制酸工艺流程简述

制酸工艺流程简述
制酸工艺流程简述

硫酸工艺技术规程

硫酸装置设计生产能力为15万吨/年,日产能力为500吨(以100%H2SO4计),以硫精砂为原料,采用沸腾焙烧、酸洗净化、4+1两转两吸接触法制酸工艺。并采用中压锅炉、板式换热器及省煤器回收焙烧和转化工序的废热产生中压过热蒸汽用于发电。

装置包括以下生产设施和辅助设施:

生产设施有原料工序、焙烧工序、净化工序、转化工序、干吸工序、成品工序、排渣工序、余热发电工序。

辅助设施有控制室、变配电所、柴油发电机组、脱盐水站、污水处理站、循环水站、界区内给排水、界区内供电和道路照明。

原料工序采用矿石和尾沙混烧法,用铲车将含硫不同的原料通过混料机混料,混合后的物料过筛,经天车送到成品区。大颗粒外送或送到破碎。矿石经过三级破碎,粒度在3mm 以下进入仓库。

焙烧工序采用流态化焙烧,干法除尘,将硫精砂焙烧成SO2烟气,然后降温降尘输送至净化工序,同时废热锅炉的汽包输出中压蒸汽至余热发电工序发电。设有沸腾炉(配用鼓风机350kw)、废热锅炉、旋风除尘器和电除尘器等设备。

净化工序设计采用一文氏管—两级洗涤塔—两级电除雾器的酸洗净化工艺及稀酸冷却流程。对SO2烟气酸洗、冷却、除雾。

干吸工序采用四塔流程,塔槽一体设备,对净化后的SO2烟气用95%硫酸干燥,然后由SO2风机送往转化工序,转化工序过来的SO3烟气经发烟硫酸一次吸收和98%硫酸两次吸收后排空,生产的发烟硫酸送到三氧化硫蒸发工序生产气体三氧化硫供给氯磺酸工段,生产的105酸、65酸、液体三氧化硫外卖或送到储罐区,产生的浓H2SO4送往成品工序,设有SO2风机(1250kw)、一个干燥塔,三个吸收塔等设备。

转化工序采用4+1两转工艺,对干吸工序过来的SO2烟气转化SO3烟气。设有电加热炉、转化器、换热器等设备。

成品工序存储和装运98%浓H2SO4。设有浓酸贮罐3000m3×2个,4台装酸泵、4个汽车装酸嘴等设备。

排渣工序将焙烧产生的渣灰用水冲洗后进入浓密机,由渣浆泵送到高频筛,分成大于120目大颗粒和小颗粒渣,大颗粒返回球磨机,经球磨机粉碎后回到浓密机,在回到高频筛。小颗粒渣从浓密机下来直接进入磁选机,经过三级磁选和磁力脱水槽后,铁精粉进入带式过滤机,脱水成为铁精粉成品销售。从磁选机和磁力脱水槽出来的尾渣进入尾矿回收机,回收的含铁高的部分重新回到球磨机,进入磁铁的流程,剩余的尾渣回到尾矿浓密机,经过压滤机泵输送到压滤机,脱水后滤饼成为尾渣矿,销售到水泥厂。

余热发电工序利用废热锅炉产生的中压蒸汽,通过透平发电机发电,设备有透平发电机、冷凝器、减温减压器、分汽缸、抽汽器、除氧器等设备、设施。

脱盐水站给锅炉制备脱盐水,产量70T/h。

污水处理站利用石灰乳中和来处理装置产生的废水,其中净化稀酸量1.0T/h。

循环水站包含制酸循环水站、发电循环水站,配有三台循环水泵,为二开一备。

本装置设置一个DCS控制室,采用DCS集散控制系统对全厂的生产过程进行集中监视、控制。整个生产过程的主要操作、主要动设备的状态显示、主要阀门的操作控制均可在操作站上完成。生产过程中的主要工艺参数能在操作站中进行显示、纪录、报警,并通过控制系统进行调节、联锁、积算。自动化程度高。

2. 生产原理及主要化学反应

硫铁矿的焙烧

经原料工段处理后,粒度和水份含量合格的硫铁矿与微过量的空气在900℃左右及微负压的条件下进行流化态焙烧,生成二氧化硫炉。该反应在500℃时就较为显著,随温度升高反应急骤加快。

3.1.2单质硫与空气的继续燃烧

S2+2O2=2SO2

△H。

298

=-724.07KJ

该反应极快,瞬即生成二氧化硫。

硫化亚铁与氧反应,在不同的条件下可得到不同的产物。

在低温(250℃以下)条件下硫化亚铁与氧反应生成硫酸亚铁:

FeS+2O

2

=FeSO4

当温度较高(600℃以上)时,在过剩空气量较多时,燃烧生成红棕色的Fe

2O

3

烧渣。

4FeS十7O

2=2Fe

2

O

3

+4SO

2

△H。

298

= -2453.30KJ

当温度较高和过剩空气量较少时,硫化亚铁燃烧时有部份生成Fe

3O

4。

3FeS+5O

2=Fe

3

O

4

+3SO

2

△H。

298

=-1723.79KJ 总的化学反应式为

4FeS

2+11O

2

=8SO

2

+2Fe

2

O

3

△H。

298

=-3310.08KJ

3FeS

2十8SO

2

=6SO

2

+Fe

3

O

4

△H。

298

=-2366.28KJ 3.1.3副反应

如果焙烧是在较低温度(400~450℃)与过量氧存在下进行,由于Fe

2O

3

烧渣的催化作

用,炉气中的二氧化硫被氧化成三氧化硫。

SO

2+1/

2

O

2

=SO

3

十Q

生成的三氧化硫能与铁的氧化物反应生成硫酸盐。

4 SO

3+Fe

3

O

4

=Fe

2

(SO

4

)

3

+FeSO

4

3SO

3+Fe

2

O

3

=Fe

2

(SO

4

)

3

温度更低(250℃以下)时,生成的硫化铁与氧作用能生成硫酸亚铁。

FeS+2O

2=FeSO

4

硫铁矿中的碳酸盐分解并与SO

3

作用生成硫酸盐,铜、锌、钴、铅、砷、硒的硫化物

燃烧生成氧化物,氟化物转变成氟化氢,As

2O

3

、SeO

2

、PbO、HF、SiF

4

进入炉气中,其余的

氧化物留在烧渣中。

3.2 二氧化硫炉气的净化

对焙烧产生的二氧化硫炉气采用稀酸洗涤净化,炉气中的砷、硒氧化物及尘在洗涤过程中及酸雾的形成与清除中被除去,在净化系统中加入硅酸钠溶液除氟。

6HF十Na

2SiO

3

=Na

2

SiF

6

+3H

2

O

3.3 二氧化硫接触转化

净化后的炉气升温后进入转化器,二氧化硫在钒触媒的催化作用下,与炉气中氧气反应生成三氧化硫。

SO

2+1/

2

O

2

=SO

3

十Q

3.4 三氧化硫的吸收

转化后生成的三氧化硫用98.5%的浓硫酸吸收,三氧化硫与浓硫酸中水份反应生成硫酸。

SO3+H2O=H2SO4+105.2KJ

3. 工艺流程叙述

20万吨/年硫精砂制酸装置工艺部分由以下七个工序组成:原料工序、焙烧工序、净化工序、转化工序、干吸工序、排渣工序、成品工序。各工序工艺过程叙述如下:

4.1原料工序:硫精砂需要经过烘干,烘干系统有两个圆盘给料机分别装有含硫>35﹪和含硫<35﹪两种料,同时经输送带送到滚筒干燥机。出来的物料再经过斗式提升机送到滚筒筛,配比成硫精砂粒度<3mm含硫≥35﹪水分≤8﹪的原料供沸腾炉焙烧使用。滚筒烘干机进口设有两个煤气烧嘴为干燥机提供热源。滚筒干燥机气体出口连接袋式除尘器经净化后由引风机排入大气。袋式除尘器排出物料由螺旋蛟龙送到料库。滚筒筛筛出>3mm的物料由输送带送到第三反击破碎机。

破碎系统:硫铁矿由铲车装入原料仓经振动给料机送到到第一鄂破机,由1#大倾角输送带送到有两个小鄂破机组成的第二破碎机,再由2#大倾角输送带送到第三反击破碎机,再由3#大倾角输送带送到滚筒筛,粒度<3mm的物料存放在原料库经配比后供焙烧使用。筒筛筛出>3mm的物料由输送带送到第三反击破碎机。

4.2焙烧工序

由原料工序送入加料贮斗中的硫精矿通过喂料皮带机送入沸腾炉的加料口内,在沸腾炉内沸腾焙烧。沸腾所需动力、焙烧所需氧气由炉前空气鼓风机供给,。

焙烧放出的多余热量,由安装于焙烧炉床层的蒸发管移走,十组冷排管直接和废热锅炉系统相连。焙烧所产生的含SO2、高温烟气,经废热锅炉蒸发管、过热蒸汽管回收部分热能,温度降至~370℃后,依次通过旋风除尘器和电除尘器,使炉气中尘含量降低,进入净化工段。

沸腾炉、废热锅炉、旋风除尘器、电除尘器排出的渣灰,通过水力冲渣,进入磁选排渣工序,分选成铁精粉和尾渣,运至铁精粉库和尾渣库内。

废热锅炉汽包使用的脱盐水,由脱盐水站制取,除氧器除氧、省煤器加热后供给。汽包水在重力的作用在汽包、废热锅炉蒸发管束及沸腾炉冷排管束间循环加热。汽包产生的饱和

蒸汽由废热锅炉内过热管束加热成过热蒸汽,提供给发电机发电。

4.3 净化工序

来自焙烧工序的烟气、SO2炉气进入板式换热器,和炉前风机出口的空气换热,空气升温至70--110℃进入沸腾炉空气室,SO2炉气降温到260℃左右进入文氏管洗涤器,用浓度<20%的稀酸洗涤、降温,使炉气冷却至~66℃进入两级冷却塔。第一冷却塔为填料塔,使用温度为38℃、浓度为1~5%的稀酸洗涤冷却。第二冷却塔为填料塔,使用温度为30℃、浓度为1~2%的稀酸洗涤冷却。出冷却塔温度降至34℃的炉气依次进入第一级电除雾器和第二级电除雾器除去酸雾及其它杂质,出口气体酸雾含量≤0.005g/Nm3送入干吸工序。

文氏管洗涤器采用绝热蒸发冷却,酸系统不设酸冷却器,循环酸经动力波循环泵增压后大部分循环使用,少部分经斜管沉降器沉降除去矿尘后进入稀酸槽,再经稀酸泵增压大部分送至文氏管循环槽进口,少部分(浓度<20%)的稀酸引出至脱气塔,用空气脱吸SO2后经脱气塔稀酸泵外送,或装车外销、或往污水处理站中和。

沉降槽底流含尘较高,用渣浆泵送往污水处理站。

第一冷却塔采用塔槽一体,下塔酸温度~58℃,经冷却塔循环泵送至稀酸冷却器冷却至38℃后上塔喷淋。增多的循环酸由冷却塔循环泵出口引出,串至文氏管洗涤器循环酸系统。

第二冷却塔采用塔槽一体,下塔酸温度~45℃,经冷却塔循环泵送至稀酸冷却器冷却至30℃后上塔喷淋。增多的循环酸由冷却塔循环泵出口引出,串至第一洗涤塔循环酸系统。

本工序未考虑除砷、除氟设施。

为防止文氏管洗涤器断液造成高温气体烧坏设备,设置了文氏管稀酸高位槽,高位槽采用常流水,出口与动力波出口气体温度连锁控制。

由于净化工序为负压操作,为防止气体管道及设备抽坏,在电除雾器后设置安全水封。

净化工序补充水经第二填料塔溢流至冷却塔循环酸系统。开车初期,补充水由工艺水总管路经稀酸槽直接进入系统。

为节约水资源,电除雾器冲洗采用冷却塔循环酸冲洗,洗涤液返回冷却塔循环酸系统。停车检修时采用自来水冲洗,洗涤液送往污水处理站处理达标后排放。

4.4干吸工序

干吸系统采用四塔槽流程,即干燥塔、发烟硫酸塔、第一吸收塔、第二吸收塔全部是塔槽一体结构。干燥系统采用95%硫酸干燥、吸收系统采用98%硫酸吸收。

来自净化工序的炉气,经补充适量的空气,控制进转化工段SO2浓度为8.5%进入干燥塔。干燥后气体含水分≤0.1 g/Nm3进入SO2鼓风机。干燥塔内用浓度为95%、温度为50℃的硫酸喷淋,吸收进入的空气中所含水分后浓度降至~94.31%、温度升至~66℃自塔底排至干燥塔酸循环槽,在槽内与从第一吸收塔下塔酸串入的98.67%硫酸混合,以维持循环酸浓,再经干燥塔酸循环泵送出,经干燥塔酸冷却器用循环水冷却后进入干燥塔循环。增多的95%硫酸由干燥塔酸循环泵出口引出串入第一吸收塔循环槽中。

由转化器第四段出来的转化气经换热冷却后,经过省煤器进入发烟硫酸塔,塔顶用27酸、温度为70℃的发烟硫酸进行喷淋,吸收三氧化硫后的浓度升至30、温度升至85℃,自发烟硫酸塔流入循环槽,部分发烟硫酸由发烟硫酸泵送到三氧化硫蒸发器,大部分发烟硫酸和三氧化硫蒸发器返回的低浓度发烟硫酸混合,经泵进入发烟硫酸塔循环;自发烟硫酸塔出来的三氧化硫气体进入第一吸收塔,塔顶用浓度~98%、温度为72.5℃的硫酸喷淋,吸收SO3后的酸浓度升至~98.67%、温度升至~97.5℃自塔底流入循环槽,一部分(~13%)进入干燥塔酸循环槽中调节干燥塔循环酸浓,其余进入吸收塔酸循环槽,在循环槽中与干燥塔串酸混合,用工艺水调节循环槽中酸浓度至约98.5%,酸温约91℃再由吸收塔酸循环泵送入吸收塔酸冷却器冷却后分别进入第一吸收塔进行喷淋。循环槽中加水量根据一吸塔进塔酸

浓调节。

由转化器第五段出来的二次转化气经换热后进入第二吸收塔,该塔采用浓度为98.5%、温度为70℃的硫酸喷淋,吸收SO3后的酸浓度升至~98.54%、温度升至~78℃自塔底流入二吸塔循环槽。大部分流入吸收塔酸循环槽进行循环;另一部分在酸泵出口串酸到干燥塔。

由第二吸收塔出来的气体进入尾气吸收塔。尾气吸收塔为玻璃钢塔,内装聚丙烯填料,用碳酸钠碱液吸收尾气中的酸性气体,生产亚硫酸氢钠。

干燥塔、发烟硫酸塔、第一吸收塔、第二吸收塔在酸冷器出口均设产酸管,分别送往罐区或地槽。

为方便停车和检修时卸酸,装置内设有酸地下槽和地下槽酸泵。

干吸塔均为填料塔,除发烟硫酸塔外,三个塔顶装有纤维除雾器。

开车用母酸由成品工序浓酸地下槽泵送入干吸工序酸循环槽。

4.5转化工序

干燥后的SO2气体经SO2鼓风机加压后,依次经第Ⅳ换热器壳程、、第一换热器及电炉预热至420℃左右进入转化器第一段催化剂层进行转化,经反应后,温度升至约600℃通过第Ⅰ换热器管程进行热交换。冷却后的反应气温度降至460℃左右进入转化器第二段催化剂层进行氧化反应,温度升高至约509℃后,通过第Ⅱ换热器管程降温至440℃,进入转化器第三段催化剂层进行氧化反应,温度升高到约463℃后,通过第III热器管程降温至430℃,进入转化器第四段催化剂层进行氧化反应,温度升高到约453℃后,依次通过第四换热器管程和省煤器,温度降至约174℃,送至发烟硫酸吸收塔,用105.5硫酸吸收其中SO3,未被吸收的气体送至第一吸收塔,用98.5%硫酸吸收其中SO3,未被吸收的气体通过塔顶的纤维除沫器,再依次经第V a换热器管程、第Ⅴb换热器壳程第Ⅱ换热器及电炉换热,气体被加热至420℃进入转化器第四段催化剂层进行氧化反应。温度升至约442℃通过第换热器壳程,反应气被降温至约140℃进入第二吸收塔,塔内用98.5%硫酸吸收炉气中SO3,尾气进入尾气吸收塔,然后经过烟囱放空。

为了调节各段催化剂层气体进口温度,设置了必要的副线和阀门。

为了开车时转化系统升温,设置了一段电加热预热炉和五段电加热预热器。

4.6排渣工序

来自沸腾炉、废热锅炉、电除尘器、旋风分离器的灰份直接进入冲渣管路,采用水利冲渣的方式,将渣冲到第一级浓密机,沉降浓密,通过衬胶泵输送到高频筛;清夜溢流到冲渣循环水槽,由冲渣泵达到冲渣管路,冲渣到第一级浓密机。高频筛将30%--40%的渣浆分成两部分,粒度小于120目的物料过高频筛进入三级磁选装置;大于120目的物料冲洗到球磨机,磨碎之后返回到第一级浓密机。磁选机将进来的物料分成两部分,磁铁矿粉从第一级磁选进入第二级磁选机、第三级磁选机、磁力脱水槽,最后进入带式压滤机脱水,生产出含水30%左右的铁精粉,由皮带输送机送到料场堆放、销售;从各级磁选机、磁力脱水槽、带式压滤机出来的尾矿浆和带式压滤机出来的水全部进入尾矿回收机,充分回收尾矿的磁铁矿之后进入第二级浓密机,提浓之后浓度40%---50%的尾矿浆由箱式压滤机给料泵送到箱式压滤机;第二级浓密机溢流水回到冲渣循环水槽,循环使用。经箱式压滤机脱水后的尾矿由皮带送到尾渣堆场堆放、销售;箱式过滤机出来的清水进入清水储槽,和来自补水管路的浓水由清水泵打到水包,做磁选设备的高压冲洗水源。

4.7成品工序

成品工序设置3台各五千吨储量的成品酸贮罐(1#、2#,3#),两台一千吨储罐(4#、5#)。

从干吸工序酸冷却器出来的成品硫酸分别流入成品酸贮罐(1#、2#、3#、4#、5#)中贮

存。外销成品硫酸由成品酸贮罐(1#、2#、3#、4#、5#)自流进入成品酸泵,再泵入汽车槽车中外运。结合硫酸外销量,设置了4汽车装酸嘴。

开车母酸由设置在成品酸泵送往干吸工序。

为防止成品酸贮罐泄漏发生硫酸污染事故,成品酸罐区设置了围堰。

硫磺制酸工艺流程说明

硫磺制酸工艺流程说明 (1)原料工段 固体硫磺由火车运至硫磺仓库,采用人工上料方式,通过一大倾角胶带式输送机将硫磺输送至快速熔硫槽加料口处。 (2)熔硫工段 来自原料工段的固体散装硫磺由胶带输送机送入快速熔硫槽内熔化,经熔化后的熔融液硫自溢流口自流至过滤槽中,由过滤泵送入带助滤剂预涂层的液硫过滤器内过滤后流入液硫中间槽内,再由液硫输送泵输送到液硫贮罐内,液硫由液硫贮罐经精硫 泵(屏蔽泵)送到焚硫转化工段的焚硫炉内燃烧。快速熔硫槽、助滤槽、液硫贮罐、精硫槽等内均设有蒸汽加热管,用0.5?0.6MPa蒸汽间接加热,使硫磺保持熔融状态。助滤槽内设有助滤泵将助滤剂硅藻土预涂到液硫过滤器上。 (3)焚硫及转化工段 液硫由精硫泵加压经磺枪机械雾化而喷入焚硫炉焚烧,硫磺燃烧所需的空气经空气过滤器过滤后,再经空气鼓风机加压、干燥塔干燥后送入焚硫炉。 (4)干吸及成品工段 空气鼓风机设在干燥塔上游,即硫磺焚烧及转化所需空气经过滤器过滤、鼓风机加压后进入干燥塔塔底,用98%硫酸吸收 掉空气中的水分使出塔干燥空气中水分0.1g/Nm3,经塔顶除雾 器除去酸雾后的干燥空气进入焚硫炉。从干燥塔出来的浓度约

97.8%的硫酸流入干吸塔循环槽中,与来自第一吸收塔的吸收酸混合后,经干燥塔酸循环泵加压后送入干燥塔酸冷却器中,经冷却至约70C后送到塔顶进行喷淋。 由转化器第三段出口的气体经冷热换热器和省煤器II回收热量、温度降为172 C后一部分进入第一吸收塔塔底,塔顶用来温度75C、浓度为98.0%的硫酸喷淋,吸收气体中S03后的酸自塔底流出进入干吸塔循环槽中,与来自干燥塔的干燥酸进行混合并用工艺水调节循环酸浓度至98%后,再由一吸塔酸循环泵依 次送入一吸塔酸冷却器冷却后,送至一吸塔塔顶进行喷淋。另一部分一次转化气进入烟酸塔。塔内用104.5%发烟硫酸进行喷淋,吸收转化器中的SO3后,由塔底流入发烟酸循环槽,通过来自一吸塔酸冷却器出口的98%硫酸调节浓度为104.5%,然后经烟酸塔循环泵送入烟酸塔酸冷却器,冷却后的发烟酸一部分作为产 品送至成品工段,另一部分送入烟酸塔塔顶进行喷淋。吸收后的 炉气与另一部分气体混合后再进入第一吸收塔。 由转化器四段出来的二次转化气经低温过热器/省煤器I换热降 温后进入第二吸收塔塔底。该塔用温度为75 C,浓度为98%的 硫酸喷淋,吸收SO3后的硫酸自塔底流入吸收塔循环槽。而后经二吸塔酸循环泵加压,并经二吸塔酸冷却器冷却后进入第二吸收塔喷淋。 98%成品硫酸由干燥酸循环泵出口引出,再经成品酸冷却器冷却至40 C后进入成品酸贮罐。

酸再生设备工艺说明

廢酸再生工廠設備的情況說明 1、焙燒爐(Spray Roaster )-圖號 32250 工作原理:焙燒爐由燃氣加熱到600~700℃之間。被濃縮的廢酸經爐頂的噴嘴霧化噴灑 成微小液滴,濃縮酸中的氯化鐵顆粒在燃燒的氣體中被焙燒成游離氯化氣和氧化鐵。 物理結構:焙燒爐為立式圓柱形焊接結構。

2、旋風除塵分離機(Dust Cyclone)-圖號32170 工作原理:雙旋風除塵分離機用於分離焙燒爐烟氣中帶出的氧化鐵粉顆粒。被分離出的氧化鐵粉顆粒通過旋轉閥及插入焙燒爐中的斜管再進入焙燒爐下部。 物理結構:分離器由兩個錐形体構成,用耐磨鋼製成。

3、氧化鐵粉裝置(Oxide Air Blaster )- 圖號 33340 在氧化鐵粉儲槽的出口處安裝有此裝置,係利用瞬間噴出爆炸的壓縮空氣直接吹進下方錐形部位,避免大量鐵粉造成阻塞。 鐵粉排放口 氣爆槍 混凝土基礎 鐵粉過濾器

4、酸再生儲槽過濾裝置(Storage Tanks Filter for ARP)-圖號22210;22211 本過濾裝置是用于分離廢酸中的固體物質,過濾器內襯膠並裝有濾芯。 預濃縮酸過濾器廢酸液過濾器

5、除氯裝置(Chloride Reduction)-圖號33110 为了减少氧化铁粉中的氯化物含量在螺旋輸送機上裝有小型燃燒器,將含有HCl 的气体通过热螺旋输送机经过除尘分离器输回反应炉中。

6、洗滌塔液滴分離設備(Scrubber Drop Separator)-圖號32561 洗滌塔是用沖洗水直接射入含有粉塵顆粒的烟氣中。然後沖洗水和烟氣在文丘里管端加速霧化,藉以分離出水和鐵粉顆粒。 連續不斷流出的烟氣和水由分離機分離,向下流的水由下方的噴嘴排放,烟氣則分離後由上方排出。

冷轧酸洗工艺流程 (1)

酸洗工艺流程 原料→开卷→入口剪切→焊接→破鳞→夹送机→活套→酸 洗→回酸槽→清洗槽→吹扫→漂洗槽→中和槽→吹扫→烘 干→出口夹送→出口剪切→卷取。 酸洗工艺参数 酸液浓度:黑退火钢带5-20%、光亮退火钢带7-20%、冷硬 钢带7-20%, 在酸液浓度下限附近时合理温度上限调整酸液温度,保证酸洗质量。 酸液温应:60℃~80℃, 二氯化铁含量:≤150ɡ/1。 酸洗速度:≤90m/min。 中和工艺 碱液温度:60-80℃ 碱液PH值:8-12[用PH值试纸检测] 蒸汽压力:≤0.4MPa 1、酸洗工艺过程中酸液温度对保证酸洗质量和酸牦在合理 水平至关重要,因此应避免蒸汽的长时间中断,同时蒸汽压力的大幅波动会造成酸液加热管束的非正常损坏,增加成本。 2、因退火是必需连续的工艺过程,因此退火中需避免煤气、电等突然中断,重新退火对带钢组织和性能有较大影响。 3、热轧带钢表面覆盖着一层氧化铁皮,其重量可达33-55ɡ/

㎡,厚度为7.5~15um,甚至可达20um,现代化热连轧机生产的带钢,其表面氧化铁皮厚度也约为10um。 4、为孓保证成口带钢的表面质量,降低力能消牦,减少轧辊磨损和有利带钢深加工,因此钢带冷轧前必须将氧化铁皮处除掉。 5、我们利用氧化铁皮与酸发生化学反应的基本原理,将钢带浸泡在一定浓度和温度的酸液中,并使钢带与酸液相对运动,加速化学反应速度,从而达到清除氧化铁皮的目的。 酸再生工艺流程:废酸收集→废酸过滤→废酸预浓缩→培烧再生→再生酸收集 酸再生是将废酸液定量的送往酸再生装置再生成游离酸返回酸洗机组,同时得到氧化铁粉的一个体系。 酸再生过程是一个化学过程,浓缩废酸通过啧抢以雾状喷入焙烧炉内,焙烧炉通过两个喷嘴进行操作,操作期间煤气和空气流量自动控制,流量由孔板和差压传感器测量并在显示屏上显示。 煤气流量:200~300m /h,煤气压力:0.01mpa

工艺流程设计的相关知识

11、油库工艺流程图有几种?、油库工艺流程图有几种?答:油库工艺流程图一般有方块图、轴侧图和平面图三种表示方法。方块图多用于方案设计;轴侧图用于表现立体效果,一般在油库投产后,在作业指挥室、油泵站、洞库等作业现场设置;平面图用于工程设计中。22、如何识读油库工艺流程图?、如何识读油库工艺流程图? 答:(1)先读标题栏,看看是局部工艺流程还是总工艺流程。 (2)再看油库主要作业区收发油情况:收油是管道直接来油,还是铁路或水路来油;发油是利用位差自流发油,还是采用泵直接发油工艺;收油容器是铁路槽车、油船还是汽车或油桶。 (3)然后看油罐区,共有几种油品,几类油罐,油罐单罐容积,油罐分组,罐区管道工艺是单管系统、双管系统还是独立管道系统。 (4)接着再看油泵房,看看其名称、泵房个数、油泵台数及其功用,看看是否能够倒罐。 (5)再看看管道走向、管道附件等。 (6)最后看看说明等。 (7)根据要求看懂卸任一种油品、发任一种油品或某种油品的倒罐工艺。

33、油库工艺流程图在油库生产中的作用是什么?、油库工艺流程图在油库生产中的作用是什么?答:油库工艺流程图在油库生产中的作用是: (1)便于指导油库安全生产。 熟悉工艺流程是实现正确操作、避免事故的前提。熟悉了工艺流程,司泵员不致于因开错阀门而发生混油事故,计量人员不致于因量错油罐而发生冒油事故,当然还要有高度的责任心。此外,安全巡检人员要正确复核,也要熟悉油库总工艺流程。 (2)便于油库收发油调度作业 油库调度的主要工作是全面安排油品收、发、输转和储存业务。通过合理安排,使整个油库储运系统的各个环节有机结合,正常运转,及时、保质、保量、安全地完成任务。因此要求调度员对油库工艺流程较为熟悉。 44、油库管道敷设时有什么技术要求?、油库管道敷设时有什么技术要求? 答:油库管道敷设有以下技术要求: (1)油库围墙以内的输油管道,宜地上敷设;热力管道,宜地上或管沟敷设。 (2)地上或管沟内的管道,应敷设在管座、管架上,保温管道应设置管托。 (3)管沟与油泵房、灌装油间和油罐组防火堤连接处

酸再生改造方案

攀钢集团 攀枝花钢钒有限公司冷轧厂酸再生机组废气处理工艺改进技术方案 四川和翔环保科技有限公司二○一二年六月

目录 1.项目简介3 2.污染物特点 4 3.现有工艺存在的问题 4 4.系统工艺设计5 5.改造后效果及工艺说明9

1.项目简介 酸洗带钢产生的废盐酸,因富含氯化亚铁而采用喷雾焙烧法进行再生处理,废酸焙烧产生的含酸气体经吸收塔吸收后再生,残留废气经洗涤塔洗涤后排入大气。主要工艺如下: 由于废气中HCL气体、Fe2O3颗粒物状态及物理性质存在不稳定性,导致吸收和洗涤的过程变得更为复杂,现有工艺参数控制环节与废气特征不能完全匹配,当工艺条件或设备工况改变时,废气排放指标就不能达到环保要求,造成环境污染。因废气排放不达标导致机组停机或无法正常生产的时间累计达437.5小时/年,约460m3左右的废酸无法再生而排放,导致生产成本增加。 目前攀钢冷轧厂废气排放中的HCL含量和氧化铁粉无法满足≤120mg/m3的要求,粉尘排放含量也不稳定,经常出现因尾气中Fe2O3颗粒物超标而冒红烟现严重污染周围环境且对人的呼吸系统也产生伤害,废气中的酸雾危害大气且氯离子对臭氧层有很大的破坏性。因此必须对废气排放不达标的原因进行研究并通过技术改进来解决排放超标问题。 2.污染物特点 2.1 组份的多相性 废气中包含了固相、液相、气相多成分物理状态污染物,极大限制了污染物的处理方式,属复杂废气治理范畴。 2.2 强酸易挥发性 HCL气体虽易溶于水,但其溶液又具有挥发性,形成双向解压特征,介质吸收率和吸收速度受温度和压力影响较大。 2.3高沉积粘滞性 吸收液中组份复杂,含有FeCL3、Fe2O3、HCL及其它固体微粒混合物,容易产生絮凝、粘附、结晶等现象。 3.现有工艺存在的问题 3.1系统风量控制 废气抽吸为离心风机,通过变频调速控制炉内负压,但基于离心风机运行的曲线特征,直接改变风机转速会导致系统工作极不稳定。 3.2 预浓缩器 当文丘里预浓缩器循环废酸喷淋不均匀、密度不够,或烟气浓度和流速发生变化,以及喷嘴发生阻塞时,会出现焙烧气体温度过高,氧化铁分离效率降低等问题。 3.3吸收塔 由于对再生酸有浓度要求,因此吸收塔不能完全吸收掉废气中的HCl 气体和氧化铁粉,从吸收塔出来的气体含过量HCL而作为废气进入净化塔。再生酸浓度受以下因素影响: 焙烧炉中气体的HCL含量; 焙烧气体温度; 吸收水的喷流量。 3.4 洗涤塔 目前工艺采用清水作为吸收洗涤剂,选用250Y型孔板波纹填料,单级循环喷淋,由于循环水成份质量不受控制,只能依靠进水量补充来实现更新,当前端工艺不稳定时,循环水被污染程度在一段时间内可能会很严重,将显著影响了循环水的清洗效果。由于循环水中不可避免的颗粒物容易造成填料阻塞,在选择孔板波纹填料时过滤精度较粗,同时但对F2O3微粉及HCL最后吸收和拦截效率也较低。 4.系统工艺设计 4.1方案选择原则 在酸再生工艺流程中,即使采用更多控制手段,系统仍无法避免不稳定因素,因此改进方案

工艺流程图 高三复习题2017(含答案)

化工流程题的解题策略 1.一个完整的无机化工生产流程一般具有下列过程: 2.各过程涉及的考点: (1)对原料进行预处理的常用方法及其作用: ①研磨:减小固体的颗粒度,增大固体与液体或气体间的接触面积,加快反应速率。 ②水浸:与水接触反应或溶解。 ③酸浸:与酸接触反应或溶解,使可溶性金属离子进入溶液,不溶物通过过滤除去。 ④灼烧:除去可燃性杂质或使原料初步转化。如从海带中提取碘时的灼烧就是为了除去可燃性杂质,将有机 碘转化为碘盐。 ⑤煅烧:改变结构和组成,使一些物质能溶解;并使一些杂质在高温下氧化、分解,如煅烧高岭土和石灰石。(2)核心化学反应要掌握: ①元素及其化合物知识:化工生产将原料转变成产品的过程,也是物质经历相互转化的过程。 理解物质之间的转化关系,就要用到元素及其化合物的相关知识。一般围绕铁、铜、铝、镁、氯、硫、磷、硅等元素的单质或化合物的工业制备来进行命题,需要掌握这些元素及其化合物的知识 ②还要掌握有关化工生产的知识,熟悉的有纯碱工业、氨工业、硅单质的制备、氯碱工业、海水中提取镁、海水中提取溴等; ③化学反应原理:化工生产中把原料转变成产品的过程就是化学反应的过程,从化学反应原理的角度选择原料、控制条件和选择设备等,是化工生产的基本思路。化学反应原理的相关知识包括质量守恒定律、化学反应速率、化学平衡、电化学、化学热力学等,做到能综合运用这些知识分析化工生产中化学反应的情况。 (3)化工生产过程中分离提纯、除杂等环节,与高中化学基本实验的原理紧密联系,包括过滤、洗涤、蒸发、结晶、蒸馏、萃取、分液等基本实验操作及原理,并要熟悉所用到的相关仪器。 (4)对整个工艺流程能进行评价: ①体现绿色化学思想(使用无毒无害原料,采用原子利用率高的制备路线,原料的循环利用,副产物综合利用,节能,等); ②高效节能方面(原料廉价,工艺简单,产品的纯度高,能耗低等) (5)化学计算:纯度,转化率、产率计算,有效数字的取舍 2.解答基本步骤 (1)读题头,得目的,划原料,明产品,解决“干什么” 一般采用“首尾分析法”:通过阅读题头,了解流程图以外的文字描述、表格信息、后续设问中的提示性信息,通过对比分析工业流程示意图中的第一种物质(原材料)与最后一种物质(产品),弄清从原料出发,要得到最终产品,必须除去什么元素、引进什么元素。 (2)读题问,逐空填答,用语要规范,解决“怎么写” 从化学原理的角度、用化学语言作答;要抓住主要问题,针对具体问题作具体分析。具体答题要点如下:

酸再生机组工艺流程图

再生机组工艺流程、参数及产品描 再生机组工艺流程图 废酸罐1级废酸过滤器予浓缩器吸收塔 大气 塑烧板除尘器 装袋机门型阀铁粉料仓破碎机焙烧炉 外运大气洗涤塔液滴分离器排烟风机 1、酸 a 新盐酸:无色或浅黄色透明液体 各项指标: 酸 (HCL) ≥ 31% 铁≤ 0.01% 砷≤ 0.001% 灼烧残渣≤ 0.15% 氯化物≤ 0.01% 含铁、硫酸盐、灼烧残渣、氯化物等各项指标低的盐酸为一级品或优质品,用于酸洗的盐酸,严格限制含氟(含氟严格限定为:F≤5ppm)。 b 废酸:来自酸洗线 总铁量≥120 g/l 总HCL ≤ 200 g/l 其中:游离HCL 3-5% Fe 120g/L 温度≤90℃ c 再生酸 HCL 浓度 190-210g/l 铁含量≤5 g/l 产量约3000L/h d 氧化铁粉 可分离出来的铁浓度为115g/l时,约产生492Kg/h氧化铁粉 氧化铁粉各项指标: Fe 2O 3 % 98.7--99 FeO % ≤0.4 H 2 O % ≤0.09 比表面积 m2/g 3-3.9 粒度μm ≤1.0 Cl-含量 % ≤0.2(重量) SiO2 % ≤0.02 2、能力与热耗 a 酸溶解铁能力 酸洗热轧板总量 40万吨/年

酸洗铁损 0.5% 废酸液浓度~200g/L HCL(游离与化合) 废酸液温度≤90℃ 废酸中Fe含量~120 g/L废酸 b 再生能力 年再生运行时间: 6500h/年 40万t/年的酸洗热轧钢板将产生: 40万t/年×0.5%=2000吨的Fe,溶解在酸洗液中。即在酸洗废酸液中溶有120g/L Fe。 在再生过程中,从废酸中分离Fe的效率并非100%,约有5g/L的Fe仍然残留在再生酸中。按从废酸液可分离出115g/L废酸的Fe求得:2000×1000×1000g =17391304.3 115g/L 每小时要求再生能力为: 17391304.3 =2676L/h 6500h 经园整后,取再生能力为3m3/h。 3m3/h再生机组将产生492kg/h氧化铁粉。 3m3/h再生装置,废酸99%转化成再生酸。 c 酸再生的能耗 在设备正常运行焙烧炉热平衡时:耗750Kcal/升废酸。 设天然气热值:8350Kcal/Nm3 需天然气量:200 N m3/h 压力:8000-10000Pa 助燃空气:2970Nm3/h 压力:8000-12000Pa 压缩空气:120Nm3/h(仪表用气)压力:0.5-0.7MPa 年耗电量:165.75×104kW·h 工业水量:Max5 m3/h,正常耗量2 m3/h 脱盐水量:2 m3/h(二级除盐水) 3、环保指标 a 噪音:噪音不超过80Db。高噪音的设备,将安装在隔离室中隔离。 b 排废烟气 自洗涤塔出口排放的烟气中含: HCL <30mg/Nm3 Fe2O3(湿态)<50mg/Nm3 氧化铁粉料仓顶部排放废气,Fe2O3含量≤20mg/ Nm3。 c 排液 机组正常运行无废水液排放,只有开车、停车时,或清洗喷枪、设备时,机组才有废液排出。且是间断排液。 废水排放:4 m3/次,温度:40℃,比重:1.01 kg/L, 含Fe 5g/L,含HCL 0~200g/L d 车间空气 HCL含量≤5mg/Nm3(湿态) Fe2O3含量≤10mg/Nm3(湿态) 4、现场 新盐酸再生机组,占地面积为21×27=567m2 5 公用工程 a 电 电压等级:380V AC,3相220V AC,单相 频率:50Hz

烟气制酸工艺流程

该烟气制酸根据冶炼系统提供的二氧化硫烟气,采用了技术先进、经验成熟的工艺。烟气净化采用稀酸洗涤、绝热蒸发稀酸冷却移热、动力波气体净化工艺流程。干燥和吸收采用一级干燥、两级吸收、循环酸泵后冷却工艺流程。转化采用“3+1”式四段双接触转化工艺,“ⅣⅡⅠa—ⅢⅠb”换热流程。废酸处理采用硫化法处理工艺。 烟气制酸系统按工序分为净化工段、干吸工段、转化工段、酸库工段、废酸处理工段。 (1)净化工段 烟气制酸净化系统采用动力波泡沫洗涤烟气净化技术,该技术已在国内成功应用并国产化,其基本流程为:将由收尘系统来的温度为300℃的冶炼铜时产生的烟气送入净化工段,该烟气首先在一级动力波洗涤器逆喷管中被绝热冷却和洗涤并除去杂质,然后通过一级动力波气液分离槽进行气液分离,分离后的气体进入气体冷却塔进一步冷却及除杂,由气体冷却塔出来的气体进入二级动力波洗涤器的逆喷段进一步除杂。从二级动力波洗涤器出来的烟气中绝大部分烟尘、砷及氟等杂质已被清除,同时烟气温度降至40℃左右,然后进入两级管式电除雾除下酸雾,使烟气中的酸雾含量降至≤5mg/Nm3。烟气中夹带的少量砷、尘等杂质也进一步被清除,净化后的烟气送往干吸工段。 净化工段中的一级动力波洗涤器、气体冷却塔、二级动力波洗涤器均有单独的稀酸循环系统。气体冷却塔的循环酸通过板式换热器进行换热,将热量移出系统。稀酸采取由稀向浓,由后向前的串酸方式。根据废酸中含砷、含氟、含尘量从一级动力波洗涤器中抽出一定的量送至沉降槽、过滤器沉降。底流送至现有的铅压滤系统进行液固分离,产生的副产品铅滤饼可外售,其

滤液与过滤器的上清液一起送至废酸处理工段进行进一步处理。 (2)干吸工段 干吸工段采用了常规的一级干燥、二次吸收、循环酸泵后冷却的流程与双接触转化工艺相对应。干吸工段基本流程为将来自净化工段经二级电除雾器的烟气在干燥塔入口加入空气,将烟气中氧硫比调到1.0后进入干燥塔,在塔内与塔顶喷淋下来的95%硫酸充分接触,经丝网捕沫器捕沫,使出口烟气含水份≤0.1g/Nm3后进入SO2主鼓风机。来自一次转化的SO3烟气进入第一吸收塔,在塔内与塔顶喷淋下来的约98%的浓硫酸充分接触,吸收烟气中的SO3生成硫酸,烟气经纤维除雾器后进入转化工段进行二次转化。经二次转化的SO3烟气进入第二吸收塔,在塔内与塔顶喷淋下来的98%浓硫酸充分接触,吸收烟气中的SO3生成硫酸,烟气经纤维除雾器除雾后将酸雾量降至≤42mg/Nm3,然后由100m尾气烟囱排空。 干燥塔、第一吸收塔以及第二吸收塔均设有单独的酸循环系统,循环方式均为塔→槽→泵→酸冷却器→塔。干燥塔循环酸吸收烟气中的水分后浓度有所降低,而第一吸收塔和第二吸收塔的循环酸吸收SO3后浓度有所提高,根据工艺操作要求各自需维持一定的酸浓度,为此采用干燥和吸收相互串酸和加水的方式进行自动调节。系统中多余的98%酸或者93%酸可作为成品酸产出。 (3)转化工段 从SO2鼓风机来的冷SO2气体,俗称一次气,利用第Ⅳ热交换器、第Ⅱ热交换器和第Ⅰa热交换器被第四、二段触媒层出来的热气体和第一段触媒层出来的部分热气体加热到420℃进入转化器一段触媒层。经第一、二、三段触媒层催化氧化后SO2转化率约为94.3%的SO3气体,经各自对应的换热器换

酸轧工艺流程及流程说明

酸轧工艺流程 1#张力辊 2#张力辊 1#纠偏辊 入口活套(2#、3#纠偏辊) 3#张力辊 破鳞拉矫机 4#张力辊 酸洗槽 4#纠偏辊 漂洗槽 烘干机 5#张力辊 5#纠偏辊 酸洗出口活套 6#纠偏辊 月牙剪 7#纠偏辊 切边剪(碎边剪) 6#张力辊 去毛刺辊 8#纠偏辊 联机活套(9#纠偏辊) 10#纠偏辊 7#张力辊 11#纠偏辊 8#张力辊 入口液压剪 三辊稳定辊 1#---5#轧机 板形仪 出口夹送辊 转鼓式飞剪 卡罗塞尔卷取机 出口步进梁 打捆 称重 标识 步进梁 双切剪 矫直机 激光焊机 开卷机 轧后库 成品卷

酸轧工艺说明 钢卷运输 在酸洗入口段,钢卷的运输由步进梁、托辊站、钢卷旋转装置、No.1/ No.2 上卷小车等组成。平行于酸轧机组中心线。No.1/ No.2 上卷小车分别垂直于酸轧机组中心线。 用车间行车将原料库内存放的热轧钢卷吊放到步进梁运输机上,钢卷经过测量宽度、对中、拆除捆带、旋转等操作后,由步进梁将钢卷运到入口 No.1 固定鞍座上,入口往返小车根据生产情况可以将钢卷从入口 No.1 固定鞍座送到No.2 固定鞍座上。上卷小车根据开卷状况进行接卷。然后钢卷由上卷小车输送到等待位置。在等待位置,上卷小车调整钢卷中心与开卷机芯轴中心重合后,再将钢卷运到开卷机卷筒上。钢卷带头由夹送穿带装置送到夹送矫直机矫平后,带头送至入口分切剪进行切头,当前一个钢卷还在生产时,带头将自动停留在 No.2 转向夹送辊前的等待位置。 入口段 在上一个钢卷的带尾快要甩尾之前,开卷机上的自动停车装置将及时对入口段进行减速,当达到甩尾速度时,处理器的矫直辊压下,同时焊机后 No.1 张力辊的压辊也压下。一旦带尾离开开卷机,其卷筒立即收缩,同时夹送辊和矫直机抬起。然后,如前所述,可以进行下一个钢卷相同的穿带程序。被矫直的带尾送进入口分切剪,切去不合格部分。通过分切剪前的对中装置,可以进行直角剪切。矫直辊压下深度根据来料钢种和规格自动设定,并可人工干预。然后带尾进入焊机,在带尾停止之前,焊机出口夹送辊与No.1张力辊之间形成活套之后在焊机内完成带尾的定位、对中及夹紧等操作。在分切剪剪切过程中,分切剪前的废料夹送辊上辊压下,然后将废板送到废料运输机上运到厂房外的废料斗中。当上一卷带钢的带尾离开 No.2 转向夹送辊,已经在 No.2 转向夹送辊前等待位置的另一个通道已切好的带头向前送入焊机。在带头到达焊机内的挡块位置后,将与带尾一样进行自动定位、对中及夹紧。带头、带尾相互对齐后,焊机将启动自动剪切和焊接,包括焊缝检查、冲月牙等。 焊机焊接操作全部完成后发出信号,在入口段准备就绪后启动入口段运行。当入口段开始加速时,No.1 张力辊的压辊抬起,然后加速到设定的充套速度快速充套。活套充满后入口段降速至工艺段正常生产速度。 No.1 纠偏辊用来纠正入口段的带钢跑偏,使带钢对中进入入口活套。活套内的带钢跑偏通过 No.2 纠偏辊纠正,活套出口的 No.3 纠偏辊保证带钢对中进入拉伸破鳞机前的传动转向辊。带压辊的传动转向辊用来补偿由于加减速而引起的张力波动,这样可以保证拉伸破鳞机前的入口带钢张力保持恒定。除尘系统用来抽掉处理器和拉伸破鳞机的氧化铁皮粉尘,以减少车间内的灰尘含量。 工艺段 临时停车,酸洗槽的酸液可自动排放到循环罐内。酸洗槽酸液的串级逆流也是通过循环罐实现的。 各个酸洗槽内的酸洗工作条件如下: 总酸量游离酸Fe2+工艺温度 1#酸洗槽200g/l 30~50g/l 110~130g/l 70-85℃ 2#酸洗槽200g/l 80~100g/l 80~100g/l 70-85℃

酸再生机组介绍

酸再生机组介绍

3.2m3/h酸再生机组介绍 河北大厂金铭精细冷轧板带有限公司

一、酸再生机组总体介绍 1、生产工艺流程的描述 热轧钢板经盐酸酸洗后,方能进行冷轧。盐酸酸洗时,钢板表面铁及氧化铁皮被盐酸洗掉,消耗的盐酸转变成以FeCL2为主的氯化物,溶解在盐酸溶液中,随着酸洗过程的进行,酸洗液中的铁离子浓度会升高,而游离HCL的浓度相应降低。为了保持酸洗酸液中的游离HCL的浓度,除去酸液中增加的铁离子,将废酸液送至酸再生装置,用焙烧工艺生成再生酸,再返回酸洗机组使用,同时得到副产品氧化铁粉。 酸洗过程如下列化学反应方程式: Fe+2HCL=FeCL2+H2 FeO+2HCL=FeCL2+H2O Fe2O3+2HCL FeCL2+FeCL3+H2O Fe2O3+6HCL=2FeCL3+3H2O 2FeCL3+Fe=3FeCL2 4FeCL2+4HCL+O2=4FeCL3+2H2O 源于酸洗机组的废酸,收集在废酸罐中,用废酸泵经过废酸过滤器送入予浓缩器(流量用气动调节阀自动控制)。废酸通过予浓缩器循环泵送至予浓缩器顶部进行喷洒。与来自焙烧炉的炉气(400℃)进行直接热交换,将废酸中的部分水份蒸发掉,废酸液得到了浓缩。浓缩后的废酸由焙烧炉给料泵经废酸过滤站送至焙烧炉顶部,再经喷杆、喷嘴进入焙烧炉进行喷洒。焙烧炉设有2杆喷枪,每杆喷枪上各装有5个喷嘴,喷枪可通过人工和计算机控制插入焙烧炉内部进行喷洒。 焙烧炉本体是一个钢壳,其内衬有耐火耐酸砖,在本体上呈切线布置2个烧嘴加热,加热来自喷嘴的予浓缩酸液滴,而在焙烧炉的热区域内 (500-800℃),FeCL2和FeCL3按照下述方程式分解: 2FeCL2+2H2O+1/2O2=Fe2O3+4HCL 2FeCL3+3H2O=Fe2O3+6HCL

新硫铁矿制酸工艺流程

*硫铁矿制酸工艺流程* *该 装 置以固体硫铁矿为原料,采用沸腾焙烧,中压余热锅炉回收高温热能发电,干法收尘,带电除尘的稀酸洗封闭净化和“3+2”五段转化两转两吸工艺流程。硫酸生产工艺流程图见图2-1所示。 破碎 干燥器 块矿 空气 煤 硫精矿 热风炉 除尘 尾气排放 沸腾炉 空气 SO 2炉气 废热锅炉 旋风除尘、电除尘 增湿器 炉渣 蒸汽发电 冷却、洗涤塔 净化、电除雾 循环酸 废酸送磷铵工段 酸泥送污水处理站 干燥塔 SO 2鼓风机 二转二吸 尾气吸收 成品硫酸 尾气放空

年产12万吨硫酸生产工艺主要由原料工段、焙烧工段、净化工段、干吸工段、转化工段、贮酸工段组成。 (1)原料工段 a、原料硫精矿运入装置内,先堆放于露天堆场,再用铲车运入矿库,用桥式抓斗起重机将原料抓入贮斗内,经皮带给料机均匀加入回转干燥机进行干燥,干燥后的原料含水6%,进入链式破碎机粉碎,并经筛分后送入库内堆放。 b、用桥式抓斗起重机将干燥破碎好的硫精砂抓入成品贮斗,由圆盘给料机均匀加入皮带机,再由皮带栈桥送到焙烧工段沸腾炉加料贮斗。 (2)焙烧工段 沸腾炉加料斗中的矿粉,由皮带加料机送入沸腾炉焙烧。焙烧产生的SO2炉气温度达900~930℃,该炉气经余热锅炉后温度降至400℃左右。在锅炉中产生的中压过热蒸汽,送往汽轮发电机发电。炉气从余热锅炉出来,进入旋风除尘器,经旋风降尘后进入电除尘器进一步除尘。电除尘器除尘效率可达99%。炉气经除尘后含尘0.2g/Nm3左右,温度300~350℃进入净化工段。沸腾炉排出的矿渣,余热锅炉,旋风除尘器排出的矿尘都经冷却滚筒冷却后,与电除尘器排出的矿尘,一并用埋刮板输送机输送到矿渣增湿器,喷入水使矿渣降温增湿,再由胶带输送机送往贮仓。 焙烧硫铁矿所需空气由沸腾炉鼓风机送入。

生产工艺流程总结

生产工艺流程总结 水泥生产工艺小结 水泥生产自诞生以来,历经了多次重大技术变革,从最早的立式窑到回转窑,从立波尔窑到悬浮预热窑,再到如今的预分解窑,每一次变革都推动了水泥生产技术的发展。以悬浮预热和预分解技术为核心的新型干法水泥生产技术,把现代科学技术和工业生产最新成就相结合,使水泥生产具有高效、优质、环保、大型化和自动化等现代化特征,从而把水泥工业推向一个新的阶段。 水泥生产主要包括生料制备、熟料烧成和水泥粉磨至成品三个阶段,而在每个阶段中又包含了许多工艺过程。比如生料制备中涉及到矿山开采、原料预均化及粉磨和生料的均化等过程;而熟料烧成系统中又涉及到旋风筒、连接管道、分解炉、回转窑和篦冷机五种主要工艺设备。本文主要通过生料制备、熟料烧成和水泥成品三个大方面对整个新型干法水泥生产工艺进行描述。 1 生料制备 矿山开采和原料预均化 任何产品的制备,原料的选取和制备均是重要的一个环节,原料的品质会直接影响生产产品的质量。所以,在水泥生产中,原料选取即矿石开采需要做好质量控制工作。在矿石开采过程中,首先要做好勘探工作,切实掌握矿体的质

量,然后在此基础上根据生产需求,合理搭配,选择性开采,尽可能的缩小原料的化学成分波动,这同时也可为原料预均化创造了一定的条件。 1959年,原料预均化技术首次应用于美国水泥工业。预均化技术就是在原料的存取过程中,运用科学的堆取料技术,实现原料的初步均化。具体是在原料堆放时,由堆料机连续地把进来的物料,按照一定的方式堆成尽可能多的相互平行、上下重叠、厚薄一致的料层,而在取料时,则通过选择与料堆方式相适应的取料机和取料方式,在垂直于料的方向上,同时切取所有料层,这样就在取料的同时完成了物料的混合均化,起到预均化的目的。 预均化是在预均化堆场中进行的,预均化堆场按照功能又可以分为预均化堆场、预配料堆场和配料堆场三种类型。预均化堆场是将成分波动较大的单一品种物料石灰石、原煤等,以一定的堆取料方式在堆场内混合均化,使其出料成分均匀稳定;预配料堆场是将成分波动较大的两种或两种以上原料,按照一定的配合比例进入堆场,经混合均匀,使其出料成分均匀,并基本符合下一步配料要求; 配料堆场是将全部品种的原料,按照配料要求,以一定的比例进入堆场,经过混合均化,在出料时达到成分均匀稳定,并且完全符合生料成分要求。 原料的粉磨

酸再生工艺简介

酸再生工艺简介 来自酸洗机组的废酸,收集在废酸罐中,用废酸泵经废酸过滤器送入预浓缩器,由预浓缩器循环泵经浓缩酸过滤器送至预浓缩器顶部喷洒,与来自焙烧炉的炉气(395°)进行直接热交换,蒸发废酸中部分水份,废酸得到浓缩。浓缩后的废酸由焙烧炉给料泵经过滤站送至焙烧炉顶部,再经喷杆,过滤网,喷嘴进入焙烧炉喷洒。焙烧炉本体上呈切线分布两个烧嘴加热。使喷洒到炉内浓缩酸蒸发、干燥、结晶分解。其在炉内反应如下: 2FeCl2+2H2O+1/2O2=Fe2O3+4HCL 2FeCl3+3H2O=Fe2O3+6HCL 分解后的Fe2O3固体颗粒,以粉末形式落在焙烧炉下部椎体中,经破碎机、旋转阀排出,由一气动输送系统输送到铁粉料仓。在料仓上部安装有一台塑烧板式除尘器,以过滤输送氧化铁粉时用过的空气,然后将空气排放到大气中。料仓中的氧化铁粉,经门型阀进到装袋机装袋。 焙烧炉气(由燃烧废气,水蒸汽和氯化氢气体组成)自顶部出来经双旋风分离器将炉气中夹带的部分氧化铁粉分离出来,氧化铁粉经管道返回到焙烧炉底部。炉气进入预浓缩器,直接与循环酸接触,冷却和清洗炉气中残留的微量氧化物,并进入吸收塔,与经吸收塔给料泵送至顶部喷洒的冲洗水均匀接触。炉气中的氯化氢成分被水吸收形成再生酸。再生酸从塔底部自流至再生酸储罐中。 含有微量氯化氢气体的炉气从吸收塔顶部离开,经排烟风机进入洗涤塔(排烟风机控制系统处于负压状态,保证不会有氯化氢泄露出来),用冲洗水喷淋洗涤。在洗涤塔上部烟囱脱盐水再进行两段洗涤。洗涤水流至收集水罐,用于

吸收塔喷洒,使含酸清洗水全部回收。废气达标排放。 工艺流程简图: 酸洗车间冲洗水酸洗车间废酸 ↓↓ 冲洗水罐废酸罐 (100m3*1个)(100m3*2个) 经冲洗水过滤器经废酸过滤器 ↓ 浓缩酸铁粉 焙烧炉铁粉仓 高温含酸炉气装袋外卖 含酸炉气 再生酸 吸收塔再生酸罐酸洗车间 (50m3*4个) 炉气 洗涤塔 净化后炉气排放

硫磺制酸工艺流程

硫磺制酸工艺流程 硫磺制酸工艺流程说明 (1)原料工段 固体硫磺由火车运至硫磺仓库,采用人工上料方式,通过一大倾角胶带式输送机将硫磺输送至快速熔硫槽加料口处。 (2)熔硫工段 来自原料工段的固体散装硫磺由胶带输送机送入快速熔硫槽内熔化,经熔化后的熔融液硫自溢流口自流至过滤槽中,由过滤泵送入带助滤剂预涂层的液硫过滤器内过滤后流入液硫中间槽内,再由液硫输送泵输送到液硫贮罐内,液硫由液硫贮罐经精硫泵(屏蔽泵)送到焚硫转化工段的焚硫炉内燃烧。快速熔硫槽、助滤槽、液硫贮罐、精硫槽等内均设有蒸汽加热管,用0.5~0.6MPa蒸汽间接加热,使硫磺保持熔融状态。助滤槽内设有助滤泵将助滤剂硅藻土预涂到液硫过滤器上。 (3)焚硫及转化工段 液硫由精硫泵加压经磺枪机械雾化而喷入焚硫炉焚烧,硫磺燃烧所需的空气经空气过滤器过滤后,再经空气鼓风机加压、干燥塔干燥后送入焚硫炉。 (4)干吸及成品工段 空气鼓风机设在干燥塔上游,即硫磺焚烧及转化所需空气经过滤器过滤、鼓风机加压后进入干燥塔塔底,用98%硫酸吸收掉空气中的水分使出塔干燥空气中水分0.1g/Nm3,经塔顶除雾器除去酸雾后的干燥空气进入焚硫炉。从干燥塔出来的浓度约97.8%的硫酸流入干吸塔循环槽中,与来自第一吸收塔的吸收酸混合后,经干燥塔酸循环泵加压后送入干燥塔酸冷却器中,经冷却至约70℃后送到塔顶进行喷淋。 由转化器第三段出口的气体经冷热换热器和省煤器II回收热量、温度降为172℃后一部分进入第一吸收塔塔底,塔顶用来温度75℃、浓度为98.0%的硫酸喷淋,吸收气体中SO3后的酸自塔底流出进入干吸塔循环槽中,与来自干燥塔的干燥酸进行混合并用工艺水调节循环酸浓度至98%后,再由一吸塔酸循环泵依次送入一吸塔酸冷却器冷却后,送至一吸塔塔顶进行喷淋。另一部分一次转化气进入烟酸塔。塔内用104.5%发烟硫酸进行喷淋,吸收转化器中的SO3后,由塔底流入发烟酸循环槽,通过来自一吸塔酸冷却器出口的98%硫酸调节浓度为104.5%,然后经烟酸塔循环泵送入烟酸塔酸冷却器,冷却后的发烟酸一部分作为产品送至成品工段,另一部分送入烟酸塔塔顶进行喷淋。吸收后的炉气与另一部分气体混合后再进入第一吸收塔。 由转化器四段出来的二次转化气经低温过热器/省煤器I换热降温后进入第二吸收塔塔底。该塔用温度为75℃,浓度为98%的硫酸喷淋,吸收SO3后的硫酸自塔底流入吸收塔循环槽。而后经二吸塔酸循环泵加压,并经二吸塔酸冷却器冷却后进入第二吸收塔喷淋。 98%成品硫酸由干燥酸循环泵出口引出,再经成品酸冷却器冷却至40℃后进入成品酸贮罐。

制酸工艺流程简述

硫酸工艺技术规程 硫酸装置设计生产能力为15万吨/年,日产能力为500吨(以100%H2SO4计),以硫精砂为原料,采用沸腾焙烧、酸洗净化、4+1两转两吸接触法制酸工艺。并采用中压锅炉、 板式换热器及省煤器回收焙烧和转化工序的废热产生中压过热蒸汽用于发电。 装置包括以下生产设施和辅助设施: 生产设施有原料工序、焙烧工序、净化工序、转化工序、干吸工序、成品工序、排渣工序、余热发电工序。 辅助设施有控制室、变配电所、柴油发电机组、脱盐水站、污水处理站、循环水站、界区内给排水、界区内供电和道路照明。 原料工序采用矿石和尾沙混烧法,用铲车将含硫不同的原料通过混料机混料,混合后的物料过筛,经天车送到成品区。大颗粒外送或送到破碎。矿石经过三级破碎,粒度在3mm 以下进入仓库。 焙烧工序采用流态化焙烧,干法除尘,将硫精砂焙烧成SO2烟气,然后降温降尘输送至净化工序,同时废热锅炉的汽包输出中压蒸汽至余热发电工序发电。设有沸腾炉(配用鼓风机350kw)、废热锅炉、旋风除尘器和电除尘器等设备。 净化工序设计采用一文氏管—两级洗涤塔—两级电除雾器的酸洗净化工艺及稀酸冷却流程。对SO2烟气酸洗、冷却、除雾。 干吸工序采用四塔流程,塔槽一体设备,对净化后的SO2烟气用95%硫酸干燥,然后由SO2风机送往转化工序,转化工序过来的SO3烟气经发烟硫酸一次吸收和98%硫酸两次吸收后排空,生产的发烟硫酸送到三氧化硫蒸发工序生产气体三氧化硫供给氯磺酸工段,生产的105酸、65酸、液体三氧化硫外卖或送到储罐区,产生的浓H2SO4送往成品工序,设有SO2风机(1250kw)、一个干燥塔,三个吸收塔等设备。 转化工序采用4+1两转工艺,对干吸工序过来的SO2烟气转化SO3烟气。设有电加热炉、转化器、换热器等设备。 成品工序存储和装运98%浓H2SO4。设有浓酸贮罐3000m3×2个,4台装酸泵、4个 汽车装酸嘴等设备。 排渣工序将焙烧产生的渣灰用水冲洗后进入浓密机,由渣浆泵送到高频筛,分成大于120目大颗粒和小颗粒渣,大颗粒返回球磨机,经球磨机粉碎后回到浓密机,在回到高频筛。小颗粒渣从浓密机下来直接进入磁选机,经过三级磁选和磁力脱水槽后,铁精粉进入带式过滤机,脱水成为铁精粉成品销售。从磁选机和磁力脱水槽出来的尾渣进入尾矿回收机,回收的含铁高的部分重新回到球磨机,进入磁铁的流程,剩余的尾渣回到尾矿浓密机,经过压滤机泵输送到压滤机,脱水后滤饼成为尾渣矿,销售到水泥厂。 余热发电工序利用废热锅炉产生的中压蒸汽,通过透平发电机发电,设备有透平发电机、冷凝器、减温减压器、分汽缸、抽汽器、除氧器等设备、设施。 脱盐水站给锅炉制备脱盐水,产量70T/h。 污水处理站利用石灰乳中和来处理装置产生的废水,其中净化稀酸量1.0T/h。 循环水站包含制酸循环水站、发电循环水站,配有三台循环水泵,为二开一备。

硫化氢湿法制酸

硫化氢湿法制酸 一.背景 硫化氢就是世界上重要的硫资源之一,在石油炼制、天然气生产企业中,硫的化合物在化学加工、转化与提炼过程中,以及处理含硫原料的有关企业, 都能产生含硫化氢的酸性气体。硫化氢气体有毒,且易燃易爆,不能直接排放,国家排放标准最高允许排放浓度为10m g/m3。因此,对硫化氢气体 进行回收,既就是环境保护的要求,也就是资源利用的需要。如何回收与处理 含有硫化氢的酸性气,就是目前亟待解决的一个重要课题。 在我国,从含硫化氢的酸性气中回收利用硫的方法主要有硫回收与酸 回收两种情况一般而言,硫回收用得比较多,其工艺种类繁多,但基本就是在克劳斯技术基础上发展起来的,主要有加拿大D elta公司的M C R C 法、德国鲁奇公司的S ul f reen 法、荷兰C o m pri m o公司的S uper C laus法、德国 林德公司的C linsulf 法等。对于φ( H2 S) 高于15% 的气体,通常用克劳斯法回收生产硫磺;对于低浓度硫化氢气体,往往用湿式氧化法回收生产硫 磺。克劳斯法含硫尾气需要进一步处理,而湿式氧化法回收硫磺质量较差,影响销路。与克劳斯硫磺回收工艺相比,酸性气直接制硫酸工艺流程简单、经济效益好,就是一个可供选择的较好的硫回收工艺。用硫化氢制造硫酸就是1931 年由前苏联й、E、阿杜罗夫与д、B、格尔涅提出来的,德国 鲁奇公司首先将其付诸实施。近年来,随着工艺技术的不断发展,拓宽了对原料气的适应范围,提高了产品浓度并回收利用了工艺反应的废热,硫化氢制酸 的方法得到了更为广泛的应用。硫的回收直接制取硫酸省去克劳斯装置,根据二氧化硫催化氧化的工艺条件,用硫化氢生产硫酸有两条工艺路线: 干接触法与湿接触法。干接触法就是将H2S气体燃烧成S O2后,采用与传统的硫铁矿制酸工艺相似的方法冷却净化、干燥、催化氧化与吸收。湿接触法则由于H2 S 在分离过程中已经进行过洗涤,不需要进行冷却净化、干燥,在水蒸气存在的条件下将S O2催化氧化成S O3,并直接凝结成酸。湿法技术比较简单,流程短,设备少,可回收废热,特别适合处理H2 S 浓度低的气体。选择硫回收工艺主要应考虑经济性、技术性,并能达到国家现行的环保指标。随着环保要求日益严格,煤化工、炼油、冶金等行业含硫化氢酸性气净化 中的硫回收工艺都存在尾气处理的问题。如果不采用尾气处理装置,硫的回收率只有94%左右,大量S O2排入大气中,造成严重的环境污染。如果采用

硫磺制酸工艺规程与操作规程

硫磺制酸工艺规程与操作规程 1

硫磺制酸工艺规程与操作规程 第一部分:工艺规程: 一:产品说明: 硫酸是三氧化硫(SO3)和水(H2O)的化合物,硫酸的分子式:H2SO4, 纯硫酸的分子量为98.08,是无色、无臭而透明的油状液体。 工业上生产的硫酸都是纯硫酸(100%)的水溶液。其性质如下:(一)硫酸的浓度与比重: 商品硫酸的浓度为≥92.5%,浓度较高的硫酸比重与浓度对照表见下表。 在同一温度下,硫酸水溶液的比重随着它的浓度的增加而增加,当浓度达到97%时比重达到最大值,过此则递减至100%时为止。 同一浓度的硫酸,它的比重随温度的升高而降低。 20℃时硫酸的比重与浓度对照表 (二)硫酸的结晶温度: 在浓硫酸(指浓度在90%以上)范围内,98%硫酸结晶温度- 2

0.7℃,93%硫酸结晶温度-27℃。因此,商品硫酸为93%的硫酸。(三)硫酸的沸点和蒸汽压: 当硫酸浓度在98.3%以下时,它的沸点随浓度的升高而增加,浓度为98.3%的硫酸,沸点最高(336.6℃),以后则开始下降。100%硫酸的沸点为296.2℃。 硫酸水溶液上面的总蒸汽压,随其浓度的增加而逐渐下降,当浓度增加到98.3%时,蒸汽压降至最小值。 硫酸上面的蒸汽是由H2O、H2SO4和SO3分子的混合物所组成。在这种情况下,仅98.3%硫酸的蒸汽成分与液体成分相同。 水蒸汽压小是硫酸的重要性质。温度越低、浓度越高,酸液面上的水蒸气平衡分压越小。用浓硫酸来干燥气体就是利用了这一性质。 (四)硫酸的稀释热: 硫酸能以任何比例与水混合。硫酸中加入水就有热量放出,用水稀释的浓度越低,放出的热量越多。 如果将硫酸无限稀释下去,直到再加水也不会有热量发生,这样整个过程放出热量的总和称为溶解热或无限稀释热,它等于 2 卡/摩尔。 由于浓硫酸的稀释热很大,同时由于酸、水比重上的差异,因此,在实验室中稀释浓硫酸时,不能将水倒入硫酸,必须将硫酸慢慢 3

废酸再生技术

精心整理 废酸资源化技术摘要 钢铁热轧所产生的酸洗废液一般含有0.05~5g /L 的 H+和 60~250 g /L 的 Fe2+,由于严重的腐蚀性,已被列入《国家危险废物名录》。该类废液的直接排放不仅严重污染环境,而且造成极大的浪费。 Ca (OH 1 特性,在焙烧炉中直接将FeCl2 转化为盐酸和Fe2O3,其反应如下: 4FeCl2+4H2O+O2=SHCIt↑+2Fe2O3

反应生成的和从酸里蒸发出来的HCl气体被水吸收后得到再生酸。这是一种最彻底、最直接处理酸洗废液的方法。由于盐酸具有挥发性,所以该方法更适合于盐酸酸洗废液的处理。实践证明该方法可以处理任何含铁量的盐酸酸洗废液。 流化床焙烧法与喷雾焙烧法是直接焙烧法中两种应用最早、最成熟的工艺形式。虽然采用的具体设备和工作过程不完全相同,但工作原理相同,它们将废液的加热、 厂、 除了上述两种方法以外,还有日本的开米拉依托法、奥托(OTTO)法、PORI法及滑动床法等方法。开米拉依托法在直接焙烧法的基础之上,加入了氧化铁的提纯工艺,可以生产出高纯度氧化铁,是钢铁工业与电气磁性材料的结合。 直接焙烧法原理简单,而且一般自动化程度都较高,解决了钢铁企业不熟悉化工生产操作的难题,但是由于其要求系统内各个程序的控制相互协调,而且要求酸洗工

序与之密切配合,需要具有较高的设计、管理和控制水平,同时由于在高温下盐酸有强烈的腐蚀性,因此接触废液的设备均需要采用优质的耐腐蚀材料,造成设备成本、零部件消耗、维修费用及运行费用都很高,因此该法更适合于大型企业采用。 目前已经建立了许多无废液排放的带钢酸洗厂,即将直接焙烧处理工艺与钢材的酸洗工艺有效地结合起来。 1.2 1.2.l 晶体的 由于盐酸具有挥发性,容易再生,所以在对盐酸酸洗废液进行浓缩处理的同时,可以回收得到稀盐酸,与浓酸混合后可循环用于酸洗工艺。也可以用萃取法再生盐酸后进行铁盐的回收[1]。 1.2.2 膜法分离

相关文档
最新文档