光波导技术14-01

1平面光波导技术

光波导是集成光学重要的基础性部件,它能将光波束缚在光波长量级尺寸的介质中,长距离无辐射的传输。平面波导型光器件,又称为光子集成器件。其技术核心是采用集成光学工艺根据功能要求制成各种平面光波导,有的还要在一定的位置上沉积电极,然后光波导再与光纤或光纤阵列耦合,是多类光器件的研究热点. 按材料可分为四种基本类型:铌酸锂镀钛光波导、硅基沉积二氧化硅光波导、InG aAsP/InP光波导和聚合物(Polymer)光波导。 LiNbO3晶体是一种比较成熟的材料,它有极好的压电、电光和波导性质。除了不能做光源和探测器外,适合制作光的各种控制、耦合和传输元件。铌酸锂镀钛光波导开发较早,其主要工艺过程是:首先在铌酸锂基体上用蒸发沉积或溅射沉积的方法镀上钛膜,然后进行光刻,形成所需要的光波导图形,再进行扩散,可以采用外扩散、内扩散、质子交换和离子注入等方法来实现。并沉积上二氧化硅保护层,制成平面光波导。该波导的损耗一般为0.2-0.5dB/cm。调制器和开关的驱动电压一般为10V左右;一般的调制器带宽为几个GHz,采用行波电极的LiNbO3光波导调制器,带宽已达50GHz以上。 硅基沉积二氧化硅光波导是20世纪90年代发展起来的新技术,主要有氮氧化硅和掺锗的硅材料,国外已比较成熟。其制造工艺有:火焰水解法(FHD)、化学气相淀积法(CVD,日本NEC公司开发)、等离子增强CVD法(美国Lucent公司开发)、反应离子蚀刻技术RIE多孔硅氧化法和熔胶-凝胶法(Sol-gel)。该波导的损耗很小,约为0.02dB/cm。 基于磷化铟(InP)的InGaAsP/InP光波导的研究也比较成熟,它可与InP基的有源与无源光器件及InP基微电子回路集成在同一基片上,但其与光纤的耦合损耗较大。

基于AWG的平面光波导技术

基于AWG的平面光波导技术 采用平面光波導(Planar Lightwave Circuit,PLC)技术制作的阵列波导光栅(Arrayed Wave-guide Grating, AWG)是应用于光网络中的支撑技术波分复用(Wave Division Multiplexing, WDM)的重要器件。本文介绍了国内外AWG的应用现状和发展前景。 标签:平面光波导阵列波导光栅波分复用 1 平面光波导(Planar Light Circuit,PLC)技术的市场分析 伴随着光通信的发展,在金融危机影响下的亚太地区正成为全球光通信市场中最活跃的一部分,目前所面临的问题主要有:①运营商投资重心从SONET/SDH 转移到WDM的趋势将会持续高涨;②3G网络正式商用化带动了移动与固网宽带市场新旧技术的转换;③受市场驱动和政策面的影响,光纤到户(Fiber to the Home, FTTH)更加深入市场;④系统设备商们将持续兼并收购,以实现技术优势和资源整合。 基于PLC技术开发的光器件在光网络的组网中占据重要地位。波分复用(Waveguide Division Multiplexing, WDM)系统是当前最常见的光层组网技术,它通过复用/解复用器实现多路信号传输。早期的WDM系统并没有实现真正意义上的光层组网,难以满足业务网络IP化和分组化的要求,这种情况直到可重构光分插复用器(Reconfigurable Optical Add Drop Multiplexer, ROADM)的出现才得以改善。平面光波导ROADM是近年来广泛采用的ROADM子系统之一。PLC的ROADM上下路通道是彩色光,这意味着只有预定义的彩色波长可以在每个端口上下,也可以配合可调滤波器和可调激光器使用。由于PLC的集成特性,使其成为低成本的ROADM解决方案之一。目前的光波导,一般都是以玻璃、LiNbO3、GaAs 单晶等做衬底,再用扩散或外延技术制成的。PLC可以集成多种器件,例如:韩国的Byung Sup Rho等人用PLC研制的WDM双向模块[1],我国的浙江大学也研制出一种利用PLC的高集成化的PMD补偿器[2][3]。 2 AWG的结构及其工艺简介 阵列波导光栅(Arrayed Waveguide Grating, AWG)是第一个将PLC技术商品化的元器件。它是基于干涉原理形成的波分复用器件,通过集成的AWG可以实现波长复用和解复用,这种技术已被用于WDM系统中。目前平面波导型WDM器件有多种实现方案,其做法为在硅晶圆上沉积二氧化硅膜层,再利用光刻工艺(Photolithography)及反应式离子蚀刻法(RIE)制作出AWG。该类器件通路数大、紧凑、易于批量生产,但带内频响尚不够平坦。由于AWG采用与一般半导体相同的制作过程,多通道数与低通道数的制作成本相差不多,但更适合生产,而且整合度较高,因此应用在DWDM上具有相当的潜力。北美市场在2008年初呈现活跃状态,比如:美国加州的PLC设备供应商ANDevices在一月份签订协议,提供价值$13.5百万的产品给FTTH发展商Enablence Technologies Inc[4]。在我国,以PLC

光波导

西安邮电大学 专业课程设计报告书 院系名称:电子工程学院 学生姓名:刘寒 学号05103073 专业名称:光信息科学与技术班级:光信息1003 实习时间:2013年4月22日至2013年5月3日

课程设计题目:直波导和弯曲波导的耦合 一.课程设计的任务和要求 1. 学习使用OptiBPM软件 2. 运用BPM仿真直波导和弯曲波导的耦合 二.设计步骤 1.阅读OptiBPM提供的操作指南,了解和学习光波导的参数设置,以及各种波 导的画法。 2.先尝试画一条直波导,观察光在光波导中的能量分布,模拟出古斯汉欣位移 效应,并做出分析,选取不同的折射率观察对光能量有何影响。分析讨论古斯汉欣位移距离的量级。 3.做直波导与弯曲波导的耦合,改变波导的折射率、波导间距离、波导宽度等 参数,观察光波的传播规律。 三.仿真结果分析 1.直波导通入光后,古斯-汉欣位移效应,光波导宽度40um,纤芯折射率:3.3, 包层折射率:3.27.仿真图(图1-1)如下: 图1-1 光在波导中的光强度在波导中,从中心处向两边缘逐渐减小,可是光强的分布范围很明显大于40um的光波导宽度,多余出来的距离就是古斯-汉欣位移。所谓的古斯-汉欣位移,即就是实际的反射点与理想的反射点之间存在一定的距离D,可用公式表示为:

() 212 22 1 22 sin n n cn D -= θλ 式中,c 为常数,n1=3.3,n2=3.27,则C=0.03,λ为光波长。这个现象出现是基于实际光线都具有一定的空间谱宽,也即实际的光线由一光速构成,它们指向同一入射点,但入射角有一定的宽度?? 。接着在其他参数不改变的情况下,改变光波导的纤芯或者包层的折射率,然后再次观察古斯-汉欣位移的变化,如下 图1-2 虽然变化量很小,但依然可以看见,当包层折射率减小到3.15,古斯-汉欣位移减小了。之后再次改变纤芯的折射率到4.0,再次观察其位移的变化,与前两次 的进行比较,如图1-3 图1-3 这三次仿真结果对比,可以看出,无论纤芯的折射率还是包层的折射率的减小都会导致古斯-汉欣位移的减小。而且可以从图中看出古斯-汉欣位移的大小是um

光波导理论与技术 大学课件

光波导理论与技术大学课件 06 年复习题 x E y x t Ay cos t1. 已知一平面电磁波的电场表达式为 c , 写出与之相联系的磁场表达式。(提示:利用麦克斯韦尔方程,注意平面波的特点) 2E 1 2E2. 证明平面电磁波公式 E A cost kx 是波动微分方程 0 的解。 x 2 v 2 t 23. 在直角坐标系任意方向上以角频率传播的平面波为 E A exp j t k r ,根据波动方程 2 2E ,导出用角频率、电容率、导磁率0 表示平面波的传 E 0 2 0 播常数 k。 t4. ?璧ド矫娌ㄓ?E A exp j t kz 表示,求用电容率、导磁率0 表 示的该平面波传播速度。(提示:考虑等相位面的传播速度)5. 用文字和公式说明电磁场的边界条件。6. 设时变电磁场为 A xt A x sin ωt ,写出该电磁场的复振 幅表示式,它是时间的函数还是空间的函数,7. 分别写出麦克斯韦尔方程组和波动方程的时域与频域的表达式。8. 说明平面波的特点和产生的条件。9. 写出平面波在下列情况下的传播常数或传播速度表示式: 1 沿任意方向的传播速度; 2 在折射率为 n 的介质中的传播常数; 3 波矢方向与直角坐标系 z 轴一致的传播常数。10. 平面波波动方程的解如下式,说明等式右边两项中正负号和参数 k 的物理意义。 E x z , t E e j t kz E e j t kz11. 说明制成波片材料的结构特点,如何使波片成为 1/4 波片和 1/2 波片12. 如果要将偏光轴偏离 x 轴度的线偏振光转变 成 x 偏振光,应将/2 波片的主轴设定为偏离 x 轴多大角度13. 什么是布儒斯特 起偏角,产生的条件是什么14. 光波在界面反射时,什么情况下会产生半波损失15. 如何利用全反射使线偏振光变成园偏振光,16. 什么是消逝波,产生消逝波的条件是什么,17. 什么是相位梯度,它与光波的传输方向以及介质折射率是什么关系,18. 在非均匀介质中如何表示折射率与光线传播方向的关系,19. 光纤的数值孔径表示 什么,如何确定它的大小20. 在下列情况下,计算光纤数值孔径和允许的最大入射 角(光纤端面外介质折射率n1.00): 1 阶跃折射率塑料光纤,其纤芯折射率 n1

光波导的一些基本概念

平面光波导,英文缩写PLC是英文Planar Lightwave Circuit的缩写,翻译成中文为: 平面光波导(技术)。所谓平面光波导,也就是说光波导位于一个平面内。正如大家所熟悉的单层电路板,所有电路都位于基板的一个平面内一样。因此,PLC是一种技术,它不是泛指某类产品,更不是分路器!我们最常见的PLC分路器是用二氧化硅(SiO2)做的,其实PLC技术所涉及的材料非常广泛,如玻璃/二氧化硅(Quartz/Silica/SiO2)、铌酸锂(LiNbO3)、III-V族半导体化合物(如InP, GaAs等)、绝缘体上的硅 (Silicon-on-Insulator, SOI/SIMOX)、氮氧化硅(SiON)、高分子聚合物(Polymer)等。 基于平面光波导技术解决方案的器件包括:分路器(Splitter)、星形耦合器(Star coupler)、可调光衰减器(Variable Optical Attenuator, VOA)、光开关(Optical switch)、光梳(Interleaver)和阵列波导光栅(Array Waveguide Grating, AWG)等。根据不同应用场合的需求(如响应时间、环境温度等),这些器件可以选择不同的材料体系以及加工工艺制作而成。值得一提的是,这些器件都是光无源器件,并且是独立的。他们之间可以相互组合,或者和其他有源器件相互组合,能构成各种不同功能的高端器件,如:VMUX = VOA + AWG、WSS = Switch + AWG等(图2)。这种组合就是PLC技术的未来发展方向-光子集成(Photonic Integrated Circuit, PIC

光波导的理论以及制备方法介绍

光波导的理论以及制备方法介绍 摘要 由光透明介质(如石英玻璃)构成的传输光频电磁波的导行结构。光波导的传输原理是在不同折射率的介质分界面上,电磁波的全反射现象使光波局限在波导及其周围有限区域内传播。 光波导的研究条件与当前科技的飞速发展是密不可分的,随着技术的发展,新的制备方法不断产生,从而形成了各种各样的制备方法,如离子注入法、外延生长法、化学气相沉淀法、溅射法、溶胶凝胶法等。重点介绍离子注入法。 光波导简介如图所示为光波导结构 图表1光波导结构 如图中共有三层平面相层叠的光学介质,其对应折射率n0,n1,n2。其中白色曲折线表示光的传播路径形式。可以看出,这是依靠全反射原理使光线限制在一层薄薄的介质中传播,这就是光波导的基本原理。为了形成全反射,图中要求n1>n0,n2。 一般来讲,被限制的方向微米量级的尺度。 图表2光波导模型 如图2所示,选择适当的角度θ(为了有更好的选择空间,一般可以通过调整三层介质的折射率来取得合适的取值),则可以将光线限制在波导区域传播。 光波导具有的特点光波导可以用于限制光线传播光路,由于本身其尺寸在微米量级,就使得其有很多较好的特点: (1)光密度大大增强 光波导的尺寸量级是微米量级,这样就使得光斑从平方毫米尺度到平方微米尺度光密度增大104—106倍。 (2)光的衍射被限制 从前面可以看出,图示的光波导已经将光波限制在平面区域内,后面会提到稍微变动一下技

术就可以做成条形光波导了,这样就把光波限制在一维条形区域传播,这就限制了光波的衍射,有一维限制(一个方向),二维限制(两个方向)区分(注:此处“一维”与“二维”的说法并不是专业术语,仅仅指光的传播方向的空间自由度,不与此研究专业领域的说法相混同)。 (3)微型元件集成化 微米量级的尺寸集成度高,相应的成本降低 (4)某些特性最优化 非线性倍频阈值降低,波导激光阈值降低 综上所述,光波导本身的尺寸优势使得其有很好的研究前景以及广泛的应用范围。 光波导的分类一般来讲,光波导可以分为以下几个大类别: 图表3平面波导(planar) 图表4光纤(fiber)

北邮博士研究生招生参考书目

北京邮电大学2011年博士研究生招生参考书目 1101英语(无参考书目) 2201概率论与随机过程 1、《概率论·数理统计·随机过程》(第1~5章,第10~12章),胡细宝、孙洪祥、王丽霞,北京邮电大学出版社(第1版) 2、《随机过程》孙洪祥,机械工业出版社,2008 3、《概率论与随机过程》王玉孝,孙洪祥,北京邮电大学出版社,2005 2202数值分析 1、《数值分析(第5版)》李庆杨等,清华大学出版社,2010年 2、《数值分析基础》关治等,高等教育出版社 1999年 3、《高等数值分析》蔡大用、白峰杉,清华大学出版社 2000年 2203高等代数 1、《高等代数》(第二版)北京大学数学系几何与代数教研室代数小组编,高等教育出版社 2、《线性代数》(第二版)居余马等编,清华大学出版社 2204数学物理方法 1、《数学物理方法》(第2版)郭玉翠编着,清华大学出版社,2006年12月。 2、《数学物理方法学习指导》(第1版)郭玉翠编着,清华大学出版社,2006年2月。 3、《数学物理方法》(第2版)梁昆淼编,高等教育出版社,1978年7月。 4、《矢量分析与场论》(第二版)谢树艺编,高等教育出版社,1985年3月。 2205近世代数 1、《近世代数及其应用(第二版)》阮传概,孙伟,北京邮电大学出版社,2005年。

2、《近世代数基础》张禾瑞,高等教育出版社,2006年 3、《应用近世代数(第二版)》胡冠章,清华大学出版社,2004年。 2206离散数学 1、《Discrete Mathematics and its Applications》第6版,K.H.Rosen,机械工业出版社,2008年。 2、《Applications of Discrete Mathematics》(Updated Edition) John G. Michaels,Kenneth H. Rosen,McGraw-Hill Companies, Inc,2007。 3、《离散数学结构》第五版,Bernard Kolman, Robert C. Busby, Sharon Cutler Ross,高等教育出版社2005年。 4、《离散数学》陈崇昕等,北京邮电大学出版社,1992年 5、《数理逻辑与集合论》(第2版)石纯一等,清华大学出版社,2000年 6、《图论与代数结构》戴一奇等,清华大学出版社,2003年 2207数理统计 1、《概率论与数理统计》盛骤等编,高等教育出版社。 2、《数理统计》赵选民等编,科学出版社。 3、《概率论与数理统计习题解析》姜炳麟等编,北京邮电大学出版社。 3301现代控制理论 《现代控制理论》刘豹,机械工业出版社,1999年5月第2版。 3302机器人技术 1、《机器人学》(第二版)蔡自兴,清华大学出版社,2009年9月 2、《机器人学基础》蔡自兴,机械工业出版社,2009年5月 3303电接触理论与应用

平面光波导(PLC, planar Lightwave circuit)技术

平面光波导(PLC, planar Lightwave circuit)技术

平面光波导(PLC, planar Lightwave circuit)技术 随着FTTH的蓬勃发展,PLC(Planar Lightwave Circuit,平面光路)已经成为光通信行业使用频率最高的词汇之一,而PLC的概念并不限于我们光通信人所熟知的光分路器和AWG,其材料、工艺和应用多种多样,本文略作介绍。 1.平面光波导材料 PLC光器件一般在六种材料上制作,它们是:铌酸锂(LiNbO3)、Ⅲ-Ⅴ族半导体化合物、二氧化硅(SiO2)、SOI(Silicon-on-Insulator, 绝缘体上硅)、聚合物(Polymer)和玻璃,各种材料上制作的波导结构如图1所示,其波导特性如表1所示。

图1. PLC光波导常用材料 铌酸锂波导是通过在铌酸锂晶体上扩散Ti离子形成波导,波导结构为扩散型。 InP波导以InP为称底和下包层,以InGaAsP为芯层,以InP或者InP/空气为上包层,波导结构为掩埋脊形或者脊形。 二氧化硅波导以硅片为称底,以不同掺杂的SiO2材料为芯层和包层,波导结构为掩埋矩形。 SOI波导是在SOI基片上制作,称底、下包层、芯层和上包层材料分别为Si、SiO2、Si和空气,

波导结构为脊形。 聚合物波导以硅片为称底,以不同掺杂浓度的Polymer材料为芯层,波导结构为掩埋矩形。 玻璃波导是通过在玻璃材料上扩散Ag离子形成波导,波导结构为扩散型。 表1. PLC光波导常用材料特性 2. 平面光波导工艺 以上六种常用的PLC光波导材料中,InP波导、二氧化硅波导、SOI波导和聚合物波导以刻蚀工艺制作,铌酸锂波导和玻璃波导以离子扩散工艺制作,下面分别以二氧化硅波导和玻璃波导为例,介绍两类波导工艺。 二氧化硅光波导的制作工艺如图2所示,整个工艺分为七步: 1)采用火焰水解法(FHD)或者化学气相淀积工艺

光波导原理及器件简介

包层n 2 芯区n 1 图1. 三层平面介质波导 图2. 矩形波导 图3. 圆光波导 图4. 椭圆光波导 光波导原理及器件简介 摘要:20世纪60年代激光器的出现,导致了半导体电子学、导波光学、非线性光学等一系列新学科的涌现。20世纪70年代,由于半导体激光器和光纤技术的重要突破,导致了以光导纤维通信、光信息处理、光纤传感、光信息存储与显示等为代表的光信息科学技术的蓬勃发展,而导波光学理论是光通信技术的基础,同时也是集成光学、光纤传感等学科的基础。本文简述了光波导的原理,并着重介绍光波导开关。 关键词:光波导,波导光学,平面光波导,光波导开光 1.引言 1.1光波导的概念 波导光学是一门研究光波导中光传输特性及其应用的学科。以光的电磁理论和介质光学特性的理论为基础,研究光波导的传光理论、调制技术及光波导器件的制作与应用技术。导波光学系统是由光源、光波导器件、耦合器、光调制器及光探测器等组成的光路系统。 光波导是将光波限制在特定介质内部或其表面附近进行传输的导光通道。简单的说就是约束光波传输的媒介,又称介质光波导。介质光波导的三要素是:“芯/包”结构,凸形折射率分布(n1>n2),低传输损耗。光波导常用材料有:LiNbO3、Si 基(SiO2、SOI )、Ⅲ-Ⅴ族半导体、聚合物等。 1.2光波导的分类 按几何结构分类,光波导可分为:平面(平板)介质波导,矩形(条形)介质波导,圆和非圆介质波导。

按波导折射率在空间的分布分类,光波导可分为:非线性光波导(n=n(x,y,z,E)),线性光波导(n=n(x,y,z))。线性光波导又可分为:纵向均匀(正规)光波导 (n=n(x,y)),纵向均匀(正规)光波导(n=n(x,y))。 2.光波导的原理简介 一种为大家所熟知的介质光波导就是通常具有圆形截面的光导纤维,简称为光纤。然而,集成光学所注重的光波导往往是平面薄膜所构成的平板波导和条形波导,这里,我只讨论平面光波导。 最简单的平板波导由三层材料所构成,中间一层是折射率为 n1的波导薄膜,它沉积在折射率为 n2的基底上,薄膜上面是折射率为 n3的覆盖层,一般都为空气。薄膜的厚度一般在微米数量级,可与光的波长相比较。薄膜和基底的折射率之差一般在10-1和10-3之间。为了构成真正的光波导,要求n1必须大于 n2和 n3,即 n1>n2>=n3。这样,光能限制在薄膜之中传播。 假定导波光是相干单色光,并假定光波导由无损耗,各向同性,非磁性的无源介质构成。 光在平板波导中的传播可以看作是光线在薄膜—基底和薄膜—覆盖层分界面上发生全反射,在薄膜中沿 Z 字形路径传播。光在波导中以锯齿形沿Z 方向传播,光在x 方向受到约束,而在y 方向不受约束。 在平板波导中,n1>n2且 n1>n3,当入射光的入射角θ1超过临界角θ0时: 入射光发生全反射,此时,在反射点产生一定的位相跃变。我们从菲涅耳反射公式: 出发,推导出反射点的位相跃变φTM 、φTE 为:

光波导与光纤通信课程教学大纲

《光波导与光纤通信》课程教学大纲 一、《光波导与光纤通信》课程说明 (一)课程代码:08131013 (二)课程英文名称:Fundamentals of Light Wave Guide & Fibre Optical Communication (三)开课对象:应用物理学专业本科生 (四)课程性质: 光波导与光纤通信应用物理学专业本科生的专业选修课。其预修课程有大学物理、数理方法、通信原理等。本课程的目的本课程的目的是让学生掌握光纤通信的基本概念,基本理论和基本技术,了解光纤通信的发展现状。 (五)教学目的: 本课程的目的是让学生掌握光纤通信的基本概念,基本理论和基本技术,了解光纤通信的发展现状,更好地适应社会需要。 (六)教学内容: 光纤通信是现代通信网的重要组成部分,本课程内容主要包括光波导和光纤的基本理论和性质;半导体、激光器、光检测器、光放大器等光纤通信器件的基本理论和性质;光发射机、光接收机的基本理论和性质;光纤通信系统的构成、设计方式以及光纤通信中各种新技术、新发展。 (七)学时数、学分数及学时数具体分配 学时数: 54 学时 分数: 3学分 学时数具体分配: 教学内容讲授实验/实践合计第一章概论 2 2 第二章光纤与导光原理8 8

第三章光缆的制造及无源光器件 4 4 第四章光源与光检测器 4 4 第五章光纤激光器 6 6 第六章光纤放大器 6 6 第七章线路编码与多媒体应用 6 6 第八章光发射机与光接收机 6 6 第九章光纤网络通信技术 6 6 第十章光纤通信系统中的测量 6 6 合计54 54 (八)教学方式 以课堂讲授为主要授课方式 (九)考核方式和成绩记载说明 考核方式为考试。严格考核学生出勤情况,达到学籍管理规定的旷课量取消考试资格。综合成绩根据平时成绩和期末成绩评定,平时成绩占40% ,期末成绩占60% 。二、讲授大纲与各章的基本要求 第一章概论 教学要点: 通过本章学习,使学生掌握光纤通信的发展史及其发展方向,光纤通讯的优点及特点。 1.了解光纤通信的发展状况。 2.理解光纤通信的特点。 教学时数:2学时 教学内容: 第一节光纤通信的发展概况 第二节光纤通信的特点

《光波导理论与技术 李玉权版》第一、二章

——自学《光波导理论与技术李玉权版》笔记 第1章绪论 (2) 1.1 光通信技术 (2) 1.2 光通信的发展过程 (2) 1.3 光通信关键技术 (3) 1.3.1 光纤 (3) 1.3.2 光源和光发送机 (5) 第2章电磁场理论基础 (7) 2.1 电磁场基本方程 (7) 2.1.1 麦克斯韦方程组 (7) 2.1.2 电磁场边界条件 (8) 2.1.3 波动方程和亥姆霍兹方程 (10) 2.1.4 柱型波导中的场方程 (11) 2.2 各向同性媒质中的平面电磁波 (13) 2.2.1 无界均匀媒质中的均匀电磁波 (13) 2.2.2 平面电磁波的偏振状态 (13) 2.2.3 平面波的反射和折射 (15) 2.2.4 非理想媒质中的平面电磁波 (16) 2.3 各向异性媒质中的平面电磁波 (18) 2.3.1 电各向异性媒质 (18) 2.3.2 电各向异性媒质中的平面波 (18) 2.4 电磁波理论的短波长极限——几何光学理论 (22) 2.4.1 几何光学的基本方程——eikonal方程 (22) 2.4.2 光线传播的路径方程 (24) 2.4.3 路径方程解的两个特例 (25) 2.4.4 折射定律与反射定律 (28)

第1章 绪论 1.1 光通信技术 光通信的主要优势表现在以下几个方面: (1) 巨大的传输带宽 石英光纤的工作频率为0.8~1.65m μ ,单根光纤的可用频带几乎达到了200THz 。即便是在1.55m μ 附近的低损耗窗口,其带宽也超过了15THz 。 (2) 极低的传输损耗 目前工业制造的光纤载1.3m μ 附近,其损耗在0.3~0.4dB/km 范围以内,在 1.55m μ波段已降至0.2/dB km 以下。 (3) 光纤通信可抗强电磁干扰,不向外辐射电磁波,这样就提高了这种通信手 段的保密性,同时也不会产生电磁污染。 1.2 光通信的发展过程

平面光波导原理(理论)

平面光波导分路器工作原理简介The operating principle of Planar Lightwave Circuit (PLC) splitter 专业2009-12-27 10:55:40 阅读10 评论1 字号:大中小订阅 分路器作为FTTx网络的核心部件,其在无源光网络(Passive Optical Network, PON)的一个典型应用表现在以下两个方面: 1.作为下行光信号(1490nm和1550nm)的功率分配器(Power splitter)使用 2.作为上行光信号(1310nm)的合束器(Combiner)使用 详细的组网形式不是这里的讨论重点,读者可以参考相关专著(如Gerd Keiser的《FTTX Concepts and Applications》)。这里主要讨论的是分路器的工作原理和性能。 目前市场上主流的分路器主要基于两种技术形式:熔融拉锥型(Fused Biconical Taper, FBT)和平面光波导(PLC)型。同样的,两种技术形式孰优孰劣,这里不作评论。无论基于何种技术形式的分路器,都是基于1 x 2基本结构的级联而成。FBT的1 x 2结构是一耦合器,而PLC的是一Y分支结构。这个看似简单的Y分支构件,其实并不简单,因为分路器的性能优劣很大程度上就是由它决定的。如何设计一个性能优异的Y分支结构属于技术机密(Classified technology),这里不便讨论。这里仅就基于平面光波导技术的一个Y分支结构的分路器,即1 x 2分路器的工作原理作一简介。其实也就是从物理本质上粗略地解释为什么1 x 2分路器无论是上行,还是下行信号,其插入损耗都是3 dB。 1 x 2分路器的功能结构可以用图1(a)的框图来表示:一个单模输入波导,两个单模输出波导。中间用来分束的结构有很多种,这里只给出了3种结构:图1(b)的定向耦合器型(Directional Coupler, DC),图1(c)的无间距定向耦合器型(Zero-Gap Directional Coupler, ZGDC),以及图1(d)的模斑转换器型(Spot Size Converter, SSC)。定向耦合器型和零间距定向耦合器型输入端都只用其中一个端口,并且无间距定向耦合器型其实是多模干涉型(Multi-Mode Interference, MMI)。现行市场上热卖的PLC分路器都是SSC型的,之所以给出另外两种,是为了进行对比分析。 首先来看图1(b)的DC,入射光在入射单模波导内只存在一个模式:基模(0阶模)。当该0阶模到达耦合区-两相互靠近的波导(间距为波长量级)时,根据超模理论(Supermode theory),将会在耦合区激励出如图中所示的两超模(由各独立波导中的0阶模叠加而成):偶模(even mode)和奇模(odd mode),并且这两个超模具有几乎相等(近于简并)的传播常数。在偶模中,位于2个波导内的电场波峰是同相位;而奇模中两波峰是反相位。根据这样的相位关系,两超模叠加的场分布光功率,可以在相邻两波导中周期性的,成二次正(余)弦函数的,不断的交替变换。图中示意图为刚好等分(half = 3 dB)入射光强时的模式(FBT1 x 2分路器原理与此类同)。 再来考察图1(c)中的ZGDC,同样的入射光在入射单模波导内只存在一个模式:基模(0阶模)。虽然该结构也叫DC,但其工作模式与真正的DC完全不同。当入射0阶模到达两入射波导交叉点时,该处波导宽度突然增大一倍,其场宽也必然增大,变成另一0阶模。由于这两个0阶模不满足场的连续性条件,因此必然同时伴随着另一模式-1阶模的激发,而且1阶模的强度与0阶模相同。如是在中间宽度2w多模波导中便传输着两个模式,并且最多只有这两个模式:0阶模和1阶模(该2w波导为双模波导)。这样,在该区域内,光场分布就是这两个模式(0阶模,1阶模)的相互干涉场分布(前面提到的MMI)。图中示意图为刚好在两输出单模波导中等分(half = 3 dB)输入光强时的模式。 图1(d)就是现行市场上的PLC1 x 2分路器-Y分支。其工作原理如下:当入射单模波导内的0阶模刚到达锥形区域-SSC时,这里波导结构并无发生任何变化,因此仍然保持该0阶模的形态。当该0阶模继续在SSC中传播时,虽然波导宽度不断变宽到2w,此时该波导内可以存在两个模式(前已述)。然而,由于SSC区域变宽的很缓

光波导理论与技术

光波导 1.集成光学:1)按集成的方式划分:个数集成和功能集成;2)按集成的类型划分:光子集成回路(PIC )和光电子集成回路(OEIC );3)按集成的技术途径划分:单片集成和混合集成;按研究内容划分:导波光学和集成光路。 2.纤维光学(圆波导)和集成光学(平板波导、条形波导)是导波光学的两大分支。 3.传播常数β和有效折射率N=β/k 0=n 1sinθ是研究平板波导的重要参数。 4.平板波导的两种基本模式:TE 模:E y ,H x ,H z ;TM 模:H y ,E x ,E z 。 5.对称平板光波导中,基模无论如何都不截止;非对称的基模可能截止。 6.对于非对称波导,随着波长的增大,波导层厚度的减小,同阶数的TM 模先截止;对于对称波导,同阶数的TE 和TM 模一起截止。 7、一个平板光波导的波导层、衬底层和覆盖层折射率分别为1n 、2n 和3n ,若在波长λ下保持单模传输,波导层的厚度d 应在什么范围内选取? 答案:单模传输的前提条件是非对称波导。 截止厚度计算式()()TE TE c TM TM c m d n n m d n n 22122212arctan 2arctan 2παλππαλπ???+???=?-?????+? ??=?-? 其中TE TM n n n n n n n n n n 2223221242223122312αα?-=?-????-?= ??-??? 所以TE c n n n n d n n 0222322122212arctan 2λπ??- ? ?-??=-,TE c n n n n d n n 1222322122212 arctan 2λππ????-??+ ? ?-??????=-, TM c n n n n n n d n n 0222231223122212 arctan 2λπ????-?? ?-??????=- 单模传输条件TE TE c c TM c d d d d d 01 0?<

光电子技术基础 第4章 光波导技术基础

第4章光波导技术基础 为使激光器发出的光直接或间接地为人类服务,需要将光源发出的光调制后传送到接收器,这当中最重要的是要有一种衰减尽可能小而且尽可能不失真地传输光的光路。对于光电子技术来讲,用于发光的光源和将光转换成电的探测元件作为光电子系统的“发”端与“收”端,是不可缺少的重要器件,而用于各器件间光传输的介质光波导也是极其重要的,它将光限制在一定路径中向前传播,减小了光的耗散,便于光的调制、耦合等,为光学系统的固体化、小型化、集成化打下了基础,是光电子学向集成光电子学发展的主要基础知识,也是光纤通信的重要基础知识。 传统光学中常用空气作传输介质,用透镜、棱镜、光栅等光学元件构成光路来实现光的焦、传输、转折等。但在长距离传输中,大气中的水分和气体等的吸收、水滴和粉尘等烟雾的散射等都很大,各种光学元件又存在菲涅耳反射等耗散,因而没有实用价值。也有人曾试验过气体透镜:将圆管中充满清洁的空气,四周加热,调整气体流速以保持层流,用气体温差构成气体透镜,使通过的光向中心汇聚,不致耗散,但实现起来相当困难。最终人们发现介质光波导可以用来引导光按需要的路径传播,并且损耗可以做到很小,这正如电流被限制在线路布线、电线等中传输一样。介质波导常用的有平面(薄膜)介质波导、条形介质波导和圆柱形介质波导。当工作于光波波段时,这些介质波导常称为平面光波导、条形光波导与光纤。 光纤分为阶跃折射率光纤和渐变折射率光纤。阶跃折射率光纤的原理由英国的Tyndall 于1854年提出,英国的Baird与美国的Hansell于1927年申请石英光纤应用专利。向玻璃光纤输入光最早于1930年前后由德国人完成。l958年,美国的Kapany设计了细束光纤,同年美国光学公司为减少光纤包层杂散光引入第二吸收鞘;1961年美国的Snitzer研制了光纤激光器。1963年,日本的西迟等人申请了渐变折射率光纤专利,l968年日本玻璃板公司研制出产品。l970年,美国Corning公司研制出20dB/km的低损耗光纤,从此之后,各公司为实现光通信的商用化,开展了大量光学元器件和传输通路的研制。目前,光纤通信已产业化,各国都在实现光纤通信网络化。 平板与条形光波导是光学系统小型化、集成化、固体化需求下的产物。可以将光限制在低损耗的波导内传播。其起源可追溯到1910年德国的Hondros和Debye进行的电介质棒的研究。1962年前后开始了薄膜光波导的研究:当年美国的Yariv从pn结中观测到平板层中的光波导现象,l963年,Nelson等人发现了光波导电光调制现象,1965年美国的Anderson

光波导技术1

研究生课程作业封面课程名称:光波导技术基础学生姓名:王斌 学号:sc12038069 年级:2012级

刚开始接触光波导,在前两节课中,通过老师的讲解对光波导的理论进行了简单的了解。在课后的时间中,查阅相关的文献,对光波导领域中,波导激光器和集成光学的内容挺感兴趣。查阅了几篇文献,通过读文献,对波导激光器和集成光学有了一点基本的了解。这里,写一下感兴趣的综述,作为读文献的收获。我的了解比较浅显,没能很深入,还需要进一步的进行学习和研究。

光波导技术及涉及到的波导激光器一些综述 1.波导的基本介绍 波导作为信号传播的通道和器件的连接装置,是集成光学的重要组成部分,大多数的集成光学元件都是以波导为基础的。波导从结构上来讲,是一个被低折射率介质包围的高折射率区域,基于全反射原理光被限制在一个微米量级的传输区域内。通过上了两次课,老师的讲解,对波导的基本的知识,也有了大概的了解和理解,还在学习中。这里就不再进行介绍了,在课余时间对理论知识看了一些。 1.1 波导的结构和分类 波导是一个高折射率的区域,它的四周的介质低于内部的折射率,以满足全反射的条件。光通过在这种满足全反射条件的介质中传播,发生全反射以“z”字型来传播。根据对光维数限制的情况,波导可以分类为一维波导和二维波导。一维波导又称平面波导(如下图a所示),一维波导是由表面覆盖层、波导层、基质层三层折射率不同的介质层构成,满足全反射的折射率条件,覆盖层和衬底层的厚度比波导层的厚度要大的多,光线只受垂直方向(x)的限制。 二维波导是对腔内的光线进行x和z方向限制的波导。根据波导四周的介质

情况,又可以分类为脊型波导、埋层型波导和表面型波导(如上图b所示)。其中,埋层型波导和表面型波导就是传统意义的条形波导。有三个面与空气介质相接触,与基质材料相接触的有一个面,这种波导结构是脊型波导。其中,不和空气介质相接触,只和基质介质接触的波导结构,是埋层型波导。在基质材料之中制备波导,但是只有一个面与空气相接触的波导结构,是表面型波导。 波导结构按照波导形状又可以分为:光纤(圆柱形介质波导)、薄膜波导(平面波导)、矩形波导(条形波导)、带状波导。波导按照折射率来进行分类又可以分为均匀介质光波导和渐变折射率介质光波导。 1.2波导的制备方法 光波导的研究方法与当前科技的发展密不可分,随着技术的发展,新的制作方法不断的出现。波导的制备方法有很多种。这里简单的介绍几种常用的效果良好的制备波导结构的方法。 (1)载能粒子束所谓的载能粒子束法就是利用载能粒子和材料相互作用使得材料的折射率发生改变,从而制备波导结构。该方法对材料的性质影响轻微,而且该方法不受温度限制,可在任何温度下实行,可以准确的控制折射率的变化,广泛的应用于晶体、陶瓷、有机物、玻璃中。载能粒子束法可以分为离子注入式、快重离子辐照、聚焦质子束直写。主要介绍离子注入法。离子注入法使用具有一定能量的高速离子束来轰击材料表面,高速离子束通过使用高压电场加速离子获得,轰击材料表面的离子束与材料发生作用,使得离子束的能量不断减少,最后离子的能量不足以维持,就会留在材料中,这就会改变材料的折射率,从而制备出波导。离子注入制备的波导根据材料折射率变化的不同可以分为光位垒型、增强势阱型、光位垒+增强势阱型。折射率增强势阱是折射率增强的部分,光位垒是折射率降低的部分。离子注入方法主要有以下几个优势:1,适用范围广,100 多种光学材料。 2,在常温或低温下完成。 3,准确控制光波导的特征参数。4,可以形成“晶体”波导,晶体保持原有的属性。 5,重复性好。 6,可以与其它技术相结合等等。

相关文档
最新文档