明胶_壳聚糖复合膜的制备与性能_宋慧君

明胶_壳聚糖复合膜的制备与性能_宋慧君
明胶_壳聚糖复合膜的制备与性能_宋慧君

 第27卷第8期高分子材料科学与工程

Vol .27,No .8

 2011年8月

POLYMER MA TERIALS SCIENCE AND ENGINEERING

Aug 2011

明胶-壳聚糖复合膜的制备与性能

宋慧君

1,2

,孟春丽2,汤克勇

1

(1.郑州大学材料科学与工程学院,河南郑州450001; 2.河南工程学院材料与化学工程系,河南郑州450007)

摘要:制备了一系列不同配比的明胶-壳聚糖复合膜,研究了壳聚糖含量对复合膜力学性能、吸湿性能的影响,通过X 射线衍射和红外光谱分析了复合膜的结构。结果表明,复合膜及纯壳聚糖膜的断裂伸长率和拉伸强度均大于纯明胶膜,壳聚糖的加入可改善膜的力学性能。随壳聚糖含量的增加,复合膜的吸湿率增大。明胶与壳聚糖分子间存在较强的相互作用,与明胶共混可改变壳聚糖的晶粒大小,降低壳聚糖的结晶度。明胶与壳聚糖之间的相容性良好。关键词:明胶;壳聚糖;复合膜;性能;结构

中图分类号:T B383 文献标识码:A 文章编号:1000-7555(2011)08-0165-03

收稿日期:2010-12-20

基金项目:国家自然科学基金资助项目(50973097);河南省高校科技创新人才支持计划资助项目(2009HAS TIT015)通讯联系人:汤克勇,主要从事天然高分子及其复合材料的研究, E -mail :keyongtangzzu @yahoo .com

明胶来源广泛,价格低廉,具有良好的生物相容性和可降解性。但是,它的成膜性、力学性能及抗水性较差。壳聚糖价廉易得、易于加工,具有良好的生物相容

性、可降解性、抗菌防腐性和成膜性等。明胶-壳聚糖复合膜可用于生物医药、组织工程、食品等。目前,对增塑及改性明胶-壳聚糖复合膜的性能与应用的研究较多[1~3]

,但有关未增塑及改性明胶-壳聚糖复合膜的结构与性能的研究很少[4]。为了开发具有新性能的复合材料,使明胶-壳聚糖复合材料在可食性包装方面得到应用,有必要系统研究明胶-壳聚糖复合物的结构与性能,进一步了解其制备、结构与性能之间的关系,以制备性能特点互补、功能协同增效的绿色包装材料。本文采用溶液共混法制备了一系列明胶-壳聚糖复合膜,并研究了复合膜的结构和性能。1 实验部分1.1 实验材料

明胶:生物级,天津市科密欧化学试剂有限公司;壳聚糖:脱乙酰度95%,山东奥康生物科技有限公司;冰醋酸、氢氧化钠、碳酸钾、氯化钠:均为分析纯(市售)。1.2 明胶-壳聚糖复合膜的制备

将一定量的明胶(Gel )溶于去离子水中,40℃水浴加热,配成10%的明胶溶液;将一定量的壳聚糖(CS )溶解于2%的醋酸溶液中制备2%的壳聚糖溶

液。二者按照一定比例混合,使复合膜中壳聚糖的质量分数分别为0%、10%、20%、30%、40%、50%、60%、70%、80%、90%和100%,分别用Gel 、10%CS 、20%CS 、30%CS 、40%CS 、50%CS 、60%CS 、70%CS 、80%CS 、90%CS 和CS 表示。将不同比例的明胶-壳聚糖溶液共混后,于40℃水浴中搅拌均匀,静置24h ,在洁净的水平聚氯乙烯板上流延成膜。用0.3mol /L 的NaOH 溶液洗涤后再用去离子水洗至中性,室温下自然干燥,揭膜。

1.3 明胶-壳聚糖复合膜的性能测试

1.3.1 力学性能:将所制复合膜裁成哑铃型标准试样,于室温、相对湿度65%的环境中调湿48h 以上至恒量。参照GB /T 1040-92《塑料拉伸性能试验方法》,以CM T6104型微机控制电子万能试验机(深圳新三思计量技术有限公司)测定试样的拉伸强度和断裂伸长率,拉伸速率50mm /min ,每个试样测5次,取平均值。

1.3.2 吸湿性能:将膜裁成1cm ×1cm 大小的薄片,在装有P 2O 5的干燥器中干燥至恒量,然后放在相对湿度为75%的密闭容器中,定时称量,至吸湿平衡。吸湿率以Q 表示,按式(1)计算。

Q =m w -m d

m d

(1)

式中:m d 、m w ———吸湿前、后试样的质量。每个试样

测量三次,取平均值。

1.3.3 X 射线衍射分析:用X ′pert PRO 型X 射线衍射仪(荷兰帕纳科公司)进行研究。实验条件:灯电压40kV ,灯电流40mA ,Cu 靶,扫描范围5°~70°,用分

峰法计算其结晶度,用谢勒公式计算晶粒的大小[5]

。1.3.4 FT -I R 分析:将待测试样研磨成粉末,KBr 压片,用460型傅立叶变换红外光谱仪(尼高力仪器公司)测试,间隔2cm -1,测试范围4000cm -1~400cm -1

Fig .1 The Moisture Sorption Ratio of G elatin -Chitosan Compos -ite Films

2 结果与讨论

2.1 壳聚糖质量分数对明胶-壳聚糖复合膜吸湿性能的影响

在相对湿度为75%时,不同壳聚糖含量的明胶-壳聚糖复合膜的吸湿曲线和平衡吸湿率如Fig .1、Fig .2所示。由Fig .1、Fig .2可知,复合膜的吸湿率随壳聚糖质量分数的增加而增大。当壳聚糖质量分数较低(<30%)时,随壳聚糖质量分数的增大,其吸湿率显著增大。当壳聚糖质量分数为30%~60%时,复合膜的吸湿率增加缓慢。壳聚糖质量分数较低时,增大壳聚糖的用量,壳聚糖自身良好的吸湿性对复合膜的吸湿性能贡献较大,使其吸湿量显著增大。另一方面,明胶分子中的-OH 、-NH 2和-C =O 能与壳聚糖分子中的-OH 、-NH 2形成氢键结合[6],二者极性基团之

间充分地相互作用使可用于吸湿的亲水性基团数量减

少,表现出复合膜吸湿能力的增加不明显。壳聚糖质量分数超过60%后,随壳聚糖用量的增加,复合膜的吸湿率继续增大。

Fig .2 The Moisture Sorption Ratio at Equili brium of Gelatin -Chitos an Composite Films

Fig .3 T he Tensile Strength and Elongation at Break of Gelatin -Chitosan Composite Films

2.2 壳聚糖含量对明胶-壳聚糖复合膜拉伸强度和断裂伸长率的影响

明胶-壳聚糖复合膜的拉伸强度和断裂伸长率与

其壳聚糖含量的关系曲线如Fig .3所示。由Fig .3可以看出,与纯明胶膜相比,复合膜的拉伸强度和断裂伸长率均有明显提高,说明壳聚糖的引入有利于改善复合膜的力学性能。随壳聚糖用量的增大,复合膜的拉伸强度增大。当壳聚糖质量分数增大到40%后,继续增大壳聚糖的用量,复合膜的拉伸强度逐渐下降,说明过多的壳聚糖不利于提高其拉伸强度。当壳聚糖质量分数为20%~90%时,复合膜的拉伸强度均大于纯明胶膜或纯壳聚糖膜,可能是因为明胶分子与壳聚糖分子间强的相互作用。进一步提高复合膜中壳聚糖的含量,其拉伸强度下降,可能是因为壳聚糖含量过多,不能充分地与明胶之间形成氢键和离子键的结合。随壳聚糖用量的增大,复合膜的断裂伸长率增大。本文中所用壳聚糖的脱乙酰度较高(95%),其中含有较多的极性基团-NH 2、-OH 。在相同湿度下,随壳聚糖含量的增加,复合膜的吸湿率增大,水在其中可起到增塑

166高分子材料科学与工程2011年 

剂的作用,增大复合膜的自由体积,提高其分子链段的运动性[7],从而增大复合膜的断裂伸长率。2.3 X 射线衍射分析

由Fig .4可知,纯明胶膜的衍射峰位为20.9°,纯

壳聚糖膜的衍射峰位为11.4°、18.2°、22.8°。在二者的复合膜中,随明胶含量的增大,壳聚糖在22.8°的水合衍射峰逐渐减弱,说明明胶的引入削弱了水与壳聚糖之间的氢键作用。明胶与壳聚糖的复合膜在2θ为8.6°时产生了新的衍射峰,也说明明胶与壳聚糖之间的相互作用。由Tab .1可知,明胶的加入降低了壳聚糖的结晶度,表明明胶与壳聚糖之间氢键的形成使二者具有良好的相容性[4]。纯明胶膜的晶粒最大,壳聚糖的加入显著降低了复合膜的晶粒尺寸

Fig .4 X -Ray Diffraction Patterns of G elatin -Chitosan Compos ite

Films

Fig .5 FT -IR S pectra of Gelatin -Chitos an Composite Films

Tab .1 The Crystallinity and Grain Size of Gelatin -Chi -tosan C omposite Films

w (Chitos an )

(%)Crystallinity (%)Grain size (nm )01.7136.7302.2323.050

3.8811.0

705.7923.0100

6.02

13.3

2.4 复合膜的红外光谱

FT -IR 是表征两种聚合物分子间相互作用的最有

效的技术之一。Fig .5为纯明胶膜、纯壳聚糖膜及明胶与壳聚糖复合膜的FT -IR 谱图。在纯壳聚糖的红外光谱上,有895cm -1和1155cm -1的多糖结构吸收峰[4]

,有1637cm -1

的C =O 伸缩振动峰。在895cm -1

的吸收峰说明壳聚糖的糖甙键为β构型;在纯明胶膜的红外光谱上,1637cm -1、1541cm -1、1240cm -1分别是酰胺Ⅰ带、酰胺Ⅱ带和酰胺Ⅲ带的吸收峰;明胶与壳聚糖共混成膜后,1637cm -1处酰胺Ⅰ带的吸收峰向低波数移动,且吸收带变宽,说明壳聚糖与明胶分子间存在强的氢键作用。壳聚糖的羟基弯曲振动峰(1260cm -1)由于明胶的加入而消失,进一步说明基团间的相互作用。复合膜的红外光谱,既不同于纯壳聚糖的红外光谱,也不同于纯明胶的红外光谱,更不是两者的简单叠加,说明明胶与壳聚糖间的相互作用和良好的相容性。3 结论

明胶-壳聚糖复合膜的吸湿性及断裂伸长率随壳聚糖用量的增加而增大。随着壳聚糖用量的增大,复合膜的拉伸强度增大,但壳聚糖用量过高,拉伸强度又会下降。在明胶-壳聚糖复合膜中,明胶与壳聚糖间发生了相互作用。明胶的引入会影响壳聚糖的结晶行

为,降低其结晶度。

参考文献:

[1] Pulieri E ,Chiono V ,Ciardell i G ,et al .Chitos an /gelatin blends for

biomedical applications [J ].J .Biomed .M ater .Res .Part A ,2008,86A (2):311-322.

[2] C hen C H ,Wang F Y ,M ao C F ,et a l .S tudies of chitosan :II .

preparation and characterization of chitosan /poly (vinyl alcohol )/

gelatin ternary bl end films [J ].Int .J .Biol .M acromol .,2008,43:37-42.

[3] Deng CM ,He LZ ,Zhao M ,et al .Biol ogical properties of the chi -tosan -gelatin sponge wound dressing [J ].Carbohydrate Pol ymers ,2007,69:583-589.

[4] Cheng M Y ,Deng J G ,Yang F ,et al .S tudy on phys ical properties

and nerve cell affinity of compos ite films from chitosan and gelatin so -lutions [J ].Biomaterials ,2003,24:2871-2880.

[5] 蔡宏琨,张德贤,何青,等.RF -PECVD 制备微晶硅薄膜的X 射线

衍射研究[J ].人工晶体学报,2007,36(3):545-549.

Cai H K ,Zhang D X ,He Q ,et al .Study of XRD on microcrys -talline s il icon thin fil m s prepared by RF -PECVD [J ].Jou rnal of Syn -thetic C rystals ,2007,36(3):545-549.[6] Chen Z G ,M o X M ,He C L ,et al .Intermolecul ar in teractions in el ectrospun collagen -chitosan complex nanofibers [J ].Carbohydrate Pol ymers ,2008,72:410-418.[7] S u J F ,Huang Z ,Zhao Y H ,et al .M oisture sorption and w ater va -por permeability of soy protein isolate /pol y (vinyl alcohol )/glycerol

bl end films [J ].Industrial Crops and Products ,2010,31(2):266-276.

(下转第171页。to be continued on P .171)

167

 第8期宋慧君等:明胶-壳聚糖复合膜的制备与性能

molecules ,2005,38:6629-6639.

[7] 徐玉福,姚日生,邓胜松.微结构葡聚糖凝胶浓缩分离蛋白质的

性能[J ].化工学报,2007,58(12):3097-3101.

Xu Y F ,Yao R S ,Deng S S .Protein concentration and separation behavior of dextran bul k hydrogels with microstructure [J ].Jou rnal of Chemical Industry and Engineering ,2007,58:3097-3101.

Preparation and Properties of PVA Hydrogels Dressing with Dextran Microgel Structures

Qin Qian ,Risheng Yao ,Lu Liu ,Shengsong Deng

(School of Chem ical Engineering ,Hefei U niversity of Technology ,Hefei 230009,China )

ABSTRAC T :A new PVA hy drogels dressing with dex tran microgel structures (Dex /PVA BHM s )coupled w ith pheny -toin sodium w as desig ned and prepared by the microw ave -assisted freezing -thawing (F -T )method .The results show that the swelling ratio of dex /PVA BHM s gel is 19.3%which is nearly 2.5times higher than traditional PVA gel ;and the compression streng th is 1.05M Pa w hich is almost the same like traditio nal PVA gel .Dex /PVA BHM s gel obtains a good dilute expansion property and retains the advantages of hig h mechanical streng th of PVA gel .The drug release in the pH7.4buffer solution achieves the release balance w ithin 6h .The cumulative release percentage is 81.2%,showing a significant slow -release property compared w ith the traditional PVA gel .Dex /PVA BHMs gel coupled with phenytoin sodium could significantly promo te the wound healing of rats .The w ound is completely healed within 10day s and no obvious scar there .

Keywords :w ound dressing ;microgel ;poly vinyl alcohol ;dextran ;phenytoin sodium ;preparation ;property

(上接第167页。continued from p .167)

Preparation and Properties of Gelatin -C hitosan Composite Films

Huijun Song 1,2,Chunli Meng 2,Keyong Tang 1

(1.School of Materials Scienc e and Engineering ,Zhengzhou U niversity ,Zhengzhou450001,China ;

2.Department of Materials and Chem ical Engineering ,Henan Institute of

Engineering ,Zhengzhou 450007,China )

ABSTRAC T :A series of gelatin -chitosan com posite films w ith different ratios of gelatin to chitosan w ere prepared ,and the influenc e of chitosan content on the mechanical properties and the moisture adsorption of the composite films w as studied .The structure of the composite film w as analy zed by X -ray diffraction and infrared spectroscopy .The

results indicate that both the elongation at break and the tensile streng th of the chitosan film and composite films are highter than that of gelatin film .The introduction of chitosan may im prove the mechanical properties of the com pos -ite film s .With the chitosan content increasing in the com posite films ,the moisture adso rption increases .There are strong interactions and good compatibility between gelatin and chitosan molecules in the composites .The grain size of chitosan may be changed and the crystallinity of chitosan decreased by blending w ith gelatin .Keywords :gelatin ;chitosan ;composite films ;property ;structure

171

 第8期

钱 琴等:具有右旋糖酐微结构的聚乙烯醇凝胶敷料的制备与性能

壳聚糖的制备与纯化

甲壳素是一种白色或灰白色的半透明无定形固体,通常在270℃分解。甲壳素基本上不溶解于水、乙醇、乙醚、稀酸以及稀碱等物质,它可溶于浓度较高的无机酸,但不溶于稀硫酸等稀酸。壳聚在溶液状态时,需要被放置在酸性环境中,但是,由于壳聚糖具有醛基结构,因此,壳聚糖在酸性溶液中易发生降解,从而使壳聚糖溶液粘度下降,通过加入甲醇、丙酮、乙醇等物质可以使壳聚糖的溶液粘度升高,在试验中一般常用乙醇,作用最为明显。由于甲壳质中含有羟基,壳聚糖中同时含有羟基和氨基,因此,壳聚糖和甲壳质可以通过酚化、羧基化、氰化、螫合、水解、醚化、酯化、醛亚胺化、烷化、叠氮化、羟基化、成盐、氧化、卤化、接枝与交联等反应生成不同结构和不同性能的衍生物[29]。 甲壳质通过脱乙酰反应可制得壳聚糖,通常使用质量分数为50%左右的氢氧化钠溶液处理甲壳质并加热到105℃,在该温度下保持两小时,然后将材料水洗至中性,经过抽滤、干燥即可得到白色的壳聚糖。壳聚糖的脱乙酰度和相对分子量受反应温度、反应时间以及碱液浓度的影响,使用蟹虾壳海蟹壳、对虾壳、河虾壳和蚕蛹等原料在同一方法和条件下制备壳聚糖,其中以海蟹壳的产率最高,可见海蟹壳是制备壳聚糖的最佳原料。除此之外,还以使用酶法、微波法等方法制备壳聚糖[30]。2.1.2.2 壳聚糖的纯化及脱乙酰 壳聚糖(Chitosan)的纯化: (1)用天平称取6 g chitosan 于800 ml 1%(V/V)的醋酸溶液中,磁力搅拌 溶解2h,待完全溶解后静置2h,可见烧杯底有大量沉淀; (2)将壳聚糖溶液倒入离心管,用普通天平平衡后,再用高速离心机9 000 rmp, 离心10 min 收集上清,倒入另一干净的1 L 烧杯中; (3)边用磁力搅拌器搅拌,边用5 %NaOH 溶液缓慢调pH 值到9,静置2 h, 待chitosan 完全析出; (4)再用高速离心机9 000 rmp, 离心10 min,或者使用真空泵抽滤以收集 纯化的chitosan; (5)放入-70 ℃冰箱过夜,用冻干机干燥备用[31]。 壳聚糖(Chitosan)的脱乙酰: 1)用500 ml 三口瓶配40 %(W/V) NaOH 溶液,与壳聚糖混合,然后将洗 净的磁力搅拌子放入其中; (2)打开磁力搅拌器总开关及加热开关,将反馈式温度计插入硅油中,并将温 度计导线接入仪器后座插口,调节温度计旋钮将温度设定为95℃,待温度达到预定 值时,将三口瓶架入油浴槽,装好冷凝管,打开自来水水龙头和搅拌开关,反应2 h; (3)关闭仪器各开关,将三口瓶架在空中,让瓶底的油滴到用油浴槽内,同时 让温度自然冷切; (4)加入三蒸水稀释后,倒入垫有双层定性滤纸的陶瓷漏斗中,用真空泵抽滤, 多次稀释抽滤洗涤至中性; (5)收集脱乙酰壳聚糖,放入-20 ℃冰箱过夜,用冻干机干燥[31]。 脱乙酰度测定 测定脱乙酰度的方法很多,常用的有FT-IR、NMR、紫外、元素分析等,但是 常用为双突跃电位滴定法,其步骤如下[31]: (1)配制壳聚糖溶液:用电子天平精确称量0.2 g Chitosan 于100 ml 烧杯中, 加入20 ml 0.1 M HCl 溶液,再加40 ml 三蒸水,用保鲜膜封口后磁力搅拌至充分溶解; (2)配制0.4 g/ml NaOH 标准溶液:用电子天平精确称量1.6 g NaOH 于50 ml 烧杯中,溶解后用100 ml 容量瓶定容; (3)用标准缓冲液校正酸度计; (4)边搅拌边滴定,记录数据; (5)用Excel 和Origin 处理数据,画出滴定曲线,得出取代度。 2.1.2.3 壳聚糖改性

壳聚糖+明胶

Applied Surface Science 257 (2011) 2712–2716 Contents lists available at ScienceDirect Applied Surface Science j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /a p s u s c Surface derivatization with spacer molecules on glutaraldehyde-activated amino-microplates for covalent immobilization of ?-glucosidase Yaodong Zhang ?,Yun Zhang,Juanjuan Jiang,Li Li,Caihong Yu,Tingting Hei Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University),Ministry of Education,Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province,School of Chemistry and Materials Science,Shaanxi Normal University,Changan South Road,Xi’an 710062,China a r t i c l e i n f o Article history: Received 11August 2010 Received in revised form 12October 2010Accepted 12October 2010 Available online 19 October 2010Keywords: Protein immobilization Microplate ?-Glucosidase Spacer molecule a b s t r a c t Protein molecules immobilized on a hydrophobic polystyrene microplate by passive adsorption lose their activity and suffer considerable denaturation.In this paper,we report a thorough evaluation of a protocol for enzyme immobilization on a microplate with relatively inexpensive reagents,involving glutaraldehyde coupling and spacer molecules,and employing ?-glucosidase as a model enzyme.The recommended conditions for the developed method include 2.5%glutaraldehyde to activate the reaction,1%chitosan in an HAc solution to increase the binding capacity,2%bovine serum albumin to block non-speci?c binding sites,and 0.1M NaBH 4to stabilize Schiff’s base https://www.360docs.net/doc/df6119409.html,ing this method,the amount of ?-glucosidase immobilized on amino-microplate was 24-fold with chitosan than without spacer molecules.The procedure is ef?cient and quite simple,and may thus have potential applications in biosensing and bioreactor systems. ? 2010 Elsevier B.V. All rights reserved. 1.Introduction The microtiter plate has become a common tool in analytical research and clinical diagnostic testing laboratories because it is easy to handle and adaptable to automatic microplate readers.A very common use for this plate is in enzyme-linked immunosorbent assays (ELISAs),which are the bases of most modern medical diag-nostic testing in humans and animals.Biological macromolecules such as proteins are immobilized on the surface of polystyrene microplates through passive adsorption if the surface has not been otherwise treated.Passive adsorption primarily involves multi-ple hydrophobic interactions between the solid phase and the biomolecule,which may interfere with the structure of the lat-ter and lead to conformational changes [1]and alterations in their functions [2].Thus,it is necessary to design a proper surface and rational conjugation for the controlled placement of biomolecules on polystyrene microtiter plates [3]. The surfaces of polystyrene can be modi?ed to introduce speci?c functions.In general,treatments result in the surface incorpora-tion of hydroxyl,carbonyl,and carboxyl functional groups [4,5].Since amine groups can be readily used for the covalent link-ing of bioactive molecules,the introduction of these groups is most often described in the literature [6].The most commonly used treatments for coating or covalently linking amine groups ?Corresponding author.Tel.:+862985303825;fax:+862985307774.E-mail address:ydzhang@https://www.360docs.net/doc/df6119409.html, (Y.Zhang).to polystyrene include polymers,such as phenylalanine–lysine [7],nitration–reduction [8],gamma irradiation [9],plasma treat-ments (nitrogen or ammonia plasma)[10],and carbodiimides [11,12].The aminated surface is activated and covalently coupled to the functional groups (primary amines,thiols,and carboxyls)of biomolecules via bifunctional crosslinkers (i.e.,glutaraldehyde and carbodiimide).Glutaraldehyde activation of aminated supports is one of the most popular techniques for immobilizing enzymes [13].The proposed methodology is rather simple and ef?cient and,in some instances,even allows for the improvement of enzyme stability through multi-point or multi-subunit immobilization [14]. Since a microplate consists of a large number of molecules within a small well,the density of the active surface amino groups is a key factor in increasing their binding ability to surfaces and pro-viding higher signals [15].To create a three-dimensional structure that generates suf?cient spacing on surfaces and avoids lat-eral steric hindrances between immobilized biomolecules,surface derivation with a spacer molecule has been applied for biomolecu-lar immobilization on the surface of various solid supports [16].The most commonly used spacer molecule includes dendrimers [15,17],polyethyleneimine [18],poly(ethylene glycol)[19,20],chi-tosan [21],and poly(carboxybetaine methacrylate)[22],as well as self-assembled monolayers [23,24]. Herein,we demonstrate the suitability of commercially available amine-graft polystyrene microwell plates for enzyme immobilization via a relatively inexpensive glutaraldehyde acti-vation reaction.To improve the enzyme binding ef?ciency of the amino-microplate,spacer molecules are employed for surface 0169-4332/$–see front matter ? 2010 Elsevier B.V. All rights reserved.doi:10.1016/j.apsusc.2010.10.050

壳聚糖的制备方法及研究进展

龙源期刊网 https://www.360docs.net/doc/df6119409.html, 壳聚糖的制备方法及研究进展 作者:张立英 来源:《山东工业技术》2018年第02期 摘要:壳聚糖作为一种碱性多糖被广泛应用于食品、生物、化工、医疗等领域。本文重点介绍了壳聚糖的制备方法及其研究进展,并对其发展趋势进行了展望。 关键词:壳聚糖;碱性多糖;制备方法 DOI:10.16640/https://www.360docs.net/doc/df6119409.html,ki.37-1222/t.2018.02.016 壳聚糖本身的分子结构类似于纤维素,因其多了一个带正电荷的胺基,使其化学性质较为活泼。目前壳聚糖正因其优良的生理活性在食品、化妆品、医药、化工、污水处理等方面展现出广阔的应用前景,近十年来国内外对于壳聚糖的开发研究热度一直持续不减,各种新颖的制备方法也是层出不穷。 1壳聚糖的来源 壳聚糖通常是由甲壳素(又名几丁质)经脱乙酰基作用获得,甲壳素在自然界中广泛存在于高等真菌以及节肢动物(虾、蟹、昆虫等)的外壳中,其中虾壳、蟹壳是工业生产壳聚糖的主要原料。由于大分子间的氢键作用,天然存在的甲壳素构造坚固,化学性质稳定,不溶于水、酸碱和一般的有机溶剂,这也使得甲壳素的应用范围非常有限,因此甲壳素只有经脱乙酰基处理成壳聚糖才能获得广泛应用。 2壳聚糖的制备方法 (1)化学降解法。传统的壳聚糖生产多采用化学降解法。作为壳聚糖工业生产最常用的制备方法,化学降解法简便易行,效率高,整个生产过程容易控制,但该法环境污染较为严重,对周边环境具有一定的破坏性。欧阳涟等从蟹壳中获取甲壳素,并通过脱乙酰反应制备出了壳聚糖。试验探究了影响产物壳聚糖脱乙酰反应的各种因素,如反应温度、碱液含量及反应时间等,最终确定制备高脱乙酰度壳聚糖的条件为反应温度70℃,碱液质量分数47%,反应时间10 h。 (2)微生物培养法。微生物发酵法生产壳聚糖起源于美国,我国从上世纪90年代开始研究。其主要原理是利用微生物自身生产的酶进行催化,从而脱去甲壳素中的乙酰基,进而制备壳聚糖。目前该领域研究重点主要集中在优良菌株的选育和培养基的优化上。 贺淹才等首先采用电解法从培养的黑曲霉湿菌体中制得甲壳素,然后采用碱提取法从培养的黑曲霉湿菌体中制备壳聚糖。试验基于黑曲霉细胞壁的主要成分为蛋白质与甲壳素,而蛋白质带有可电离的基团,于溶液中可形成带电荷的阳离子和阴离子,在外加电场作用下发生迁

壳聚糖涂膜保鲜技术的研究进展

壳聚糖涂膜保鲜技术的研究进展 李慧慧 (20090801118 徐州工程学院) 摘要:天然食品防腐剂壳聚糖具有易于生物降解,抗菌性强,安全无毒等优点。近年来,壳聚糖涂膜保鲜技术已成为保鲜领域的研究热点。笔者对壳聚糖涂膜及其复合涂膜在果蔬保鲜中的应用等方面进行了综述,并提出了现阶段壳聚糖保鲜技术研究与应用中存在的问题及其今后的研究发展方向。 关键词:壳聚糖;涂膜保鲜;果蔬 近几年,鲜切果蔬因其具有新鲜、食用方便、营养卫生、百分之百可食等多种优点,深受国内外消费者喜爱。应用可食性保鲜膜保鲜果蔬的研究越来越受到人们的关注,涂膜处理后的果蔬能有效保持其品质,并可明显降低果蔬在贮藏期间的失重率﹑腐烂率﹑并且安全无毒﹑成膜﹑还可抑菌﹑可食用﹑可降解。 壳聚糖(chitosan ),又称脱乙酰甲壳素﹑甲壳胺,化学名称是1,4-2氨基2-9-D葡聚糖。壳聚糖作为甲壳素的脱乙酰化的产物,它是从虾蟹的甲壳中提取出来的一种氨基类多糖,壳聚糖不仅天然大量地存在于自然界中,而且无毒,可降解,是一种可再生的资源。壳聚糖具有许多优良的功能性质和潜在的应用价值,其中一个引人关注的特性就是成膜性壳聚糖以其氢键相互交联成网状结构,利用适当的溶剂,可制成透明的具有多孔结构的薄膜。2005年来,壳聚糖作为一种优良膜材料,越来越受到人们的重视。由于壳聚糖安全无毒,易形成膜,其膜具有良好的黏附性通透性抗菌性保湿性和一定的弹韧性,且对氧气﹑二氧化碳﹑乙烯等气体具有选择渗透作用,是一种极具开发价值的保鲜剂,2006年已广泛应用于果蔬的保鲜研究证明,壳聚糖对蟠桃﹑杨梅﹑草莓﹑大豆﹑马铃薯﹑青椒等均具有良好的保鲜效果。本文综述了壳聚糖涂膜及其复合涂膜的应用。 1 壳聚糖的保鲜机理 1.1 果蔬腐变机理果蔬的腐败变质可分为生物败坏和非生物败坏两种形式。前者主要是由于果蔬贮藏中受细菌、霉菌、酵母等微生物的破坏而引起败坏,其中影响果蔬微生物繁殖的因素有温度、湿度、适量氧气、化学稳定性等。其次,是由于其本身发生正常的老化过程所造成的。这类果蔬在贮藏过程中一直保持着新活状态,仍是有生命的有机体,还会进行水分蒸发及呼吸作用等复杂的生命活动,与果蔬的贮藏息息相关,决定着果蔬寿命。后者是由其本身固有的原因所致。果蔬不同成分和性质的化学物质,必然存在化学和物理变化的可能性,在外界因素影响下,可能引起各种变化。化学变化可导致褐变及酸败,物理变化同样致使变质。 1.2壳聚糖的保鲜机理 综合近年的资料认为,壳聚糖在果蔬保鲜的机理主要在如下方面: ㈠形成保护膜质用壳聚糖涂布果蔬表面,可形成一层保护膜,而且增加了果皮厚度,并堵塞部分皮孔,减少组织水分蒸散,保持果蔬水分,创造了一个良好稳定的湿度环境,由此可较长时间保持果蔬的原有品质。 ㈡促进生理活性经壳聚糖处理,可促进果蔬表面伤口的木栓化,增强HMP(磷酸己糖代谢途径),堵塞皮孔和伤口,从而调节生理功能, 增加果蔬机体的自我保护能力。 ㈢延缓细胞衰老壳聚糖涂膜,可使机体组织活性氧形成减少, 由此延缓细胞的衰老和死亡;经测试,涂膜处理后乙烯生成量减少了50%;涂膜处理还能降低贮藏过程中草莓果肉组织内丙二醛与花青素的增长速率,保持番茄组织中SOD(超氧化物歧化酶)与Vc(抗坏血酸)的活力。 ㈣减弱呼吸速率壳聚糖涂布形成选择透气性保护膜,能限制果蔬组织对O2的吸收,但不影响CO2的通透,使呼吸速率减弱,由此减缓代谢速率, 延长组织细胞的寿命, 起到保鲜和保质的作用。

纤维素_壳聚糖复合膜的制备及结构表征

第18卷第2期2010年6月 纤维素科学与技术 Journal of Cellulose Science and Technology V ol. 18 No. 2 Jun. 2010 文章编号:1004-8405(2010)02-0033-06 纤维素/壳聚糖复合膜的制备及结构表征 马浩,郑长青,李毅群* (暨南大学化学系,广东广州 510632) 摘要:通过氯化1-(2-羟乙基)-3-甲基咪唑离子液体([HeMIM]Cl)溶解微晶纤维素, 并与壳聚糖的醋酸溶液混合的方法制备了质量比为2∶1的再生微晶纤维素/壳聚糖 复合膜。利用红外光谱、X射线衍射、热重分析、扫描电镜和数码相机照片对复合 材料的结构进行表征。IR结果表明再生微晶纤维素与壳聚糖分子之间存在着强烈的 氢键作用,且二者相容性较好;XRD、TGA结果表明复合材料中纤维素和壳聚糖有 较强的相互作用;SEM结果表明复合材料表面粗糙,比表面积较大,可以作为潜在 的生物医用材料。 关键词:纤维素;壳聚糖;复合膜 中图分类号:O636文献标识码:A 纤维素和壳聚糖是自然界中可生物降解、生物相容性较好的两种天然高分子材料。纤维素是由β-(1→4)-链接的D-葡萄糖组成,它含有大量羟基,易形成分子内和分子间氢键,具有一定的力学强度,但成膜性较差[1]。壳聚糖是由D-氨基葡萄糖通过β-1,4-糖苷键结合而成,具有抗菌性及多种生物活性、吸附功能等,但壳聚糖吸水性强,所形成的纤维或膜材料的湿态机械强度差,易溶胀,作为医用材料的应用受到限制[2-6]。纤维素/壳聚糖复合材料具有纤维素和壳聚糖共同的特点,具有生物相容性和可生物降解性。其复合膜可以弥补纤维素和壳聚糖存在的不足,在生物医药领域中应用有着重要意义[7]。由于纤维素难溶解[8],目前主要是通过向壳聚糖的醋酸溶液中添加纤维素粒子的方法制备纤维素/壳聚糖复合材料[9-11],但是这种固―液混合的方法无法像液―液混合一样制备混合均匀的复合材料,于是有待于建立一个制备均匀的纤维素/壳聚糖复合材料的新方法。由于离子液体为纤维素的直接溶剂,能有效地溶解纤维素[12],因此,基于纤维素的离子液体溶液与壳聚糖的醋酸溶液能够实现液―液混合制备混合更加均匀的复合材料。本文正是通过混合微晶纤维素的离子液体溶液和壳聚糖的醋酸水溶液的方法,制备得到了质量比为2∶1的再生微晶纤维素/壳聚糖复合材料,并对这一材料的结构进行了初步表征。 收稿日期:2010-01-06 ?通讯作者 基金项目:国家自然科学基金(20672046)、广东省自然科学基金(8151063201000016)资助项目。 作者简介:马浩(1985~),男,安徽濉溪人,硕士研究生;从事功能高分子材料的研究。

水溶性壳聚糖的制备方法

水溶性壳聚糖的制备方法,其特征在于包括以下步骤:(1)、原料处理:将壳体去除肉后,清水漂洗备用;(2)、稀酸处理:用壳体重2~4倍4~10%的盐酸浸泡1~2天,再用清水漂洗;(3)、碱煮除蛋白脱脂:用2~4倍8~12%氢氧化钠煮沸2~4小时,用清水漂洗;(4)、再脱钙处理:用2~4倍10~15%盐酸浸泡,以除去碳酸钙和磷酸钙,再用清水漂洗;(5)、脱色处理:用2~4倍清水调节PH值在5左右、在酸性条件下加入1%的KMnO↓[4]至紫红色不褪为止,以除去壳体的有机色素,再用清水漂洗;(6)、还原除去MnO↓[2]:将脱色后的壳体浸泡于1~3%的NaHSO↓[3]溶液中,以除去MnO↓[2],再用1~4%的草酸漂白得到白净甲壳素;(7)、脱乙酰度:用2~4倍55~70%的浓氢氧化钠在75~95℃处理10~20小时,获得壳聚糖粗品;(8)、纯化分离:将粗品溶于8~10倍3~6%稀醋酸,慢慢加入10%左右的浓碱至出现粘液,冷却至5~25℃,静置水解2~4小时,用稀盐酸中和至PH值在8~9,并产生絮状物,不断搅拌,至絮状物不再产生,过滤,洗涤除去氯化钠获得可溶性壳聚糖精品。 壳聚糖的结构、性质及其应用 张洁 海洋药学0844130 摘要:生物相容性好、可降解、对组织和细胞无毒副作用的生物材料一直是生物医学领域研究的热点。壳聚糖(α(1-4)2-氨基2-去氧β-D葡聚糖)是甲壳素脱乙酰得到的天然多糖中惟一的碱性多糖,具有很多优良的特性。本文就壳聚糖的结构、性质及其应用进行综述。 关键词:壳聚糖,结构,性质,应用 壳聚糖(Chitosan,简称CTS),壳聚糖是由N-乙酰糖胺组成,其中糖胺的含量超过90%,具有黏多糖相似的结构特点,而黏多糖在组织中分布广泛,是细胞膜有机组成成分之一,故壳聚糖具有优异的生物相容性⑴~⑵。表现为无毒、无刺激、无免疫抗原、无热原反应、不溶血,有抗菌消炎、促进伤口愈合,抗酸、抗溃疡、降脂和降低胆固醇的作用⑶~⑸。而且具有直接抑制肿瘤细胞的作用,并可通过活化免疫系统显示抗癌活性,与现有的抗癌药合用可增强抗癌效果,近年来其作为药物微球材料的研究也受到了极大的重视⑹,是一种安全可靠的天然生物活性多糖。本文就壳聚糖的结构、性质及其应用进行综述。 一.壳聚糖的结构与性质1.壳聚糖的来源—甲壳素 壳聚糖来源于一种自然资源十分丰富的线性聚合物一甲壳素,是甲壳素经脱乙酰化反应后得到的一种生物高分子Ⅲ。甲壳素是一种天然多糖类生物高分子聚合物,在自然界中广泛存在于低等生物菌类、藻类的细胞,节支动物虾、蟹、昆虫的外壳,软体动物(如鱿鱼、乌贼)的内壳和软骨,高等植物的细胞壁等,将甲壳动物的外壳通过酸碱处理,脱去钙盐和蛋白质,即可得到甲壳素。甲壳素化学名为[(1,4)一2一乙酰胺基一2一脱氧一B—D-葡萄糖],分子式为(C8H13N05)。,单体之间以B(1-4)糖苷键连接,分子量一般在lO6左右,理论胺含量为6.9%。甲壳素的化学结构与植物中广泛存在的纤维素结构非常相似(见图l),故又称为动物纤维素。

壳聚糖的制备

壳聚糖及其衍生物的制备 甲壳素(chitin)在自然不仅含量十分丰富,而且可生物降解,是环境友好产品,利用沿海地区丰富的虾蟹壳为原料,可生产出甲壳素,变废为宝,净化环境。甲壳素经浓碱处理去掉乙酰其后得壳聚糖(chitosan),分子结构如下: O O CH2OH OH NH2n O 壳聚糖经化学改性可得系列的衍生物,如:羧甲基壳聚糖、低聚壳聚糖等。这些系列产品在许多方面有着极其广泛的用途。如在医学方面可作为抗癌制剂、手术缝线、人造皮肤、药物载体等;在轻工业上可作为化妆品填料、增白剂、固发剂或增强纸张的光洁度;在环保方面可作为絮凝剂、吸附剂,用于污水处理,还可用作饮料的澄清剂、无毒包装材料等;在农业方面是一种新型植物生长调节剂,促进植物生长、增加产量、提高品质、诱导植物的广谱抗病性,还可用于生产生物农药,用于果蔬保鲜。因此壳聚糖及其衍生物系列产品有很好的潜在需求和市场前景。 一、实验目的 1.了解壳聚糖及其衍生物的应用概况; 2.学习壳聚糖及其衍生物的制备原理和方法; 3.强化学生环保意识,变废为宝; 4.制备2~5g的产品。 二、实验内容 1.利用强碱制备壳聚糖; 2.测定壳聚糖的脱乙酰度。 三、实验原理

甲壳素是酰胺类多糖,壳聚糖的制备过程,就是酰胺的水解过程。酰胺有如下几种结构: 酰胺可在强酸或强碱条件下水解,对于低分子的酰胺,水解可以进行得比较 完全,但对于多糖来说,强酸更容易水解糖苷键,所以甲壳素的脱乙酰基,一般 情况下不采用强酸水解;相对说来,强碱造成糖苷键的断裂不像强酸那么严重, 所以都用强碱来脱乙酰基。 酸碱滴定法的原理是壳聚糖的自由氨基呈碱性,可与酸定量地发生质子化反应,形成壳聚糖地胶体溶液: 溶液中游离的H+用碱反滴定,这样,从用于溶解壳聚糖的酸量与滴定用去的碱量 之差,即可推算出壳聚糖自由氨基结合酸的量,从而计算出壳聚糖中自由氨基的 含量。 四、实验材料与设备 1.实验设备与仪器 水浴锅,电炉,烧杯,三角瓶,碱式滴定管,电子天平。 2.实验材料与试剂 甲壳素,NaOH,HCl,甲基橙指示剂,乙醇、丙酮。 五、实验步骤 1.壳聚糖的制备 (1)取三个烧杯,编号1﹟、2﹟、3﹟,于每个烧杯中加入甲壳素5g,于1﹟ 烧杯中加入40%NaOH 100mL,2﹟烧杯中加入50%NaOH 100mL, 3﹟烧杯中加入 60%NaOH 100mL,100℃煮沸2h,脱乙酰基。 (2)反应完毕取出,用蒸馏水洗至中性,再用乙醇、丙酮洗涤后,干燥,即得 白色壳聚糖。 2.脱乙酰度的测定 准确称取上述方法制备的三种壳聚糖各0.5g,分别置于250mL三角瓶中,加入

壳聚糖复合膜的制备及其性能研究(可编辑)

摘要 本文的目的是采用涂布法以聚乙烯醇(PVA)膜作为基膜制备壳聚糖复合膜, 以得到具有高阻隔性、较好力学性能、可降解性和抗菌性的食品包装材料,用乌氏粘度计测定壳聚糖的相对黏均分子质量。所用 3 种壳聚糖的相对黏均分 5 5 5 子质量分别为:4.68×10 、4.77×10 、6.68×10 。 比较抑菌圈法、比浊法、稀释平板计数法发现,比浊法结合稀释平板计数法用 于空白组与实验组的活菌计数,可以更准确地显示壳聚糖的抑菌效果。壳聚糖溶液 浓度为 0.01%的 LB 培养液在培养过程中出现絮状沉淀,而高浓度(0.1%)和空白实 验则不出现。这一有趣现象未见文献报导。相对分子质量大的壳聚糖的抑菌作用较 强。太低浓度的壳聚糖溶液,如 0.01%浓度,对两种细菌的抑菌效果不理想。对 E. coli 抑菌活性昀好的壳聚糖溶液浓度是 0.05%;而对 S. aureus 抑菌活性昀好的浓度则是 0.025%。 合成的两种壳聚糖衍生物样品(PCS、TMC)为白色絮状,都能溶于中性水。

浓度为 0.1%的 PCS 和 TMC 溶液都能有效抑制 E. coli 的生长。壳聚糖衍生物对细菌 的抑菌活性有一定的选择性。TMC 对 E. coli 菌比对 S. aureus 菌具有更好的抑菌效 果。 以 PVA 膜作为基材,采用涂布法制备了 PVA/壳聚糖复合膜。用万能材料试验机 测定复合膜的力学性能。复合膜的弹性模量随所用壳聚糖浓度的增大而增大。复合 膜的断裂伸长率和抗拉强度比 PVA 膜略微减小。 用透湿仪测定了复合膜的水蒸汽透过系数。各类复合膜的水蒸汽透过系数略高 于 PVA 膜。用 CS-1 和 CS-2 制得的复合膜的水蒸汽透过系数随壳聚糖浓度的增大而 增大;然而涂布 CS-3 的复合膜的水蒸汽透过系数却随着壳聚糖浓度的增大而减小。 复合膜的水蒸汽透过系数受环境相对湿度影响较大。用透氧仪测定了复合膜的氧气 透过系数,涂布壳聚糖可以提高 PVA 膜对 O 阻隔性能。 2 采用 QB/T 2591-2003 标准方法评价了复合膜对 E. coli 和 S. aureus抑菌效果。复

壳聚糖的制备

壳聚糖的制备 甲壳素是许多甲壳类动物(如虾、蟹)及昆虫等外壳的重要组成成分,同时也存在于菌类的细胞壁中,还可来源于有机酸类,抗生素与酶酿造副产物。甲壳素是一种十分丰富的天然资源,在自然界蕴藏量仅次于纤维素。它不溶于水和酸性介质,甲壳素脱乙酰后形成壳聚糖(CTS)。其溶解性较甲壳素大。它是生物合成的天然高 分子, 葡聚糖,酰度 ( 滴定法、热分析法、气相色谱法、元素分析法、紫外光谱一阶导数、苦味酸分光光度法等。常用的有酸碱滴定法、红外光谱法、紫外光谱法、电位滴定法等。 一、壳聚糖的制备 将虾壳去腿去杂质后,流水冲洗,洗净残余的虾肉,于60℃烘箱中烘干,用研钵

磨碎.称取10g虾壳3份,于100mL5%HCl中浸泡4h至无气泡冒出,再补加50mL5%HCl,浸泡2h,除去虾壳中的钙质和无机盐,抽滤用去离子水洗至中性,加100mL10%NaOH于50℃水浴中加热2h,除去蛋白,过滤,用去离子水80℃水浴中反应4h,水洗至中性,抽滤,烘干后得白色粉末状甲壳素分别为2.08,2.00,2,12g,平均产率为20.6%。 二、壳聚糖制备工艺的设计 30%以下,,但是 ℃进行 , ,真空干燥, 1. ,可与酸定量反应生成盐,且胺基特别稳定,即使在50%氢氧化钠溶液中,在150℃也不会分解,基于上述特性来测定脱乙酰度。准确称取0.2g样品置于250ml三角烧瓶中,加入0.2mol/L盐酸标准溶液25ml,搅拌0.5~1h完全溶解,以甲基橙作指示剂,0.2mol/L氢氧化钠标准溶液滴定过量的盐酸至终点,另取1份样品于105烘箱中

至恒重,测定样品含水量。 这种方法简单,但由于达到终点时,壳聚糖析出沉淀,使终点判定容易产生误差,尤其在样品摩尔质量较大情况下更是如此,从而导致实验的重复性差。而且样品受溶解度影响较大,有时需加热才能使样品完全溶解,这样使盐酸挥发,测定结果受到影响。但这种方法不需大型仪器,操作简便易行,经常操作,积累一定操作经验,会改 2. ,作 单,,应 3. , , 红88与壳聚糖的作用。酸性红88这种带负电荷的染料与壳聚糖大分子上质子化的氨基以1∶1的化学计量形成络和物,此时酸性红88的最大吸收波长为505nm,吸光度达到最低点,可以定量利用这一变色作用。本文用酸性红143,与已知含量壳聚糖作用,测定未知含量壳聚糖。

明胶_壳聚糖复合膜的制备与性能_宋慧君

第27卷第8期高分子材料科学与工程 Vol .27,No .8  2011年8月 POLYMER MA TERIALS SCIENCE AND ENGINEERING Aug 2011 明胶-壳聚糖复合膜的制备与性能 宋慧君 1,2 ,孟春丽2,汤克勇 1 (1.郑州大学材料科学与工程学院,河南郑州450001; 2.河南工程学院材料与化学工程系,河南郑州450007) 摘要:制备了一系列不同配比的明胶-壳聚糖复合膜,研究了壳聚糖含量对复合膜力学性能、吸湿性能的影响,通过X 射线衍射和红外光谱分析了复合膜的结构。结果表明,复合膜及纯壳聚糖膜的断裂伸长率和拉伸强度均大于纯明胶膜,壳聚糖的加入可改善膜的力学性能。随壳聚糖含量的增加,复合膜的吸湿率增大。明胶与壳聚糖分子间存在较强的相互作用,与明胶共混可改变壳聚糖的晶粒大小,降低壳聚糖的结晶度。明胶与壳聚糖之间的相容性良好。关键词:明胶;壳聚糖;复合膜;性能;结构 中图分类号:T B383 文献标识码:A 文章编号:1000-7555(2011)08-0165-03 收稿日期:2010-12-20 基金项目:国家自然科学基金资助项目(50973097);河南省高校科技创新人才支持计划资助项目(2009HAS TIT015)通讯联系人:汤克勇,主要从事天然高分子及其复合材料的研究, E -mail :keyongtangzzu @yahoo .com 明胶来源广泛,价格低廉,具有良好的生物相容性和可降解性。但是,它的成膜性、力学性能及抗水性较差。壳聚糖价廉易得、易于加工,具有良好的生物相容 性、可降解性、抗菌防腐性和成膜性等。明胶-壳聚糖复合膜可用于生物医药、组织工程、食品等。目前,对增塑及改性明胶-壳聚糖复合膜的性能与应用的研究较多[1~3] ,但有关未增塑及改性明胶-壳聚糖复合膜的结构与性能的研究很少[4]。为了开发具有新性能的复合材料,使明胶-壳聚糖复合材料在可食性包装方面得到应用,有必要系统研究明胶-壳聚糖复合物的结构与性能,进一步了解其制备、结构与性能之间的关系,以制备性能特点互补、功能协同增效的绿色包装材料。本文采用溶液共混法制备了一系列明胶-壳聚糖复合膜,并研究了复合膜的结构和性能。1 实验部分1.1 实验材料 明胶:生物级,天津市科密欧化学试剂有限公司;壳聚糖:脱乙酰度95%,山东奥康生物科技有限公司;冰醋酸、氢氧化钠、碳酸钾、氯化钠:均为分析纯(市售)。1.2 明胶-壳聚糖复合膜的制备 将一定量的明胶(Gel )溶于去离子水中,40℃水浴加热,配成10%的明胶溶液;将一定量的壳聚糖(CS )溶解于2%的醋酸溶液中制备2%的壳聚糖溶 液。二者按照一定比例混合,使复合膜中壳聚糖的质量分数分别为0%、10%、20%、30%、40%、50%、60%、70%、80%、90%和100%,分别用Gel 、10%CS 、20%CS 、30%CS 、40%CS 、50%CS 、60%CS 、70%CS 、80%CS 、90%CS 和CS 表示。将不同比例的明胶-壳聚糖溶液共混后,于40℃水浴中搅拌均匀,静置24h ,在洁净的水平聚氯乙烯板上流延成膜。用0.3mol /L 的NaOH 溶液洗涤后再用去离子水洗至中性,室温下自然干燥,揭膜。 1.3 明胶-壳聚糖复合膜的性能测试 1.3.1 力学性能:将所制复合膜裁成哑铃型标准试样,于室温、相对湿度65%的环境中调湿48h 以上至恒量。参照GB /T 1040-92《塑料拉伸性能试验方法》,以CM T6104型微机控制电子万能试验机(深圳新三思计量技术有限公司)测定试样的拉伸强度和断裂伸长率,拉伸速率50mm /min ,每个试样测5次,取平均值。 1.3.2 吸湿性能:将膜裁成1cm ×1cm 大小的薄片,在装有P 2O 5的干燥器中干燥至恒量,然后放在相对湿度为75%的密闭容器中,定时称量,至吸湿平衡。吸湿率以Q 表示,按式(1)计算。 Q =m w -m d m d (1) 式中:m d 、m w ———吸湿前、后试样的质量。每个试样

壳聚糖制备工艺。改

实验一:壳聚糖制备工艺 一、实验目的 1、了解制备甲壳质和壳聚糖的意义; 2、学习甲壳质和壳聚糖制备工艺。 二、实验原理 壳聚糖是碱性多糖,有止酸、消炎作用,可抑制胃溃疡。动物实验表明,可降低胆固醇、血脂。国外已报道用作心血管系统降低胆固醇的药物。经分子修饰制得的肝素类似物,具有抗血栓作用,能与肝素妣美。壳聚糖广泛用于食品与医药,如用作药物的载体具有缓释、持效的优点;用于制作人造皮肤、人造血管、人工肾、手术缝合线等。 虾蟹壳含无机盐碳酸钙和磷酸盐约占45%;蛋白和脂肪约占27%;甲壳质约占20-25%(蟹壳含甲壳质17.1-18.2%;龙虾含甲壳质22.5%;虾壳含甲壳质20-25%)甲壳质是聚-2-乙酰氨基-2-脱氧-D-吡喃葡萄糖,以β-(1,4)糖苷键连接而成,是一种线型高分子多糖,天然的中性粘多糖。甲壳质一般与蛋白质或碳酸钙或两者紧密结合在一起。盐酸浸泡处理可除掉壳里的无机盐碳酸钙、磷酸盐,壳中的CaCO3与HCL生成CaCL存在于废酸液中被除掉。碱处理可除掉壳中的蛋白和脂肪。经分离制得的甲壳质为白色无定型粉末,或亮白色半透明的小片状物。甲壳质不溶于水、稀酸、碱溶液和乙醇、乙醚等有机溶剂,溶于无水甲酸、浓无机酸。 浓热碱液与甲壳质作用,可脱掉甲壳质分子结构上的乙酰基,生成壳聚糖。即壳聚糖是由甲壳质在高浓度碱液中脱乙酰制备而成。壳聚糖为可溶性甲壳质,化学名称为聚-2-氨基-2-脱氧-D-吡喃葡萄糖,以β-(1,4)糖苷键连接而成。相对分子量约为12万-59万,是一种大分子阳离子聚合物。壳聚糖不溶于水和一般有机溶剂,不溶于碱,可溶于酸性水溶液(但不溶于硫酸)。 制备高黏度(高分子量)壳聚糖,脱乙酰工艺路线有几条,学生自行设计: 1.60-70℃,40-41%NaOH溶液保温20h; 2.110-120℃,45-50% NaOH溶液反应1h左右; 3.间歇式工艺路线:100℃条件下,45%的NaOH 溶液,1+1间歇反应2次,每次反应1h,每次反应后水洗至中性。 三、实验材料 1.材料与试剂 虾壳,1mol/L盐酸,5%氢氧化钠,95%乙醇,乙醚,硼氢化钠 2.仪器与设备 粉碎机,20目筛,方盘,磁力搅拌器,电磁炉,恒温水浴锅,真空干燥箱,布氏漏斗,抽滤瓶,循环水泵,三口烧瓶,冷凝管,温度计,烧杯,量筒,pH试纸,滤纸,纱布。 四、实验步骤 虾壳(称重,取25g),加1mol/L盐酸溶液,(固液比1:10,搅拌,静置12h)过滤。加5% 氢氧化钠溶液,(固液比1:8),搅拌,隔水煮1h,过滤,得甲壳质,烘干,粉碎,待用。 取5g甲壳质于三口瓶中,加45%氢氧化钠溶液(固液比1:20),再加1% 硼氢化钠,于110-120℃搅拌反应1h,冷却,离心,移去上清液,水洗沉淀,再离心,再移去上清液,水洗沉淀,再移去上清液,以95%乙醇洗涤沉淀,一起倒入抽滤瓶中,抽滤,留滤饼,得壳聚糖,晾干,称重。 五、实验结果 1.测定产品的主要质量指标黏度和脱乙酰度;

壳聚糖基复合膜的制备及其抗氧化性能的研究

Hans Journal of Chemical Engineering and Technology 化学工程与技术, 2020, 10(2), 61-64 Published Online March 2020 in Hans. https://www.360docs.net/doc/df6119409.html,/journal/hjcet https://https://www.360docs.net/doc/df6119409.html,/10.12677/hjcet.2020.102009 Preparation of Chitosan Based Composite Membrane and Its Antioxidant Properties Guxian Lai*#, Riqiang Dai Department of Chemical Engineering, Maoming Polytechnic, Maoming Guangdong Received: Feb. 4th, 2020; accepted: Feb. 18th, 2020; published: Feb. 25th, 2020 Abstract In this paper, chitosan is used as matrix. Chitosan/tea composite membrane, chitosan/honeysuckle composite membrane and chitosan/tea/honeysuckle composite membrane were prepared by tape casting with tea and honeysuckle extracts as additives. The effects of tea and honeysuckle extracts on the antioxidant activities of chitosan based composite membranes were investigated. And the syner-gistic effect of tea and honeysuckle extracts on the antioxidant activity of chitosan composite mem-brane was investigated. Keywords Chitosan, Tea Extract, Honeysuckle Extract, Antioxidant, Composite Membrane 壳聚糖基复合膜的制备及其抗氧化性能的研究 赖谷仙*#,戴日强 茂名职业技术学院化学工程系,广东茂名 收稿日期:2020年2月4日;录用日期:2020年2月18日;发布日期:2020年2月25日 摘要 本文以壳聚糖为基体,以茶叶和金银花提取物为添加剂,通过流延法制备了壳聚糖/茶叶复合膜、壳聚糖/金银花提取物复合膜以及壳聚糖/茶叶/金银花提取物三元复合膜。分别考察了茶叶和金银花提取物添加量对壳聚糖基复合膜抗氧化活性的影响,以及茶叶和金银花提取物的协同作用对壳聚糖基复合膜抗氧化活性的影响。 *第一作者。 #通讯作者。

相关文档
最新文档