不等式的几种证明方法及简单应用

不等式的几种证明方法及简单应用
不等式的几种证明方法及简单应用

本科毕业论文

不等式的几种证明方法及简单应用

姓名

院系数学与计算机科学学院

专业数学与应用数学

班级

学号

指导教师

答辩日期

成绩

及简单应用

不等式的几种证明方法

摘要

我们在数学的学习过程中,不等式很重要. 其中不等式的证明方法在不等式基础理论中非常重要.文中总结了部分证明不等式的常用方法:作差法、分析法、作商法、综合法、反证法、数学归纳法、放缩法等,和不等式的证明经常会利用函数极值、拉格朗日中值定理等,以及部分著名不等式,比如:均值不等式、柯西不等式等.进而使不等式证明方法变的更加的多样化,研究不等式证明、探索不等式的证明使不等式证明更加完善.

【关键词】:不等式,常用方法,函数,著名不等式

Method and application of several simple proof of inequality

Abstract

We are in the proces of learning mathamatics, inequallty is very importent which method Inequality Inequality Basic theory is very importent paper sumnarizes the common methods section proves inequallty: for differemce method, analysis, For Law, and Inequality synthesis method, contradiction, mathematical inductian, scaling methed often benefit With function extreme, Lagrange mean value theoren, as well as same well-knawn inequallties, such as: mean inequality, Ceuchy inequallty, eta. and thus make inequality proof becames more divorse, researah inequallty praved prabe Proof cable inequality makes inequality proved to be more perfect.

【Key Words】 :inequality, the commonly used

method, function, famous es

inequaliti

目录

一、常用方法 (1)

(一)比较法 (1)

(二)分析法 (2)

(三)综合法 (3)

(四)反证法 (3)

(五)迭合法 (4)

(六)放缩法 (4)

(七)数学归纳法 (5)

(八)换元法 (5)

(九)增量代换法 (6)

(十)三角代换法 (6)

(十一)判别式法 (7)

(十二)等式法 (7)

(十三)分解法 (8)

(十四)构造函数法 (8)

(十五)构造向量法 (8)

(十六)构造几何不等式 (9)

(十七)构造方程法 (9)

(十八)“1”的代换型 (10)

(十九)排序不等式 (10)

二、利用函数证明不等式 (11)

(一)函数极值法 (11)

(二)单调函数法 (11)

(三)泰勒公式法 (12)

(四)优函数法 (13)

(五)拉格朗日中值定理法 (14)

三、利用著名不等式证明 (15)

(一)利用均值不等式 (15)

(二)利用柯西不等式 (15)

(三)琴生(Jensen)不等式 (16)

(四)切比雪夫不等式 (17)

(五)赫尔德(Holder)不等式 (18)

(六)伯努利不等式 (19)

(七)三角形不等式 (20)

小结 (20)

参考文献 (21)

致 (22)

及简单应用 不等式的几种证明方法

:学生姓名 指导老师:

引 言

不等式是数学中较为重要的一部分容,为帮助数学爱好者掌握这方面的知识, 故论述几种简单的证明方法. 在实际生活中,不等式的运用要比等式更加常见,而 人们对不等式的了解要相对晚一点.在17世纪后,不等式才被深入发觉,建立相应 的理论,真正进入数学理论部分.

从不等式的探究过程可以发现,在生活中有重要的作用,例如:不等式性 质、证明方法、解法.在本文中,介绍部分证明不等式常用方法、函数证明不等式 和用一些著名不等式证明不等式.在学习证明不等式中,可以更加深刻了解数学学科 的特点,培养数学逻辑思维论证能力,为以后深入研究数学中不等式提供帮助,增 加数学认知能力.进而使不等式证明方法变的更加的多样化,研究不等式证明、探索 不等式的证明使不等式证明更加完善.

一、常用方法

(一)比较法]1[

1.作差法

两个实数a 和b 的大小,可由b a -的正负比较判断.

,0>-b a 如果,那么b a >;,0<-b a 如果,那么b a <;,0=-b a 如果,那么b a =.

例题1: 若两个角0<α<2π,0<β<2

π

,求证:

sin (α+β)

证:sin (α+β)-(sin α+sin β)=sin α·cos β+cos αsin β-sin α-sin β =sin α(cos β-1)+sin β(cos α-1).

因为α、β都是正锐角,所以sin α>0且sin β>0,cos β-1<0,且cos α-1<0 于是sin α(cos β-1)<0,sin β(cos α-1)<0.

所以sin α(cos β-1)+sin β(cos α-1)<0 即sin (α+β)-(sin α+sin β)<0 所以sin (α+β)

作商法证明不等式时,一般0>a ,0>b ,如果1

a

时,则a1时;

则a>b ;如果

b

a

=1时,则a=b. 例题2 设a , b ,c

+R ,求证:a b b a b a b a ab b a ≥≥+2

)

(

证:作商:2

222

)()(b

a a

b b a a b b

a b

a

b a b a ab ---+==

当a = b 时,1)

(2

=-b a b

a

当a > b > 0时,1)(,02,

12>>->-

b

a b

a b a b a 当b > a > 0时,1)(,02,

102

><-<<-

b

a b

a b a b a 故得1)

(2

≥-a b b

a b a ab 即a b b a b a ab ≥+2

)

( (剩余同理可证)

(二)分析法]1[

在证不等式题的过程中分析法是从结论入手,一步步的向上推导,探索下去, 进而证明已知的题设条件,在证明的过程中, 推导的每一步都要可逆.

例题3:已知:a 、b 、c 为互不相等的实数. 求证:ca bc ab c b a ++>++222.

证明:要证ca bc ab c b a ++>++222成立,

即证明0222>---++ca bc ab c b a 成立,

需要证022*******>---++ca bc ab c b a 成立, 即0)()()(222>-+-+-a c c b b a 成立

,c b a ≠≠因为

()0a 2

>-b 所以, ()0b 2

>-c ,()0c 2

>-a 由此逆推,即可证明ca bc ab c b a ++>++222

(三)综合法]1[

综合法,就是由命题的条件证明题设条件.

例题4:设1a ,2a ,……,n a 都是正数,并且它们的乘积1a 2a ????????1=n a . 求证:n n a a a 2)1()1)(1(21≥+???????++. 证明:因为

111

12

1a a a =?≥+, 所以11a +12a ≥. 同理可知 11a +12a ≥ 21a +22a ≥ . . . . . . . . . . . . . . . . . . . . 11a +12a ≥.

因为1a ,2a ,……,n a 都是正数,根据性质 把不等式的两边相乘,得

n n n n a a a a a a 22)1()1)(1(2121=????????≥+???????++. 因为在1=i a 的时候,i i a a 21≥+取等号,所以原式只在 121==????????==n a a a 的时候取等号. (四)反证法]2[

反正法就是要证明与命题相对立的结论,可以先假设一个错误的结论,应用所 学的知识证明出假设错误.

例题5: 已知a ,b ,c 为实数,0>++c b a ,0>++ca bc ab ,0>abc ,求证:

0>a ,0>b ,0>c .

证明:假设a ,b ,c 不全是正数,即其中至少有一个不是正数. 可以假设0≤a .分为0=a 和0

(1)如果0=a ,则0=abc ,与0>abc 矛盾.所以0=a 不可能. (2)如果0abc 可得0++c b a ,所以0>->+a c b . 这和已知0>++ca bc ab 相矛盾.

因此,也不可能.综上所述,0>a .

同理可证0>b ,0>c .所原命题成立. (五)迭合法

通过简单命题的成立,利用不等式性质,将简单不等式合成复杂不等式而证明结 论的过程就是迭合法.

例题6:已知:n a a a n =+??????++2

2

22

1,n b b b n =+??????++2

2

22

1,求证:

n b a b a b a n n ≤+??????++2211.

证明 : 因为n a a a n =+??????++22221,n b b b n =+??????++2

2221 所以n a a a n =+???????++22221,n b b b n =+???????++2

2221, 由柯西不等式

≤+??????++n n b a b a b a 2211

2

2

22

1n a a a +???????++n n n b b b n =?=+???????++?2

2221 所以原不等式获证. (六)放缩法]3[

放缩法是依据不等式式的性质而衍生得到的一种方法,利用一些著名的不等式 寻找中间量,又或者是别的方法,但最重要的是可以丢弃某些不重要的部分,得到所要 著证明的结论命题. 例题7 求证:n n

2131211<+?????????+++

. 证明:当1>i 时,i i i 21<-+,从而有

)1(21

--

故 <+?????????+++

n

131211)1(2)23(2)12(21--+????????+-+-+n n

n n 212≤-= 所以原不等式获证. (七)数学归纳法]1[

数学归纳法是在证明含)(N n n ∈的不等式,能否在)(N n k n ∈=成立的条件下,

证明1+=k n 时成立.(n 取第一个值时不等式命题成立) 证明8: 求证:

1

2)1(1

)122()32)(12(?????????-?≥--????????--n n n n n n .(n 是正整数)

证明: 左边和右边都有n 个因数, 当1≥n 的时候, 112≥-

n , 2

1

32≥-n , . . . . . . . . . . . . . . . . . . . . . . . n

n n 1

122≥--

. 上述n 个不等式相互累乘,

1

2)1(1

)122()32)(12(?????????-?≥--????????--n n n n n n .

故原不等式成立 (八)换元法]4[

在部分不等式证题过程中,通过变量代换,可以使不等式证明过程更加简单,

选择适当的辅助未知数,代替原方程的部分式子,而证明命题. 例题9 : 已知a ,b ,c 是小于1的正数,求证: 2<-++abc c b a 证明:设p a +=

11,q

b +=11

,r c +=11,

由假设可知,0>p ,0>q ,0>r abc c b a -++ r q p +++++=

111111)

1)(1)(1(1

r q p +++-

通分后以)1)(1)(1(r p q +++为分母时,则, 分子1)1)(1()1)(1()1)(1(-++++++++=q p p r r q =)

()(22pq rp qr r q p ++++++

又)1)(1)(1(2r p q +++)(2)(22pq rp qr r q p ++++++=pqr 2+

因为是

的优函数,所以将

除以正数)1)(1)(1(r p q +++得

r q p +++++1111112)

1)(1)(1(1<+++-r q p 即,2<-++abc c b a . (九)增量代换法]5[

增量代换法就是在证明不等式时,通过增加一个中间量而使在计算的过程中减 少运算量的方法在证明比较复杂的不等式时经常使用的手法 . 例题10 :已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥

2

25. 证明:因为a ,b ∈R ,且a +b = 1,∴设a =21+t ,b =2

1

-t , (t ∈R)

则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -2

5

)2= 2t 2+

225≥2

25

. 所以(a +2)2+(b +2)2≥2

25. (十)三角代换法]1[

例题11 : 解不等式15+--x x >

2

1 解:因为22)1()5(++-x x =6,故可令 x -5 =6 sin θ,1+x =6 cos θ,

θ∈[0,2π

则原不等式化为 6 sin θ-6 cos θ >

21所以6 sin θ >2

1

+6cos θ 由θ∈[0,

2π]知2

1

+6 cos θ>0,将上式两边平方并整理,得

48 cos 2θ+46 cos θ-23<0 解得0≤cos θ<

246282-所以x =62cos θ-1<1247

24-,且x ≥-1,故原不等式的解集是{x|-1≤x <12

47

24-} .

(十一)判别式法]6[

学习一元二次方程时,可以用判别式来判断有无实根,而有些特殊题目中, 可以通过判别式证明所要证明的命题.

例题 12 A 、B 、C 为ABC ?的角,x 、y 、z 为任意实数,求证:A yz z y x cos 2222≥++C xy B xz cos 2cos 2++.

证明:构造函数,判别式法令

)cos 2cos 2cos 2()(2

22C xy B xz A yz z y x x f ++-++=

)cos 2()cos cos (2222A yz z y C y B z x x -+++?-=

为开口向上的抛物线

)cos 2(4)cos cos (42

22A yz z y C y B z -+-+=?

)cos 2cos cos 2sin sin (42222A yz C B yz C y B z ++--= )]sin sin cos (cos 2cos cos 2sin sin [42

222C B C B yz C B yz C y B z -+-+-=

]sin sin 2sin sin [42222C B yz C y B z -+-= 0)cos sin (42≤--=C y B z

无论y 、z 为何值,0≤? 所以 R x ∈ 0)(≥x f 所以,命题真 (十二)等式法

由学过的公式、定理,巧妙的变形为一些不等式,而证明命题的方法. 例题 13: c b a ,,为ABC ?的三边长,求证:

4

44222222222c b a c b c a b a ++>++.

证明 由海伦公式))()((c p b p a p p S ABC ---=?,其中)(2

1

c b a p ++=.

两边平方,移项整理得

4442222222222)(16c b a c b c a b a S ABC ---++=?

而0>?ABC S ,

所以 444222222222c b a c b c a b a ++>++. (十三)分解法

把复杂命题转化为简单易解的基本命题,而一一解决,各个击破,而去证明不等式.

例题14 : 2≥n ,且N n ∈,求证:)11(1

31211-+>++++

n n n n

. 证明: 因为 ???

??+++??? ??++??? ??+++=+++++

11131121)11(131211n n n

n n n n n

n n n n 1134232134232+?=+?????>+++++

= . 所以 )11(1

31211-+>++++n n n n

. (十四)构造函数法]4[

例题15: 设0≤a 、b 、c ≤2,求证:4a +b 2+c 2+a b c ≥2a b +2b c +2c a .

证明:构造一次函数

f (x )= 4a +b 2+c 2+a b c -2a b -2b c -2c a =

(b c -2b -2c +4)a +(b 2+c 2-2b c ),(a 为自变量)由0≤a ≤2, 知表示一条线段.又)0(f = b 2+c 2-2b c = (b -c )2≥0, )2(f = b 2+c 2-4b -4c +8 = (b -2)2+(c -2)2≥0, 可见上述线段在横轴及其上方,所以函数≥0, 即4a 2+b 2+c 2+a b c ≥2a b +2b c +2c a . (十五)构造向量法

构造向量法主要是不等式与向量形式之间的相互转换,利用→

m ·→

n ≤|→

m |·|→

n |, 证明一些具有和积结构代数的不等式命题.

例题16 : 设a 、b ∈R +,且a +b =1,求证:(a +2)2+(b +2)2≥

2

25

. 证明:构造向量→

m =

(a +2,b +2),→

n = (1,1).设→

m 和→n 的夹角为α,其中0≤α≤π.

因为|→

m | =22)2()2(+++b a ,|→

n | =2,所以→

m ·→

n = |→

m |·|→

n |cos α=22)2()2(+++b a ·

2·cos α;

另一方面,→

m ·→

n = (a +2)·1+(b +2)·1 = a +b +4 = 5,而0≤|cos α|≤1, 所以22)2()2(+++b a ·

2≥5,从而(a +2)2+(b +

2)2≥225.

(十六)构造几何不等式

将不等式两边与图形建立联系,则可以化数为形,利用图像的性质,解决不等 式的方法就是构造几何不等式.

例题17:设a >0,b >0,a +b = 1,求证:12+a +12+b ≤22.

证明:所证不等式变形为:

2

1

212+++b a ≤2.这可认为是点

A(12+a ,12+b )到直线0y x =+的距离.

但因(12+a )2+(12+b )2= 4,故点A 在圆x 2+y 2= 4 (x >0,y >0)上. 如图所示,AD ⊥BC ,半径AO >AD ,即有:2

1

212+++b a ≤2,

所以12+a +12+b ≤22. (十七)构造方程法

例题18 : 已知实数a , b ,c ,满足a + b + c = 0和a b c = 2, 求证:a , b ,c 中至少有一个不小于2

证明:由题设a, b, c 其中必含有一个正数,假设a > 0,

则??

???=-=+a bc a c b 2 即b, c 是二次方程022=++a ax x 的两个实根

所以08

2≥-

=?a

a ?a ≥2

(十八)“1”的代换型]6[ 例题19:

.

91

11 ,1 ,,,≥++=++∈+c b a c b a R c b a 求证:且已知

策略:做“1”的代换. 证明:

c c

b a b

c b a a c b a c b a ++++++++=++111

9

22233=+++≥???

??++??? ??++??? ??++=c b b c c a a c b a a b . (十九)排序不等式

如()且n i R b R a i i ≤≤∈∈1,n n b b b a a a ≤≤≤≤≤≤ 2121, 则n n b a b a b a +++ 2211n j n j j b a b a b a +++≥ 21211111b a b a b a n n n +++≥-

n j j j n ,,2,1,,,21 是的任一排列.

当且仅当n a a a === 21或n b b b === 21时等号成立.

例20:已知n n n a a a a a a a

a a R a a a +++≥+++∈+ 2112

32

222

121,求证

不妨假设n a a a 21,有次序即n a a a ≤≤≤ 21,那么n

a a a 11121 ≥≥ 由于+∈R a a a n 21,,所以2

2221n a a a ≤≤≤

由排序不等式可知

n

n

n n a a a a a a a a a a a a a a a +++=?++?+?≥+++ 212

22212112

32

222

1111 得证.

二、利用函数证明不等式

(一)函数极值法]1[

通过某些变换,把问题转形为求函数的极值,实现证明不等式. 例题21 : 证明,0>?x ,有不等式

,01≤-+-αααx x 10<<α

证明:讨论函数

1)(-+-=αααx x x f

在区间),0(+∞的最大值.

)1()(11-=-='--αααααx x x f

令0)(='x f ,解得唯一定点1,它在区间),0(+∞分成两个区间)1,0(与),1(+∞,列表如下:

1=x 时是函数)(x f 极大点,极大值0)1(=f .

由此表可得1=x 时是函数)(x f 在定义域中的最大值, 故0>?x ,使)1()(f x f ≤ 或 01≤-+-αααx x . 所以原不等式得证 (二)单调函数法

当x 属于定义域,有0)(≥'x f ,则(21x x ≤))()(21x f x f ≤;若0)(≤'x f ,则

)()(21x f x f ≥.若要证明)()(x g x f ≤,只须要证)()(a g a f =及

)),((),()(b a x x g x f ∈'≤'.

例题22:设1

1)

1ln(11<-+x x

证明:令)

1ln()1ln()1ln(1)1ln(11)(x x x x x x x x x f ---+-=--+=

, 分子)1ln()1ln()(x x x x x g ---+=,对)(x g 求导得)1ln()(x x g --=', 分两种情况来讨论:

(1)当10<x g ,分母0)1ln(<-x x ,所以0)(

(2)当0x g 得,0)1ln(<-x x 分母,故知0)(

综合(1)(2)即得结论成立. (三)泰勒公式法]1[

定义 若函数)(x f 在a 存在n 阶导数,则)(a U x ∈?,有

])[()()(n n a x o x T x f -+=

称为函数)(x f 在a (展开)的泰勒公式.

其中,n n n a x n a f a x a f a x a f a f x T )(!

)()(!2)()(!1)()()()(2

-++-''+-'+= 例题23 证明:若函数)(x f 在],[b a 上有n 阶导数,且

1,,2,1,0)()()

()

(-===n i b f

a f

i i ,

则存在),(b a c ∈,有

)()()(!

2)(1)

(a f b f a b n c f

n

n n --?≥-

证明:将函数)(x f 在点a 和点b 分别展开,即],[b a x ∈?,有

n n a x n f a x a f a f x f )(!)()(!1)

()()(1)(-++-'+=ξ

n n b x n f b x b f b f x f )(!

)()(!1)

()()(2)(-++-'+=ξ

由已知条件,令2

b

a x +=

,则分别有 n

n a b n f a f b a f ??? ??-+=??

?

??+2!)()(21)(ξ,21

b a a +<<ξ, n

n b a n f b f b a f ??

? ??-+=???

??+2!)()(22)(ξ,b b a <<+22ξ, 以上两式相减,有

02!)(2!)()()(1)(2)(=??

?

??--??? ??-+-n

n n n a b n f b a n f a f b f ξξ

n

n n n b a n f a b n f a f b f ??

?

??--??? ??-=-2!)(2!)()()(2)(1)(ξξ,

n

n n n a

b n f a b n f

b f a f 2

!)(2!)()()(2)(1)

(-+-≤

-ξξ

令 })(,)(max{)(2)

(1)

()

(ξξn n n f f

c f

=,则有

2

)(!)(2)()()(n

n a b n c f b f a f -?

≤-, 即

)()()

(!

2)(1)

(a f b f a b n c f

n

n n --?≥- (四)优函数法]4[

当),(y x f 是),(y x g 的优函数时, ),(),(0,0b a g b a f b a ≥→≥≥

例题24 : 已知a ,b ,c 是小于1的正数,求证: 2<-++abc c b a 证明:设p a +=

11,q

b +=11

,r c +=11,

由假设可知,0>p ,0>q ,0>r abc c b a -++

r q p +++++=

111111)

1)(1)(1(1

r q p +++-

通分后以)1)(1)(1(r p q +++为分母时,则, 分子1)1)(1()1)(1()1)(1(-++++++++=q p p r r q =)

()(22pq rp qr r q p ++++++

又)1)(1)(1(2r p q +++)(2)(22pq rp qr r q p ++++++=pqr 2+

因为

的优函数,所以将

除以正数

)1)(1)(1(r p q +++得

r q p +++++1111112)

1)(1)(1(1<+++-r q p 即,2<-++abc c b a (五)拉格朗日中值定理法]3[

定理: 函数)(x f 满足,闭区间],[b a 连续、开区间),(b a 可导. 则函数在开区间),(b a 至少c 存在一点,

使a

b a f b f

c f --=

')

()()(

如果)(c f '介于两个数m 与M 之间,则有下面的不等式:

证明

a

b a f b f --)

()(形式不等式,可用拉格朗日中值定理法法.

例25: 证明,当x >0时,有1-x e >x .

证明:由原不等式,因为x >0,可改写为11

>-x e x 的形式, 或改写为100

>--x e e x 的形式,这里t e t f =)(,区间为[0, x ],

用拉格朗日中值定理,

M

a

b a f b f m ≤--≤

)

()(

令t e t f =)(,∈t [0, x ],则)(t f 满足拉格朗日中值定理的条件,于是存在∈ξ[0,

x ],00

--x e e x =ξe >1

所以,有不等式 1-x e >x .

三、利用著名不等式证明

(一)利用均值不等式]1[ 设

n

a a a ,,,21 是个正n 实数,则

n

n

n a a a n

a a a 2121≥+++,

当且仅当n a a a === 21时取等号.

例题26:求证:n x x x 221+???????+++n x n )12(+≥(x 为正数) 证:由算数平均值与几何平均值不等式,得

1

2222211

21+???????≥++?????+++n n n x x x n x x x , 又等差数列求和为 n 2321+???????+++=

2

)

12(2+n n =)12(+n n , 故12221+???????n n x x x =12)12(++n n n x =n x , 所以n x x x 221+???????+++n x n )12(+≥. (二)利用柯西不等式]2[

定理:设()n i R b a i i 2,1,=∈则 (

)2

2211n

n b a b a b a ++≤()(

)

2

22212

222

1

n n b b b a a a

++?++

等号成立当且仅当()n i ka b i i ≤≤=1.. 例题27:证明不等式 )(21n x x x +??????++)1

11(

21n

x x x +??????++2n ≥ (其中1x ,2x ,??????????,1x 均为正数). 证明:若令

不等式证明的基本方法

'、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 、知识分析 定理1 若a,b为实数,贝当且仅当ab>0时,等号成 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a 与一b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与—b的距离严格小于a与b到原点距离之和(下图为ab<0, a>0, b<0的情况,ab<0的其他情况可作类似解释)。 |a —b|表示a—b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,贝等号成立,即b落在a,c之间 推论1 推论2 [不等式证明的基本方法] 1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到

判别式法证 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是 错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A> B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 典型例题】 例1已知函数,设a、b€ R,且a^b,求证: 思路:本题证法较多,下面用分析法和放缩法给出两个证明: 证明: 证法一: ① 当ab< —1时,式①显然成立; 当ab>—1时,式①② b,A式②成立。故原不等式成立。 证法二:当a=—b 时,原不等式显然成立; 当a M— b 时, ???原不等式成立。

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

证明不等式的几种方法

证明不等式的几种方法 淮安市吴承恩中学 严永飞 223200 摘要:不等式证明是中学数学的重要内容,证明方法多种多样.通常所用的公式法、放缩法只能解决一些较简单的问题,对于较难的问题则束手无策.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法,使解题容易,新颖独特. 关键词:不等式,公式法,构建模型法 前言 证明不等式是中学数学的重要内容之一,内容抽象,难懂,证明方法更是变化多端.通常所用的一些方法如公式法、放缩法只能解决一些较简单的问题,较难的问题则无法解决.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法. 这里所举的几种证明不等式的特殊方法看似巧妙,但如果认真思考,广泛联系,学以致用,一定能使问题得到很好的解决. 1 运用倒数变换证明不等式 这里所说倒数变换是根据具体的题目要求把不等式的部分进行倒数变换,通过化简后使不等式变得简单,更好更快的解决证明问题. 例1 设+∈R z y x ,,,且xyz =1 求证:)(13z y x ++)(13z x y ++)(13y x z +≥2 3 分析 如果先通分再去分母,则不等式将变得很复杂. 令A x =-1,B y =-1 ,C z =-1 ,则+∈R C B A ,,且1=ABC . 欲证不等式可化为 C B A +2+A C B +2+B A C +2≥23(*) 事实上,a 2+22b λ≥ab λ2 (+∈R b a ,,λ), 而当b >0时, a 2/b ≥b a 22λλ-. (*)式左边≥A λ2-2λ(C B +)+ B λ2-2λ(C A +)+C λ2-2λ(A B +) = λ2(λ-1)(C B A ++) ≥λ6(λ-1)3ABC = λ6(λ-1). 令λ=21时,C B A +2+A C B +2+ B A C +2 ≥6×21×(1-21)=23 得证. (这里用到二元平均不等式的变形和三元平均不等式.) 例 2 已知z y x ,,>0,n 为大于1的正整数,且n n x x +1+n n y y +1+n n z z +1=1 求证:n x x +1+n y y +1+n z z +1≤n n 12-

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

高中数学不等式的几种常见证明方法(县二等奖)

高中数学不等式的几种常见证明方法 摘 要:不等式是中学数学的重要知识,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目都有所出现,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解. 关键字:不等式;数学归纳法;均值;柯西不等式 一、比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法. 例 1 设,x y R ∈,求证:224224x y x y ++≥+. 证明: 224224x y x y ++-- =2221441x x y y -++-+ =22(1)(21)x y -+- 因为 2(1)0x -≥, 2(21)0y -≥ ∴ 22(1)(21)0x y -+-≥ ∴2242240x y x y ++--≥ ∴224224x y x y ++≥+ 例 2 已知:a >b >c >0, 求证:222a b c a b c ??>b c a c b c a b c +++??. 证明:222a b c b c a c b c a b c a b c +++????=222a b c b a c c b c a b c ------?? >222a b c b a c c b c c c c ------??

=0c =1 222a b c b c a c b c a b c a b c +++??∴??>1 ∴222a b c a b c ??>b c a c b c a b c +++?? 二、分析法 分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立. 例 3 求证3< 证明: 960+>> 5456<成立运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱写,从而加强针对性,较快地探明解题的途径. 三、综合法 从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法. 例 4 已知,a b R +∈,1a b +=,求证:221125()()2 a b a b +++≥ 证明:∵ 1a b += ∴ 1=22222()22()a b a b ab a b +=++≤+ ∴ 221 2 a b +≥

不等式证明的基本方法

绝对值的三角不等式;不等式证明的基本方法 一、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 二、知识分析 定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立。 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。 |a-b|表示a-b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,则,等号成立 ,即b落在a,c之间。 推论1

推论2 [不等式证明的基本方法] 1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 【典型例题】 例1、已知函数,设a、b∈R,且a≠b,求证:

北师大版数学高二-选修4-5 第二节 不等式证明的基本方法例题

选修4-5 第二节 不等式证明的基本方法例题 1.已知a 、b 、x 、y 均为正实数,且1a >1 b ,x >y . 求证: x x +a > y y +b . 证明:∵ x x +a - y y +b = bx -ay x +a y +b , 又1a >1 b ,且a 、b 均为正实数, ∴b >a >0. 又x >y >0, ∴bx >ay . ∴ bx -ay x +a y +b >0,即x x +a >y y +b . 2.已知a ,b ,c 均为正数,证明:a 2+b 2+c 2 +(1a +1b +1c )2≥63,并确定a ,b ,c 为何值时,等号成立. 证明:法一:因为a ,b ,c 均为正数,由平均值不等式得 a 2+ b 2+ c 2 ≥3(abc )23 ,① 1 a +1 b +1 c ≥3(abc )1 3-,② 所以(1 a +1 b +1c )2 ≥9(abc ) 2 3-. 故a 2 +b 2 +c 2 +(1a +1b +1 c )2 ≥3(abc ) 23 + 9(abc ) 23 - . 又3(abc ) 23 +9(abc ) 23 -≥227=63,③ 所以原不等式成立. 当且仅当a =b =c 时,①式和②式等号成立.当且仅当3(abc ) 23 =9(abc ) 23 - 时,③式 等号成立. 即当且仅当a =b =c =314 时,原式等号成立. 法二:因为a ,b ,c 均为正数,由基本不等式得

a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac. 所以a2+b2+c2≥ab+bc+ac,① 同理1 a2+ 1 b2 + 1 c2 ≥ 1 ab + 1 bc + 1 ac ,② 故a2+b2+c2+(1 a + 1 b + 1 c )2≥ab+bc+ac+ 3 1 ab +3 1 bc +3 1 ac ≥6 3.③ 所以原不等式成立. 当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立. 即当且仅当a=b=c=31 4时,原式等号成立. 3.(2012·豫南九校联考)已知x,y均为正数,且x>y,求证:2x+1 x2-2xy+y2 ≥2y +3. 解:因为x>0,y>0,x-y>0, 2x+ 1 x2-2xy+y2 -2y=2(x-y)+ 1 x-y2 =(x-y)+(x-y)+ 1 x-y2 ≥33 x-y2 1 x-y2 =3, 所以2x+ 1 x2-2xy+y2 ≥2y+3. 4.已知正实数a,b,c满足 1 a + 2 b + 3 c =1,求证:a+ b 2 + c 3 ≥9.证明:因为a,b,c均为正实数, 所以 1 a + 2 b + 3 c ≥3 31 a · 2 b · 3 c .同理可证: a+ b 2 + c 3 ≥3 3 a· b 2 · c 3 . 所以(a+ b 2 + c 3 )( 1 a + 2 b + 3 c )≥ 3 3 a· b 2 · c 3 ·3 31 a · 2 b · 3 c =9. 因为 1 a + 2 b + 3 c =1,所以a+ b 2 + c 3 ≥9, 当且仅当a=3,b=6,c=9时,等号成立.

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

经典不等式证明的基本方法

不等式和绝对值不等式 一、不等式 1、不等式的基本性质: ①、对称性: 传递性:_________ ②、 ,a+c >b+c ③、a >b , , 那么ac >bc ; a >b , ,那么ac <bc ④、a >b >0, 那么,ac >bd ⑤、a>b>0,那么a n >b n .(条件 ) ⑥、 a >b >0 那么 (条件 ) 2、基本不等式 定理1 如果a, b ∈R, 那么 a 2+b 2≥2ab. 当且仅当a=b 时等号成立。 定理2(基本不等式) 如果a ,b>0,那么 当且仅当a=b 时,等号成立。即两个正数的算术平均不小于它们的几何平均。 结论:已知x, y 都是正数。(1)如果积xy 是定值p ,那么当x=y 时,和x+y 有最小值 ; (2)如果和x+y 是定值s ,那么当x=y 时,积xy 有最大值 小结:理解并熟练掌握基本不等式及其应用,特别要注意利用基本不等式求最值时, 一 定要满足“一正二定三相等”的条件。 3、三个正数的算术-几何平均不等式 二、绝对值不等式 1、绝对值三角不等式 实数a 的绝对值|a|的几何意义是表示数轴上坐标为a 的点A 到原点的距离: a b b a c a c b b a >?>>,R c b a ∈>,0>c 0> d c 2,≥∈n N n 2,≥∈n N n 2 a b +≥2 1 4 s 3 ,,3a b c a b c R a b c +++∈≥==定理如果,那么当且仅当时,等号成立。 即:三个正数的算术平均不小于它们的几何平均。2122,,,,n n n a a a a a n a a ++≥=== 11把基本不等式推广到一般情形:对于n 个正数a 它们的算术平均不小于它们的几何平均,即: 当且仅当a 时,等号成立。

证明不等式的基本方法(20200920095256)

12. 4 证明不等式的基本方法 T 懈不评式证明的基車方诜:比较法,综合建、井析媒 ttMK MMM ■■座用它们证明一些简 厲的不等式. Kiff <年斋号悄况来看.本讲尼岛号血埶的一个热点一 fO 灿讪卜将芸号僧::1;与躺碓不零式结, 证 期不等式:2>M 破立,探索性问題结合,ttaAMML 厲中档題團L E 基础知识过关 [知识梳理] 1. 证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法. 2. 三个正数的算术-几何平均不等式 (1) 定理:如果a , b , c € R +那么a + ?+1需辰,当且仅当a = b = c 时,等号 a + b + c Q 成立.即三个正数的算术平均 3 不小于它们的几何平均Vabc. (2) 基本不等式的推广 对于n 个正数a i , a 2, , , a ,它们的算术平均数不小于它们的几何平均数, 即a 〔 + 汁‘ + 》^a 1a 2,—,当且仅当 a 1 = a 2 =, = a n 时,等号成立. n 3. 柯西不等式 (1)设 a , b , c , d 均为实数,则(a 2 + b 2)(c 2 + d 2)>(ac + bd)2,当且仅当 ad = bc 时等号成立. f n 「n J 「n ' ⑵若a i, b(i € N *)为实数,贝则 18 15 A l^a b i 2,当且仅当 I "八=1丿 T =1丿 (当a i = 0时,约定b i = 0, i = 1,2, , , n)时等号成立. (3) 柯西不等式的向量形式:设 a B 为平面上的两个向量,则|如3》|a ? (3当 且仅当a, 3共线时等号成立. 善纲解谨 君向预测 b^_ b2_ a 1 a 2 b n =a ;

证明不等式的几种方法

昭通学院 学生毕业论文 论文题目证明不等式的几种方法 姓名 学号 201103010128 学院数学与统计学院 专业数学教育 指导教师 2014年3月6日

证明不等式的几种方法 摘 要:证明不等式就是要推出这个不等式对其中所有允许值都成立或推出数值不等式成立。本文主要归纳了几种不等式证明的常用方法。 关键词:不等式; 证明; 方法 1.引言 在定义域中恒成立的不等式叫做恒不等式,确认一个不等式为恒不等式的过程为对该不等式进行证明。证明不等式的主要方法是根据不等式的性质和已有的恒不等式进行合乎逻辑的等价变换。主要方法有:比较法、综合法、分析法、反证法、归纳法、放缩法、构造法、导数法、均值不等式性质证明不等式等方法。 2.不等式证明的常用方法 2.1 比较法 比较法是直接作出所证不等式,两边的差(或商)然后推演出结论的方法。具体地说欲证B A >)(B A <,直接将差式B A -与0比较大小;或若当+∈R B A ,时,直接将商式 B A 与1比较大小[]1。 差值比较法的理论依据是不等式的基本性质:“若0≥-b a ,则b a ≥;若0≤-b a ,则 b a ≤.”其一般步骤为: 1.作差:观察不等式左右两边构成的差式,将其看成一个整体。 2.变形:把不等式两边的差进行变形,或变形成一个常数,或为若干个因式的积,或一个或几个平方和。其中变形是求差法的关键,配方和因式分解是经常使用的方法。 3.判断:根据已知条件与上述变形结果判断不等式两边差的正负号,最后肯定所求不等式成立的结论。 应用范围:当被证的不等式两端是多项式,对于分式或对数式时,一般使用差值比较法。 商值比较法的理论依据是:“∈b a ,+R ,若b a 1≥则b a ≥;若b a 1≤则b a ≤.”其一 般步骤为: 1.作商:将左右两端作商。 2.变形:化简商式到最简形式。

不等式证明的基本方法

不等式证明的基本方法 LELE was finally revised on the morning of December 16, 2020

绝对值的三角不等式;不等式证明的基本方法 一、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 二、知识分析 定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立。 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。 |a-b|表示a-b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,则,等号成立 ,即b落在a,c之间。 推论1 推论2 [不等式证明的基本方法]

1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量, 使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 【典型例题】 例1、已知函数,设a、b∈R,且a≠b,求证: 思路:本题证法较多,下面用分析法和放缩法给出两个证明: 证明: 证法一:

不等式的证明方法习题精选精讲

不等式性质的应用 不等式的性质是解不等式、证明不等式的基础和依据。教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。只有理解好,才能牢固记忆及正确运用。 1.不等式性质成立的条件 运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。 例1:若0< B .a b a 11>- C .||||b a > D .22b a > 解:∵0<->-b a 。 由b a -< -11,b a 11>,∴(A )成立。 由0<< b a ,||||b a >,∴(C )成立。 由0>->-b a ,2 2 )()(b a ->-,2 2b a >,∴(D )成立。 ∵0<->-a b a , )(11b a a --<-,b a a ->11,∴(B )不成立。 故应选B 。 例2:判断下列命题是否正确,并说明理由。 (1)若0<c ,在2 2c b c a >两边同乘以2 c ,不等式方向不变。∴b a >。 (3)错误。b a b a 1 1,成立条件是0>ab 。 (4)错误。b a >,bd ac d c >?>,当a ,b ,c ,d 均为正数时成立。 2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232 >-+x x 与0432 >-+x x (2)13 8112++ >++ x x x 与82>x (3)35 7354-+>-+x x x 与74>x (4) 023 >-+x x 与0)2)(3(>-+x x A .(2) B .(3) C .(4) D .(2)(3) 解:(1)0432232 2 >-+?>-+x x x x 。 (2)482>?>x x ,44,11 3 8112>?>-≠?++>++ x x x x x x 。

证明不等式的基本方法-比较法

第二讲证明不等式的基本方法 课题:第01课时不等式的证明方法之一:比较法 一.教学目标 (一)知识目标 (1)了解不等式的证明方法——比较法的基本思想; (2)会用比较法证明不等式,熟练并灵活地选择作差或作商法来证明不等式;(3)明确用比较法证明不等式的依据,以及“转化”的数学思想。 (二)能力目标 (1)培养学生将实际问题转化为数学问题的能力; (2)培养学生观察、比较、抽象、概括的能力; (3)训练学生思维的灵活性。 (三)德育目标 (1)激发学习的内在动机; (2)养成良好的学习习惯。 二.教学的重难点及教学设计 (一)教学重点 不等式证明比较法的基本思想,用作差、作商达到比较大小的目的 (二)教学难点 借助与0或1比较大小转化的数学思想,证明不等式的依据和用途 (三)教学设计要点 1.情境设计 用糖水加糖更甜,实际是糖的质量分数增大这个生活常识设置问题情境,激发学生学习动机,通过将实际问题转化为不等式大小的比较,引入新课。 2.教学内容的处理 (1)补充一系列不同种类的用作差、作商等比较法证明不等式的例题。 (2)补充一组证明不等式的变式练习。 (3)在作业中补充何时该用作差法,何时用作商法的习题,帮助同学们更好地理解比较法。 3.教学方法 独立探究,合作交流与教师引导相结合。 三.教具准备 水杯、水、白糖、调羹、粉笔等 四.教学过程 (一)、新课学习: 1.作差比较法的依据: a b a >b ? > - a a =b b - ? = a a

不等式的常见证明方法

不等式常见的三种证明方法 渠县中学 刘业毅 一用基本不等式证明 设c b a ,,都是正数。求证:.c b a c ab b ac a bc ++≥++ 证明:.22c b ac a bc b ac a bc =?≥+ .22b c ab a bc c ab a bc =?≥+ .22a c ab b ac c ab b ac =?≥+ ).(2)(2c b a c ab b ac a bc ++≥++ .c b a c ab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。 思维训练:设c b a ,,都是正数。求证: .222c b a c b a a c b ++≥++ 二 放缩法证明不等式 已知,对于任意的n 为正整数,求证: 1+221+321+K +n 21<4 7 分析:通过变形将数列{n 21 }放缩为可求数列。 解:Θ n 21=n n ?1<)1(1-n n =11-n —n 1(n ≥2) ∴1+221+321+K +n 21<1+2 21+231?+341?+K +)1(1-n n =1+ 41+(21—31+31—41+K +11-n —n 1) =45+21—n 1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。 思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>c c +1

三 构造函数法证明 证明不等式3ln 3121112ln <+++++0有不等式x x 11ln - ≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则k k k ->+11ln ,即k k k k 1ln )1ln(11<-+<+,然后叠加不等式即可。 解:设函数x x x x f ln 1)(+-=,则易证0)(≥x f ,即不等式x x 11ln -≥对于x>0恒成立, 令x=k k 1+,则有111ln +>+k k k ,令x=1+k k ,则k k k ->+11ln ,即k k k 11ln <+成立。从而有k k k k 1ln )1ln(11<-+<+。 在不等式k k k 11ln <+中,分别令,3,,2,1n n n k K ++=得到一系列不等式相加为 )13ln()2ln()2ln()1ln(312111++++-+++->+++++n n n n n n n K K 即n n n 312111+++++K >113ln ++n n 2ln 1 22ln =++≥n n 在不等式1 11ln +>+k k k 中,分别令k=n,n+1,K 3n-1,并把所得的不等式相加,得 n n n 312111+++++K <3ln 3ln 3ln )1ln()1ln(ln ==++-++-n n n n n n K 即不等式3ln 3121112ln <+++++

数列不等式证明的几种方法

数列不等式证明的几种方法 一、巧妙构造,利用数列的单调性 例1. 对任意自然数n,求证:。 证明:构造数列 。 所以,即为单调递增数列。 所以,即 。 点评:某些问题所给条件隐含数列因素或证明与自然数有关的不等式问题,均可构造数列,通过数列的单调性解决。 二、放缩自然,顺理成章 例2. 已知函数,数列的首项,以后每项按如下方 式取定:曲线处的切线与经过(0,0)和两点的直线平行。 求证:当时: (1);

(2)。 证明:(1)因为,所以曲线处的切线斜率为。 又因为过点(0,0)和两点的斜率为,所以结论成立。(2)因为函数 , 所以,即,因此 ; 又因为。 令,且。 所以 因此, 所以

三、导数引入 例3. 求证: 证明:令,且当时,,所以 。要证明原不等式,只须证 。 设, 所以。 令, 所以。 设, 所以上为增函数 所以,即

所以 同理可证 所以。对上式中的n分别取1,2,3,…, ,得。 四、裂项求和 例4. 设是数列的前n项和,且 (1)求数列的首项,及通项; (2)设,证明。 解:(1)首项(过程略)。 (2)证明:将, 得,

则 点评:本题通过对的变形,利用裂项求和法化为“连续相差”形式,从而达到证题目的 五、独辟蹊径,灵活变通 独辟蹊径指处事有独创的新方法,对问题不局限于一种思路和方法,而是善于灵活变通,独自开辟新思路、新方法。 例5. 已知函数。设数列,数列满足 (1)求证:; (2)求证:。 证明:(1)证法1:由 令,则只须证;易知,只须证。 由分析法:

。 因为,, 所以,得证。 证法2:由于的两个不动点为。又,所以 所以 所以 , 由上可求得, 因此只需证, 即证:

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时, 0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证) , 现证左面,令11 1)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

相关文档
最新文档