低压省煤器系统优化设计软件-西安交通大学

低压省煤器系统优化设计软件-西安交通大学
低压省煤器系统优化设计软件-西安交通大学

低压省煤器系统优化设计软件

我国现役火电机组中,锅炉排烟温度普遍维持在125.0~150.0℃左右,排烟温度高是一个普遍现象。排烟温度升高不仅使排锅炉烟热损失增大,还使得风机、除尘器工作环境恶化,缩短设备的寿命。近年来,低压省煤器系统等烟气余热利用系统在火电厂的节能提效改造中得到了广泛应用,通过在锅炉尾部烟道加装烟气余热利用装置,一方面可以回收烟气余热,降低电厂发电煤耗;另一方面可以降低锅炉排烟温度,排烟温度降低使得烟气量减小,电除尘器的比集尘面积增大,粉尘比电阻降低,电除尘器除尘效率升高,从而达到节能减排的双重功效。本课题组研发的低压省煤器系统优化设计软件,可用于对火电厂加装低压省煤器系统等烟气余热利用方案进行优化设计。

1.1功能介绍

软件用于计算电站回热系统各项汽水流量及其参数、确定热力系统的循环效率和各项经济性指标(汽轮机机组热耗、全厂热效率、发电厂标准煤耗率、供电标准煤耗率等)。

可采用正平衡法、反平衡法和等效热降法,对发电厂热力系统原始系统进行分析计算,亦可对加装低压省煤器(串/并联)热力系统进行分析计算。

可计算一次、二次再热回热系统。可计算回热系统配置包括:三高三低一除氧系统、三高四低一除氧系统、四高四低一除氧系统、四高五低一除氧系统等。软件能对回热系统原始系统进行计算。

软件人机界面友好,操作简便。软件具有错误判别功能,对用户输入的数据进行正确性和完整性校验。

1.2主要界面

图1机组基本参数输入界面

图2加热器参数输入界面

图3轴封汽参数输入界面

图4换热器参数输入界面

图5计算控制参数输入界面

图6计算过程-显示计算进度界面

图7主要计算结果显示界面

图8打开数据文件界面

图9计算结果输出

1.3已完成算例

机组容量回热系统类型计算结果

1000 MW 三高四低一除氧设计并优化低压省煤器系统,机组加装该低压省煤器系统后能有效降低排烟温度,回收余热,降低发电标准煤耗率。

660 MW 三高四低一除氧设计并优化低压省煤器系统,机组加装该低压省煤器系统后能有效降低排烟温度,回收余热,降低发电标准煤耗率。

通风系统优化方案

通风系统优化方案 平禹煤电公司一矿 编制:陈占旭 2009年5月8日

一、矿井概况 平禹一矿位于禹州市北9km,郑平公路两侧。井田西起小王庄断层,东至315勘探线,北至二1煤层露头及魏庄断层为界,南到黑水河断层、肖庄断层,即-800m水平,东西长8km,井田面积10.5km2。 平禹一矿始建于1969年,1976年10月投产。设计生产能力60万吨/年,经过多次技术改造,2005年实际生产能力达100万吨/年,矿井二1、二3两层煤。主采二1煤层,煤厚0.99—12.55m,平均5.69m,一般4.0---7.0m,井田西北有一条封闭型的断层,造成局部瓦斯富存量较大,在开采过程中,由于二1、二3煤层间距较小,易出现未采煤层瓦斯释放到开采煤层的现象;二3煤层较薄平均厚度在1.8m左右。 矿井为低瓦斯矿井。 平禹一矿,地质构造处于白沙向斜的东北部。矿区北、西、南三面环山,为一向东南开阔的“箕形”向斜汇水盆地。多次受水灾的危害,造成矿井巷道普遍压力大,巷道变形快,有效通风断面小,通风阻力大,维护周期短。目前矿井正处于东区水灾复矿阶段。 矿井运输、回风大巷、采区上、下山及车场采用砌硂、U型钢、裸巷、锚喷、锚网、工字钢等多种支护形式,由于受压力和顶板(顶板破碎严重)条件影响,巷道变形较大,

一定程度上影响通风。 矿井目前的通风系统为中央边界抽出式,主要通风机为FBCDZNo26型对旋式,一台使用,一台备用,转速740r/min,风机叶片安装角度为-9/-9o,配用电机功率为2*355KW,两条立井进风和一条斜井进风,一条并联回风斜井:1、新鲜风流由副井(主井)进入主石门、东西大巷,经采区运输上山供给各采面、掘进工作面,乏风流经采区轨道上山进入采区回风巷,经风井由主要通风机抽出地面。2新鲜风流由明斜井进入三采区,经采区运输上山供给各采面、掘进工作面,乏风流经采区轨道上山进入采区回风巷,经风井由主要通风机抽出地面。掘进工作面采用局部通风机压入式通风。 二、矿井通风系统优化改造的必要性 平禹一矿目前总进风量为5416m3/min,总回风量5703m3/min(风速为9.70 m3/s,超过最高允许风速8m3/s),风机房水柱记读数为3000Pa。主石门的供风量为3547m3/min(风速为6.03m3/s,接近最高风速8m3/s),明斜井的供风量为1869m3/min(风俗为3.80m3/s)。 东翼实际进风量为2629m3/min。设计风量为(各地点)1160*(通风系数)1.2+300(一采区下车场至明斜井之间避免出现盲巷和风路絮乱情况)=1692m3/min。目前有效用风地点为2个扒修工作面(三皮带下山扒修需风量为

三菱M701F4机组低压省煤器技术探讨

三菱M701F4机组低压省煤器技术探讨 发表时间:2019-01-08T17:20:26.780Z 来源:《电力设备》2018年第24期作者:高峰 [导读] 摘要:在电厂的热系统内增设低压省煤器是降低发电标准煤耗的有效措施。 (浙江大唐国际绍兴江滨热电有限责任公司浙江省绍兴市 312000) 摘要:在电厂的热系统内增设低压省煤器是降低发电标准煤耗的有效措施。本文简要通过叙述了火电厂低压省煤器系统的特点及不同的运用方式,作为绍兴江滨热电借鉴应用范本。经分析采用低压省煤器可提高机组热效率,节能效果显著,符合国家“节能减排”正常,具有很好的发展前景和应用推广价值。 关键词:电厂节能;低压省煤器;排烟温度 1、低温省煤器系统概述 排烟损失是锅炉运行中最重要的一项热损失,我国燃机发电厂燃机的排气通过锅炉吸热后,排烟温度还较高。为了降低排烟温度,减少排烟损失,提高燃机发电厂的运行经济性,可考虑在烟道上加装低温省煤器的方案可行性。低温省煤器的具体方案为:在低温省煤器1,低温省煤器2前在增加几组低温省煤器,绍兴江滨热电凝结水温设计值为37.4度,低温省煤器1入口温度为55度,燃机排烟温度为88.1度。凝结水可以充分吸收排烟热量,降低排烟温度,自身被加热、升高温度。在发电量不变的情况下,可降低机组的能耗。 2、深度降低排烟温度节能研究的背景 节能减排是目前国家的重要国策,近年来,随着国家节能减排指标的严格要求以及气价的上涨波动,燃机以天然气为基础的发电成本日益增加,各燃机电厂面临着节能的巨大压力,寻求降低煤耗的新技术、新方法,并加大了相关的资金投入。 目前绍兴江滨热电的锅炉排烟温度大都在80℃~90℃之间。理论上,对于排烟温度为80℃~90℃的锅炉,传统的理念认为已经满足要求了,已经比较低了,继续降低就可能出现低温腐蚀等不可靠因素的出现。但是燃机电厂排气成分主要是:氮气、二氧化碳、水、氧气。主要污染物:氮氧化物和二氧化硫接近零排放。因此火电厂的低压省煤器低温腐蚀现象发生概率较小。 有效利用锅炉排烟余热,降低排烟温度实现深度节能,符合国家的节能减排政策。 3、国内外低温省煤器目前的应用情况 3.1 低温省煤器目前的应用情况 低温省煤器能提高机组效率、节约能源。已在国内几十家燃煤电厂的上百台机组上安装了这种低压省煤器的系统。但在燃机机组上应用还未见相关报道。但我们可以借鉴燃煤机组实际应用情况:通辽发电总厂3号锅炉系哈尔滨锅炉厂生产的HG-670/140-HM12型超高压自然循环煤粉炉,配200MW汽轮发电机组,于1989年11月投产运行。机组投产后,锅炉排烟温度始终在160~170℃运行,相对300MW和600MW机组锅炉的130~140℃排烟温度高很多。2002年电厂在3号锅炉尾部空气预热器后安装东北电力科学研究院锅炉所设计的余热回收系统;吸收排烟余热,锅炉排烟温度降低到135℃左右,显著提高了全厂热经济性指标,达到节煤、降耗的目的。 国外低温省煤器技术较早就得到了应用。在苏联为了减少排烟损失而改装锅炉机组时,在锅炉对流竖井的下部装设低温省煤器供加热热网水之用。德国Schwarze Pumpe电厂2×855MW褐煤发电机组在静电除尘器和烟气脱硫塔之间加装了烟气冷却器,利用烟气加热锅炉凝结水,其原理同低温省煤器一致。德国科隆Nideraussem1000MW级褐煤发电机组采用分隔烟道系统充分降低排烟温度,把低温省煤器加装在空气预热器的旁通烟道中,在烟气热量足够的前提下引入部分烟气到旁通烟道内加热锅炉给水。日本的常陆那珂电厂采用了水媒方式的管式GGH。烟气放热段的GGH布置在电气除尘器上游,烟气被循环水冷却后进入低温除尘器(烟气温度在90~100℃左右),烟气加热段的GGH布置在烟囱入口,由循环水加热烟气。烟气放热段的GGH的原理和低温省煤器一样。 低温省煤器尽管在国内和国外已经有运用业绩,但上述的例子中我们发现,在德国锅炉排烟温度较高,均达到170℃左右(这些锅炉燃用的是褐煤),而加装低温省煤器后排烟温度下降到100℃左右。日本的情况是锅炉设计排烟温度不高(125℃左右),经过低温省煤器后烟气温度可降低到85℃左右。 3.2 低温省煤器安装位置 由于低温省煤器的传热温差低,因此换热面积大,占地空间也较大,所以在加装低温省煤器时,需合理考虑其在锅炉现场的布置位置。 4、低温省煤器的经济分析 4.1 影响排烟热损失的主要因素是排烟温度,一般锅炉的排烟温度大多高于设计值,排烟热损失是锅炉各项热损失中最大的一项,是锅炉热损失的百分之60-70。影响排烟热损失的主要因素是排烟温度,一般情况下,排烟温度每增加10度,排烟热损失上升百分之0.6到百分之1,相应多耗煤百分之1.2到2.4。 4.2 在对深度降低排烟温度节能的理念来自于1973年能源危机前后美国和欧洲广泛推广策略,国外至今有几十年的使用历史。 在我国,深度降低排烟温度正成为一种趋势,据报道,华电国际电力发展有限公司首次在4号机组完成了深度降低排烟温度的改造,将排烟温度从145度降低到87度,节约标准煤耗2克。上海电气集团上海锅炉有限公司目前已经将新建机组锅炉设计排烟温度最低控制在105度,超越了传统设计理念,为锅炉节能降耗做出了重要贡献,也为今后需要改造的电厂提供技术支持。 4.3 绍兴江滨热电机组的设计炉机参数也适合高效利用烟气余热,节能效果显著。如实施低温省煤器改造后,必将降低供电标煤。 基于上述观点,实施深度降低排烟温度技术不仅是可行的,而且是合理的,经济效益巨大。 5、低温省煤器的综合使用的意义 低温省煤器锅炉余热回收系统,对运行要求较低,没有多增加用电设备,控制简单,维护工作主要为及时更换局部腐蚀严重的部件。低温省煤器在燃煤机组中得到广泛应用,其最重要的原因在于低温省煤器具有较高经济性。通过对低温省煤器合理安装和利用,给燃煤机组带来巨大的经济效益。绍兴江滨热电在利用小时数不断减少,天然气价格上涨,生产成本不断上涨的情况下,只有突破常规思路,把不可能变为可能。 参考文献 [1]王艳丽,白涛,靳智平,刘文辉,曹宝生.300MW CFB锅炉低压省煤器设计方案优化及经济性分析[J].电力学报,2016,12(6):505-510. [2]刘畅,卿山,贾壮壮,徐佳润.300MW机组锅炉低压省煤器改造及经济性分析[J].工业加热,2017(5):6-7.

实验六PID控制系统参数优化设计

实验六 PID 控制系统参数优化设计 一.实验目的: 综合运用MATLAB 中SIMULINK 仿真工具进行复杂控制系统的综合设计与优化设计,综合检查学生的文献查阅、系统建模、程序设计与仿真的能力。 二.实验原理及预习内容: 1.控制系统优化设计: 所谓优化设计就是在所有可能的设计方案中寻找具有最优目标(或结果)的设计方法。控制系统的优化设计包括两方面的内容:一方面是控制系统参数的最优化问题,即在系统构成确定的情况下选择适当的参数,以使系统的某些性能达到最佳;另一方面是系统控制器结构的最优化问题,即在系统控制对象确定的情况下选择适当的控制规律,以使系统的某种性能达到最佳。 在工程上称为“寻优问题”。优化设计原理是“单纯形法”。MATLAB 中语句格式为:min ('')X f s =函数名,初值。 2.微分方程仿真应用:传染病动力学方程求解 三.实验内容: 1.PID 控制系统参数优化设计: 某过程控制系统如下图所示,试设计PID 调节器参数,使该系统动态性能达到最佳。(习题5-6) 1020.1156s s e s s -+++R e PID Y 2.微分方程仿真应用: 已知某一地区在有病菌传染下的描述三种类型人数变化的动态模型为 11212122232 3(0)620(0)10(0)70X X X X X X X X X X X X ααββ?=-=?=-=??==?

式中,X 1表示可能传染的人数;X 2表示已经得病的人数;X 3表示已经治愈的人数;0.0010.072αβ==;。试用仿真方法求未来20年内三种人人数的动态变化情况。 四.实验程序: 建立optm.m 文件: function ss=optm (x) global kp; global ki; global kd; global i; kp=x (1); ki=x (2); kd=x (3); i=i+1 [tt,xx,yy]=sim('optzwz',50,[]); yylong=length(yy); ss=yy(yylong); 建立tryopt.m 文件: global kp; global ki; global kd; global i; i=1; result=fminsearch('optm',[2 1 1]) 建立optzwz.mdl:

优化设计方案

GSM网络优化方案设计及调整 1、网络优化的手段和流程 网络优化过程主要包括:网络普查、数据采集、数据分析、制定方案、实施方案、总结和微调。它是一个长期的循序渐进的过程。 发现了网络问题以后,就要解决这些问题,优化主要从两方面,一个是参数的优化,一个是频率的优化。参数优化主要是调整基站天线的增益、极化方式、下倾角、波束宽度、高度和方向角,频率优化主要是调整频率复用方式以及各小区的BCCH和TCH载波的频率。有的问题还要调整GSM系统的一些参数比如小区优先级别等。 参数调整主要解决两类问题,一类是静态问题,即通过实测网络各个地区的平均话务量和信令流量,对系统设计中采用的话务模型进行修正,解决长期存在的普遍问题。另一类则解决一些突发事件和随机事件造成的局部地区话务量过载和信道拥塞现象。对参数进行调整以前要对参数的意义、调整方式由很深刻的了解。一般这些参数是通过操作维护中心(OMC-R)和实际测量获得。在网络局部出现问题时,要先确定不是硬件故障才可以进行参数调整,频率优化也是一样。参数的调整没有统一的标准要根据各地的实际情况来调整获得最佳效果。 2、系统普查 系统普查阶段主要是对全网的了解,它是优化的准备阶段。在此阶段要了解网络结构,网络中MSC、BSC、BTS的数量的位置,用户数和密度分布情况,话务分布情况。 2、数据采集 数据采集主要包括OMC话务统计数据采集、路测数据采集、CQT测试数据采集、用户申告情况收集及其他仪表测试结果等。 3.1 OMC数据采集 OMC采集的数据主要包括BSS和NSS各种软硬件参数,如基站个数,基站小区结构和话音信道数;基站的BSIC、小区号、小区系统类型、信道类型;小区的CGI、BCCH载频号、小区载频数和跳频方式;邻区关系定义;切换数据;功率控制数据以及系统消息数据等。现实应用中我们是通过LAN将数据服务器与OMC相连,将OMC的数据下载到数据服务器在转换成我们需要的格式。具体地OMC是sun salaries 主机,其数据库是informix,本想MARS的各个模块直接访问与informix相连的SQLSERVER数据库,从中读取数据,但是经过一段时间的应用发现SQLSERVER在这种大数据量的情况下工作很不稳定(OMC每天形成的数据很多)于是通过ODBC将informix与SQLSERVER相连,再通过SQLSERVER 的数据转换服务使MARS的LOADER模块能够从SQLSERVER数据库中取到合适格式的数据。然后这些数据再导入到ORACLE数据库,最终MARS各个模块读取ORACLE数据库中的数据。 在LOADER中通过添加设备、配置设备信息、配置数据库设置等步骤就可以实现自动从OMC中获取数据(在数据缺失的时候可以自动补取)。一般获取的数据主要有性能数据PMC、配置数据CFG、交换数据HO、CDR数据。不同厂商的设备其文件名称、格式、版本、数据形成时间、补取设置都是不同的。要作相应的设置。 3.2 路测数据采集 路测即驱车测试,一般是针对用户申告和话统数据显示出来的问题比较集中的地区进行路测。是实地对网络进行测试得到的结果比较准确。路测设备主要包括装有特殊软件的测试手机、全球定位系统GPS、笔记本电脑及专用测试软件等,测试手机内部装有特殊软件可以依靠网络完成一些功能,如锁频、强制切换、显示网络信息等,同时可以通过电缆与计算机连通,接受计算机的指令或者将采集的数据存储到计算机以便作进一步处理。全球定位系统GPS和数字化地图配合可以把路测数据放在地图上,显示出测试路线,并标出掉话等事件点,更便于问题分析和道路覆盖的宏观把握。目前的测试手机主要有爱立信公司的TEMS

低压省煤器

上海漕泾电厂(2×1000MW)工程 初步设计 锅炉部分 低温省煤器方案专题报告 中国电力顾问集团公司华东电力设计院工程设计甲级090001-sj 工程勘察综合类甲级090001-kj 2007年5月上海

上海漕泾电厂(2×1000MW)工程 初步设计 低温省煤器方案 专题报告 批准: 审核: 校核: 编制:

目录 1.低温省煤器系统概述 2. 国内外低温省煤器目前的应用情况及安装位置 3. 本工程低温省煤器的初步方案 4 加装低温省煤器需要考虑的问题 5 低温省煤器的经济性初步分析 6 结论

1.低温省煤器系统概述 排烟损失是锅炉运行中最重要的一项热损失,我国火力发电厂的很多锅炉排烟温度都超过设计值较多。为了降低排烟温度,减少排烟损失,提高漕泾电厂的运行经济性,考虑在烟道上加装低温省煤器的方案可行性。低温省煤器的具体方案为:凝结水在低温省煤器内吸收排烟热量,降低排烟温度,自身被加热、升高温度后再返回汽轮机低压加热器系统,代替部分低压加热器的作用。在发电量不变的情况下,可节约机组的能耗。同时,由于进入脱硫塔的烟温下降,还可以节约脱硫工艺水的消耗量。 2.国内外低温省煤器目前的应用情况及安装位置 2.1低温省煤器目前的应用情况 低温省煤器能提高机组效率、节约能源。目前在国内也已有电厂进行了低温省煤器的安装和改造工作。 山东某发电厂,两台容量100MW发电机组所配锅炉是武汉锅炉厂设计制造的WGZ410/100—10型燃煤锅炉,由于燃用煤种含硫量较高,且锅炉尾部受热面积灰、腐蚀和漏风严重,锅炉排烟温度高达170℃,为了降低排烟温度,提高机组的运行经济性,在尾部加装了低温省煤器。低温省煤器系统布置图如下: 山东某电厂低温省煤器系统连接图 国外低温省煤器技术较早就得到了应用。在苏联为了减少排烟损失而改装锅炉机组时,在锅炉对流竖井的下部装设低温省煤器供加热热网水之用。德国Schwarze Pumpe电厂2×855MW褐煤发电机组在静电除尘器和烟气脱硫塔之间加装了烟气冷却器,利用烟气加热锅炉凝结水,其原理同低温省煤器一致。德国科

矿井通风系统的优化设计与应用

矿井通风系统的优化设计与应用 鉴定材料 临沂矿业集团邱集煤矿

二?一?年四月 1、鉴定大纲 2、计划任务书 3、工作报告 4、技术研究报告 5、社会经济效益分析报告 6、用户使用报告

矿井通风系统的优化设计与应用 鉴定大纲 临沂矿业集团邱集煤矿 二?一0年四月

矿井通风系统的优化设计与应用 鉴定大纲 一、鉴定条件 《矿井通风系统的优化设计与应用》项目是临沂矿业集团公司2010 年度科技计划,由山东省邱集煤矿研究实施,经过应用测试,各项性能指标均达到设计要求。目前,技术文件已经齐全,应用后效果明显才,具备了鉴定条件。特申请鉴定。 二、项目名称 矿井通风系统的优化设计与应用 三、项目来源及编号 临沂矿业集团公司2010年度科技计划 四、鉴定目的 通过专家评议做出结论,以便进行推广应用。 五、鉴定形式 会议鉴定 六、鉴定内容 1、审查技术文件是否齐全、完整、正确、统一。 2、评价系统是否科学、合理、先进。 3、审查改造后的系统是否满足安全生产需要。 七、鉴定资料文件 1、计划任务书; 2、工作报告; 3、技术研究报告; 4、经济效益分析报告; 5、用户使用报告。

八、鉴定程序 1、成立鉴定委员会; 2、讨论并通过鉴定大纲; 3、项目完成单位向鉴定委员会汇报研究开发情况; 4、专家质疑; 5、专家评议,通过鉴定意见; 6、专家、评委签字。 鉴定委员会二0—0年四月

编号 类另U 二O一O年科学技术项目 计划任务书 项目名称:矿井诵风系统的优化设计与应用 负责单位:临沂矿业集团邱集煤矿起止年限:2006 年5月?2010 年4月

低温省煤器技术简介及应用分析报告

低温省煤器LTE 技术介绍及应用分析 紫荆环境工程技术有限公司 2014年

目录 1.低温省煤器系统概述 (1) 2.国外低温省煤器目前的应用情况及安装位置 (1) 3.低压省煤器节能理论及计算 (3) 4.某工程低温省煤器的初步方案 (5) 5.加装低温省煤器需要考虑的问题 (8) 6 低温省煤器的特点分析 (8)

1.低温省煤器系统概述 排烟损失是锅炉运行中最重要的一项热损失,一般约为5%--12%,占锅炉热损失的60%--70%,影响排烟热损失的主要因素是排烟温度,一般情况下,排烟温度每增加10℃,排烟热损失增加0.6%--1%,相应多耗煤1.2%--2.4%。若以燃用热值2000KJ/KG煤的410t/h高压锅炉为例,则每年多消耗近万吨动力力煤,我国火力发电厂的很多锅炉排烟温度都超过设计值,约比设计值高20—50℃。所以,降低排烟温度对于节约燃料和降低污染具有重要的实际意义,实践中以降低排烟温度为目的的锅炉技术改造较多。但由于大多数电厂尾部烟道空间太小,防磨、防腐要求较高,引风机的压头裕量不大等实际情况。为了降低排烟温度,减少排烟损失,提高电厂的运行经济性,可考虑在烟道上加装低温省煤器。低温省煤器的具体方案为:凝结水在低温省煤器吸收排烟热量,降低排烟温度,自身被加热、升高温度后再返回汽轮机低压加热器系统,代替部分低压加热器的作用。在发电量不变的情况下,可节约机组的能耗。同时,由于进入脱硫塔的烟温下降,还可以节约脱硫工艺水的消耗量。 2.国外低温省煤器目前的应用情况及安装位置 2.1低温省煤器目前在国外的应用情况 低温省煤器能提高机组效率、节约能源。目前在国也已有电厂进行了低温省煤器的安装和改造工作。 某发电厂,两台容量100MW发电机组所配锅炉是锅炉厂设计制造的WGZ410/100—10型燃煤锅炉,由于燃用煤种含硫量较高,且锅炉尾部受热面积灰、腐蚀和漏风严重,锅炉排烟温度高达170℃,为了降低排烟温度,提高机组的运行经济性,在尾部加装了低温省煤器。低温省煤器系统布置图如下: 某电厂低温省煤器系统连接图

通风系统优化方案

xxxxxx煤业有限公司 2014年通风、抽放系统优化方案 科长: 分管领导: 通风科 2013-11-19

2014年通风系统优化方案 为进一步完善通风系统,保证矿井通风系统完善、合理、稳定可靠,现根据我公司井下通风系统现状,特制定2014年矿井通风系统优化调整方案。 一、矿井通风基本情况 矿井采用两翼对角抽出式和采区小风井独立进、回风相结合的通风系统。进风井有三个,即主井、副井和12区进风井;回风井有三个,即11区、12区、14区回风井。我公司为高瓦斯矿井。 11区回风井担负11采区上、下山及15采区开拓供风,12区回风井担负12采区供风,14区回风井担负14采区供风。11区回风井安装FBCDZ№.18-2×110型主通风机两台,电机功率为2×110Kw;12区回风井安装FBCDZ№.16/2×55型主通风机两台,电机功率2×55Kw/台;14区回风井安装FBCDZ№.18-2×110型主通风机两台,电机功率分别为2×110Kw;每个风井两台主通风机,互为备用。 矿井等积孔2.85m2,通风难易程度为容易,总进风量为6258m3/min,矿井总回风量为6387m3/min,矿井有效风量为5810m3/min。现11采区及14采区风量、负压不匹配。 二、系统优化的目的 减小通风阻力、提高通风能力,力求通风系统简单可靠,

提高矿井防灾、抗灾能力,确保矿井安全生产。 三、通风系统存在的问题 (一)部分采区通风负压大,其原因是: 1、11区、12区、14区的主要进、回风巷部分段巷道喷浆层脱落、巷道底板隆起,造成巷道断面小、回风阻力大。 2、15采区未形成独立的通风系统,现15采区通风采取压入式通风,风机安设在11采区大煤仓向东35米处,增加了11采区的通风负担,使11采区通风负压偏大。 3、我公司属典型的“三软”煤层,工作面上下巷巷道受采动影响极易底鼓、变型。 (二)采区变电所未形成独立通风系统: 1、15采区未形成独立通风系统。 2、12区、14区采区变电所目前没有形成独立的通风系统。 四、通风系统优化方案和计划 针对以上问题,特制定矿井通风系统优化改造方案: (一)通风系统主要优化方案 1、矿井主要进回风巷道局部地段变形严重,影响巷道的通风断面,增加了通风阻力,需要对其进行扩修。2012年对矿井主要进回风巷扩修了1200米;2013年截至目前已扩修了750米,预计年底完成850米;2014年计划对矿井主要进回风巷进行扩巷降阻1050米。

实验六PID控制系统参数优化设计

实验六 PID 控制系统参数优化设计 一.实验目的: 综合运用MATLAB 中SIMULINK 仿真工具进行复杂控制系统的综合设计与优化设计,综合检查学生的文献查阅、系统建模、程序设计与仿真的能力。 二.实验原理及预习内容: 1.控制系统优化设计: 所谓优化设计就是在所有可能的设计方案中寻找具有最优目标(或结果)的设计方法。控制系统的优化设计包括两方面的内容:一方面是控制系统参数的最优化问题,即在系统构成确定的情况下选择适当的参数,以使系统的某些性能达到最佳;另一方面是系统控制器结构的最优化问题,即在系统控制对象确定的情况下选择适当的控制规律,以使系统的某种性能达到最佳。 在工程上称为“寻优问题”。优化设计原理是“单纯形法”。MATLAB 中语句格式为:min ('')X f s =函数名,初值。 2.微分方程仿真应用:传染病动力学方程求解 三.实验内容: 1.PID 控制系统参数优化设计: 某过程控制系统如下图所示,试设计PID 调节器参数,使该系统动态性能达到最佳。(习题5-6) 2.微分方程仿真应用: 已知某一地区在有病菌传染下的描述三种类型人数变化的动态模型为 式中,X 1表示可能传染的人数;X 2表示已经得病的人数;X 3表示已经治愈的人数;0.0010.072αβ==;。试用仿真方法求未来20年内三种人人数的动态变化情况。 四.实验程序: 建立optm.m 文件: function ss=optm (x) global kp; global ki; global kd; global i; kp=x (1); ki=x (2);

kd=x (3); i=i+1 [tt,xx,yy]=sim('optzwz',50,[]); yylong=length(yy); ss=yy(yylong); 建立tryopt.m文件: global kp; global ki; global kd; global i; i=1; result=fminsearch('optm',[2 1 1]) 建立optzwz.mdl: 结果: result = 2.7011 0.4595 1.0911 优化前:

通风系统优化

平禹煤电有限责任公司一矿通风系统优化分析报告 河南理工大学 平禹煤电有限责任公司一矿 二O一O年五月

平禹煤电有限责任公司一矿 通风系统优化分析报告 课题组主要成员名单: 河南理工大学: 平禹煤电有限责任公司一矿:

目录 1 矿井概况 (3) 2通风系统优化分析 (4) 2.1矿井通风系统分析概述 (4) 2.2矿井通风系统优化设计的原则和指导思想 (5) 2.3平禹煤电有限责任公司一矿通风系统优化技术路线 (6) 2.4 对通风网路分支风量及风阻值测算结果的评价 (6) 2.5 平禹一矿新风井风机选型 (7) 2.6 平禹一矿通风系统优化分析 (7) 3. 结论 (16) 附件Ⅰ——矿井通风系统图和网络图 (17) 附件Ⅱ——解网数据文件 (21)

1 矿井概况 平禹煤电有限责任公司一矿(原新峰矿务局一矿,以下简称平禹一矿),1969年9月开始建井,1976年10月正式投产,建有一对竖井和一对斜井。设计生产能力60万吨/年,1991年生产能力为20~30万吨/年;至2005年9月,实际生产能力达100万吨/年;2005年10月19日,位于东大巷扩砌处,底板突水最大涌水量达38056m3/h,造成本矿淹井。经数月注浆堵水及排放工作,与2006年6月恢复生产。 采掘范围内,二1煤层厚度大部比较稳定,一般厚5~8m,最大厚度达14m,结构简单,偶含一薄层泥岩夹矸,顶板大部为泥岩、砂质泥岩,局部直接顶为砂岩,底板为砂质泥岩或细粒砂岩。二3煤层大部厚2.0m。1981年3月上旬,二采区轨道上山二1煤层曾发生自燃,1982年该处冒顶后再次发生自燃,1985年7月7日,+30m总回风巷掌子面突水,最大流量2375 m3/h;矿井历年瓦斯相对涌出量1.33~14.23/t.d,绝对瓦斯涌出量0.30~11.19m3/min,属低瓦斯矿井。 矿区内含煤地层为石灰系上统太原组、二叠系下统山西组、下石盒子组,上统上石盒子组,含煤地层总厚705m,太原组为一煤组,山西组为二煤组,下石盒子为三、四、五、六煤组,上石盒子组分七、八、九煤组。含煤总厚39.72m,含煤系数为5.63%。其中山西组下部的二1煤层全区可采,二3煤层为大部可采,下石盒子组的四6煤层为局部可采,上石盒子组的七4煤层为大部可采煤层,其他煤层不可采或偶尔可采。可采煤层总厚9.0m,可采含煤系数1.28%。 二1煤层位于山西组下部,下距太原组顶部硅质泥岩或菱铁质泥岩4.50m左右,距太原组下部L4石灰岩55.50m,距本溪组铝土质泥岩68.50m左右;上距香炭砂岩23.00m 左右,距砂锅窑砂岩64.00m左右。煤层埋深140.00m~1090.00m,煤层底板标高为+25m~-950m。 二1煤层直接顶板岩性多为泥岩、砂质泥岩,其次为细~中粒砂岩。老顶大多为灰白色、浅灰色厚层状中~细粒石英长石砂岩(大占砂岩);泥岩或砂质泥岩多为深灰~灰色,水平层理,富含植物叶化石,较松软,与二1煤层为明显接触,局部为炭质泥岩伪顶,呈过度接触。 二1煤层底板为黑色泥岩或粉砂岩,含植物根化石和黄铁矿结核,具透镜状层理、波状层理和水纹层理,遇水易膨胀,受击打呈楔形碎裂。

低温省煤器技术简介及应用讲解

低温省煤器LTE 技术介绍及应用分析 福建紫荆环境工程技术有限公司 2014年

目录 1.低温省煤器系统概述 (1) 2.国内外低温省煤器目前的应用情况及安装位置 (1) 3.低压省煤器节能理论及计算 (3) 4.某工程低温省煤器的初步方案 (6) 5.加装低温省煤器需要考虑的问题 (8) 6 低温省煤器的特点分析 (9)

1.低温省煤器系统概述 排烟损失是锅炉运行中最重要的一项热损失,一般约为5%--12%,占锅炉热损失的60%--70%,影响排烟热损失的主要因素是排烟温度,一般情况下,排烟温度每增加10℃,排烟热损失增加0.6%--1%,相应多耗煤1.2%--2.4%。若以燃用热值2000KJ/KG煤的410t/h高压锅炉为例,则每年多消耗近万吨动力力煤,我国火力发电厂的很多锅炉排烟温度都超过设计值,约比设计值高20—50℃。所以,降低排烟温度对于节约燃料和降低污染具有重要的实际意义,实践中以降低排烟温度为目的的锅炉技术改造较多。但由于大多数电厂尾部烟道空间太小,防磨、防腐要求较高,引风机的压头裕量不大等实际情况。为了降低排烟温度,减少排烟损失,提高电厂的运行经济性,可考虑在烟道上加装低温省煤器。低温省煤器的具体方案为:凝结水在低温省煤器内吸收排烟热量,降低排烟温度,自身被加热、升高温度后再返回汽轮机低压加热器系统,代替部分低压加热器的作用。在发电量不变的情况下,可节约机组的能耗。同时,由于进入脱硫塔的烟温下降,还可以节约脱硫工艺水的消耗量。 2.国内外低温省煤器目前的应用情况及安装位置 2.1低温省煤器目前在国内外的应用情况 低温省煤器能提高机组效率、节约能源。目前在国内也已有电厂进行了低温省煤器的安装和改造工作。 山东某发电厂,两台容量100MW发电机组所配锅炉是武汉锅炉厂设计制造的WGZ410/100—10型燃煤锅炉,由于燃用煤种含硫量较高,且锅炉尾部受热面积灰、腐蚀和漏风严重,锅炉排烟温度高达170℃,为了降低排烟温度,提高机组的运行经济性,在尾部加装了低温省煤器。低温省煤器系统布置图如下: 山东某电厂低温省煤器系统连接图

西安交大自控平台与系统

NI ELVISⅡ多功能虚拟仪器综合实验平台NI ELVISⅡ多功能虚拟仪器综合实验平台是一个多功能地数据采集实验平台如图2-1所示,它地核心是一个集成了8路差分输入<或16路单端输入)模拟数据采集通道<最高采样率1.25MS/s)、2路模拟信号输出、24路数字I/O通道、两路计数器通道地USB接口多功能数据采集卡,同时又集成了+/-15V和5V固定电源以及12种常用地虚拟仪器,包括示波器、数字万用表、函数发生器、可变电源、波特图分析仪、任意波形发生器、动态信号分析仪等.ELVIS通过面包板地方式将数据采集卡和各种仪器地接口引出,方便接线,并且为综合创新设计型实验留有足够地开发空间.ELVIS通过USB接口连接PC机,连接简单且便于调试,图2-2标示出NI ELVISⅡ实验板上通道接口地布局. 图2-1 NI ELVIS多功能虚拟仪器综合实验平台

b5E2RGbCAP 图2-2 NI ELVIS 实验板地通道接口地布局 1.常用地几种虚拟仪器 图2-3 NI ELVISⅡ12种虚拟仪器软面板地启动选择界面 图2-3是NI ELVISⅡ12种虚拟仪器软面板地启动选择界面,在自动控制原理实验中,主要用到地虚拟仪器包括函数发生器FGEN 、可变电源VPS 、示波器Scope 、伯德图分析仪Bode 等.p1EanqFDPw <1)函数发生器FGEN 通过ELVIS Instruments Launcher 地FGEN 按钮可以打开自带地函数发生器软面板,进而可以通过ELVIS 底座上地FGEN BNC 接口或者ELVIS 自带实验板上地FGEN 端口输出正弦波、方波或三角波.如图2-4所示,通过软面板上对应地图标可以选择产生相应地波形,同时可对频率、幅度<峰峰值)、直流偏置等参数进行设置.对于方波 AI 示波器PFI 电源、波形发生器、自定义I/O 、AO 、 DMM

50兆瓦机组锅炉省煤器设计说明书----王瑞雪

郑州大学 课程设计说明书 题目:50MW锅炉省煤器器设计 指导教师:王培萍 学生姓名:王瑞雪学号:20080390220 专业:热能与动力工程 院(系):化工与能源学院 完成时间:2011年10月21日 2011年9月22 日

目录 1.课程设计任务书 (4) 2.省煤器设计的意义、所设计设备在电厂中的作用、位置 (4) 3.省煤器设计参数 (4) 4.省煤器设计计算 (4) 4.1燃煤选择和烟气计算分析 (4) 4.2烟气出口温度计算 (5) 4.3对数平均温差计算 (6) 4.4管子参数设计计算 (7) 5.省煤器基本参数汇总 (9)

课程设计任务书 院系化工与能源学院专业热能与动力工程姓名王瑞雪学号20080390220设计题目50MW省煤器设计对应课程 设计背景 省煤器安装在锅炉的尾部烟道,吸收烟道中低温烟气的热量,对于低参数锅炉可降低排烟温度,提高锅炉热效率,节省燃料。同时,省煤器的采用提高了进入锅筒的水温,减少了锅筒壁与给水之间的温度差,从而使锅筒热应力降低,可提高锅炉的寿命。 设计参数 设计参数:蒸汽流量220t/h,给水温度205℃,省煤器出口水温220℃。炉膛尾部宽度2.0m,管子规格51×3.5mm, 管内水速1m/s。烟气进口温度400℃,烟速8m/s。 设计计算内容1、确定物性数据; 2、计算烟气出口温度; 3、估算传热面积; 4、确定换热管规格及排列方式; 5、省煤器校核。 设计要求1、计算部分要求列出所有计算公式,凡出现公式处均必须代入相应数据; 2、总装备图及零部件必须严格按照工程图的绘制方法进行绘制; 3、课程设计说明书应包括设计条件、设计思路、计算过程、结构设计方法等详细内容。 书写格式要求1、封面:题目、姓名、时间、指导教师姓名; 2、正文:设计条件、设计思路、计算过程及结果、结构设计方法等详细内容; 3、参考文献。 参考文献[1] 林宗虎,汪军.强化传热技术.北京:化学工业出版社,2007 [2] 樊泉桂,阎维平,锅炉原理. 北京:中国电力出版社,2008 [3] 杨世铭,陶文铨,传热学. 北京:高等教育出版社。2006.8 备注通过课程设计培养大家对锅炉和传热学的基本原理的实际应用,重点锻炼计算机绘图能力,以及将设计过程用文字的表达能力等。

实验六PID控制系统参数优化设计

实验六PID 控制系统参数优化设计 一. 实验目的: 综合运用MATLAB 中SIMULINK 仿真工具进行复杂控制系统的综合设计与 优化设计,综合检查学生的文献查阅、系统建模、程序设计与仿真的能力。 二. 实验原理及预习内容: 1. 控制系统优化设计: 所谓优化设计就是在所有可能的设计方案中寻找具有最优目标 (或结果)的 设计方法。控制系统的优化设计包括两方面的内容: 一方面是控制系统参数的最 优化问题,即在系统构成确定的情况下选择适当的参数, 以使系统的某些性能达 到最佳;另一方面是系统控制器结构的最优化问题, 即在系统控制对象确定的情 况下选择适当的控制规律,以使系统的某种性能达到最佳。 在工程上称为“寻优问题”。优化设计原理是“单纯形法” 。MATLAB 中语 句格式为:X f min s ('函数名’,初值)。 2. 微分方程仿真应用:传染病动力学方程求解 三. 实验内容: 1. PID 控制系统参数优化设计: 某过程控制系统如下图所示,试设计 达到最佳。(习题5-6) 2. 微分方程仿真应用: 地区在有病菌传染下的描述三种类型人数变化的动态模型为 PID 调节器参数,使该系统动态性能 已知某

X1X2 XdO )620 X,X2X2X2 (0)10 X2 X3 (0)70 丸X2 X3

式中,X1表示可能传染的人数;X2表示已经得病的人数;X3表示已经治愈的人数;0.001;0.072。试用仿真方法求未来20年内三种人人数的动态变化情况。 四?实验程序: 建立optm.m文件: function ss=optm (x) global kp; global ki; global kd; global i; kp=x (1); ki=x (2); kd=x (3); i=i+1 [tt,xx,yy]=sim('optzwz',50,[]); yylo ng=le ngth(yy); ss=yy(yylo ng); 建立tryopt.m文件: global kp; global ki; global kd; global i; i=1; result=fmi nsearch('optm',[2 1 1]) 建立optzwz.mdl:

煤矿矿井通风技术及通风系统优化设计

龙源期刊网 https://www.360docs.net/doc/e210805660.html, 煤矿矿井通风技术及通风系统优化设计 作者:杨加兴 来源:《科学与财富》2020年第12期 摘要:煤矿井下作业环境复杂,很多煤矿开采难度很大,也难以全面确保作业安全。在安全管理中,矿井通风是影响安全的重要因素,也是管理中的重点,很多安全问题都是由于通风不良引起。要提高通风质量,就要加强通风设计工作。基于工作实践,本文探讨煤矿矿井通风设计,旨在提高通风设计科学性、通风有效性、作业安全性。 关键词:矿井通风;通风系统;设计 引言 煤矿井下作业具有一定的危险性,容易出现各类安全问题。而通风是影响安全水平的重要因素,良好的通风可以有效减少各类有害气体、危险气体积聚。现如今,煤矿安全生产已经引起广泛关注,虽然机械化水平提升,人力不再是煤矿生产主力,但依然会面临很多安全问题,需要引起重视,注意通风安全。 1矿井通风技术概况 根据煤矿发展情况,当前主要应用的井下通风技术有: 1.1矿井通风系统 主要涉及通风方式、方法以及通风网络建设,这些部分构成了通风系统。实际应用中,可利用现代计算机技术实现对通风系统的整体网络化控制;可以根据实际空气情况适时调整通风量,进而保证空气质量水平。当出现井下火灾等安全问题时,系统会发出相应的报警,之后计算机会计算事故现场的CO浓度等获得必要信息,再根据这些信息调整井下通风口、送风量,有效减少损失,保障作业人员安全。 1.2多风机多级机站 现如今矿井通风技术正在不断走向成熟,很多节能技术也在尝试应用其中,一些技术展示出良好的应用效果,获得大力推广。调控系统对确保作业环境安全有重要意义。其中,多风机多级机站不止总功耗低,并且在有效风量上也有很大优势,具备良好的节能效果。 2通风系统分类

低压省煤器对静电除尘影响的分析

低压省煤器对静电除尘影响的分析 摘要:山东里彦发电有限公司为降低排烟温度在锅炉尾部新上低温省煤器,投运后除尘指标收到了意想不到的效果,该技术适合所有的锅炉特别是循环流化床锅炉节能改造、粉尘治理。 关键词:低温省煤器粉尘治理 0 引言 《山东省火电厂大气污染物排放标准》规定:自2017年1月1日起,现有火力发电锅炉及燃气轮机组执行的排放浓度限值标准如下: 烟尘<20mg/m3; 2014年,国家环保部门又提出燃煤机组要达到燃气机组环保标准,即烟尘排放限5mg/m3。 山东里彦发电有限公司在#5炉大修时增设低压省煤器,彻底解决机组排烟温度过高的问题,提高机组效率。通过近期的运行和性能试验测试,除尘指标收到了意想不到的效果。 1 改造原因 #5锅炉100%ECR工况下设计排烟温度为136.1℃,锅炉设计效率为91.84%。实际运行表明2013年#5的年平均排烟温度为160℃左右,夏季工况排烟温度甚至超过175℃,

严重降低了锅炉运行的安全性及经济性。因此进行了旨在利用烟气余热进行节能改造。 2 改造方案 锅炉低压省煤器本体安装于空预器出口至除尘器入口的两个竖直烟道内,受热面采用了分组布置的方式,每个烟道内布置三个换热管箱,低压省煤器传热元件采用H型翅片管,低压省煤器内凝结水与烟气换热呈逆流布置。低压省煤器管内冷却水与主凝结水成并联布置。其进水取自#6低加出口,经升压泵增压后进入低压省煤器入口集箱,吸收烟气热量后汇入出口集箱,沿回水母管汇入#4低加出口母管。为保证低压省煤器进水温度稳定,在低省进回水母管间设计有再循环管。 低压省煤器热力系统图见附图一。 3 改造效果 3.1 依据锅炉运行情况,增设低压省煤器系统后,除尘器入口烟温控制100℃左右,烟气温度下降约67℃。 3.2 除尘器进口温度降低67℃,烟气体积流量减少18%,飞灰比电阻下降,电场风速降低有利于提高除尘效率;同时烟温降低,烟气粘滞性变小,粉尘颗粒在烟气中驱进速度提高,有利于提高除尘器收尘效率。 #5除尘器入口烟温由167降低至100℃,粉尘浓度从79mg/nm3下降至26.4mg/nm3,除尘效率提高了0.2%。

实验室通风系统优化研究

实验室通风系统优化研究 摘要: 实验室通风系统的主要作用是提高实验室空气质量环境,保障检验人员安全。本文以我院实验室通风系统作为研究对象,分析提高实验室通风系统效率性、安全性、稳定性的方法与措施,总结实践经验。 关键词:实验室通风;通风系统;空气质量 随着生产安全意识的不断提高,以及对空气质量环境的高度关注,作为一个现代化的实验室,除了关注部分有洁净度、恒温恒湿等特殊要求的实验室外,一些试剂使用种类较多、使用量较大的实验室更应该得到重视。这部分实验室作为高污染区域,产生的废气容易造成室内空气污染,对检验人员的安全与健康造成不可估量的影响。而实验室通风系统则是实验室废气收集和净化的主体,优化通风系统运行效果,提高实验室安全性是未来实验室发展的重要方向之一。 1 通风系统优化 1.1 优化方向 实验室废气的主要来源于试验过程中使用的各种化学试剂的挥发,产生的废气主要有乙醚、醛类、酮类、四氯化乙烯、酸雾气体等各种有机或无机废气,大部分都会对人

体产生不同程度影响。 本项目主要是针对新建的实验室的通风系统进行研究,通过前期的设计优化以及后期调整、调试和试验,结合智能化的控制,改善通风系统的整体性能,提高实验室内部空气质量,创造一个更舒适、更安全的试验环境,并通过实验室空气质量、通风系统参数等进行对比,检验通风及控制系统的实际效果,总结相关实践经验,为以后实验室建设提供重要的经验参考。 1.2 实现的效果 项目选取了干洗检验以及生态前处理的旧有和新建实验室作为主要的研究对象,通过以下手段,包括:针对性配置末端排风设备、新风补风系统合理配置、实验室微负压控制、排风系统管道压力控制等,实现通风系统的优化,达到改善实验室空气环境质量的目的。 从新建和旧有实验室通风系统运行参数以及环境参数的对比来看(具体参数见表1),新建实验室通风系统的排风量和房间换气系数并没有增加很多,但是房间的废气浓度却有了明显的改善,基本达到国家室内空气质量标准所规定VOC的推荐浓度限值(0.6mg/m?)要求。而其主要的使用感受差异如下:旧有实验室产生的废气没有得到很好的收集,即使在室外过道上也能闻到室内散发出的刺激性气味,在实验室内必须佩戴安全防护器具才能长时间停留,否则会引起

相关文档
最新文档