研究上。Alexi等用以主链含三苯胺的PAPPV 作为电子给体, TiO2作为电子受体制作了双层异质结电池。在100mW/ cm2 ( 435nm)光照射下,开路电压为0.85V, FF为0.52,能量转换效率达到了39% ,目前以ZnO做电子受体的电池的最高能量转换效率为1.60% 。人们在提高半导体纳米晶共轭聚合物混合型太阳能电池的性能方面取得了一定的进展,但由于半导体纳米晶在聚合物溶液中的分散性差、容易发生团聚,使得其能量转化效率还难以达到以PCBM 作为受体材料的器

有机太阳能电池原理及其前景展望

电子信息学院 《太阳能电池》 结业论文 有机太阳能电池原理及其前景展望

班级 姓名 学号 指导教师 日期2015.10

有机太阳能电池原理及其前景展望 *** (***) 摘要:俗话说,万物生长靠太阳,地球上的风能、水能、生物质能等等都来自于太阳;即使是化石燃料(如煤炭、石油、天然气等),从根本上说也是来自于太阳。如今,这些远古时期留下来的不可再生资源面临着枯竭的命运,如何寻找新的可替代能源成为当务之急,而太阳能以其清洁环保、资源丰富的特点成为其中一个选择,其中有机太阳能电池是实现将太阳能直接转变为电能的最有前景的器件之一。介绍了有机太阳能电池的基本原理,并对其应用前景做出了展望分析。 关键词:有机太阳能电池;原理;结构;转换效率;缺陷;优势 中图分类号:TM914.4文献标识码:A The Principle of Organic Solar Cells and its prospect *** (***) Abstract:As the saying goes, all living things depend on the sun for their growth, and on earth, wind, water, and biomass energy and so on from the sun;Even (fossil fuels such as coal, oil, natural gas, etc.), basically is from the sun.Today, the non-renewable resources of ancient times to stay face the fate of dried up, how to look for new alternative energy become priority, and the characteristics of solar energy with its clean environmental protection, resources become one of the options, including organic solar cells is the realization of the solar energy directly into electrical energy one of the most promising devices.This paper introduces the basic principle of organic solar cells, and to the analysis and outlook of its application prospect. Key words:organic solar cells;principle;structures;transfer efficiency;defect;superiority 0引言 现今能源问题是世界各国经济发展的首要问题,太阳能是未来最有希望的能源之一[1],

相关文档
最新文档