水土流失预测的常用计算方法

水土流失预测的常用计算方法
水土流失预测的常用计算方法

浅谈水土流失预测的常用计算方法

朱荣华

(乐清市水利水电建筑勘测设计院)

摘要:水土流失作为一项世界性的研究课题,一直受到世界各国的重视,长期以来,在其基础理论方面开展了大量的研究,并取得了有益的成果。水土流失预测是水土流失问题研究中很重要的内容,其预测方法也很多,常用的有通用土壤流失方程法、类比法、分类分级法、流失系数法等。在我省由于各地方自然条件、地理环境等存在很大差异,采用各种预测方法对水土流失进行预测时,必须确定该方法是最符合本地区实际情况的,这将直接影响到水土流失量数据的精确性,因此对预测方法和计算公式的选择至关重要。

关键词:水土流失预测计算公式侵蚀模数

水土流失与当地自然条件和人类活动密切相关,水土流失的影响因素包括自然因素和人为因素两个方面,其中自然因素主要有气候(降雨强度)、地形(坡长、坡度)、植被状况、地质构造和土壤类型等诸因素,人为因素主要表现为在工程建设过程中改变原有地形(坡长、坡度),破坏原有植被,使地表裸露,削弱其原有的蓄水保土功能,并产生新的水土流失,从而增加水土流失量。

水土流失作为一项世界性的研究课题,一直受到世界各国的重视,长期以来,在其基础理论方面开展了大量的研究,并取得了有益的成果。水土流失预测是水土流失问题研究中很重要的内容,其预测方法也很多,常用的有通用土壤流失方程法、类比法、分类分级法、流失系数法等。在我省由于各地方自然条件、地理环境等存在很大差异,采用各种预测方法对水土流失进行预测时,必须确定该方法是最符合本地区实际情况的,这将直接影响到水土流失量数据的精确性,因此对预测方法和计算公式的选择至关重要。

1水土流失预测常用计算公式

1.1通用土壤流失方程

通用土壤流失方程USLE (Universal Soil Loss Equation)是美国研制的用于定量预报农地或草地坡面多年平均年土壤流失量的一个经验性土壤侵蚀预报模型。它是从20世纪30年代开始的土壤侵蚀试验和定量研究基础上不断发展完善的,最终于1965年正式出版,期间又分别在70年代和90年代进行了二次修订。自模型研制以来,已在水土保持规划和土地资源管理方面得到了广泛应用。模型在发展过程中形成的思想和方法,对于各国经验性土壤侵蚀模型的建立具有很好的借鉴作用。我国自80年代开始引入该模型,进行模型的订正和应用研究,取得了重要成果。

USLE方程式如下:

W =R·K·L·S·C·P(通常将L、S合并为LS考虑) (1-1) 式中:W-土壤流失量,t/ha;

R-降雨侵蚀力因子;

K-土壤可蚀性因子;

LS-坡长坡度因子;

C-植被和作物管理因子;

P-土壤保持措施因子。

(1)降雨侵蚀力因子R

①Wischmeier经验公式:式中:R-降雨侵蚀力;

Pi-各月平均降雨量(mm);

P-年平均降雨量(mm)。

②年R值的估算:R=0.207(P·I60/100)1.205

式中:R-年降雨侵蚀力;

P-年降雨量(mm);

I60-年最大60min降雨量(mm)。

③多年平均R值的估算:R=0.009×P0.564· I601.155· I14400.560

式中:R-多年平均降雨侵蚀力;

P-年降雨量(mm);

I60-平均年最大60min降雨量(mm);

I1440-平均年最大1440min降雨量(mm)。

上述降雨侵蚀力因子R计算式是王万忠、焦菊英、陈法扬等在绘制全国降雨侵蚀力R等值线图时(《水土保持学报》1995、《土壤侵蚀与水土保持学报》1996),全国协作,综合了南方南昌水专研究的广东、福建、江西等省,西北水保所研究的陕西、甘肃,东北黑龙江水保部门研究的黑龙江省等地区的综合成果得出的,可适用于全国各水蚀区。

(2)土壤可蚀性因子K

反映土壤抗侵蚀的能力,与土壤类型有关。具体数据根据土壤质地、土壤有机质百分含量、土壤结构、土壤透水性等几个主要因子,查土壤可蚀性因子诺谟图。

如果土壤类型主要为黄壤、紫色土等,其可蚀性因子一般为0.02~0.75。

(3)、坡长坡度因子LS

式中:L-开始发生径流的一点到泥沙开始汇集或径流进入水道点的长度(m);

S-径流长度的平均坡度,°;

M-模数,当sinS>0.05时,M=0.5;当0.05≥sinS≥0.035时,M=0.4;

当0.035>sinS≥0.01时,M=0.3;当sinS<0.01时,

M=0.2。

(5)植被与作物管理因子C

主要反映地表植被覆盖情况对产生土壤侵蚀的影响,施工时,由于植被已被破坏,一般取最大值1.0,工程完工采用绿化等植被措施后,根据植被覆盖率情况一般可取C=0.06~0.6。

(6)土壤保持措施因子P

主要反映地表的处理状况,如压平、压实及其它构筑物对土壤侵蚀的影响。施工场地地表被破坏无防护措施时,P=1.0;完工后经平整、夯实以及边坡防护工程与植被绿化等措施后,P=0.5~0.8。

1.2加速侵蚀系数法

计算公式: (1-2)

式中:W-各分区的水土流失量之和(设定n个分区,i=1,2,…n),t;

-第i块扰动地表区的流失面积(km2);

F

i

-第i块扰动地表区F i上原地貌条件的土壤侵蚀模数(t/km2?a);

M

i

-第i块扰动地表区F i在预测时段T内的年加速侵蚀系数

A

i

(t/km2?a);

-第i块扰动地表区的水土流失预测时段(a)。

T

i

当A>1时,与开挖、扰动、破坏地表的具体情况有关,在无实测或试验资料的情况下,可用类比法参考确定。当A=1时,上式计算出的W等于原地貌的水土流失量。在预测时段内的不同期间,加速侵蚀系数A可以不同,但A应≥1,不能<1。

1.3分类分级法

(1-3)

式中:W-扰动地表新增水土流失量,t;

F i-扰动地表面积,km2;

M si-不同预测单元扰动后的土壤侵蚀模数,t/km2·a;

M oi-不同预测单元原生土壤侵蚀模数,t/km2·a,

-预测时段,a。

T

i

这个公式中因注意的是Msi和Moi取值,Msi指的是预测单元的年土壤侵蚀模数,反映水土流失的动态变化及发展趋势,是一个动态变量指标;而Moi为原生土壤侵蚀模数,指的是预测单元的多年平均侵蚀模数,是一个相对恒定的常数,一般作为侵蚀区土壤侵蚀状况的背景值用于反映区域水土流失的严重程度。

1.4流失系数法

一般用于计算弃渣流失量的预测,计算公式:

(1-4)

式中:W-弃堆土流失量(t);

-弃土量或临时堆土量(t);

S

i

T

-堆土时间(a);

i

i-工程最终弃土和临时堆土;

a-流失系数(%),即在不采取任何防护措施下,弃渣体自然流失至自然稳定状态时可能产生的弃渣流失总量与弃渣体总量的比值。

(1)一般地,流失系数a≤1,与弃渣体所处的位置、地形、地貌条件,当地水文、气象因素和弃渣体的级配组成,形状等有关。在无实测或试验资料的情况下,可用类比法参考确定。

(2)采用流失系数法计算水土流失量,比较科学、准确,各方案编制单位和各地水土保持实验研究单位通过观测实验,都可得出本地区的地貌破坏前后土壤侵蚀变化关系,然后经全国汇总、修订、完善,就可以形成中国的水土流失预测技术手册。

2 不采用通用土壤流失方程的原因

使用通用土壤流失方程式时,必须具备相应的试验资料。在方案编制初期,我市曾经采用通用土壤流失方程进行水土流失预测。但由于我市基本没有实验观测资料,在水土流失观测、实验、研究方法和代表性方面还难以满足土壤侵蚀预报方程的运用,特别是大范围的运用,方程中所需参数缺乏扎实的科学基础,因此预测结果的准确性还经不起推敲,操作性比较差。基于以上的原因,现在在我市的水土保持方案编制中一般不采用该方程式进行预测计算。

3 运用公式应注意的问题

新增的水土流失一般包括两部分:第一,施工过程中扰动地表引起的水土流失;第二,工程建设过程中,项目区的临时堆土及渣场弃土造成的水土流失。

扰动地表流失量,根据土地类型分区分类进行预测,按照所处的不同位置、地形、地貌条件确定各自的年土壤侵蚀模数或加速侵蚀系数,同时按照各分区的具体施工时间确定各自的预测时段。扰动地表流失量的计算有两条公式(1-2)和(1-3),由于加速侵蚀系数比较难确定,我市的方案编制中通常选择公式(1-3)来进行水土流失量的计算,该公式操作性比较强,简单实用,是一种值得推广的计算方法。

弃渣流失量,必须对各弃渣场分别进行预测。按照各渣场弃渣来源的具体施工确定各渣场每年的堆渣量。在渣场的流失系数确定后,可以与每年的弃渣量直计出其流失量;也可以按弃渣体流失趋于稳定的年限,将流失系数合理分配在流失年限的各年中,然后对每年的弃渣量按流失年限与分配的流失系数逐年计出流

失量。特别注意的是当渣场渣体流失年限与流失系数的分配值确定后,无论一年的弃渣,都必须计出流失年限各年的弃渣流失量。弃渣流失量的计算一般用公式(1-4),采用该式计算水土流失量,比较科学、准确,能够满足相应的精度要求。

上述(1-2)、(1-3)、(1-4)公式中,加速侵蚀系数Ai、扰动后的土壤侵蚀模数Msi以及流失系数a的确定比较难,其他的参数根据实际情况很容易确定。Fi、Msi和a可以采用类比法进行确定。选取地形地势条件大致相似,造成新增水土流失影响因子基本相同的工程作为类比工程,且类比工程最好有较为准确的水土流失监测资料。也可以用同类地区已有的水土流失资料推算项目建设前后的水土流失量,确定年土壤侵蚀模数或加速侵蚀系数。

4 预测时段的选取

(1)一次性建设项目,预测时段一般是基本建设期和运行期的前几年。但具体的起始时间,应按土建工程最早开工的那一年,如三通一平开始年作为预测时段起始年;终止时间一要考虑植物措施的迟效性(运行期前1~2年),二要考虑弃渣流失趋于稳定的年限(一般3~5年),按建设期最后弃渣年开始应有3~5年,这两项要求相比较,以需要运行期年限长的年作为预测时段的终止年。

(2)长期生产建设项目,预测时段可分为基本建设期和生产运行期两个阶段,重点预测水土保持服务年限以内的情况。

5 实例计算

通过以上分析,预测新增水土流失量的计算有两种情况,①采用公式(1-2)和公式(1-4)进行计算;②采用公式(1-3)和公式(1-4)进行计算。我市的水土保持方案编制中采用第二种情况进行水土流失计算的比较多,现摘选乐清市沙门岛大桥及接线工程水保方案中施工期水土流失预测表作为实例,仅供参考。

施工期水土流失量预测表

注:土石方容重按1.8t/m3,泥浆、钻渣容重按0.9 t/m3计。

6 结语

(1)、水土流失预测方法推荐采用类比法,用同类地区已有的水土流失资料推算项目建设前后的水土流失量,比较简单、务实。

(2)、由于水土流失的实验观测资料我市比较缺乏,在现阶段,水土流失预测计算公式推荐采用公式(1-3)和公式(1-4)。

参考文献

1、曾大林,对水土保持方案编制有关问题的研究,《中国水土保持》2001.2。

2、周天佑,水土保持方案报告书中的一些技术问题。

3、王礼先,中国水利百科全书-水土保持分册[M]. 北京:中国水利水电出版社,2004年。

4、焦居仁,开发建设项目水土保持[M]. 北京:中国法制出版社,1998年。

第七章 水土流失预测

第七章水土流失预测 7.1 预测目的 通过对项目建设过程中造成的新增水土流失数量和危害进行预测,进一步明确新增水土流失的时空分布,为此次亚泰山语湖项目的方案编制提供可靠的依据。 7.2 影响水土流失的因素分析 亚泰山语湖项目处于江苏省南京市浦口区沿江街道东至蓝海路,南至侨康路,西至永固路,北至永新路地块。项目建设区属于中低山丘陵区,植被覆盖率较高。在项目工程生产建设过程中,破坏了原有地貌并造成水土流失。项目建设场地的平整、建筑物基础的开挖等施工活动,将破坏原有地貌和扰动原有地表,这样便使原本处于稳定状态的土地水土流失加剧。项目工程生产建设过程中导致水土流失的主要原因为土地占用、植被破坏及土石方挖填。 7.3 水土流失预测单元划分 根据本次项目地区建设项目的水土流失特点,将水土流失区划分为建(构)筑物区、道路广场区、水域景观及绿化区、施工生产生活区、临时堆土区5个分区进行预测,具体分区情况见表7-1。 表7-1 分区情况

7.4 预测范围和时段 7.4.1预测范围 (1)预测范围 本项目水土流失预测范围包括建(构)筑物区、道路广场区、水域景观及绿化区、临时堆土区等占地区域。 (2)预测面积 项目建设施工期预测,本项目区实际扰动面积为70100㎡;其中建(构)筑物区21000㎡,道路广场区13600m2,水域景观及绿化区28100㎡,施工生产生活区1900㎡,临时堆土区5500㎡。

本工程预测范围及面积详见表7-2。 表7-2 预测区的水土流失预测面积统计表 7.4.2预测时段 建设类项目水土流失预测时段按一般原则可分为施工准备期、施工期和自然恢复期三个阶段。由于本次亚泰山语湖建设项目的施工期较长,且施工准备期扰动形式与施工期相近,故本方案水土流失预测时段主要按施工期进行预测。 水土流失预测按具体项目施工经历雨季的时间,以最不利时段进行预测。经调查,本次亚泰山语湖项目所处地区江苏省南京市的雨季集中在6月~8月份(3个月),为水土流失最不利时段。因此,预测时段根据施工时段占整个雨季的比例计算,超过雨季长度不足一年的按全年计算,未超过雨季长度的按占雨季长度的比例计算,依据本工程的施工进度安排及雨季的分布,确定水土流失预测计算时间。预测时段见表7-3。

水文频率分析方法

水文频率分析方法hydrologic frequency analysis(讲座) (一、问题;二、原理;三、步骤;四、应用;五、讨论) 一、问题 高等学校的“培养人才、发展科学、服务社会”的功能。其中的培养人才的功能:把所学课程的知识逐步 遗忘,最后未被遗忘的知识,对最后未被遗忘的知识的认识、运用和创新。“水文频率分析方法”,就是我认为 的《水文学》课程中这种很可能最后未被遗忘的知识。 各门自然科学是人类对大自然各种现象(“文”)的系统知识,大自然各种现象之间本身具有普遍的联系。 若各门自然科学的各个知识点看作水分子,则这些知识点象水文循环一样,也在各门自然科学之间运动、更新, 把各门自然科学联结成一个整体上的科学。20世纪30年代普郎克:“科学是内在的整体,实际上存在着从物理 到化学,通过生物学和人类学到社会学的连续链条,这是任何一处都不能打断的链条。目前整体上的科学,被 分解为各门科学,不是取决于自然现象本身,而是取决于人类认识能力的局限性、阶段性。” [工程水文学主要包括水文计算、水文预报和水利计算三个组成部分。水文计算主要运用概率论和数理统计 的原理和方法,对未来长期的水文情势作出概率预估,为各类水利工程的规划和设计提供设计暴雨、设计洪水 设计年径流及其他有关水文数据。 水文预报是根据流域暴雨洪水形成理论和河道洪水波传播的规律,为各类防洪工程发布洪水预报;同时,也根 据水体热量平衡原理,对山区融雪径流,河流、水库、湖泊冰情作出预报;根据土壤中水分的补给、运动和消 退规律,为农业提供土壤水分的预报;根据河道退水规律,为航运和引水工程等作出枯季径流及其水位预报。 水利计算是研究水资源综合利用中的规划和经济效益论证,管理运用中的优化调度和对环境影响评价的理 论、原则和计算方法,特别是水资源开发利用中系统分析的理论和方法。] 已学教学内容的总结 研究对象:文—自然现象—水文现象(水文循环过程中的降水、蒸发、入渗、径流自然现象,活跃在地面 以上平均约11公里的大气对流层顶至地面以下1~2公里深处的广大空间;全球每年约有577000立方公里的水 参加水文循环,水文循环的内因,是水在自然条件下能进行液态、气态和固态三相转换的物理特性,而推动如 此巨大水文循环系统的能量,是太阳的辐射能和水在地球引力场所具有的势能)—水文随机现象。 研究方法:水文随机现象—水文随机变量—水文随机变量的概率分布(确定一个普通变量,只要指明该变量取 何值即可;确定一个随机变量,必须同时指明该随机变量取何值以及取该值的概率)—水文随机变量的各种统 计特征。 研究问题:计算径流(设计年径流及设计年径流的年内分配过程); 设计枯水(设计流量历史曲线,设计枯水流量); 设计洪水(设计洪峰流量,设计洪水过程线)。 [总结为同一类问题—水文统计的基本问题]:建设各类水利水电、土木建筑等工程,需要为其提供一定设 计频率p的水文设计值x p,p=P(X≥x p),例如:95%的设计年径流量y95%,1%的设计年最大洪峰流量Q m,95%。 思路:水文随机变量的概率分布 水文随机变量的各种统计特征,引出2个问题: 1)概率分布的模型结构形式如何确定? 2)概率分布模型结构中的参数如何确定? 已学教学内容的总结 研究对象:文—自然现象—水文现象(水文循环过程中的降水、蒸发、入渗、径流自然现象,活跃在地面以上平均约11公里的大气对流层顶至地面以下1~2公里深处的广大空间;全球每年约有577000立方公里的水参加水文循环,水文循环的内因,是水在自然条件下能进行液态、气态和固态三相转换的物理特性,而推动如此巨大水文循环系统的能量,是太阳的辐射能和水在地球引力场所具有的势能)—水文随机现象。 研究方法:水文随机现象—水文随机变量—水文随机变量的概率分布(确定一个普通变量只要指明该变量取何值即可;确定一个随机变量,必须同时指明该随机变量取何值以及取该值的概率)—水文随机变量的各种统计特征。 研究问题:计算径流(设计年径流及设计年径流的年内分配过程);

开发建设项目水土流失预测

开发建设项目水土流失预测

————————————————————————————————作者:————————————————————————————————日期:

开发建设项目水土流失预测 第一部分水土流失基础知识 第二部分开发建设项目水土流失类型 第三部分水土流失预测 第一部分水土流失基础知识 一、土壤侵蚀类型 二、术语 一、土壤侵蚀类型 按导致土壤侵蚀的外营力种类划分 1、水力侵蚀 2、风力侵蚀 3、重力侵蚀 4、冻融侵蚀 5、冰川侵蚀 6、混合侵蚀 7、化学侵蚀 8、生物侵蚀 1、水力侵蚀 土壤及其母质或其它地面组成物质在降雨、径流等水体作用下,发生破坏、剥蚀、搬运和沉积的过程。水力侵蚀的主要形式包括: 雨滴击溅侵蚀 面蚀:层状面蚀、砂砾化面蚀、鳞片状面蚀、细沟状面蚀(深、宽均不超过20cm) 沟蚀:(1)黄土地区的侵蚀沟 浅沟—深度达1m左右,宽深比接近1。 切沟:深度可达5~50m,沟宽远小于沟深,一般3~10m。 冲沟:沟道横断面为“U”字型。 河沟:沟头接近分水岭,沟道横断面为“U”字型或复“U”字型。 沟蚀:(2)土石山区的侵蚀沟 荒沟:受基岩限制,侵蚀沟宽而浅。 山洪侵蚀 波浪侵蚀 2、风力侵蚀 风力侵蚀系指土壤颗粒或沙粒在气流冲击作用下脱离地表,被搬运和堆积的一系列过程,以及随风运行的沙粒在打击岩石表面过程中,使岩石碎屑剥离出现擦痕和蜂窝的现象。 风力侵蚀主要表现为风蚀和风积。 风蚀形式: 吹蚀:风将地面的松散沉积物或基岩上的风化产物吹走,使地面遭到破坏。 磨蚀:风沙流以其所含沙粒作为工具对地表物质进行冲击、磨蚀的作用。 风积作用: 风沙流运行过程中,由于风力减缓或地面障碍等原因,使风沙流中沙粒发生沉降堆积时称为风积作用。经风力搬运、堆积的物质称为风积物。 风沙流中沙粒运动的3种形式

水土流失预测

第7章水土流失预测 7.1预测的目的原则 7.1.1预测目的 根据项目建设施工特点,在调查和计算出项目建设过程中可能损坏、扰动地表植被面积,弃土、弃渣的来源、数量、堆放方式、地点及占地面积的基础上,结合当地水土流失特征,进行综合分析论证,采用科学合理的预测方法,对造成水土流失的形式、强度、数量、危害等进行调查评价,为合理布设水土流失防治措施的总体布局及各单项防治措施设计,有效防治新增水土流失提供依据,也有助于保障项目将来的安全运营和生态环境的良性循环。 7.1.2预测原则 根据本工程建设所产生水土流失特点,水土流失预测的原则如下。 (1)本工程已经开工建设,且已近完工,应对施工期水土流失量进行调查,自然恢复期进行预测,每个预测(调查)单元的时段按最不利的情况进行考虑,超过雨季长度的按年计算,不超过雨季长度的按占雨季长度的比例计算。 (2)本方案所有的预测(调查)方法、预测(调查)内容和预测(调查)结果等,均是以“按照开发建设项目正常的设计功能,无水土保持工程条件下可能产生的土壤流失量与危害”为前提进行的预测分析。 (3)项目建设水土流失预测(调查)将根据项目特点进行综合分析。本方案将主要对因项目建设而扰动破坏原地表可能造成的水土流失,结合土壤侵蚀原理进行定量分析。 7.2水土流失特点分析 根据本项目的实际情况,本项目由于施工期土石方开挖、填筑、堆放等,扰动原地貌,占压土地,破坏原有植被,造成土体结构疏松,使其水土保持功能降低或

丧失,加剧了区域内水土流失的发生和发展。该项目建设生产过程中产生的新增水土流失其主要特点如下: (1)土方开挖及搬运量大 本项目产生废弃土石方22935m3,废弃土石方堆放在渠道两侧边坡,土体松散,且未采取任何防护措施,在降雨天气极易发生水土流失。 (2)地表扰动范围呈线状分布 本工程所扰动地表面积较其它项目相对较分散,主要分区钦北区及灵东区,扰动区域线状分布。 (3)扰动区水土流失以水力侵蚀为主 按全国土壤侵蚀类型区划标准,项目区属以水力侵蚀为主的南方红壤丘陵区,水土流失允许值为500t/km2.a,施工期间的水土流失以水力侵蚀为主。 (4)水土流失时段集中 工程施工期为旱季,时间较短(4个月),因此工程沿线堆放土石方未发现重大水土流失现象。 7.3水土流失预测(调查)范围 由于该项目主体工程已经基本完工,不涉及到地表的扰动问题。因此本方案将对施工期间和自然恢复期间损坏水土保持设施数量、水土流失量、弃渣量等进行实地调查。钦灵灌区2010年续建配套与节水改造工程(第一批)水土流失调查范围包括灵东北干渠、灵东南干渠、吉隆西干渠、吉隆总干渠、九百垌干渠、京塘总干渠及各渠段施工便道和施工场地。 7.4水土流失预测时段 钦灵灌区2010年续建配套与节水改造工程(第一批)施工建设期已近尾声,本方案将调查项目施工期间、自然恢复期间的水土流失情况。根据《开发建设项目水土保持技术规范》,结合项目建设区的特点,本项目调查时段分为施工期、自然

水土流失影响预测与评价

水土流失影响评价及防治措施 防治责任范围及分区 根据上述分区原则与依据,结合项目特点,将项目划分成5个水土流失一级防治区,即开采区、工业场地区、办公生活区、连接道路区。 水土流失预测 1.扰动地表、损坏水土保持设施预测 项目施工将改变原有地貌,损害或压埋原有植被,不同程度地对原有具 有水土保持功能的设施造成破坏,造成工程区水土流失量的增加。工程总征占地面积即为项目扰动及损坏地表面积,为7.931hm2。 2.水土流失量预测 1)预测内容 根据本工程建设过程中产生水土流失的环节情况,水土流失预测主要是 针对工程建设及生产运行过程中的水土流失,预测项目建设及自然恢复期可 能造成的水土流失量。 2)预测范围 根据相关规定,工程水土流失预测范围为工程建设扰动地表的范围,即工程的永久占地和临时占地范围之和。根据各分区的扰动时段、扰动形式总体相同,扰动强度和特点大体一致的要求,可将整个工程扰动区划分为矿山开采防治区、矿山运输公路防治区、碎石加工防治区和办公生活防治区等4个预测分区进行水土流失预测。 3)预测时段与单元 本工程为建设生产类项目,预测时段包括建设期、生产期和自然恢复期。根据项目区的特点,对不同的区域采取不同的预测时段。每个预测单元的预测时

段按最不利的情况考虑,超过雨季(4 月-9 月)长度的按一年计算,不超过雨季长度的按占雨季长度的比例计算。本项目预计开工时间为2019 年9 月,完工时间2019 年12月,建设期预测时段按0.3 年计。生产期只预测弃渣量,不做水土流失量预测。根据当地的自然条件,确定自然恢复期为 2 年。 4)预测方法 本项目采用扰动地表造成的土壤流失量计算公式如下: 式中:W--扰动地表土壤流失量(t); i--预测单元(1,2,3,…,n); k--预测时段,1,2,指建设期和自然恢复期; Fi--第i 个预测单元的面积(km2); Mik--扰动后不同预测单元不同时段的土壤侵蚀模数(t/km2?a); ΔMik--不同单元各时段新增土壤侵蚀模数(t/km2?a);Mi0--扰动 前不同预测单元土壤侵蚀模数(t/km2?a)。Tik--预测时段(a)。 5)预测基础数据取值 (1)土壤侵蚀模数背景值 由于项目所在地无土壤侵蚀方面的实测资料和参考资料,为了更准确的确 定不同预测单元的土壤侵蚀模数背景值,我公司组织技术人员于2019年6月对项目区进行现场调查,主要调查项目区地质、地貌类型、土壤类型、降雨情况、植被覆盖情况、地面组成情况和相应的管理措施等,并根据《土壤侵蚀分类分级标准》(SL190-2007),最终确定项目区平均土壤侵蚀模数背景值为772t/(km2?a)。 (2)扰动后土壤侵蚀模数 扰动后的土壤侵蚀模数在项目区及附近施工项目水土流失现状调查的基础上,结合项目建设中各类施工工序对土地的扰动和破坏程度,分析各施工区水土流失特点,参照《土壤侵蚀分类分级标准》,采用类比法综合确定。本项目扰动后各预测时段土壤侵蚀模数,见下表。

水土流失形态及土壤侵蚀计算

水土流失形态 水土流失也叫土壤侵蚀,是指地球陆地表面的土壤及其母岩碎屑,在水力、风力、重力、冻融等外营力和人为活动作用下发生的各种形式的剥离、搬运和再堆积的过程。水土流失是山区、丘陵区一种渐进性灾害,被列为人类目前所面临的十大环境问题之一。治理水土流失是中国的基本国策之一。 一、侵蚀的发展 土壤侵蚀的发展,大体分为3个阶段: (一)自然侵蚀 自然侵蚀也称古代侵蚀、史前侵蚀或地质侵蚀。在人类出现以前,就有了中国黄土高原。黄土在其沉积过程中,地面虽然比较完整,但也有起伏不平,同时地面尚未形成能抑制土壤侵蚀的植被,加之黄土具有易蚀性特点,暴雨和冰川融解形成径流,即对地表产生侵蚀作用。这时侵蚀非常缓慢,土壤的侵蚀速度小于土壤形成的速度,不仅不会破坏土壤结构,还对土壤能起到一定的更新作用,这种侵蚀也叫正常侵蚀。 (二)加速侵蚀 加速侵蚀也叫现代侵蚀,是指土壤侵蚀速度大于土壤形成速度。自西汉到民国的2 000年间,黄土高原地区人口增长较快,移民戍边以及农业区逐渐由南向北、由东向西扩展,人类开垦草原,砍伐森林,开荒扩种,加上其他不合理的经营活动,造成加速侵蚀。据观测资料,森林砍伐土地垦种后,年侵蚀模数可从每平方公里几吨猛增到几千吨甚至上万吨,有不少沟道、河流,一年的输沙量相当于自然侵蚀几百年的输沙量。加速侵蚀导致林草植被破坏,土壤肥力下降,地形更加破碎,水土流失加剧。 (三)人为新增侵蚀 新中国建立以来,特别是20世纪80年代以来,资源开发和基本建设项目大大增加,开矿、建厂、修路、盖房(挖窑)等活动日益频繁,直接向沟道、河道弃土弃石弃渣。由于人口增加,需求更多农产品,在农业生产上,不少地方仍在破坏植被,开荒扩种,粗放经营,造成一边治理一边破坏,一家治理多家破坏。在遭到破坏的地方,水土流失特别严重。 二、侵蚀形态 土壤侵蚀从形态上可分为水力侵蚀、重力侵蚀和风力侵蚀3种。 (一)水力侵蚀

水土流失预测的常用计算方法

浅谈水土流失预测的常用计算方法 朱荣华 (乐清市水利水电建筑勘测设计院) 摘要:水土流失作为一项世界性的研究课题,一直受到世界各国的重视,长期以来,在其基础理论方面开展了大量的研究,并取得了有益的成果。水土流失预测是水土流失问题研究中很重要的内容,其预测方法也很多,常用的有通用土壤流失方程法、类比法、分类分级法、流失系数法等。在我省由于各地方自然条件、地理环境等存在很大差异,采用各种预测方法对水土流失进行预测时,必须确定该方法是最符合本地区实际情况的,这将直接影响到水土流失量数据的精确性,因此对预测方法和计算公式的选择至关重要。 关键词:水土流失预测计算公式侵蚀模数 水土流失与当地自然条件和人类活动密切相关,水土流失的影响因素包括自然因素和人为因素两个方面,其中自然因素主要有气候(降雨强度)、地形(坡长、坡度)、植被状况、地质构造和土壤类型等诸因素,人为因素主要表现为在工程建设过程中改变原有地形(坡长、坡度),破坏原有植被,使地表裸露,削弱其原有的蓄水保土功能,并产生新的水土流失,从而增加水土流失量。 水土流失作为一项世界性的研究课题,一直受到世界各国的重视,长期以来,在其基础理论方面开展了大量的研究,并取得了有益的成果。水土流失预测是水土流失问题研究中很重要的内容,其预测方法也很多,常用的有通用土壤流失方程法、类比法、分类分级法、流失系数法等。在我省由于各地方自然条件、地理环境等存在很大差异,采用各种预测方法对水土流失进行预测时,必须确定该方法是最符合本地区实际情况的,这将直接影响到水土流失量数据的精确性,因此对预测方法和计算公式的选择至关重要。 1水土流失预测常用计算公式 1.1通用土壤流失方程

水土流失量估算模式

水土流失量估算模式 预测模型采用美国通用的水土流失程式(USLE)。 预测方程为: A=R·K·LS·C·P 式中:A—侵蚀强度,即单位面积(hm2)单位时间(a)流失量; R—侵蚀因子; K—土壤因子; LS—地形因子; C—生物因子; P—水土保持因子。 这个预测模型是美国农业部农业研究所经过40多年实地观察提出的。我国南方各省在该模型应用方面做了不少的工作,许多研究表明,该模型不仅适用山坡地、农地的水土流失估算,同样也适用于公路街道建设。福建省水土保持实验站和福建省农学院士化系在1991年结合我省闽东南气候、土壤、地形、植被等基本条件,对这一模型的基本参数进行计算组合确定。 ⑵预测因子的确定 ①侵蚀力因子R R因子是降雨侵蚀的指标,迳流的影响也包括在内。对于常年受到降雨侵蚀的区域来说,R值大小取决于月均降雨量和年降雨量。 计算公式如下: 式中的P为年降雨量(mm),Pi为月均降雨量(mm)。 项目区域多年平均降水量为1200mm,根据计算公式可得R为196.4。 ②土壤因子K K因子反应土壤对侵蚀的敏感度;K值越大,敏感度越高,越容易受到侵蚀;K因子大小取决于土壤质地层(粘粒、粉粒、砂粒和有机质含量)。 福建省土壤可蚀性因子K取值的经验方程式为: K=(164.80-2.31X1+0.38X2+2.26X3+1.31X4-14.67X5)×10-3 式中: X1-细砾(3~1mm)含量,%; X2-细沙(0.25~0.05mm)含量,%; X3-粗粉粒(0.05~0.01mm)含量,%; X4-细粉粒(0.01~0.005mm)含量,%; X5-有机质含量,%; 项目建设区域,土壤类型属红壤土。综合有关资料分析,项目区水土流失预测土壤可蚀性因子K计算模式,细砾含量X1以3.2%计,细沙X2含量以25%计,粗粉粒含量以20%计,细粉粒X4含量以12%计,有机质X5含量以2%计,由此计算得K值为0.164。 根据有关资料,福建红壤区主要土壤的K值在0.038~0.284之间,因此项目区土壤计算K值为0.164是合理的。 ③地形因子LS LS是地表迳流长度与坡度的函数: LS=(65.41Sin2S+4.56SinS+0.065)·(L/22.13)m 式中:S——坡度(度); L——坡长(m)。 m——坡长指数,当SinS>5%,m=0.5;

7 通用土壤流失方程的计算

实验18 基于栅格建模的通用土壤流失方程的建立 一、实验目的 1.了解通用土壤流失公式的物理含义; 2.熟悉栅格数据多层面叠合分析的基本原理; 3.掌握使用ArcGIS叠置分析功能建立通用土壤流失公式模拟土壤侵蚀过程的 方法。 二、实验背景 土壤侵蚀是指土壤或成土母质在外力(水、风)作用下被破坏剥蚀、搬运和沉积的过程。土壤侵蚀的过程实际和水分同时流失的过程,即水土流失过程,二者基本上是一致的。它是自然和人为因素综合作用的结果。如今,土壤侵蚀已成为世界普遍关注的重大环境问题之一,它加剧淤积、干旱、洪涝等自然灾害,引起土地生产力下降,严重地威胁着人类的生存和发展。因此,土壤侵蚀预测是进行有效水土保持工作的前提。 在这样的背景下,通用土壤流失方程应运而生。通用土壤流失方程USLE (Universal Soil Loss Equation,USLE) 是美国研制的用于定量预报农地或草地坡面多年平均年土壤流失量的一个经验性土壤侵蚀预报模型,其数学表达式是一系列变量相乘的方程形式。其基本形式为: A=R·K·LS·C·P 式中: A——单位面积上的土壤流失量,主要指降雨及其径流使坡面上出现细沟或细沟间侵蚀所形成的多年平均土壤流失量, 单位为:tons/acre/year); R——降雨侵蚀力因子(rainfall-runoff erosivity factor),用多年平均年降雨侵蚀力指数表示,单位为;MJ·mm·hm-2·h-1·a-1 K——土壤可蚀性因子(soil erodility factor); LS——地形因子(topological factor); C——植被与作物管理因子(cover-management factor); P——土壤保持措施因子(supporting practices factor)。 通用土壤流失方程可以帮助人们认识不同的自然条件、农业活动和水土保持措施下的土壤流失量平均有多大, 从而指导决策者制定可行的土地利用政策,以尽可能减少土壤流失。该方程结构简单,所需输入数据量少,计算结果可满足一定精度下土壤侵蚀预测的要求。 三、实验内容 1.ArcGIS栅格叠置分析功能计算地形因子;

房地产项目水土流失预测

房地产项目水土流失预测 1.1工程建设与生产水土流失影响因素的分析 本项目位于重庆XXX区,项目区属于西南土石山区渝中平行岭谷丘陵低山中度侵蚀区。项目水土流失影响因素分析,见表1.1-1,图1.1-1。 表1.1-1 项目水土流失影响因素分析表 项目建设加剧水土流失过程框插图 1.1-1 图

1.2 预测范围和时段的划分 1.2.1 预测范围及单元划分 根据工程总体布局、施工工艺、建设过程中所造成水土流失的类型、数量、分布等,水土流失预测范围确定为项目建设区。 1.2.2 预测时段的划分 水土流失预测时段从施工建设开始,自然恢复期末结束,根据不同时段水土流失的差异性,分为建设期和自然恢复期。各预测单元预测时段根据实际施工时段确定,并按最不利因素.

考虑,即施工时段超过雨季长度的按全年计算,不超过雨季长度的按占雨季长度的比例计算(本项目雨季为6-9月)。(1)施工期 施工期预测时段为2010年9月至2012年9月,共计24个月。预测单元为项目建设区。工程施工期基面的开挖与填筑、绿化用地的平整等一系列开发建设活动,对地表植被及土壤环境造成直接与间接损害,原有地形地貌及植被受到一定程度的扰动和损坏,使得地表裸露面增多,在一定的外力条件下,将可能产生比原有强度大的水土流失;同时剥离的表土临时裸露堆置,在没有防护措施的情况下将产生新的水土流失。工程施工期是本项目水土流失预测、防治的重点时段。(2)自然恢复期 工程运行初期(自然恢复期)因施工建设引起的各种水土流失驱动因子基本停止,水土流失面积及强度大大降低,但由水土保持措施(主要是植物措施)效益发挥的滞后性,工程区仍将发生一定量的水土流失;工程运行后期,随着主体工程填筑、场地硬化、绿地营建等各项水土保持措施效益的充分发挥, 工程区的水土流失将基本得到全面控制,并趋于新的稳定状态。年的时间才能于原地表相当,因此确定自然恢复期预1-2需经年。测时段为1

水土流失计算方法

RUSLE 模型是通过对通用土壤流失方程 USLE 模型的改进得到的。RUSLE 与 USLE 具有相同的数学表达式: A=R·K·LS·C·P 式中,A 为年均土壤侵蚀量(t·hm -2·a -1 ),主要指由降雨和径流引起的坡面细沟或细沟间侵蚀的年均土壤流失量; R 为降雨侵蚀力因子(MJ·mm·hm -2·h -1·a -1),它反映降雨引起土壤流失的潜在能力。本方案基于月平均降雨量和年平均降雨量的Wischmeier 经验公式计算(Wischmeier, 1969); 21.5lg 0.81881211.73510 p i p i R ???? ????- ???????==?∑ 式中pi 和p 分别是月均和年均降雨量(mm)。计算得到各站点在2000-2007年平均降雨侵蚀力,然后利用Kriging 空间内插方法对34个站点(包括@@@@@站点)进行插值,得到流域水平降雨侵蚀力图层,最后得到流域30 m×30 m的R 因子栅格图层(图2)。 K 为土壤可蚀性因子(t·hm -2·h·MJ -1·mm -1·hm -2 ),它是衡量土壤抗蚀性的指标,用于反映土壤对侵蚀的敏感性。K 表示标准小区单位降雨侵蚀力引起的单位面积上的土壤侵蚀量。由于缺乏各土壤类型的结构系数和渗透性等级数据,因此选择侵蚀/生产力影响模型EPIC 的公式计算流域各类型土壤的K 因子值,EPIC 的计算公式为: (){}()()0.3 0.20.3exp 0.02561/1000.250.711.0 1.0exp 3.72 2.951exp 5.5122.91SIL K SAN SIL CLA SIL C SN C SN SN ??=+-?? ???+??????-- ??? ???+-+-+???? 式中,SAN 、SIL 、CLA 和C 是砂粒、粉粒、粘粒和有机碳含量(%),其中SN1=1-SAN/100。由公式II 计算得到流域各土壤类型的K 值如表2所示。 表2 流域各土壤类型K 因子值(单位:t·hm -2·h·MJ -1·mm -1·hm -2) 土壤 类型 棕壤 褐土 石灰性 褐土 粗骨土 红粘土 草甸 风沙土 石灰土 潮土 红壤 将流域土壤类型图数字化,然后生成30m×30m的栅格图层,利用ARCGIS9.2中的Raster Calculator 模块把K 值赋给土壤类型,得到K 因子图层(图3)。 LS 为坡长坡度因子(无量纲),其中L 为坡长因子,被定义为坡长的幂函数。S 为坡度因子,LS 表示在其他条件不变的情况下,某给定坡长和坡度的坡面上土壤流失量与标准径流小

5风险分析水土保持

第5章风险分析 (2) 5.1事故风险概率分析 (2) 5.2事故后果分析 (3) 5.3风险管理 (3) 第6章水土保持 (5) 6.1项目区水土流失现状 (5) 6.2水土流失预测分析 (6) 6.3水土保持措施体系及主要工程量 (8) 6.4水土保持投资估算及效益分析 (14)

第5章风险分析 本项目环境风险主要源自在桥梁上发生的交通事故导致的水污染风险。对本项目而言,即指运输化学危险品(主要是化学品、农药及石油类)车辆在桥梁上发生交通事故或意外,造成化学危险品倾倒、泄漏等,流入浏阳河水体,对水环境和桥梁附近居民的人生安全造成危害。 5.1事故风险概率分析 采用概率分析方法预测项目营运期在重要水域路段发生危险品运输事故的概率,具体计算如下: ①预测模式 P=Q o×Q l×Q2×Q3×Q4 P——重要水域地段出现污染风险概率; Q0——该地区公路车辆相撞翻车等重大交通事故概率,次/百万辆×公里; Q1——预测年的年绝对交通量,百万辆/年; Q2——装载有毒、有害危险品货车占总交通量的比例(%); Q3——重要水域路段的长度,公里; Q4——与普通公路的事故概率比; ②参数确定 Q o的确定:参照湖南省等级公路调查和统计,Q o取0.2次/(百万辆×公里); Q1的确定:根据预测车流量,重要水域路段的Q1值为近期7.92 pcu/a、中期13.86 pcu/a、远期71.69pcu/a。 Q2的确定:项目所在区域运输有毒、有害危险品的车辆约占总车流量的1.0%,故Q2取值为0.010; Q3的确定:重要水域路段的长度,km;取值0.3。 Q4的确定:Q4取1。 ③预测结果 根据预测模式和上述各参数的确定,计算结果见表5.1-1。

德商高速公路水土流失预测及水土保持设计

第2卷第2期2019年3月 Vol.2,No.2 Mar!2019水利科学与寒区工程HydroScienceandColdZoneEngineering 谢翔,张佳,王莎莎,等.德商高速公路水土流失预测及水土保持设计水利科学与寒区工程!2019,2(2):95-98. 德商高速公路水土流失预测及水土保持设计 谢翔,张佳,王莎莎,于苗 (济南绿轩工程咨询有限公司,山东济南250014) 摘要:为有效预测新建德商高速公路水土流失量,文章以德商公路德州至夏津段为例,对该路段水土流失特点进行分析,利用数学模型公式对水土流失量进行预测,得出各个相应区域的水土流失量。根据研究结果制定路面、中央分隔带、路基护坡、取土场和弃土场水土保持措施。该工程可为类似工程施工提供技术参考+ 关键词:高速公路;施工;水土保持;德商公路;护坡设计 中图分类号:S157文献标志码:A文章编号:2096-5419(2019)02-0095-04 1工程概况 德商公路德州至夏津段位于山东省德州市境内,包括主线和支线两部分。其中主线全长41.04km,支线全长22.87km,采用双向四车道标准建设,设计行车速度为主线120km/h、支线100km/h,路基宽度为主线28.0m(支线26.0m。为预防和治理在公路建设过程中产生的水土流失,本项目制订了完善严格的防治目标(见表1),针对不同的防治对象采用不同的防治手段进行治理。 表1水土流失防治目标%扰动土地整治率水土流失总治理度土壤流失控制比拦渣率林草植被恢复率草959595959595 2水土流失特点及预测 2.1水土流失特点分析 (1)存在大规模土石方作业。本项目路段估算土石方挖填总量可达1026.77万m3,而土石方工程最容易造成地表和基建面的土壤大面积裸露,若此时有降雨出现,则会形成较大范围危险边坡,水土流失现象严重1+ (2)存在一定的扰动破坏。在进行路基、隧道等开挖时,由于人为作用会将原有地层应力平衡状态打破,进而造成地层结构发生变化2,包括裂缝、沟壑发育增多,为水土流失创造了条件+ (3)水力侵蚀作用明显。项目区地处鲁西北黄泛平原,土类分为:潮土、盐土、风沙土三类,其中98.7%为潮土类3。其具有表层质地疏松、透气性好等特点,这样在雨水作用下会容易产生水土流失现象,因此项目区水力侵蚀作用明显,如图1所示。 2.2水失 项工工期34月,水土流失 象基本贯穿始终,在对水土流失预测时为简化计算,将相似区域划分在一起,包括植被、地形、降水量等+ 2.2.1 当前预测水土流失量Q的主要手段为数学模型,首先将各相似区域整合后分区,之后利用式(1)进行计算4+ :2018-06-04 作者简介:谢翔(1984-),男,山东济南人,工程师,研究方向为水土保持+E-mail:156771006@https://www.360docs.net/doc/e15460997.html,。 -95-

中南大学《桥涵水文》考点汇总

■1.平原河流按平面形态及演变过程可分为哪些类型?顺直微弯型-中水河槽顺直,边滩交错分布;弯曲型-中水河槽弯曲,凹岸冲刷,凸岸淤积;分汊型-中水河槽分汊,汊道交替消长;散乱型-中水河槽宽浅,沙滩密布,河床变化急剧,主流摆动频繁。 ■2.河川水文现象的分析研究方法有哪些基本类型?成因分析法-通过水文现象的物理成因以及同其它自然现象有关的因素之间的关系,分析水文现象的规律;地区归纳法-结合地区特点,利用实测水文资料进行综合归纳;数理统计法(水文统计法)-对实测水文资料进行数理统计分析,寻求其统计规律。 ■3.什么是河床演变?在天然状况或人类活动干扰下,河床形态的不断变化,称为河床演变。它是水流与河床长期相互作用的结果,并通过泥沙运动来实现。、 ■4.桥面标高的确定应考虑哪些因素?桥面标高的确定应考虑泄流、通航的要求及桥前雍水、波浪高度、水拱、河湾凹岸水面超高及河床淤积等因素的影响。 ■1.影响河川径流的主要因素有哪些?河川径流主要影响因素有:气候因素-降水、蒸发,下垫面因素-流域的自然地理因素,人类活动等。 ■2.如何选择河流的形态断面?形态断面应选在近似于均匀流的河段上,一般要求河道顺直、水流通畅、河床稳定、河滩较小、河滩与河槽的洪水流向一致,无河湾、河汊、沙洲等情况。 ■4.影响河床演变的主要自然因素有哪些?影响河床演变的主要自然因素有三方面:(1)上游来水条件,即流量的大小和变化;(2)上游来沙条件,即上游来沙量及其粒径组成;(3)河床地质、土质条件、河床比降为河床演变提供了边界条件。 ■1、桥位设计的基本原则有哪些?答:1、以地区发展为第一要素;2、处理好道路与桥梁的关系;3、跨河构造物的布设应保障天然河水的顺利宣泄并顺应预计河道的自然演变;4、保证跨河构造物对车辆安全稳定的服务态势;5、最佳的综合技术经济指标;6、尽量选用与自然环境协调美观的桥型 ■2、河床演变的主要影响因素有哪些?答:1、流量大小及变化;2、河段来沙量及来沙组成;3、河段比降;4、河床地质情况;5、河床形态 ■3、平原区桥涵布设要点是什么?答:1、在弯曲河段上,高水位可能会产生截弯取直的地方,路堤最易被冲成缺口,宜在主槽上集中设置桥梁,采取一河一桥布置;2、在游荡性河段上布设桥梁,应采取必要的导流措施,使主槽的摆动有所约束,从而归于趋槽;3、在分汊河段上修建桥梁,河道上具有两个以上的主槽,一般均宜在各主槽上分别建桥,尽量少改变水流的天然状态。 ■4、如何确定桥面最低高程?影响桥面最低高程的因素有哪些?答:桥面最低标高的确定受到设计洪水水位、设计最高通航水位、因桥梁建筑而引起的水位升高、水面漂浮物、通航船只净高以及桥梁结构物高度、道路线型布设的需要等因素的综合影响,因此应从地区政治、经济、军事、交通运输业的发展及工程的技术经济合理为基点,综合分析,确定此标高值。 ■5、试述桥梁墩台局部冲刷的基本概念及对其影响的主要因素。答:由于桥墩对水流的干扰作用,墩前及墩侧产生了不利于床面稳定的局部水流,剧烈冲刷桥墩迎水端及其周围的泥沙,形成局部的冲刷坑成为桥梁墩台局部冲刷,对其影响的主要因素是涌向桥墩的流速、桥墩宽度、桥墩形式、墩前水深及床沙粒径等。 ■6、什么叫做适线法?为什么要用它来确定Cs?答:适线法的基本原理就是让理论曲线与经验曲线相吻合,当两曲线吻合较好时皮尔逊三型曲线几个参数的可信度就比较高,在三个参数中,平均流量可以直接根据数据计算得出,比较准确,稳定的变差系数需要20-30年的资料,而稳定的偏差系数需要100年以上的资料,因此从理论公式的准确性来讲只有Cs相对误差较大,所以要用它来确定Cs。■4、洪水调查工作包括哪些?答:1、河段踏勘;2、现场访问;3、形态断面及计算河段选择;4、野外测量。 ■5、桥位选择的一般要求有哪些?答:1、服从路线总方向及建桥的特殊要求;2、桥轴线为直线或为曲率小的平滑曲线;3、少占农田,少拆迁,少淹没;4、有利于施工;5、适应市政规划,协调水运、铁路运输,满足国防、经济开发等需要。 ■6、与小桥相比,涵洞孔径计算有哪些特点?答:1、涵洞洞身随路基填土高度增加而增长,洞身断面的尺寸对工程数量影响较大,因此计算涵洞孔径时,还要求跨径与台高应有一定比例关系,其经济比例通常为1:1~1:1.5;2、计算涵洞孔径时,要考虑洞身过水阻力的影响;3、涵洞孔径较小,通常都采取人工加固河床的措施来提高流速,以缩小孔径;4、为提高泄水能力,最大限度地缩小孔径,降低工程造价,在涵洞孔径计算中,要考虑水流充满洞身触及洞顶的情况。 ■1、简述水静力学基本方程的几何意义?1、答:z+p/r=C,z指计算点的位置高度,即计算点M距计算基准面的高度,p/r指测压管中水面至计算点M的高度,z+p/r指计算点处测压管中水面距计算基准面的高度,z+p/r=C指静止液体中各点位置高度与压强高度之和不变。 ■2、什么是“阻力平方区”?阻力平方区为什么可为自动模型区2、答:“阻力平方区”就是紊流水力粗糙区,在此流区内,水流阻力与流速平方成正比。在此阻力流区内,对于模型试验研究的阻力相似条件,因λ与雷诺数无关,只与管壁粗糙度有关,只要保证模型与原型的几何相似即可达到阻力相似的目的,故水力粗糙区又称为自动模型区。 ■3、复式断面明渠有哪些水力特性?答:1过水断面形状多呈上部宽而浅,下部窄而深,断面几何形状有突变;2过水断面面积及湿周都不是水深的连续函数,水位流量关系曲线不能连续;3过水断面上的糙率可能不一致。 ■1、按照河床演变特点划分,河段可以分为哪几类?答:河段可以分为峡谷性河段、稳定性河段、次稳定性河段、变迁性河段、游荡性河段、宽浅性河段、冲积漫流性河段。 ■2、分汊型河道的演变特征有哪些?答:1、洲滩的移动;2、河岸的崩塌和弯曲;3、汊道的交替兴衰。 ■3、桥梁位置的选择一般要求有哪些?答:1、桥梁位置尽可能设在河道顺直、主流稳定、河槽能通过较集中流量的河段上。2、桥梁位置应选在河滩较窄、河槽最宽处。3、桥梁位置应尽可能与中、高水位时的洪水流向正交。4、与河岸斜交的桥位,应避免在引道上游形成水袋与回流区,以免引起道路路基遭受水害。5、当城市和重要工业区有特殊防洪要求时,桥梁宜设在上游河段,5、桥梁宜设在地质构造单一、岩层完整、埋藏较浅、土层坚实、地质条件良好的地段,7、地震区桥梁,应按现行的中华人民共和国交通部部颁标准《公路工程技术标准》的有关规定设置。 ■4、简述皮尔逊Ⅲ型曲线方程的参数变化对曲线形状的影响。答:平均流量越小,曲线越平缓,Cv值越大,曲线倾斜度越大,Cs值越大,曲线下凹曲率越小,左半部分斜率越大,右半部分斜率越小。 ■5、桥孔布置与孔径大小应符合哪些一般原则?答:1、应保证设计洪水和它所携带的泥沙顺利宣泄;2、应与天然河流断面的流量分配相适应;3、应考虑河床变形和水流变化对桥梁的影响;4、应充分考虑不同建桥方案对河道产生的不利变形影响;5、应充分考虑桥孔布设对航运或港口发展的长远影响;6、应尽可能照顾当地的发展规划,与农电水利设施相配合;7、对跨径在60m以下的桥孔,尽可能采用标准跨径;8、应注意地质情况,桥梁的墩台基础避免设在断层、溶洞等不良地质处;9、应考虑施工条件和经济效益,做全面的技术经济比较,选择合理的桥孔设计方案。 ■6、与小桥相比,涵洞孔径计算有哪些特点?答:1、涵洞孔径计算除解决跨径尺寸外,同时还应从经济角度出发确定涵洞的台高;2、计算涵洞孔径时,要考虑洞身过水阻力的影响;3、控制涵前水深和满足孔径断面一定的高度比例是涵洞孔径计算的重要控制条件;4、在涵洞孔径计算中,要考虑水流充满洞身触及洞顶的情况。 ■按照河床演变特点划分,河段可以分为哪几类?答:河段可以分为峡谷性河段、稳定性河段、次稳定性河段、变迁性河段、游荡性河段、宽浅性河段、冲积漫流性河段。 ■2、分汊型河道的演变特征有哪些?答:1、洲滩的移动;2、河岸的崩塌和弯曲;3、汊道的交替兴衰。

水文频率计算

《水文频率计算》 根据某水文现象的统计特性,利用现有水文资料,分析水文变量设计值与出现频率(或重现期)之间的定量关系的工作过程称为水文频率计算。 自然界的现象按发生情况可分成:必然事件,即在一定条件下必然会发生的事情,如降雨以后就要涨水是必然发生的;不可能事件,即在各条件实现之下永远不会发生的事情,如只在重力作用下的水由低处向高处流是不可能的;随机事件(也称偶然事件),即在一定条件下可能发生也可能不发生的事件,如每条河流每年出现一个流量的年最大值是必然的,但这个最大值可能是这个值也可能是那个值,它在数量上的出现是一种随机事件。频率计算中是以1来表示必然事件出现的可能性(即百分之百出现),以0表示不可能事件出现的可能性,随机事件出现的可能性介于0与1之间。 水文要素。如降雨、流量等在量的出现方面都有随机性的特点,水文变量如年雨量、年最大洪峰流量、枯季最小流量等都属于随机事件,均可用频率分析方法来分析计算。水文频率分析主要包括:利用现有水文资料组成样本系列,选择合适的频率曲线线型和估计它的统计参数,根据所绘制的频率曲线推求相应于各种频率(或重现期)的水文设计值。 样本系列。无限个成因相同、相互独立的同类水文变量的集合称为该水文变量的总体。这个总体是未知的,现有水文资料只是过去发生过的和今后可能发生的整个总体中的一个样本。把现有水文资料

的水文变量按大小次序排列组成一个系列,称为样本系列,其中所含水文变量的项数(系列长度)叫做样本容量。系列愈长,样本容量愈大。水文频率分析就是通过样本系列的统计特征来估计其总体的统计特征,如各种统计参数、某水文变量的频率等。因此,样本系列是水文频率分析的基础。用样本系列去推估容量很大或无限的总体的情况,会产生因抽样而引起的误差,这就是抽样误差。水文统计分析中所估计出的各种数值(如频率、分析中的各个参数、相关系数等)都有抽样误差。样本的容量越大误差越小,否则误差越大。抽样误差分析方法有两种:①解析法。用统计原理推求出抽样误差的公式,按公式求得抽样误差值。例如,均值的均方(抽样)误差值为,其中Cv为所研究变量系列的离差系数,n为系列的长度或样本容量。②统计试验法。即生成很长的资料系列,来研究样本容量一定时统计分析中各种数值的抽样误差。 经验频率。样本系列中某水文变量x大于或等于一定数值xm(即x≥xm)的可能性大小即为频率,一般用符号pm{x≥xm}来表示,其值在0与1之间。例如,某河段年最大洪峰流量系列中,出现流量Q≥1000米3/秒的可能性为百分之一,则称Q≥1000米3/秒的频率等于1%。设系列共有n项,其中第m项xm的频率Pm常用下列公式来计算:
水文频率分析中,称上式为经验频率公式,而Pm亦称为系列中第m 项的经验频率。经验频率在绘制频率曲线的适线法中应用。 重现期。指某水文变量的取值(x≥xm)在很长时期内平均多少

水土流失影响因素分析注意事项

水土流失影响因素分析注意事项 水土流失影响因素分析,是为确定水土流失型式、水土流失强度、持续时间等要素服务的,并为拟定水土流失预测方法或计算公式而奠定基础。为此,需分析时需注意以下事项。 3.2.3.1具针对性 很多水土保持方案对水土流失影响因素的分析,只是广义地从造成水土流失的自然因素和人为因素两个方面进行笼统的分析,较少针对具体工程以及建设特点。因此,应以具体项目的各单项工程施工工艺和时序为着眼点,分水土流失类型、分单元和不同时段,有针对性地分析水土流失的影响因素和环节。 3.2.3.2应突出重点 应针对具体工程所处的地形地貌和项目区自然条件,以及工程布局、施工时序和施工工艺的特点,明确可能产生水土流失的主要环节、重点地段(区域)和时段,对于影响因素和环节的分析,并做到重点突出。 3.2.3.3需联系水土流失预测进行分析 水土流失影响因素和环节的分析,是水土流失预测的基础,因此分析工作应紧扣水土流失预测的每一个环节,并为水土流失类型的确定和预测参数的选取,以及预测单元和预测时段长度的确定提供依据。 3.4.1水土流失危害预测分析 开发建设项目施工活动造成的水土流失危害往往具有潜在性,因此单从前面的量化预测还不能全面反映危害的程度,还必须对水土流失可能造成的危害进行定性预测与分析,在综合定量与定性分析的基础上,为下一步的防治措施体系布设和水土保持监测提供依据。 对于水土流失危害的预测分析,应着重从可能造成的土流失危害的形式、程度和后果等方面进行分析,并应具有针对性,不能教条地挪用其它项目的分析结果。根据有关规定和以往经验,主要包括以下几方面的内容: 3.4.5.1 对土地资源和土地生产力可能造成的影响分析 (1)对土地资源可能造成的破坏分析 ①工程建设(如高填、深挖等),是否会引发坍塌等重力侵蚀而使原有土地资源遭受破坏。

相关文档
最新文档