聚合物在有机太阳能电池中的应用

聚合物在有机太阳能电池中的应用
聚合物在有机太阳能电池中的应用

聚合物在有机太阳能电池中的应用

化学系冯长福214070208

摘要简单介绍了有机太阳能电池的工作原理、结构及其发展,在此之上,综述了近年来聚合物在有机太阳能电池中的应用。对聚合物作电子给体材料、受体材料和缓冲层材料进行详细的描述, 并阐述了进一步发展的重点和前景。

关键词聚合物, 有机太阳能电池, 给体材料, 受体材料,缓冲层

1.前言

21世纪人类面临的最大问题是什么?能源问题和环境污染,毫无疑问的是排在最前列的。随着社会的不断进步和人口的剧增,煤、石油、天然气等传统能源消耗速度也在不断的增加,据中国科学院院士、中国科学院能源研究委员会副主任严陆光的研究,地球数十万年积聚下来的石油、煤炭、天然气等化石能源,大体上可以为人类使用300年。根据现在探明的储量和消耗水平计算,石油可用30至50年,天然气可用60至80年,煤炭可用时间长一些,大约100至200年。另外,由于使用传统能源排放出大量二氧化碳和粉尘,并呈上升趋势,造成全球气候变暖,且粉尘含量已严重影响人们的身体健康和人类赖以生存的自然环境。因此,开发新型清洁、环保、可再生的绿色能源成为全球各界关注的热点。符合条件的能源有多种,如风能、水能、地热、潮汐、太阳能等,但由于太阳能具有取之不尽、用之不竭、不受地域限制这一突出优点,且兼具绿色能源的特点,成为人们近年来开发利用的最热点能源。

1.1 有机太阳能电池的发现

1938年,法国物理学家A.E.Becquerel发现,当光照射到一种带有电极的半导体材料上时产生了光生伏特效应,即“光伏效应”。1954年,美国贝尔实验室研制出第一块光电转换效率为6%的单晶硅太阳能电池[1],引起了人们的关注,从此人们对太阳能

电池进行了大量研究,主要有硅系太阳能电池的单晶硅、多晶硅、非晶硅太阳能电池,半导体化合物太阳能电池,染料敏化太阳能电池等。然而,它们因制作工艺复杂、成本高等缺点而显得美中不足。有机半导体材料以其原料易得、价格低廉、质量轻、可塑性强、制备工艺简单、可大面积成膜、环境稳定性高以及光伏效应良好等优点,近年来倍受人们关注。标志有机太阳能电池出现的是1958年美国加利福尼亚大学的David Kearns 和Melvin Calvin[2]将镁酞菁(MgPc)染料夹在两个功函数不同的电极之间,在光的照射下,接通两极的外电路即产生了电流。在此光电转化器件中,由于镁酞菁染料和两个功函数不同的电极接触属于肖特基接触,因此这种结构的电池就是最初的“肖特基有机太阳能电池”。

1.2 有机太阳能电池的工作原理和表征参数

有机太阳能电池的工作原理一般包括以下几个过程:

(1)在太阳光照下,能量大于有机半导体材料禁带宽度的光子首先被吸收,此时处于HOMO (材料的最高占据轨道)能级的电子会被激发到LUMO (材料的最低空置轨道)能级上,而与之相关联的空穴则占据轨道较低的HOMO 能级;

(2)形成的电子—空穴对之间的库仑力较大,它们会以束缚的形式存在,称为激子;

(3)当激子处于电场处或界面处时,在能级差的作用下这些激子就会分离形成自由的电子和空穴,并分别向阴极和阳极运动,形成光电流。

1.3有机太阳能电池的表征参数

理想太阳能电池的工作原理[3]可以用恒流源、理想二极管和电阻三个元件并联的等效电路来表示(见图1),当入射光照射到太阳能电池上时,经由恒流源G产生的光电流I L,一部分提供给二极管D使用(I D),另一部分则供给回路中负载总电阻R S使用(I S)。基于二极管的特征曲线图,通常在光照下得到太阳能电池工作的I V特性曲线

如图2所示.

图1理想太阳能电池工作的等效电路图2光照下太阳能电池的I-V特性曲线

表征太阳能电池的参数有:

(1)开路电压V OC:当太阳能电池的外接电路处于开路状态时,即图2中I-V特性曲线上I=0时的电压值;

(2)短路电流I SC:当太阳能电池外接电路的总电阻为零时,即图2中I-V特性曲线上V=0时的电流值;

(3)填充因子FF:填充因子FF定义为光电池能够提供的最大功率与I SC和V OC的乘积之比,对有机太阳能电池而言,FF代表电池对外所能提供的最大输出功率的能力大小,它是反映太阳能电池质量的重要光电参数之一。根据以上定义,FF的表达式为

式中P max为电流在负载上的最大输出功率,I m和V m分别为电池取最大功率时所对应的电流和电压;

(4)外量子效率EQE[4]:外量子效率(EQE)又被称为光电转换效率(IPCE),它代表注入一个光子时,光电流所能取出的最多电子数。其表达式为

式中EQE为外量子效率,Nphotos为注入的光子数,Nelectrons代表取出的电子数,λ 为入射光的波长,P in为入射光的功率。有机太阳能电池的光电转换效率(IPCE)又可以分解为[5]:

式中ηA是材料吸收光子的效率,ηED是所有未复合的光生激子扩散到结区的效率,ηCC是激子分离后生成的自由载流子传输至各自电极的效率;

(5)能量转化效率ηp[6]:太阳能电池的能量转换效率ηp为最大输出功率P out与单位面积入射光能量P in的比值,其表达式为

其中P out,P in分别为器件的最大输出功率和单位面积入射光能量,L为光照强度,A为有效面积。

1.4有机太阳能电池的结构

有机太阳能电池结构有单层Schottky 结构、双层异质结结构、本体异质结结构等。(1)单层Schottky 结构

单层Schottky 结构有机太阳能电池(图3)是由单层的有机半导体材料嵌入在两个电极之间构成的。

图3单层S CHOTTKY 有机太阳能电池的结构和工作原理

由于两个电极功函数不同,有机半导体与具有较低功函数电极之间将形成Schottky 势垒(能带弯曲区域W),即内建电场。光照下,有机半导体材料吸收光后产生激子。

由于较大的库仑力使得这些激子不能分离成自由电子和空穴。由于有机半导体内激子的扩散长度一般都很小,只有扩散到Schottky势垒附近的激子才有机会被分离,所以单层Schottky结构电池的能量转换效率很低,在目前的有机太阳能电池研究中很少再使用这种结构。

(2)双层异质结结构

在双层光伏器件中(见图4),给体和受体有机材料分层排列于两个电极之间,形成平面型给体- 受体界面。而且阳极功函数要与给体HOMO能级匹配;阴极功函数要与受体LUMO能级匹配,这样才有利于电荷收集。

Tang [7]最早采用这种双层结构,这种结构的激子分离效率要明显高于单层结构,从而使得器件的性能获得很大提升。双层结构被研究得较为广泛的主要是p/n 形式的结构[8-9],也有部分n/p形式的结构[10-11]。双层异质结结构中激子分离的驱动力是给体材料和受体材料的LUMO 能级之差,即激子在给体和受体界面的LUMO 能级之差的作用下分离[12],其电荷效率较高,自由电荷重新复合的机会也较低。层器件相比,双层器件的最大优点是同时提供子和空穴传输的材料。当激子在给体-受体界面产生电荷转移后,电子在n 型材料中传输至阴而空穴则在p 型材料中传输至阳极。

图4双层异质结有机太阳能电池的结构和工作原理

(3)本体混合异质结结构

常见的本体混合异质结有机太阳能电池的结构和工作原理如图5所示。

图5本体混合异质结有机太阳能电池的结构和工作原理

在本体混合异质结结构电池中,由于纳米尺度界面的存在,大大增加了给体- 受体接触面积,使得材料中产生的激子很容易扩散到给体- 受体界面并分离,从而提高了激子的分离效率,使电池性能进一步提高。Xue等[13] 在给体材料CuPc层和受体材料C60层之间用共蒸发的方法加入一层CuPc和C60的混合层,其中CuPc与C60的质量比为1:1。与简单的异质结电池相比,这种电池的性能得到了显著的提高,能量转换效率达到了5% 。

2.有机太阳能电池中高分子材料

如前面所讲,有机太阳能电池器件是将有机光伏活性层夹在两个功函数不同电极间,一电极常为透明的ITO 阳极,另一为金属阴极,常用Al,Ca 等。活性层和电极之间,可以根据需要加入其他的修饰层,比如PEDOT:PSS,LiF,ZnO,TiOx等。而高分子材料在有机太阳能电池中常常用在活性层和缓冲层。

活性层中,聚合物可作为作光伏材料。如聚苯乙烯撑[Poly( p -phenylenevinylene),PPV] 等可以作为电子给体材料,CN-PPV 等可以作为电子受体材料。而聚3,4-乙撑二氧噻吩(PEDOT)∶聚(对苯乙烯磺酸)根阴离子(PSS)则常作为缓冲层。

2.1 聚合物作给体材料

2.1.1聚对苯撑乙烯类(PPV)

自从1990年剑桥大学BrroughesJ H等[14]首次发现有机高分子聚合物PPV[poly(phenylene vinylene)]的电致发光以来,对共轭聚合物的研究迅速发展起来。近

十几年的研究发现,其在光伏电池方面具有优异的性能,且该类聚合物易于合成,性能稳定,与富勒烯构成的本体异质结器件的发光效率最高,作为电子给体材料,目前研究最为充分。常用的PPV为MEH-PPV和MDMO-PPV。Frederik C K 等[15] 以MEH -PPV和PCBM ([6,6]-phenyl-C61-butyric acid methylester) 分别为电子给体和受体材料制作一系列不同结构的聚合物电池,其中ITO/PEDOT:PSS/ MEH-PPV/PCBM/ Al结构的电池效果最好,短路电流I sc = 1.714 mA/cm 2,开路电压为V OC =0.73V ,填充因子FF= 0.326。Mozer A J 等[16]研究MDMO-PPV/PCBM 异质结太阳能电池,短路电流I sc = 510mA/cm 2 ,开路电压为V OC = 0.8V,填充因子FF= 0.71,光电转换效率达到2.65 % 。

2.1.2聚噻吩类(PThs)

导电聚噻吩具有类似芳香环的结构,其具有电导率高、环境稳定性好、成膜性好、禁带宽度小等特点,是做光伏电池的理想材料。目前研究中采用的噻吩主要是不同取代基的噻吩以及并噻吩,如聚3 -甲基噻吩,聚3-已基噻吩和聚3-丁基噻吩等,当与富勒烯复合构成本体异质结时,电池的效率PPV差不多。Chirvase D 等[17] 研究poly(3-hexylthiophene-2,5-diyl)(P3HT-2,5diyi)与富勒烯构成异质结器件,短路电流I sc =1.28 mA/cm2,开路电压为V OC= 0.48mV,填充因子FF=0.306,光电转换效率达到0.2%。Kim Y 等[18] 以poly(3-hex-ylthiophene)(P3 HT),PCBM与poly(9,9-dioctylfluorene-co -benzothiadiazole)(F8BT) 的混合物为电子给体的太阳能电池,其EQE在420- 650nm 之间,随着退火时间的增加而增大,最大光电转换效率达到3.5 %(AM 1.5,80mW/cm2 ) 。研究还表明,聚噻吩及其取代物在光照的情况下有很好的稳定性,在电磁波谱中的可见光区有很强的吸收。

2.1.3聚芴

聚芴及其衍生物是一类优异的电致发光材料,具有较高的热和化学稳定性,以及较好的成膜性,当其主链中含有芳胺共聚单元后,表现出较强的空穴传导能力和很高的荧光量子效率。通常情况下,聚芴具有较大的带隙[19],为蓝光材料。若在聚芴主链

中引入低带隙的单体则可以在整个可见光范围内调节聚芴共聚物的发光颜色,如通过在聚合物主链中引入杂环、多芳环或芳杂环分子来增大聚合物骨架电子云的密度,或采用交替的电子给体-受体体系等,这样合成的窄带隙芴基共聚物的发射光谱在可见光范围内,这将使其在聚合物太阳能电池方面有很大的潜在应用价值。

Zhang等[20]报道了一种2,3-二苯基- 5,7-二(2 -噻吩基)噻[3,4-b] 并噻二嗪与9,9-二辛基芴的交替共聚物,用该种聚合物为电子给体材料,PCBM 为电子受体材料的聚合物太阳能电池,对光的响应达到850nm,但该聚合物的电致发光性能鲜见报道。在这些窄带隙的芴基共轭聚物中,芴与4,7-二(2-噻吩基) 苯并噻二唑的无规共聚物(PFO-DB T)不但有较高的发光效率,而且用PFO-DBT 为电子给体材料,PCBM 为电子受体材料的聚合物太阳能电池的能量转化效率达到了2.2 %,说明该聚合物是一种很有价值的电致发光和聚合物太阳能电池材料。

2.2 聚合物作受体材料

聚合物受体材料主要有 CN-PPV 、芳杂环类聚合物等。当共轭聚合物作为电子受体时,共轭聚合物与给体聚合物的大分子混合没有混合熵变或熵变很小,所以相容性较好。但两者又存在一定的相分离,这样就产生激子分裂的界面,形成无数个异质结,具有大的有效分离界面的互穿网络结构。使不同能带隙的给体和受体聚合物可以与太阳可见光谱光子能量很好的匹配,提高光子的富集效率。同时这些聚合物光伏器件允许两种聚合物产生光致电荷,在再结合前传输到电极,收集两种类型的载荷,这有利于提高太阳能电池的效率。1995年 Friend 等[21] 对 CN-PPV构成的本体异质结器件进行了研究,其能量转化效率没有富勒烯作为受体时高,主要由于 CN-PPV 的载荷传输能力低。Magnus Granstrom 等 [22]通过将 POPT 以一定比例掺入 MEH-CN-PPV 中作为电子受体,器件效率有很大改善,其 EQE在480nm 最大可达到29 %,能量转化效率达到 1.9 %(AM 1.5,100mW/cm2)。

2.3 聚合物作缓冲层材料

有机太阳能电池阳极缓冲层常用的材料为PEDOT∶PSS,这种材料具有良好的导电率和透光性。但是,PEDOT∶PSS具有酸性,容易腐蚀ITO薄膜和有机活性层,最终会引起有机太阳能电池器件光电性能的不稳定。为了弥补 PEDOT:PSS材料的自身缺陷,研究人员通过对 PEDOT∶PSS 掺杂(如掺杂碳纳米颗粒 EG 等)来提高薄膜材料的物理性能[23]胡雪花采用乙醇、甲醇、去离子水、异丙醇等对 PEDOT:PSS 进行了掺杂[24]。研究表明,乙醇稀释的 PEDOT∶PSS薄膜变得更加平整,PEDOT 和PSS的分离度进一步提高,同时薄膜的导电性也得到提高,有利于空穴和电子的传输。

以PFN[(9,9-bis(3-(N,N-dimethylamino)propyl)-2,7-fluo-rene)-alt-2,7-(9,9-dioctylfluorene)]

作为阳极缓冲层,发现未封装的器件在空气中测量时获得的短路电流密度为17.2

mA/cm2,光电转化效率为 9.15%,量子效率接近70% ;而经过封装后器件的光电转化效率为 9.214%。此器件最大的优点是具有较高的稳定性,封装的器件在空气中保存 60 d后,光电转换效率依然能保持在95%以上。传统的器件在空气中保存10 d后,光电转化效率就衰减为原来的50%。研究人员指出,由于PFN材料的特殊结构能减少供体材料和受体材料因热运动产生载流子复合,增加活性层材料对光子的吸收,因此具有较高的电流密度。

结论

虽然,聚合物在有机太阳能电池器件中有很多方面的应用,但因起步较晚,种类相对较少,并且使用时仍存在许多问题,所取得的成果还不能够应用于商业化;然而相对与已发展的非常成熟的硅系太阳能来说,聚合物在这方面的发展空间是巨大的,以下几方面将会是今后研究的重点:

(1)开发新型的电子受体材料,该类聚合物应具备好的溶解性和加工性,高的载荷迁移率和电子亲和能,其吸收波段应覆盖可见光谱。

(2)提高现有聚合物材料的光子吸收率,实现高的光电转化效率。运用聚合物能带隙控制工程调节聚合物的吸收光谱,使之与太阳光谱达到最大匹配。

(3)对器件的结构进行优化,同时器件的后处理也对太阳能电池有很大影响。

参考文献

[1]ChapinDM,FullerCS,PearsonGL.J.Appl.Phys.,1954,25(5):676

[2 ]KearnsD,CalvinMJ.Chem.Phys.,1958,29(4):950[3 ]吕红亮,张玉明,张义门.化合物半导体器件.北京:电子工业

出版社,2009

[4 ]乔芬.基于聚合物的有机太阳能电池的研制与表征.大连理工

大学博士学位论文,2009

[ 5 ]PeumansP,UchidaS,ForrestSR.Nature,2003,425:158

[ 6 ]GranstromM,PetritschK,AriasACetal.Nature,1998,

395:257

[7] TANG C W. Two-layer organic photovoltaic cell [J]. Appl Phys Lett,1986,48(2): 183-185.

[8] YOO S,DOMERCQ B,KIPPELEN B. Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions [J]. Appl Phys Lett,2004,85(22): 5427-5429.

[9] SICOT L,GEFFROY B,LORIN A,et al. Photovoltaic properties of Schottky and p-n type solar cells based on polythiophene [J]. J Appl Phys,2001,90(2): 1047-1054.

[10] WHITE M S,OLSON D C,SHAHEEN S E,et al. Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer [J]. Appl Phys Lett,2006,89(14): 143517-1-143517-3.

[11] GLATTHAAR M,NIGGEMANN M,ZIMMERMANN B,et al. Organic solar cells using inverted layer sequence [J]. Thin Solid Films,2005,491(1/2): 298-300.

[12] BRABEC C J,ZERZA G,CERULLO G,et al. Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time [J]. Chem Phys Lett,2001,340(3/4): 232-236.

[13] XUE J G,RAND B P,UCHIDA S,et al. A hybrid planar-mixed molecular heterojunction photovoltaic cell [J]. Adv Mater,2005,17(1): 66-71.

[14] BrroughesJ H,Bradeley D D C.etc Light 2 emitting diode basedon conjugate polymer[J]. Nature,1990,347:539 2 541.

[15] Frederik C K,Jon E C.etc Lifetimesoforganic photovoltaics:photochemistry,atmosphere effectsand barrierlayersin ITO 2 MEHPPV:PCBM 2 aluminium devices[J]. Solar Energy Materi 2 alsand solarcell,2005,86:499 2 516.

[16] Mozer A J,Denk P,Scharber M C.etc Novelregiospecific MD 2 MO 2 PPV polymers withimproved chargetransport propertiesfor bulk heterojunction solarcells[J]. Synthetic Metals,2005,

153:81 2 84.

[17] Chirvase D,Chiguvare Z.etc Electricaland optical design andcharacterization of regioregular poly (3 2 hexylthiophene 2 2,5diyl)/fullerene 2 based heterojunction polymer solar cells[J].Synthetic Metals,2003,138:299 2 304. [18] Kim Y,Cook S,Choulis S A.etc Effectofelectron 2 trasportpol 2 ymeradditionto polymer/fullerene blendsolarcell[J].Synthet 2

[19] 狄英伟, 巴晓微等. 新型功能材料聚烷基芴衍生物及其应用[J]. 功能材料,1997,28:346 2 351.

[20] Zhang F,Perzon E.etc Novelred 2 emittingfluorine 2 basedcopol 2 ymers[J].Adv Funct Mater,2005,25):745 2 750.

[21] HallsJJ M ,Friend R H.etc Efficientphotodiodsfrom interpen 2 ertrating polymer networks[J]. Nature,1995,376:498

2 500.

[22] Magnus G, Klaus P.etc High Efficient polymer photodiodesSynthetic Metals,1999,102:957 2 958.

[23] OchiaiS ,KumarP ,Santhakumar K ,etal.Examiningtheeffectofadditivesandthicknessesofholetransportlayer forefficientorganicsolarcelldevices[J].Electronic Ma - terialsLetters ,2013 ,9 (4 ):399-403.

[24胡雪花,李福山,徐胜,等. 稀释溶剂对PEDOT ∶PSS 薄膜和有机太阳能电池性能的影响[J]. 发光学报,2014 ,35 (3 ):322-326.

文献综述 ——GaAsSb热光伏电池

文献综述 ——GaAsSb热光伏电池开路电的优化仿真分析 1. 引言 1.1 热光伏技术 当前,能源问题已经越来越成为制约人类社会进步和发展的阻力,而现在大规模使用的化石能源,由于其不可再生和对环境的高污染性,使得开发可持续的绿色能源已经是迫在眉睫。作为一种新颖的能源利用方法,热光伏电池(thermophotovoltaic,TPV)的研究始于上世纪60年代,但是由于当时理论和工艺水平的限制,直到90年代末开始才又重新引起了人们的重视。 相比较于太阳能光伏电池,热光伏电池系统首先是具有较高的系统效率和输出能量密度,这主要因为热光伏电池后端的光伏电池的带宽能量要小一些,这样在同等的温度条件下,系统的效率和能量密度会比较高。另外,热光伏电池系统中热发射源离后端光伏电池的距离也相对于太阳能光伏电池离太阳的距离要近得多,所以这样就减少了能量在传播路径上的传递损失,而增大了能量利用的效率。另外,热光伏电池系统的噪音也比较低,并且没有移动的部件,因而可以便携使用。还有,热光伏电池系统的热源也很广泛,除过常规的太阳能外,各种工业废热、余热以及附加热等都可以作为热光伏电池系统的热量来源[1],所以热光伏电池系统的性能受天气和环境的影响不大。近年来,随着微细加工技术的发展,人们有可能去制造微型的热光伏电池系统去取代传统的化学电池作为工业和科技界的能源,因而热光伏电池系统必将是未来微型电力系统研究的重点方向之一。 一般来讲,热光伏电池系统就是一种通过光伏电池把热辐射源辐射的热能转化成电能的静态能量转换器件[2]。典型的热光伏电池系统包括一个前端的热辐射源,一个后端的光伏电池和位于它们之间的光谱控制元件,如光谱滤波器等。 整个热光伏电池系统的工作原理是:首先是热源的热量直接加到热辐射源上,然后热辐射源辐射出的能量到达滤波片,接着滤波片过滤掉能量小于PV 电池带宽能量的低能光子,而使得大于PV电池带宽能量的高能光子到达PV电池,最后PV电池由于光生伏特效应产生光生电子,而电子以电流的方式输出到外电路作为电源使用[3]。由于滤波片不可能是理想的,所以那些到达PV电池的不能产生电子的低能光子的能量将作为热损耗损失掉。

太阳能电池的种类特点及发展趋势

太阳能电池的种类特点及发展趋势一、种类 按照材料分类 ?硅太阳能电池:以硅为基体材料(单晶硅、多晶硅、非晶硅) ?化合物半导体太阳能电池:由两种或两种以上的元素组成具 半导体特性的化合物半导体材料制成的太阳能电池(硫化镉、 砷化稼、碲化镉、硒铟铜、磷化铟) ?有机半导体太阳能电池:用含有一定数量的碳-碳键且导电 能力介于金属和绝缘体之间的半导体材料制成的电池(分子 晶体、电荷转移络合物、高聚物) 单晶硅太阳电池 特点 硅系列太阳能电池中,单晶硅的光电转换效率最高,技术也最成熟,高性能单晶硅电池是建立在高质量单晶硅材料和相关成熟的加工工艺基础上。提高转换效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。单晶硅太阳能电池的转换效率无疑是最高的,在大规模应用和工业生产中仍旧占据主导地位,但由于受单晶硅材料价格及相应繁琐的电池工艺影响,致使单晶硅成本据高不下,严重影响了其广泛应用。 单晶硅太阳能电池的特点是对于大于0.7μm的红外光也有一定的灵敏度。以p 型单晶硅为衬底,其上扩散n型杂质的太阳能电池与n型单晶硅为衬底的太阳能电池相比,其光谱特性的峰值更偏向左边(短波长一方)。它对从蓝到紫色的短波长(波长小于0.5μm)的光有较高的灵敏度,但其制法复杂,成本高,仅限于空间应用。此外,带状多晶硅太阳能电池的光谱特性也接近于单晶硅太阳能电池的光谱特性。 1.多晶硅太阳电池 特点 单晶硅太阳能电池的缺点是制造过程复杂,制造电池的能耗大。为解决这些问题,用浇铸法或晶带法制造的多晶硅太阳能电池的开发取得了进展。在1976年证明用多晶硅材料制作的太阳能电池的转换效率已超过10%,对大晶粒的电池,有报道效率可达20%。这种低成本的多晶硅太阳能电池已经大量生产,目前,它在太阳能电池工业中所占的分额也相当大。 但是多晶硅材料质量比单晶硅差,有许多 晶界存在,电池效率比单晶硅低; 晶向不一致,表面织构化困难。 单晶、多晶与非晶的区别 多晶:短程有序(团体有序),成百上千个原子尺度,通常是在微米的量级; 非晶:局部有序(个体有序),微观尺度,几个原子、分子尺度,一般只有十几

有机太阳能电池实验报告

有机太阳能电池实验报告 实验项目名称P3HT-PC61BM 体异质结聚合物太阳能 电池器件制作与性能测试 实验日期 指导老师 实验者 学号 专业班级 第一部分:实验预习报告 一、实验目的 通过在实验室现场制作P3HT-PC61BM 聚合物体异质结太阳能电池器件以及开展电池性能测试,了解有机太阳能电池的制作工艺与流程,熟悉相关的加工处理与分析测试设备工作原理与使用方法,加深对有机太阳能电池的感性认识,提高学生的实际操作能力,培养学生对科学研究的兴趣。 二、实验仪器 电子分析天平、加热磁力搅拌器、超声仪、紫外臭氧清洗系统、旋涂仪、 惰性气体操作系统、真空蒸镀系统、太阳光模拟器、数字源表、台阶仪 三、实验要求 1、严格按照实验室要求与规范开展实验,未经允许不得随意触摸或按动设备开关或按钮以及设备控制系统。 2、实验期间保持室内安静,保持实验室内清洁卫生。 3、熟悉有机太阳能电池加工与测试相关设备、原理与方法。 四、实验内容与实验步骤 1.聚合物体异质结加工溶液的配制(活性层P3HT:PCBM 溶液的配制) 在手套箱外称取所需的P3HT 5、6mg 与PCBM 5、6mg,混合好装入带有磁子的5mL 瓶子中,转移到手套箱中;用一次性注射器吸取0、33mL oDCB(邻二氯苯)溶剂,配成17mg mL-1的溶液,放到加热台(加热台需要 5 分钟的稳定时间)上,设置温度为85℃,搅拌1h 后,冷却至室温待用。 2.导电玻璃表面清洁与处理。 A.首先确认ITO 面,用万用电表(打到Ω档)测试其表面电阻,有电阻的一面为ITO,在其反面的边缘处刻‘上’字(见下图)。将ITO 依次放到去离子水、丙酮与异丙醇中超声清洗10 分钟。每次超声完毕,用镊子取出ITO,用同样的溶剂反复冲洗两面三次,之后用氮气枪迅速吹干,立刻放到盛有下一种溶剂的容器中清洗。最后将用氮气枪吹干的ITO 转移到六孔板中转移至紫外/臭氧清洗机(操作详见其说明)中,将ITO面朝上,表面清洁处理10 分钟后,将ITO 取出并置于六孔板中待旋涂PEDOT:PSS(ITO 面朝下)。

太阳能电池材料的发展及应用

太阳能电池材料的发展及应用 材料研1203 Z石南起新材料(或称先进材料)是指那些新近发展或正在发展之中的具有比传统材料的性能更为优异的一类材料。新材料是指新近发展的或正在研发的、性能超群的一些材料,具有比传统材料更为优异的性能。新材料技术则是按照人的意志,通过物理研究、材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。 随着科学技术发展,人们在传统材料的基础上,根据现代科技的研究成果,开发出新材料。新材料按组分为金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。按材料性能分为结构材料和功能材料。21世纪科技发展的主要方向之一是新材料的研制和应用。新材料的研究,是人类对物质性质认识和应用向更深层次的进军。 功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。 功能材料是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。它涉及信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业。功能材料不仅对高新技术的发展起着重要的推动和支撑作用,还对我国相关传统产业的改造和升级,实现跨越式发展起着重要的促进作用。 功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。世界各国均十分重视功能材料的研发与应用,它已成为世界各国新材料研究发展的热点和重点,也是世界各国高技术发展中战略竞争的热点。在全球新材料研究领域中,功能材料约占85%。我国高技术 (863)计划、国家重大基础研究[973]计划、国家自然科学基金项目中均安排了许多功能材料技术项目(约占新材料领域70%比例),并取得了大量研究成果。

有机聚合物太阳能电池中二元和三元组分给体- 受体(D-A)型聚合物的性能研究

Material Sciences 材料科学, 2018, 8(1), 1-10 Published Online January 2018 in Hans. https://www.360docs.net/doc/fd12175891.html,/journal/ms https://https://www.360docs.net/doc/fd12175891.html,/10.12677/ms.2018.81001 Comparative Investigation of Binary and Ternary Donor-Acceptor Conjugated Polymer for Photovoltaic Application Xuejiao Wang1, Weijuan Xu1, Jianjun Wang1, Jianyu Yuan2 1Department of Materials Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Jiangsu 2Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou Jiangsu Received: Dec. 4th, 2017; accepted: Dec. 21st, 2017; published: Jan. 4th, 2018 Abstract Narrow band gap D-A conjugated polymer P1 and D1-A-D2-A ternary conjugated polymer P2 with regioregular backbone structure were designed and synthesized. By precisely controlling the ar-rangement of the third building block, the polymer properties can be comprehensively and deli-cately tuned, resulting in more balanced optical bandgap and highest occupied molecular orbital (HOMO) energy levels, planar structure and strong intermolecular packing. Here, the influence of third unit on material microcosmic and macrocosmic properties was examined exclusively. By using [70]PCBM as the electron acceptor, the optimized polymer solar cells without any additive demonstrated an increased open circuit voltage (V oc), short-circuit current density (J sc) and fill factor (FF) in ternary polymer P2 based device, and a best PCE of 5%, which is significantly en-hanced in comparison with D-A polymer P1 based device. Our results highlight the importance of ternary molecular designing strategy and may achieve control of desirable device properties by optimizing molecular structure in the future. Keywords Ternary Conjugated Polymers, Polymer Solar Cells, Morphology 有机聚合物太阳能电池中二元和三元组分给体-受体(D-A)型聚合物的性能研究 王雪娇1,徐炜娟1,王建军1,袁建宇2 1苏州大学材料与化学化工学部,江苏苏州

异质结太阳能电池综述

异质结太阳能电池研究现状 一、引言: 进入21世纪,传统的化石能源正面临枯竭,人们越来越认识到寻求可再生能源的迫切性。据《中国新能源与可再生能源发展规划1999白皮书统计,传统化石能源随着人们的不断开发已经趋于枯竭的边缘,各种能源都只能用很短的时间,石油:42年,天然气:67年,煤:200年。而且,由于大量过度使用这些能源所造成的环境污染问题也日益严重,每年排放的二氧化碳达210万吨,并呈上升趋势,二氧化碳的过度排放是造成全球气候变暖的罪魁祸首;空气中大量二氧化碳、粉尘含量已严重影响人们的身体健康和人类赖以生存的自然环境。正是因为这些问题的存在,人们需要一种储量丰富的洁净能源来代替石油等传统化石能源。而太阳能作为一种可再生能源正符合这一要求。太阳能每秒钟到达地面的能量高达80万千瓦,若把地球表面0.1%的太阳能转为电能,转变率5%,每年发电量就可达5.6×1012千瓦小

时。而我国太阳能资源非常丰富,理论储量达每年1700亿吨标准煤,太阳能资源开发利用的前景非常广阔。在太阳能的有效利用中,太阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。太阳能电池的研制和开发日益得到重视。本文简要地综述了各种异质结太阳能电池的种类及其国内外的研究现状。 二、国外异质结太阳能电池 1、TCO/TiO2/P3HT/Au三明治式结构的p-n异质结的太阳能电池 2005年5月份,Kohshin Takahashi等发表了TCO/TiO2/P3HT/Au三明治式结构的p-n异质结的太阳能电池,电池结构如图1。 图1 ITO/PEDOT:PSS/CuPc/PTCBI/Al结构太阳能电池 简图 图2 TCO/TiO2/P3HT/Au电池结构示意图 同时采用了卟啉作为敏化剂吸收光子,产生的电子注入

《太阳能电池基础与应用》太阳能电池-第四章-4

第四章
4.1 3 4.2 4.3 3 4.4 4.5 4.6
太阳电池基础
光生伏特效应 光生载流子的浓度和电流 太阳电池的伏安特性 太阳电池的性能表征 太阳电池的测试技术 太阳电池的效率分析

4.6 太阳电池效率分析-极限效率
太阳电池的理论效率
VOC I SC ? FF ?? ?100% Pin
当入射太阳光谱AM0或AM1.5确定后, 为获得较高的转换效率, 需要增加Voc、Isc和FF
填充因子FF
在理想情况下(当voc>10),填充因子FF仅是开路电压Voc的函数
Voc的函 数
voc ? ln(voc ? 0.72) q FF ? voc ? Voc , voc ? 1 kT

4.6 太阳电池效率分析-极限效率
短路电流Isc
I sc ? ? I L I L ? qAG ? Le ? W ? Lh ? ,
假设到达电池表面的每一个能量大于材料禁 带宽度Eg的光子,会产生一个电子-空穴对。 将光通量对波长进行积分,可以得到产生率G。
开路电压Voc
Voc ?
2
? kT ? I L ln ? ? 1? q ? I0 ?
? Eg ? I 0 =1.5 ? 10 exp ? ? ? kT ? ?
5
Eg ) I0∝ ni ? N C N V exp(? kT
禁带宽度Eg减小,I0增加,Voc减小

4.6 太阳电池效率分析-极限效率
最佳带隙宽度
禁带宽度Eg减小
Isc增加
Voc减小

光电池的应用与发展

光电池的应用与发展 摘要: 光电池是利用光伏效应制成的检测光辐射的器件,主要是利用价带电子在光的照射下产生电动势。光电池也叫太阳能电池,直接把太阳光转变成电。因此光电池的特点是能够把地球从太阳辐射中吸收的大量光能转化换成电能。 光电池的种类很多,常用有硒光电池、硅光电池和硫化铊、硫化银光电池等。主要用于仪表,自动化遥测和遥控方面。有的光电池可以直接把太阳能转变为电能,这种光电池又叫太阳能电池。太阳能电池作为能源广泛应用在人造地卫星、灯塔、无人气象站等处。 随着可持续发展战略在世界范围内的实施,新能源的开发与利用显得尤为重要。在有关光电池的技术走进了我们的生活,因此这对于光电池的应用与发展方向进行的研究具有较为广泛的意义。 关键字:光电池;光伏效应;价带电子

目录 1.光电池简介 (3) 1.1光电池的定义 (3) 1.2光电池的种类 (3) 2.光电池的原理 (3) 3.光电池发展历史 (4) 4.光电池的应用与前景 (5) 4.1光电池的应用 (5) 4.1.1光电池的运用范围 (6) 4.1.2光电池家庭化的应用 (6) ①太阳能电话 (6) ②太阳能冰箱 (6) ③太阳能空调器 (7) ④太阳能电视机 (7) 4.1.3光电池的市场与应用 (7) 4.2光电池的前景 (8) 总结 (8) 参考文献 (9)

1.光电池简介 1.1光电池的定义 光电池(photovoltaic cell)是利用光伏效应(光电效应的衍生)制成的检测光辐射的器件,是一种在光的照射下产生电动势的半导体元件。可见光电池也是一种光电传感器。 光电池广泛用于把太阳能直接转换成电能,亦称太阳能电池。 1.2光电池的种类 光电池的种类很多,有硒光电池、硅光电池和硫化铊、硫化镉、砷化镓光电池等。其中硅光电池由于其转换效率高、寿命长、价格便宜而应用最为广泛。 2.光电池的原理 光电池是一种特殊的半导体二极管,能将可见光转化为直流电。有的光电池还可以将红外光和紫外光转化为直流电。 最早的光电池是用掺杂的氧化硅来制作的,掺杂的目的是为了影响电子或空穴的行为。 光伏发电是利用半导体pn结(pn junction)的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池(solar cell)。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件(module),再配合上功率控制器等部件就形成了光

有机太阳能电池

2 有机太阳能电池综述 2.1有机太阳能电池材料简述 对于有机太阳能电池材料可以简单地分为两类,一类是小分子材料,另一类是聚合物材料。严谨一些的分法可以大致分为以下五类:⑴有机小分子化合物; ⑵有机大分子化合物;⑶D-A二元体系;⑷模拟叶绿素分子结构材料;⑸有机无机杂化体系。但鉴于本论文的工作内容和研究深度,在这里只对前面简单分类作主要介绍。 2.1.1小分子材料 有机小分子光电转换材料大部分是一些含共轭体系的染料分子,它们能够很好地吸收可见光从而表现出很好的光电转换性质。它们具有化合物结构可设计性、材料质量轻、生产成本低、加工性能好、便于制备大面积太阳能电池等优点。主要的小分子材料有酞菁[3]、卟啉[4-6]和苝菁[7,8]等,现简单介绍如下:酞菁类化合物是典型的p型有机半导体,具有离域的平面大π键,600~800nm 的光谱区域内有较大吸收。其合成已经工业化,是太阳能电池中很受重视、研究得最多的一类材料。这几十年来,人们主要研究了从金属酞菁在金属电极尤其是铂电极上的光电效应,探讨了如中心金属离子、掺杂及环境气氛等影响金属酞菁光伏效应的多种因素,到金属酞菁在无机半导体如ZnO、CdS、SnO2等上面的光伏效应。 卟啉由4个吡咯环通过亚甲基相连形成的具有18个π电子的共轭大环化合物,其中心的氮原子与金属原子配位形成金属卟啉衍生物。卟啉和金属卟啉都是高熔点的深色固体,多数不溶于水和碱,但能溶于无机酸,溶液有荧光,有非常好的光、热稳定性。卟啉体系最显著的化学特性是其易与金属离子生成1:1配合物,卟啉与元素周期表中各类金属元素(包括稀土金属元素)的配合物都已经得到。 苝属于n型半导体材料,其吸收范围在500nm左右,其在可见光区有强吸收。单线态电子从染料注入半导体的导带的速度通常比三线态快。菁染料是一种双极性分子,属p型半导体,是良好的光导体,在溶液中具有良好的溶解度。在光激发下,份菁分子的电荷分离效率较高。不过,菁染料存在稳定性差的缺陷。 此外,其它有机小分子材料还有:方酸类化合物[9,10]、罗丹明、并四苯等。

太阳能电池关于温度的综述

关于硅和砷化镓太阳能电池组件在热性能方面的综述 摘要: 本综述总结了近年来在结晶和非晶硅太阳能电池组件领域获得的温度性能。它给出了一个通用的结果分析和评论的应用程序构建集成光伏(PV)热系统,将光能转化成电能,热能等。空气冷却和水冷却以及“混合式”光伏热太阳能收集器也被提及到。本文还包括非晶硅太阳能模块在塑料薄膜,薄膜太阳能电池等方面的灵活应用以及对将来这方面的展望。其主要包括对光伏模块传热机制的实验结果的分析。 关键词:太阳能电池;光伏;太阳能;能量转换;混合系统 目录 1.介绍﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒408 1.1.太阳能电池早期研究的回顾﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒408 1.2.半导体硅和砷化镓的温度上限﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒410 2.高温太阳能电池和组件的影响:理论背景﹒﹒﹒﹒﹒﹒﹒﹒﹒411 2.1.热对硅太阳能电池的输出参数的影响﹒﹒﹒﹒﹒﹒﹒﹒41

1 2.2.硅太阳能电池的温度系数﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒411 2.2.1.短路电流﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒411 2.2.2.暗电流﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒412 2.2.3.开路电压﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒412 2.2.4.输出功率﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒412 2.3.照明光源对输出参数的影响﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒4 13 3.光伏热电混合太阳能系统﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 413 3.1.空气冷却﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒414 3.2.水冷却﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒414 3.2.1.冷却组件中的输出温度﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒

太阳能电池工作原理和应用

太阳能电池的分类简介 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降 低其成本很困难,为了节省硅材料,发展了多晶硅 薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代 产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低 廉,而效率高于非晶硅薄膜电池,其实验室最高转 换效率为18%,工业规模生产的转换效率为10%(截 止2011,为17%)。因此,多晶硅薄膜电池不久 将会在太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。

2)多晶体薄膜电池 多晶体薄膜电池硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产 品。 砷化镓(GaAs)III-V化合物电池的转换效率 可达28%,GaAs化合物材料具有十分理想的光学 带隙以及较高的吸收效率,抗辐照能力强,对热 不敏感,适合于制造高效单结电池。但是GaAs 材料的价格不菲,因而在很大程度上限制了用 GaAs电池的普及。 (3)有机聚合物电池 以有机聚合物代替无机材料是刚刚开始的一个太阳能电池制造的研究方向。由于有机材料柔性好,制作容易,材料来源广泛,成本低等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材料制备太阳能电池的研究仅仅刚开始,不论是使用寿命,还是电池效率都不能和无机材料特别是硅电池相比。能否发展成为具有实用意义的产品,还有待于进一步研究探索。 (5)有机薄膜电池 有机薄膜太阳能电池,就是由有机材料构成核心部分的太阳能电池。大家对有机太阳能电池不熟悉,这是情理中的事。如今量产的太阳能电池里,95%以上是硅基的,而剩下的不到5%也是由其它无机材料制成的 6)染料敏化电池 染料敏化太阳能电池,是将一种色素附着在TiO2粒子上,然后浸泡在一种电解液中。色素受到光的照射,生成自由电子和空穴。自由电子被TiO2吸收,从电极流出进入外电路,再经过用电器,流入电解液,最后回到色素。染料敏化太阳能电池的制造成本很低,这使它具有很强的竞争力。它的能量转换效率为12%左右。 (7)塑料电池 塑料太阳能电池以可循环使用的塑料薄膜为原料,能通过“卷对卷印刷”技术大规模生产,其成本低廉、环保。但塑料太阳能电池尚不成熟,预计在未来5年到10年,基于塑料等有机材料的太阳能电池制造技术将走向成熟并大规模投入使用。 太阳能工作原理 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能发电有两种方式,一种是光一热一电转换方式,另一种是光一电直接转换方式。其中,光一电直接转换方式是利用光电效应,将太阳辐射能直接转换成电能,光一电转换的基本装置就是太阳能电池。太阳能电池是一种大有前途的新型

硅基太阳能电池的发展及应用

.. 硅基太阳能电池的发展及应用 摘要:太阳能电池是缓解环境危机和能源危机一条新的出路,本文介绍了硅基太阳能电池的原理,综述了硅基太阳电池的优点与不足,以及硅基太阳能电池和其他太阳能电池的横向比较,硅基太阳能电池在光伏产业中的地位,并展望了发展趋势及应用前景等。 关键词:硅基太阳能电池转换效率 1引言 二十一世纪以来,全球经济增长所引发的能源消耗达到了空前的程度。传统的化石能源是人类赖以生存的保障,可是如今化石能源不仅在满足人类日常生活需要方面捉襟见肘,而且其燃烧所排放的温室气体更是全球变暖的罪魁祸首。随着如今全球人口突破70亿,能源的需求也在过去30年间增加了一倍。特别是电力能源从上世纪开始,在总能源需求中的比重增长迅速。中国政府己宣布了其在哥本哈根协议下得承诺,至2020年全国单位国内生产总值二氧化碳排放量比2005年下降40% --45%,非化石能源占一次能源消费的比重提高至少15%左右【6】。 目前太阳能电池主要有以下几种:硅太阳能电池,聚光太阳能电池,无机化合物薄膜太阳能电池,有机化合物薄膜太阳能电池,纳米晶薄膜太阳能电池,叠层薄膜太阳能电池等,其材料主要包括产生光伏效应的半导体材料,薄膜衬底材料,减反射膜材料等【5】。

(图1:太阳能电池的种类) 太阳电池的基本工作原理是:在被太阳电池吸收的光子中,那些能量大于半导体禁带宽度的光子,可以使得半导体中原子的价电子受到激发,在p区、空间电荷区和n区都会产生光生电子左穴对,也称光生载流子。这样形成的光生载流子由于热运动,向各个方向迁移。光生载流子在空间电荷区中产生后,立即被内建电场分离,光生电子被推进n区,光生空穴被推进p区。因此,在p-n结两侧产生了正、负电荷的积累,形成与内建电场相反的光生电场。这个电场除了一部分要抵消内建电场以外,还使p型层带正电,n型层带负电,因此产生了光生电动势,这就是光生伏特效应(简称光伏)。

有机太阳能电池简介

有机太阳能电池简介 随着社会的发展,能源危机在近几十年变得越来越突出,传统的化石能源有着随时枯竭的危险,同时化石能源的使用造成的环境污染也越来越突出。在此背景之下,寻找可代替的新能源成为当下研究的热点,而在众多备选的替代者中,太阳能电池由于其清洁性,可持续性等优点得到了大量的关注。 在1954年贝尔实验室制作了光电转化效率达6%的太阳能电池,标志着商业化太阳能电池研究的开始。到20世纪70年代,用于卫星的半导体硅太阳能的光电转化效率已达到15%~20%。但硅系列太阳能电池材料纯度要求很高且制作工艺复杂,因此成本高,难以大规模生产。其它类型半导体材料的太阳能电池因存在材料来源及工艺等问题也同样难以得到推广。而有机太阳能电池以其材料来源广泛、制作成本低、耗能少、可弯曲、易于大规模生产等突出优势显示了其巨大开发潜力,成为近十几年来国内外各高校及科研单位研究的热点。但有机太阳能电池从其诞生以来,一直面临着效率低下的问题,至今为止,在实验室内的效率才刚刚突破10%,与硅太阳能电池相距甚远,因此提高电池效率是有机太阳能电池的主要研究方向。 一.有机太阳能电池原理及构造 1有机太阳能电池的光生电原理 对于一个有机OPV(有机太阳能电池),其基本原理就是利用光电材料的光生伏特效应产生电流,其基本的物理过程如图一所示。不同于无机材料能直接吸收光子产生自由电子,有机光敏材料在吸收光子之后会产生一个激子对,即电子空穴对,必须使激子解离之后才能形成光电流。而解离产生的电子必须到达电极才能对器件的光电流产生贡献。也就是说,产生光电流需要经过吸收光子,产生激子,激子解离扩散,电极收集这些过程,这一过程相比较无机材料要困难的多,这也造成OPV的光电转化效率一直不高。

能源产业中的高分子之聚合物太阳能电池

能源产业中的高分子之聚合物太阳能电池 刘大柯 摘要由于环境污染和能源危机日益加重,太阳能在能源产业中异军突起,成为能源领域的新星。太阳能是一种理想的新能源,清洁、干净、无污染,其储量巨大,取之不尽,用之不竭,充满了诱人的前景。将太阳能转换为电能是解决环境污染和能源危机的重要途径之一,因此各类太阳能电池的研发和推广在世界各国备受关注。在目前商品化的太阳能电池市场中,尽管无机晶体硅太阳能电池占据主导地位,但聚合物太阳能电池因其独特的优势已成为太阳能电池研发的重要方向之一。柔性聚合物太阳能电池具有质轻、制作工艺简单、成本低等特点,现已成为近年太阳能利用方面研究的热点。有机太阳能电池是实现将太阳能直接转变为电能的最有前景的器件之一。文章综述了聚合物太阳能电池的基本原理,器件构型,电池材料及制备工艺,最后对柔性光伏器件的应用前景和商业化趋势进行了展望。 关键词能源聚合物太阳能电池工作原理给体受体 0.引言 新世纪以来,随着我国国民经济的快速发展,能源消费总量也在急速增长2011年我国能源消费总量已达34.8×108t标准煤[1],与美国相当。。庞大的能源消费总量给我国的“能源安全供应体系”和“环境保护工作”带来了沉重的压力。一方面,由于自有能源不能满足消费需求,我国有大量能源需要从国外进口,据海关总署统计,2011年我国石油和煤炭的进口量分别达到2.53×108t和1.82×108t[2],能源供应的整体“对外依存度”较高。另一方面,在我国能源消费结构中,近90%是传统化石能源[3]。这些化石能源在燃烧利用过程中向大气层及自然环境排放大量的温室气体、有毒有害物质和粉尘,严重影响了人们的生命安全和健康。当前,探索和开发其他新兴能源利用方式,解决日益严重的能源短缺和环境污染等问题,成为我国社会各界共同关注的话题。 在诸多新兴能源利用方式中,太阳能光伏发电被认为是最有前途的方式之一。然而目前占主导地位的光伏技术主要基于无机硅材料,其高昂的材料制备成本以及高能耗的加工工艺限制了它的广泛应用,并且其生产过程中的产生的大量副产物四氯化硅对于环境污染极大。聚合物太阳能电池制造成本低廉、材料质量轻、加工性能好,可以利用先进的卷对卷以及喷涂打印技术进行大规模生产,并具有柔性,可以加工成为半透明器件,易于携带,生产过程中能耗低,环境污染少[4],因此其具有更加广阔的应用前景。

《太阳能电池基础与应用》太阳能电池-第四章-1

第四章 太阳电池基础 光生载流子的浓度和电流4.2太阳电池的测试技术4.4光生伏特效应34.1太阳电池的伏安特性34.34.5太阳电池的效率分析 太阳电池的性能表征4.6

太阳电池基本结构 以晶体硅太阳电池为例。 (1)以p型晶体硅半导体材料为衬底; (2)为了减少光的反射损失,常制作绒面减反结构(3)采用扩散法在硅衬底上制作重掺杂的n型层(4)PECVD生长SiO 减反层 2 (5)在n型层上面制作金属栅线,作为正面接触电极(6)在衬底背面制作金属膜,作为背面欧姆接触电极

半导体 吸收光子产生电子空穴对,电子空穴对在p-n结内建电场作用下分离,从而在p-n结两端产生电动势。 p-n结是太阳电池的核心 光生载流子形成一个与热平衡结电场方向相反的电场,使得势垒降低;光生电流与正向结电流相等时,pn结建立稳定的电势差,即光生电压 Electric Field

载流子运动的角度 太阳电池工作原理:当太阳光照射到太阳电池上并被吸收时,其中 的光子能把价带中电子激发到导带上去,形成 能量大于禁带宽度E g 自由电子,价带中留下带正电的自由空穴,即电子—空穴对,通常 称它们为光生载流子。自由电子和空穴在不停的运动中扩散到p-n结的空间电荷区,被该区的内建电场分离,电子被扫到电池的n型一例,空穴被扫到电池的p型一侧,从而在电池上下两面(两极)分别形成了正负电荷积累,产生“光生电压”,即“光伏效应”。如果在电 池的两端接上负载,在持续的太阳光照下,就会不断有电流经过负载。这就是太阳电池的基本工作原理。

能带的角度 持续光照条件下,大量的光生载流子产生,光生电子和空穴被源源不断地分别扫到n型和p型一两侧,致使n区和p区费米能级的分裂,若太阳电池断路,光生电压V即为开路电压V 。若外电路短路,pn结正向电流为 oc 零,外电路电流为短路电流,理想情况下也就是光电流。

浅谈太阳能电池的发展与应用

浅谈太阳能电池的基本原理与应用 摘要:人类面临着有限常规能源和环境破坏严重的双重压力。特别是煤、石油、天然气等不可再生能源的逐渐枯竭,能源问题已经成为制约社会经济发展的重大问题,研究新能源的开发利用已是当务之急。太阳能作为一种清洁、高效、取用不尽的能源已有尽半个世纪的发展历程。并成为当前各国争相开发利用的一种新能源。太阳能光伏发电的最核心的器件是太阳能电池,太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。为全面的了解太阳能电池的相关知识,本文通过查阅大量资料与新闻信息,综述太阳能电池的发展历程与当前应用情况。重点研究太阳能电池的工作原理,基本结构,主要类型,发展现状及趋势。 关键词:太阳能电池;基本原理;材料; 晶体硅;薄膜太阳能电池;转换效率 引言:由于人类对可再生能源的不断需求。促使人们致力于开发新型能源。太阳在40min内照射带地球表面的能量可供全球目前能源消费的速度使用1年。合理的利用好太阳能将是人类解决能源问题的长期发展战略,是其中最受瞩目的研究热点之一。在太阳能的有效利用中, 太阳能的光电利用是近些年来发展最快、最具活力的研究领域. 太阳能电池的研制和开发日益得到重视. 太阳能电池是利用光电材料吸收光能后发生的光电子转移反应而进行工作的. 根据所用材料的不同, 太阳能电池主要可分为四种类型: ( 1) 硅太阳能电池; ( 2) 多元化合物薄膜太阳能电池; ( 3) 有机物太阳能电池; ( 4) 纳米晶太阳能电池.太阳能电池以硅材料为主的主要原因是其对电池材料的要求: ( 1) 半导体材料的禁带宽度不能太宽; ( 2) 要有较高的光电转换效率; ( 3) 材料本身对环境不造成污染; ( 4) 材料便于工业化生产且材料性能稳定. 随着新材料的不断开发和相关技术的发展, 以其他材料为基础的太阳能电池也愈来愈显示出诱人的前景. 本文简要地综述了太阳能电池的原理、种类及其研究现状, 并讨论了太阳能电池的发展趋势. 1 基本原理 太阳能(Solar Energy),一般是指太阳光的辐射能量。太阳能的利用有被动式利用(光热转换)和光电转换两种方式。太阳能发电一种新兴的可再生能源。太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。 1.1 半导体的简单介绍 半导体材料指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料,这种材料在某个温度范围内随温度升高而增加电荷载流子的浓度,电阻率下降。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。在光照和热辐射条件下,其导电性有明显的变化。 1.1.1关于半导体的基本概念 共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。 空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。 载流子:运载电荷的粒子称为载流子,包括电子与空穴。 杂质半导体:通过扩散工艺,在本征半导体中掺入少量合适的杂质元素,可得到杂质半导体。 P型半导体:在纯净的硅晶体中掺入三

有机太阳能电池

有机太阳能电池 摘要有机太阳能电池因具有成本低、质轻、柔韧性好、可大面积印刷制备的优点而受到广泛关注,对电池原理,结构,材料的研究对提高有机太阳能电池的性能有重大意义。本文主要综述了有机太阳能电池的工作原理,电池结构以及电极材料。并对有机太阳能电池的应用前景做了展望。 关键词原理;结构;材料;应用前景 1.有机太阳能电池简介 有机太阳能电池,顾名思义,就是由有机材料构成核心部分的太阳能电池。主要是以具有光敏性质的有机物作为半导体的材料,以光伏效应而产生电压形成电流, 实现太阳能发电的效果.由于无机硅太阳能电池的材料生产成本高,污染大、能耗高,寻找新型太阳能电池材料和低成本制造技术便成为人们研究太阳能电池技术的目标。有机太阳能材料和电池制备技术有望成为低成本制造的选择之一。 世界上第一个有机光电转化器件是由Kearns和Calvin在1958年制备的,其主要材料为镁酞菁(MgPc)染料,染料层夹在两个功函数不同的电极之间。1986年,行业内出现了一个里程碑式的突破——有机半导体的发明。器件的核心结构是由四羧基苝的一种衍生物(PV)和铜酞菁(CuPc)组成的双层膜。双层膜的本质是一个异质结,其思路是用两种有机半导体材料来模仿无机异质结太阳能电池。1992年,土耳其人Sariciftci在美国发现,激发态的电子能极快地从有机半导体分子注入到C60分子中,而反向的过程却要慢得多。1993年,Sariciftci在此发现的基础上制成PPV/C60双层膜异质结太阳能电池。随后,研究人员在此类太阳能电池的基础上又提出了一个重要的概念:混合异质结(体异质结)。而所谓“混合异质结”,就是将给体材料和受体材料混合起来,通过共蒸或者旋涂的方法制成一种混合薄膜。给体和受体在混合膜里形成一个个单一组成的区域,在任何

有机光电材料综述资料

有机小分子电致发光材料在OLED的发展与应用的综述电致发光(electroluminescence,EL),指发光材料在电场的作用下,受到电流或电场激发而发光的现象,它是一个将电能直接转化为光能的一种发光过程。能够产生这种电致发光的物质有很多种,但目前研究较多而且已经达到实际应用水平的,主要还是无机半导体材料,无机 EL 器件的制作成本较高,制作工艺困难,发光效率低,发光颜色不易实现全色显示,而且由于很难实现大面积的平板显示,使得这种材料的进一步发展具有很严峻的局限性。由于现有的显示技术无法满足我们生产生活的需要,因此促使人们不断地寻求制备工艺成本更低、性能更好的发光材料。有机电致发光材料(organic light-emitting device,OLED)逐渐的进入了人们的视野,人们发现它是一种很有前途的、新型的发光器件。有机电致发光就是指有机材料在电流或电场的激发作用下发光的现象。根据所使用的有机材料的不同,我们将有机小分子发光材料制成的器件称为有机电致发光材料,即 OLED;而将高分子作为电致发光材料制成的器件称为高分子电致发光材料,即 PLED。不过,通常人们将两者笼统的简称为有机电致发光材料 OLED。 一.原理部分 与无机发光材料相比,有机电致发光材料具有很多优点:光程范围大、易得到蓝光、亮度大、效率高、驱动电压低、耗能少、制作工艺简单以及成本低。综上所述,有机电致发光材料在薄膜晶体管、

太阳能电池、非线性发光材料、聚合物发光二极管等方面存在巨大的需求,显示出广泛的应用前景,因而成为目前科学界和产业界十分热门的科研课题之一。虽然,世界上众多国家投入巨资致力于有机平板显示器件的研究与开发,但其产业化进程还远远低于人们的期望,主要原因是器件寿命短、效率低等。目前有很多关键问题没有解决:1. 光电材料分子结构、电子结构和电子能级与发光行为之间的关系,这是解决材料合成的可能性、调控材料发光颜色、色纯度、载流子平衡及能级匹配等关键问题的理论和实验依据; 2. 光电材料和器件的退化机制、器件结构与性能之间的关系、器件中的界面物理和界面工程等,这是提高器件稳定性和使用寿命的理论和实验基础,也是实现产业化、工业化的根本依据。 1.基态与激发态 “基态”在光物理和光化学中指的是分子的稳定态,即能量最低的状态。如果一个分子受到光或电的辐射使其能量达到一个更高的数值后,分子中的电子排布不完全遵从构造原理,这时这个分子即处于“激发态”,它的能量要高于基态。基态和激发态的不同并不仅仅在于能量的高低上,而是表现在多方多面,例如分子的构型、构象、极性、酸碱性等。在构型上主要表现在键长和二面角方面,与基态相比,激发态的一个电子从成键轨道或非成键轨道跃迁到反键轨道上,使得键长增长、键能级降低;同时,由于激发后共轭性也发生了变化,所以二面角即分子的平面性也发生了明显的改变。 2.吸收和发射

太阳能电池基础知识

一,基础知识 (1)太阳能电池的发电原理 太阳能电池是利用半导体材料的光电效应,将太阳能转换成电能的装置. ?半导体的光电效应所有的物质均有原子组成,原子由原子核和围绕原子核旋转的电子组成.半导体材料在正常状态下,原子核和电子紧密结合(处于非导体状态),但在某种外界因素的刺激下,原子核和电子的结合力降低,电子摆脱原子核的束搏,成为自由电子. 光激励 核核 电子 空穴电子 电子对?PN 结合型太阳能电池 太阳能电池是由 P 型半导体和 N 型半导体结合而成,N 型半导体中含有较多的空穴,而P 型半导体中含有较多的电子 ,当 P 型和 N 型半导体结合时在结合处会形成电势当芯 片在受光过程中,带正电的空穴往 P 型区移动,带负电子的电子往 N 型区移动,在接上连线和负载后,就形成电流.. (2)太阳能电池种类 - ++- - +P 型

铸 造 2 工 PN 结合(正面 N 极,反 面 P 极 ) 减 反膜形成 通过电极,汇集电 ※在现在的太阳能电池产品中,以硅半导体材料为主,其中又以单晶硅和多晶硅为代表.由于 其原材料的广泛性,较高的转换效率和可靠性,被市场广泛接受.非晶硅在民用产品上也有 广泛的应用(如电子手表,计算器等),但是它的稳定性和转换效率劣于结晶类半导体材料. 化合物太阳能电池由于其材料的稀有性和部分材料具有公害,现阶段未被市场广泛采用. ※现在太阳能电池的主流产品的材料是半导体硅,是现代电子工业的必不可少的材料,同时 以氧化状态的硅原料是世界上第二大的储藏物质. ※京瓷公司早在上世纪的八十年代就认识到多晶硅太阳能电池的光阔前景和美好未来,率先 开启多晶硅太阳能电池的工业化生产大门.现在已经是行业的龙头,同时多晶硅太阳能电 池也结晶类太阳能电池的主流产品(太阳能电池的 70%以上). (3)多晶硅太阳能电池的制造方法 空间用 民用 转换效率:24% 转换效率:10% 转换效率:8% (1400 度以上) 破锭(150mm *155mm ) N 极烧结 电极 印刷 ( 正 反

相关文档
最新文档