图论知识及运用举例

图论知识及运用举例
图论知识及运用举例

图论知识及运用举例

1 概论

图论中的“图”是指某类具体事物和这些事物之间的联系。如果我们用点表示这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。图论为任何一个包含了一种二元关系的离散系统提供了一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。

图是运筹学(Operations Research )中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域。下面将要讨论最短路问题、最大流问题、最小费用流问题和匹配问题等。

2 图的基本概念

2.1 无向图

一个无向图(undirected graph)G 是由一个非空有限集合)(G V 和)(G V 中某些元素的无序对集合)(G E 构成的二元组,记为))(),((G E G V G =。其中

},,,{)(21n v v v G V =称为图G 的顶点集(vertex set )或节点集(node set )

, )(G V 中的每一个元素),,2,1(n i v i =称为该图的一个顶点(vertex )或节点(node );

},,,{)(21m e e e G E =称为图G 的边集(edge set )

,)(G E 中的每一个元素k e (即)(G V 中某两个元素j i v v ,的无序对) 记为),(j i k v v e =或i j j i k v v v v e == ),,2,1(m k =,被称为该图的一条从i v 到j v 的边(edge )。

当边j i k v v e =时,称j i v v ,为边k e 的端点,并称j v 与i v 相邻(adjacent );边k e 称为与顶点j i v v ,关联(incident )。如果某两条边至少有一个公共端点,则称这两条边在图G 中相邻。

边上赋权的无向图称为赋权无向图或无向网络(undirected network )。我们对图和网络不作严格区分,因为任何图总是可以赋权的。

一个图称为有限图,如果它的顶点集和边集都有限。图G 的顶点数用符号||V 或)(G ν表示,边数用||E 或)(G ε表示。

当讨论的图只有一个时,总是用G 来表示这个图。从而在图论符号中我们常略去字母G ,例如,分别用ν,,E V 和ε代替)(),(),(G G E G V ν和)(G ε。 端点重合为一点的边称为环(loop)。

一个图称为简单图(simple graph),如果它既没有环也没有两条边连接同一对顶点。

2.2 有向图

定义 一个有向图(directed graph 或 digraph )G 是由一个非空有限集合V 和V 中某些元素的有序对集合A 构成的二元组,记为),(A V G =。其中},,,{21n v v v V =称为图G 的顶点集或节点集, V 中的每一个元素),,2,1(n i v i =称为该图的一个顶点或节点;},,,{21m a a a A =称为图G 的弧集(arc set ),A 中的每一个元素k a (即V 中某两个元素j i v v ,的有序对) 记为

),(j i k v v a =或),,2,1(n k v v a j i k ==,被称为该图的一条从i v 到j v 的弧(arc )

。 当弧j i k v v a =时,称i v 为k a 的尾(tail ),j v 为k a 的头(head ),并称弧k a 为i v 的出弧(outgoing arc ),为j v 的入弧(incoming arc )。

对应于每个有向图D ,可以在相同顶点集上作一个图G ,使得对于D 的每条弧,G 有一条有相同端点的边与之相对应。这个图称为D 的基础图。反之,给定任意图G ,对于它的每个边,给其端点指定一个顺序,从而确定一条弧,由此得到一个有向图,这样的有向图称为G 的一个定向图。

以下若未指明“有向图”三字,“图”字皆指无向图。

2.3 完全图、二分图

每一对不同的顶点都有一条边相连的简单图称为完全图(complete graph)。n 个顶点的完全图记为n K 。

若Y X G V =)(,Φ=Y X ,0||||≠Y X (这里||X 表示集合X 中的元素个数),X 中无相邻顶点对,Y 中亦然,则称G 为二分图(bipartite graph);特别地,若Y y X x ∈?∈?,,则)(G E xy ∈,则称G 为完全二分图,记成|||,|Y X K 。

2.4 子图

图H 叫做图G 的子图(subgraph ),记作G H ?,如果)()(G V H V ?,)()(G E H E ?。若H 是G 的子图,则G 称为H 的母图。

G 的支撑子图(spanning subgraph ,又成生成子图)是指满足)()(G V H V =的子图H 。

2.5 顶点的度

设)(G V v ∈,G 中与v 关联的边数(每个环算作两条边)称为v 的度(degree),

记作)(v d 。若)(v d 是奇数,称v 是奇顶点(odd point);)(v d 是偶数,称v 是偶顶点(even point)。关于顶点的度,我们有如下结果:

(i) ∑∈=V

v v d ε2)(

(ii) 任意一个图的奇顶点的个数是偶数。

2.6 图与网络的数据结构

网络优化研究的是网络上的各种优化模型与算法.为了在计算机上实现网络优化的算法,首先我们必须有一种方法(即数据结构)在计算机上来描述图与网络。一般来说,算法的好坏与网络的具体表示方法,以及中间结果的操作方案是有关系的。这里我们介绍计算机上用来描述图与网络的5种常用表示方法:邻接矩阵表示法、关联矩阵表示法、弧表表示法、邻接表表示法和星形表示法。在下面数据结构的讨论中,我们首先假设),(A V G =是一个简单有向图,m A n V ==||,||,并假设V 中的顶点用自然数n ,,2,1 表示或编号,A 中的弧用自然数m ,,2,1 表示或编号。对于有多重边或无向网络的情况,我们只是在讨论完简单有向图的表示方法之后,给出一些说明。

(i )邻接矩阵表示法

邻接矩阵表示法是将图以邻接矩阵(adjacency matrix )的形式存储在计算机中。图),(A V G =的邻接矩阵是如下定义的:C 是一个n n ?的10-矩阵,即

n n n n ij c C ??∈=}1,0{)(,

?

???∈=.),(,0,),(,1A j i A j i c ij 也就是说,如果两节点之间有一条弧,则邻接矩阵中对应的元素为1;否则为0。可以看出,这种表示法非常简单、直接。但是,在邻接矩阵的所有2n 个元素中,只有m 个为非零元。如果网络比较稀疏,这种表示法浪费大量的存储空间,从而增加了在网络中查找弧的时间。

(ii )关联矩阵表示法

关联矩阵表示法是将图以关联矩阵(incidence matrix )的形式存储在计算机中.图),(A V G =的关联矩阵B 是如下定义的:B 是一个m n ?的矩阵,即

m n m n ik b B ??-∈=}1,0,1{)(,

?????∈=∈?-∈=∈?=.,0,

),(, ,1,),(,,1其它A i j k V j A j i k V j b ik

也就是说,在关联矩阵中,每行对应于图的一个节点,每列对应于图的一条弧。

如果一个节点是一条弧的起点,则关联矩阵中对应的元素为1;如果一个节点是一条弧的终点,则关联矩阵中对应的元素为1-;如果一个节点与一条弧不关联,则关联矩阵中对应的元素为0。对于简单图,关联矩阵每列只含有两个非零元(一个1+,一个1-)。可以看出,这种表示法也非常简单、直接。

此外,还有邻接表表示法,弧表示法,星形表示法等。

2.7 轨与连通

k k v e e v e v W 2110=,其中)(G E e i ∈,k i ≤≤1,)(G V v j ∈,k j ≤≤0,i e 与i i v v ,1-关联,称W 是图G 的一条道路(walk),k 为路长,顶点0v 和k v 分别称为W 的起点和终点,而121,,,-k v v v 称为它的内部顶点。

若道路W 的边互不相同,则W 称为迹(trail)。若道路W 的顶点互不相同,则W 称为轨(path)。

称一条道路是闭的,如果它有正的长且起点和终点相同。起点和终点重合的轨叫做圈(cycle)。

若图G 的两个顶点v u ,间存在道路,则称u 和v 连通(connected)。v u ,间的最短轨的长叫做v u ,间的距离。记作),(v u d 。若图G 的任二顶点均连通,则称G 是连通图。

显然有:

(i) 图P 是一条轨的充要条件是P 是连通的,且有两个一度的顶点,其余顶点的度为2;

(ii) 图C 是一个圈的充要条件是C 是各顶点的度均为2的连通图。

3 应用—最短路问题

3.1 两个指定顶点之间的最短路径

问题如下:给出了一个连接若干个城镇的铁路网络,在这个网络的两个指定城镇间,找一条最短铁路线。

以各城镇为图G 的顶点,两城镇间的直通铁路为图G 相应两顶点间的边,得图G 。对G 的每一边e ,赋以一个实数)(e w —直通铁路的长度,称为e 的权,得到赋权图G 。G 的子图的权是指子图的各边的权和。问题就是求赋权图G 中指定的两个顶点00,v u 间的具最小权的轨。这条轨叫做00,v u 间的最短路,它的权叫做00,v u 间的距离,亦记作),(00v u d 。

求最短路已有成熟的算法:迪克斯特拉(Dijkstra )算法,其基本思想是按距0u 从近到远为顺序,依次求得0u 到G 的各顶点的最短路和距离,直至0v (或直至G 的所有顶点),算法结束。为避免重复并保留每一步的计算信息,采用了标号算法。下面是该算法。

(i) 令0)(0=u l ,对0u v ≠,令∞=)(v l ,}{00u S =,0=i 。

(ii) 对每个i S v ∈(i i S V S \=),用

)}()(),({min uv w u l v l i

S u +∈ 代替)(v l 。计算)}({min v l i

S v ∈,把达到这个最小值的一个顶点记为1+i u ,令}{11++=i i i u S S 。

(iii). 若1||-=V i ,停止;若1||-

算法结束时,从0u 到各顶点v 的距离由v 的最后一次的标号)(v l 给出。在v 进入i S 之前的标号)(v l 叫T 标号,v 进入i S 时的标号)(v l 叫P 标号。算法就是不断修改各项点的T 标号,直至获得P 标号。若在算法运行过程中,将每一顶点获得P 标号所由来的边在图上标明,则算法结束时,0u 至各项点的最短路也在图上标示出来了。

例1 某公司在六个城市621,,,c c c 中有分公司,从i c 到j c 的直接航程票价记在下述矩阵的),(j i 位置上。(∞表示无直接航路),请帮助该公司设计一张城市1c 到其它城市间的票价最便宜的路线图。

??????????????????∞∞∞∞∞∞

05525251055010202525100102040

2010015252015050102540500 用矩阵n n a ?(n 为顶点个数)存放各边权的邻接矩阵,行向量pb 、1index 、2index 、d 分别用来存放P 标号信息、标号顶点顺序、标号顶点索引、最短通路的值。其中分量

???=顶点未标号

当第顶点已标号当第i i i pb 01)(; )(2i index 存放始点到第i 点最短通路中第i 顶点前一顶点的序号;

)(i d 存放由始点到第i 点最短通路的值。

求第一个城市到其它城市的最短路径的Matlab 程序如下:

clc;

M=10000;

a(1,:)=[0,50,M,40,25,10];

a(2,:)=[zeros(1,2),15,20,M,25];

a(3,:)=[zeros(1,3),10,20,M];

a(4,:)=[zeros(1,4),10,25];

a(5,:)=[zeros(1,5),55];

a(6,:)=zeros(1,6);

a=a+a';

pb(1:length(a))=0;pb(1)=1;index1=1;index2=ones(1,length(a));

d(1:length(a))=M;d(1)=0;temp=1;

while sum(pb)

tb=find(pb==0);

d(tb)=min(d(tb),d(temp)+a(temp,tb));

tmpb=find(d(tb)==min(d(tb)));

temp=tb(tmpb(1));

pb(temp)=1;

index1=[index1,temp];

index=index1(find(d(index1)==d(temp)-a(temp,index1)));

if length(index)>=2

index=index(1);

end

index2(temp)=index;

end

d, index1, index2

3.2 每对顶点之间的最短路径

计算赋权图中各对顶点之间最短路径,显然可以调用Dijkstra 算法。具体方法是:每次以不同的顶点作为起点,用Dijkstra 算法求出从该起点到其余顶点的最短路径,反复执行n 次这样的操作,就可得到从每一个顶点到其它顶点的最短路径。这种算法的时间复杂度为)(3n O 。第二种解决这一问题的方法是由Floyd R W 提出的算法,称之为Floyd 算法。

假设图G 权的邻接矩阵为0A ,

?????

???????=nn n n n n a a a a a a a a a A 2122221

112110 来存放各边长度,其中:

0=ii a n i ,,2,1 =;

∞=ij a j i ,之间没有边,在程序中以各边都不可能达到的充分大的数代

ij ij w a = ij w 是j i ,之间边的长度,n j i ,,2,1, =。

对于无向图,0A 是对称矩阵,ji ij a a =。

Floyd 算法的基本思想是:递推产生一个矩阵序列n k A A A A ,,,,,10 ,其中),(j i A k 表示从顶点i v 到顶点j v 的路径上所经过的顶点序号不大于k 的最短路径长度。

计算时用迭代公式:

)),(),(),,(min(),(111j k A k i A j i A j i A k k k k ---+=

k 是迭代次数,n k j i ,,2,1,, =。

最后,当n k =时,n A 即是各顶点之间的最短通路值。

例2 最短路问题(SPP -shortest path problem )

一名货柜车司机奉命在最短的时间内将一车货物从甲地运往乙地。从甲地到乙地的公路网纵横交错,因此有多种行车路线,这名司机应选择哪条线路呢?假设货柜车的运行速度是恒定的,那么这一问题相当于需要找到一条从甲地到乙地的最短路。

Floyd 算法的Matlab 程序如下:

clear;

clc;

M=10000;

a(1,:)=[0,50,M,40,25,10];

a(2,:)=[zeros(1,2),15,20,M,25];

a(3,:)=[zeros(1,3),10,20,M];

a(4,:)=[zeros(1,4),10,25];

a(5,:)=[zeros(1,5),55];

a(6,:)=zeros(1,6);

b=a+a';path=zeros(length(b));

for k=1:6

for i=1:6

for j=1:6

if b(i,j)>b(i,k)+b(k,j)

b(i,j)=b(i,k)+b(k,j);

path(i,j)=k;

end

end

end

end

b, path

4.1 基本概念

连通的无圈图叫做树,记之为T 。若图G 满足)()(T V G V =,)()(G E T E ?,则称T 是G 的生成树。图G 连通的充分必要条件为G 有生成树。一个连通图的生成树的个数很多,用)(G τ表示G 的生成树的个数,则有公式

公式 (Caylay)2)(-=n n n K τ。

公式 )()()(e G e G G ?+-=τττ。

其中e G -表示从G 上删除边e ,e G ?表示把e 的长度收缩为零得到的图。

4.2 应用—连线问题

欲修筑连接n 个城市的铁路,已知i 城与j 城之间的铁路造价为ij C ,设计一个线路图,使总造价最低。连线问题的数学模型是在连通赋权图上求权最小的生成树。赋权图的具有最小权的生成树叫做最小生成树。

构造最小生成树的两种常用算法:prim 算法和Kruskal 算法。这里重点介绍prim 算法。

设置两个集合P 和Q ,其中P 用于存放G 的最小生成树中的顶点,集合Q 存放G 的最小生成树中的边。令集合P 的初值为}{1v P =(假设构造最小生成树时,从顶点1v 出发),集合Q 的初值为Φ=Q 。prim 算法的思想是,从所有P p ∈,P V v -∈的边中,选取具有最小权值的边pv ,将顶点v 加入集合P 中,将边pv 加入集合Q 中,如此不断重复,直到V P =时,最小生成树构造完毕,这时集合Q 中包含了最小生成树的所有边。

prim 算法如下:

(i )}{

1v P =,Φ=Q ;

(ii )while V P =~

},,m i n (P V v P p w pv pv -∈∈=

}{v P P +=

}{pv Q Q +=

end

例3 用prim 算法求右图的最小生成树。

我们用n result ?3的第一、二、三行分别表示生成树边的起点、终点、权集合。

Matlab 程序如下:

clc;clear;

M=1000;

a(1,2)=50; a(1,3)=60;

a(2,4)=65; a(2,5)=40;

a(3,4)=52;a(3,7)=45;

a(4,5)=50; a(4,6)=30;a(4,7)=42;

a(5,6)=70;

a=[a;zeros(2,7)];

a=a+a';a(find(a==0))=M;

result=[];p=1;tb=2:length(a);

while length(result)~=length(a)-1

temp=a(p,tb);temp=temp(:);

d=min(temp);

[jb,kb]=find(a(p,tb)==d);

j=p(jb(1));k=tb(kb(1));

result=[result,[j;k;d]];p=[p,k];tb(find(tb==k))=[];

end

result

5.Euler 图和Hamilton 图

5.1 基本概念

定义 经过G 的每条边的迹叫做G 的Euler 迹;闭的Euler 迹叫做Euler 回路或E 回路;含Euler 回路的图叫做Euler 图。

直观地讲,Euler 图就是从一顶点出发每边恰通过一次能回到出发点的那种图,即不重复地行遍所有的边再回到出发点。

定理 (i )G 是Euler 图的充分必要条件是G 连通且每顶点皆偶次。

(ii )G 是Euler 图的充分必要条件是G 连通且 d

i i C G 1==,i C 是圈,

)()()(j i C E C E j i ≠Φ= 。

(iii )G 中有Euler 迹的充要条件是G 连通且至多有两个奇次点。

定义 包含G 的每个顶点的轨叫做Hamilton(哈密顿)轨;闭的Hamilton 轨叫做Hamilton 圈或H 圈;含Hamilton 圈的图叫做Hamilton 图。

直观地讲,Hamilton 图就是从一顶点出发每顶点恰通过一次能回到出发点的那种图,即不重复地行遍所有的顶点再回到出发点。

6.2 Euler 回路的Fleury 算法

1921年,Fleury 给出下面的求Euler 回路的算法。

Fleury 算法:

1o . )(0G V v ∈?,令00v W =。

2o . 假设迹i i i v e v e v W 110=已经选定,那么按下述方法从},,{1i e e E -中选取边1+i e :

(i )1+i e 和i v 相关联;

(ii )除非没有别的边可选择,否则1+i e 不是},,{1i i e e G G -=的割边(cut edge)。(所谓割边是一条删除后使连通图不再连通的边)。

3o . 当第2步不能再执行时,算法停止。

6.3Hamilton 例题

例4 从北京(Pe )乘飞机到东京(T)、纽约(N)、墨西哥城(M)、伦敦(L)、巴黎(Pa)五城市做旅游,每城市恰去一次再回北京,应如何安排旅游线,使旅程最

解:编写程序如下:

clc,clear

a(1,2)=56;a(1,3)=35;a(1,4)=21;a(1,5)=51;a(1,6)=60;

a(2,3)=21;a(2,4)=57;a(2,5)=78;a(2,6)=70;

a(3,4)=36;a(3,5)=68;a(3,6)=68;

a(4,5)=51;a(4,6)=61;

a(5,6)=13;

a(6,:)=0;

a=a+a';

c1=[5 1:4 6];

L=length(c1);

flag=1;

while flag>0

flag=0;

for m=1:L-3

for n=m+2:L-1

if a(c1(m),c1(n))+a(c1(m+1),c1(n+1))

c1(m+1:n)=c1(n:-1:m+1);

end

end

end

end

sum1=0;

for i=1:L-1

sum1=sum1+a(c1(i),c1(i+1));

end

circle=c1;

sum=sum1;

c1=[5 6 1:4];%改变初始圈,该算法的最后一个顶点不动

flag=1;

while flag>0

flag=0;

for m=1:L-3

for n=m+2:L-1

if a(c1(m),c1(n))+a(c1(m+1),c1(n+1))<... a(c1(m),c1(m+1))+a(c1(n),c1(n+1))

flag=1;

c1(m+1:n)=c1(n:-1:m+1);

end

end

end

end

sum1=0;

for i=1:L-1

sum1=sum1+a(c1(i),c1(i+1));

end

if sum1

sum=sum1;

circle=c1;

end

circle,sum

图论基础

1、略 2、计算有向无圈图的根 输入一个有向无圈图DAG,计算和输出DAG的根r(即r到其他任何顶点都有一条路。若图中没有根,则输出“not found”)。 输入:顶点数n和边数e;以下为e行,每行为一条有向边的两个端点 输出:根r或者“not found” 算法分析 设 const mx=100;{顶点数的上限} var n,e,i,j,k,a,b:integer;{ 顶点数n、边数e} g:array[1..mx,1..mx]of boolean;{传递闭包} bn:boolean;{根存在标志} 1、输入信息,计算传递闭包 readln(n,e);{输入顶点数和边数} fillchar(g,sizeof(g),0);{ 有向无圈图初始化} for i:=1 to e do{输入信息,构造传递闭包的初始值} begin readln(a,b);g[a,b]:=true end; for k:=1 to n do{计算传递闭包} for i:=1 to n do for j:=1 to n do if g[i,j] or g[i,k] and g[k,j]then g[i,j]:=true; 2、计算DAG的根 然后枚举每一个顶点。根据传递闭包的信息,若当前顶点至其它所有顶点有路,则判定该顶点即为根。若没有一个顶点可作为DAG的根,则输出失败信息 for i:=1 to n do{枚举每一个可能的根} begin bn:=true;{设定I至其他所有顶点有路的标志} for j:=1 to n do{若I至任一个顶点无路,则返回bn为false} if (i<>j) and not g[i,j] then begin bn:=false; break end; if bn then break{若I至其他所有顶点有路,则输出根i} end; if bn then writeln(i) else writeln('not found'){若不存在根,则输出失败信息}

测度论基础知识总结

测度论基础知识总结 1.集合论 1.1 集合与基本运算 ·概念:具有一定性质的对象构成的全体(不严格定义)。中间含有的对象叫元素。 全集:要研究的问题涉及到的最大集合。 空集:没有任何元素的集合。 表达方法:{x(集合元素x)|x应该有的性质} ·元素与集合的关系:x A,x?A ·集合之间的关系 只有包含或者不包含 若对于任意元素x A,x B则A包含于B(证明就用这个方法),A是B的子集(A B 则为B的真子集) 包含的特殊情况相等:A=B就是A包含于B同时B包含于A 真子集:A包含于B但A B ·集合的运算 ①单个元素的幂集 对于一个集合X,它的幂集表示所有其子集为元素构成的集合。这种以集合为元素的集合,也叫集合族。 ②两个集合的运算 交:A B={x| x A且x B} 并:A B={x| x A或x B} 差:A\B(或写成A-B)={x| x A且x?B} 补:=U\A(U是问题要研究的全集) 于是有等式A\B=A 积:(直积)A×B={(x,y)| x A且y B }(把A、B中元素构成有序对) ③多个元素的运算 多个交表示所有以λ为角标的集合的并,要求λ,I称为指标集。 类似有多个并 注:可以是无穷个 【例】={x| x>},A={x| x>0},则A= ·集合的分析相关性质 ①上限集:一列集合{},定义上限集为。类似于数列的上极限。

②下限集:一列集合{},定义下限集为。类似于数列的下极限。 ③集合列的极限:当上限集等于下限集时极限存在,就是上限集(或下限集)。 ④单调集合列:若始终有包含于,也就是集合越来越大,则为递增集合列;反之, 若始终有,则为递减列。 若为递增列,则有极限=;若为递减列,则有=。 1.2映射 ·定义:X、Y是两个集合,对任意x X,存在唯一的y=f(x)Y与之对应,则对应法则f 为X到Y的一个映射,记为f:X→Y。 像集:对于X的一个子集A,像集{f(x)| x A}记为f(A),显然包含于Y 原像集:对于Y的一个子集B,原像集{x| x记为 ·满射:f(X)=Y,即Y中所有元素都是像 单射:X中不同元素一定对应Y中不同的像 双射:既是单射又是满射。双射是一一对应的映射。 ·逆映射:对于双射,建立一种Y到X的双射,将像映射到原像上。记为:Y→X ·复合映射:f:X→Y,g:Y→Z,它们的复合g o f:X→Z,写成g(f(X)) ·函数,一个(n维实数向量)到R(实数)上的映射 ·性质(映射与交并运算顺序可交换性) 对于f:X→Y,X若干个子集,Y若干个子集 f(U)=Uf() = f()包含于(只有这一个不一定等于!!!) 不等于的例子:A={1} ,B={-1},f(x)=|x|,则f(A B)f(A)f(B) = 用集合相等定义可证明。 1.3集合的势 ·对等:如果集合A和B之间可以建立双射,则A对等于B。记为A~B 性质:①A到B有单射→A与B子集对等 A到B有满射→B与A子集对等 ②A~B,B~C,则A~C(传递性) ③A~C,B~D,则A×B~C×D

离散数学的基础知识点总结

离散数学的基础知识点总结 第一章命题逻辑 1.前键为真,后键为假才为假;<—>,相同为真,不同为假;2?主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n个变元共有2n个极小项或极大项,这2n为(0~2n-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P规则,T规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 第二章谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含T,存在量词用合取“; 3.既有存在又有全称量词时,先消存在量词,再消全称量词;

第四章集合 1.N,表示自然数集,1,2,3……,不包括0; 2.基:集合A中不同元素的个数,|A|; 3.幕集:给定集合A,以集合A的所有子集为元素组成的集合,P(A); 4.若集合A有n个元素,幕集P(A)有2°个元素,|P(A)|= 2|A|= 2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 第五章关系 1.若集合A有m个元素,集合B有n个元素,则笛卡尔AXB的基数为mn , A到B上可以定义2mn种不同的关系; 2.若集合A有n个元素,则|A X\|= n2, A上有2n个不同的关系; 3.全关系的性质:自反性,对称性,传递性; 空关系的性质:反自反性,反对称性,传递性; 全圭寸闭环的性质:自反性,对称性,反对称性,传递性; 4.前域(domR):所有元素x组成的集合;

外测度的性质与计算小结

外测度的性质与计算 The properties and calculation of the outer measure 姓名: 学号: 学院:数学与信息科学学院 专业:数学与应用数学 指导老师: 完成时间: 外测度的性质与计算 【摘要】Lebesgue外测度是Lebesgue积分的基础,本论文主要论述了它的一些性质及相关的计算.首先,给出了Lebesgue外测度的定义;接着,指出和证明了外测度具有的非负性、单调性、次可数可加性、距离可加性、平移不变性这五大主要性质;同时给出了外测度的介值定理和一些其他的性质,并讨论了在一般情况下,外测度不具备可数可加性;然后讨论了可数集的外测度的性质,着重写出可数

江西师范大学11届学士学位毕业论文 集的外测度具有可数可加性;最后是与外测度计算相关的一些例题.【关键词】Lebesgue外测度,次可数可加性,距离可加性。

The properties and calculation of the outside measure 【abstract 】Lebesgue outer measure is the base of lebesgue integral, this thesis mainly discusses some properties and its related calculation. At first, give the definition of Lebesgue outer measure; then pointed out and proved the outer measure has nonnegative, monotonicity and second countable additive property , distance additive property,translation invariant property ,the five main properties; It also gives the outer measure mean value theorem and some other properties, and discusses the properties under the meaning of general point sets, the outer measure does not have countable additive property. Then discussed the property of outer measure of countable set, and emphatically write that outer measure of countable set has count additive property. And the last is some examples about outer measure computation. 【keywords 】Lebesgue outer measure, Second countable additive property , Distance additive property

第二章 测度论的知识要点与复习自测

第二章 测度论的知识要点与复习自测 一、Lebesgue 外测度的知识要点: ◇ 熟练掌握Lebesgue 外测度的定义和外测度的基本性质(包括基本性质:非负性、单调性、次可数可加性;Lebesgue 外测度的特有性质:距离分离性); ◇ 会用定义或性质求一些典型集合的外测度(例如:n R 中至多可数集,区间,Cantor (三分)集,黎曼可积函数(特别是连续函数)图象等的外测度); ◇ 特别注意零测集的含义和性质【如n R 中的任何集合并上零测集或减去零测集外侧度不变;零测集的子集仍为零测集;至多可数个零测集的并集仍为零测集】。 自测题: 1、叙述n R 中Lebesgue 外侧度的定义及性质,并用定义和性质解决如下问题: (1)设n n Q R ?为有理点集,计算*n m Q 0=; (2)设n R E ?为至多可数集,计算* m 0E =; (3)设n ,R E F ?,* m 0E =,则()()***m m m \F E F F E ?==。 2、据理说明下面的结论是否成立:设n R E ?, (1)若E 为有界集,则* m E <+∞; (2)若* m E <+∞,则E 为有界集; (3)若*m E =+∞,则E 为无界集; (4)若E 为无界集,则* m E =+∞。 3、设n R I ?为区间,证明:*m I I =,其中I 表示I 的体积(注意I 分有界和无界 两种情况来证明);并利用此结论和外侧度的性质再解决如下问题: (1)设1[0,1]R P ??为三分Cantor 集,则* m 0P =;(注意三分Cantor 集的构造) (2)设()f x 为定义在1[,]R a b ?上的黎曼可积函数, {}2()(,)(),[,]R p G f x y y f x x a b ==∈?, ()f x 在[,]a b 的图像,则*m ()0p G f =;(注意黎曼可积的充要条件的使用) (3)设n R E ?有内点,则* m 0E >; (4)(外侧度的介值性)设1 R E ?为有界集,*m 0E >,则对任意* 0m c E ≤≤,存在1E E ?,使得,*1m E c =;(注意构造适当的连续函数,利用连续函数的介值性) (5)(外侧度的介值性的一般形式)设1 R E ?,*m 0E >,则对任意* 0m c E ≤≤,存在1E E ?,使得,*1m E c =。(注意:此结论要用到后面的等测包定理和单调递增可测集列的测度性质) 二、Lebesgue 可测集的知识要点: ◇ 熟练掌握Lebesgue 可测集的卡氏定义(即C.Caratheodory 定义)及等价 条件(如:余集的可测性;对任意的A E ?和c B E ?,总有()*** m A B m A m B ?=+),会用定义或等价条件来证明一些点集的可测性(例如:零测集,区间等); ◇ 熟练掌握可测集的并、交、差、余运算性质,并会熟练地运用这些性质来判断集合的可测性;

离散数学知识点总结

总结离散数学知识点 第二章命题逻辑 1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假; 2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P规则,T规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 第三章谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;

2.全称量词用蕴含→,存在量词用合取^; 3.既有存在又有全称量词时,先消存在量词,再消全称量词; 第四章集合 1.N,表示自然数集,1,2,3……,不包括0; 2.基:集合A中不同元素的个数,|A|; 3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A); 4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 第五章关系 1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基 2种不同的关系; 数为mn,A到B上可以定义mn 2.若集合A有n个元素,则|A×A|=2n,A上有22n个不同的关系;

数学建模入门基本知识

数学建模知识 ——之新手上路一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析

图论应用案例

题目:最小生成树在城市交通建设中的应用 姓名: 学号: 指导老师: 专业:机械工程 2014年3月16

目录 摘要..................................................................................... 错误!未定义书签。 1 绪论 (1) 2 有关最小生成树的概念 (2) 3 prim算法介绍 (3) 4 系统设计及其应用 (5) 一、系统设计 (5) 二、最小生成树应用 (8) 5 总结 (11) 参考文献 (12) 附件: (13)

最小生成树在城市交通建设中的应用 摘要:连通图广泛应用于交通建设,求连通图的最小生成树是最主要的应用。比如要在n个城市间建立通信联络网,要考虑的是如何保证n点连通的前提下最节省经费,就应用到了最小生成树。 求图的最小生成树有两种算法,一种是Prim(普里姆)算法,另一种是Kruskal(克鲁斯卡尔)算法。 本文通过将城市各地点转换成连通图,再将连通图转换成邻接矩阵。在Microsoft Visual C++上,通过输入结点和权值,用普里姆算法获得权值最小边来得到最小生成树,从而在保证各个地点之间能连通的情况下节省所需费用。 本文从分析课题的题目背景、题目意义、题目要求等出发,分别从需求分析、总体设计、详细设计、测试等各个方面详细介绍了系统的设计与实现过程,最后对系统的完成情况进行了总结。 关键字:PRIM算法、最小生成树、邻接矩阵、交通建设

Abstract Connected graph is widely applied in traffic construction, connected graph of minimum spanning tree is the main application.Such as to establish a communication network between the n city, want to consider is how to ensure n points connected under the premise of the most save money, apply to the minimum spanning tree. O figure there are two kinds of minimum spanning tree algorithm, one kind is Prim (she) algorithm, the other is a Kruskal algorithm (Kruskal). In this article, through the city around point into a connected graph, then connected graph is transformed into adjacency matrix.On Microsoft Visual c + +, through the input nodes and the weights, gain weight minimum edge using she algorithm to get minimum spanning tree, which in the case of guarantee every location between connected to save costs. Based on the analysis topic subject background, significance, subject requirements, etc, from requirements analysis, general design, detailed design, testing, and other aspects detailed introduces the system design and implementation process, finally the completion of the system are summarized. Key words: PRIM algorithm, minimum spanning tree, adjacency matrix, traffic construction

图论总结(超强大)78408

1.图论Graph Theory 1.1.定义与术语Definition and Glossary 1.1.1.图与网络Graph and Network 1.1. 2.图的术语Glossary of Graph 1.1.3.路径与回路Path and Cycle 1.1.4.连通性Connectivity 1.1.5.图论中特殊的集合Sets in graph 1.1.6.匹配Matching 1.1.7.树Tree 1.1.8.组合优化Combinatorial optimization 1.2.图的表示Expressions of graph 1.2.1.邻接矩阵Adjacency matrix 1.2.2.关联矩阵Incidence matrix 1.2.3.邻接表Adjacency list 1.2.4.弧表Arc list 1.2.5.星形表示Star 1.3.图的遍历Traveling in graph 1.3.1.深度优先搜索Depth first search (DFS) 1.3.1.1.概念 1.3.1. 2.求无向连通图中的桥Finding bridges in undirected graph 1.3. 2.广度优先搜索Breadth first search (BFS) 1.4.拓扑排序Topological sort 1.5.路径与回路Paths and circuits 1.5.1.欧拉路径或回路Eulerian path 1.5.1.1.无向图 1.5.1. 2.有向图 1.5.1.3.混合图

1.5.1.4.无权图Unweighted 1.5.1.5.有权图Weighed —中国邮路问题The Chinese post problem 1.5. 2.Hamiltonian Cycle 哈氏路径与回路 1.5. 2.1.无权图Unweighted 1.5. 2.2.有权图Weighed —旅行商问题The travelling salesman problem 1.6.网络优化Network optimization 1.6.1.最小生成树Minimum spanning trees 1.6.1.1.基本算法Basic algorithms 1.6.1.1.1.Prim 1.6.1.1. 2.Kruskal 1.6.1.1.3.Sollin(Boruvka) 1.6.1. 2.扩展模型Extended models 1.6.1. 2.1.度限制生成树Minimum degree-bounded spanning trees 1.6.1. 2.2.k小生成树The k minimum spanning tree problem(k-MST) 1.6. 2.最短路Shortest paths 1.6. 2.1.单源最短路Single-source shortest paths 1.6. 2.1.1.基本算法Basic algorithms 1.6. 2.1.1.1.Dijkstra 1.6. 2.1.1.2.Bellman-Ford 1.6. 2.1.1.2.1.Shortest path faster algorithm(SPFA) 1.6. 2.1.2.应用Applications 1.6. 2.1.2.1.差分约束系统System of difference constraints 1.6. 2.1.2.2.有向无环图上的最短路Shortest paths in DAG 1.6. 2.2.所有顶点对间最短路All-pairs shortest paths 1.6. 2.2.1.基本算法Basic algorithms 1.6. 2.2.1.1.Floyd-Warshall 1.6. 2.2.1.2.Johnson

图论基础知识

图论基本知识 对于网络的研究,最早是从数学家开始的,其基本的理论就是图 论,它也是目前组合数学领域最活跃的分支。我们在复杂网络的研究中将要遇到的各种类型的网络,无向的、有向的、加权的……这些都可以用图论的语言和符号精确简洁地描述。图论不仅为物理学家提供了描述网络的语言和研究的平台,而且其结论和技巧已经被广泛地移植到复杂网络的研究中。图论,尤其是随机图论已经与统计物理并驾齐驱地成为研究复杂网络的两大解析方法之一。考虑到物理学家对于图论这一领域比较陌生,我在此专辟一章介绍图论的基本知识,同时将在后面的章节中不加说明地使用本章定义过的符号。进一步研究所需要的更深入的图论知识,请参考相关文献[1-5]。 本章只给出非平凡的定理的证明,过于简单直观的定理的证明将 留给读者。个别定理涉及到非常深入的数学知识和繁复的证明,我们将列出相关参考文献并略去证明过程。对于图论知识比较熟悉的读者可以直接跳过此章,不影响整体阅读。 图的基本概念 图G 是指两个集合(V ,E),其中集合E 是集合V×V 的一个子集。 集合V 称为图的顶点集,往往被用来代表实际系统中的个体,集合E 被称为图的边集,多用于表示实际系统中个体之间的关系或相互作用。若{,}x y E ,就称图G 中有一条从x 到y 的弧(有向边),记为x→

y ,其中顶点x 叫做弧的起点,顶点y 叫做弧的终点。根据定义,从任意顶点x 到y 至多只有一条弧,这是因为如果两个顶点有多种需要区分的关系或相互作用,我们总是乐意在多个图中分别表示,从而不至于因为这种复杂的关系而给解析分析带来困难。如果再假设图G 中不含自己到自己的弧,我们就称图G 为简单图,或者更精确地叫做有向简单图。以后如果没有特殊的说明,所有出现的图都是简单图。记G 中顶点数为()||G V ν=,边数为()||G E ε=,分别叫做图G 的阶和规模,显然有()()(()1)G G G ενν≤-。图2.1a 给出了一个计算机分级网络的示意图,及其表示为顶点集和边集的形式。 图2.1:网络拓扑结构示意图。图a 是10阶有向图,顶点集为 {1,2,3,4,5,6,7,8,9,10},边集为{1→2,1→3,1→4,2→5,2→6,2→7,3→6,4→7,4→8,6→9,7→9,8→10};图b 是6阶无向图,顶点集为{1,2,3,4,5,6},边集为{13,14,15,23,24,26,36,56}。 从定义中可以看到,从任意顶点x 到y 不能连接两条或以上 边,本文所讨论的图,均符合上述要求,既均为不含多重边的图。如

测度论的知识要点与复习自测

第二章 测度论的知识要点与复习自测 一、Lebesgue 外测度的知识要点: ◇ 熟练掌握Lebesgue 外测度的定义和外测度的基本性质(包括基本性质:非负性、单调性、次可数可加性;Lebesgue 外测度的特有性质:距离分离性); ◇ 会用定义或性质求一些典型集合的外测度(例如:n R 中至多可数集,区间,Cantor (三分)集,黎曼可积函数(特别是连续函数)图象等的外测度); ◇ 特别注意零测集的含义和性质【如n R 中的任何集合并上零测集或减去零测集外侧度不变;零测集的子集仍为零测集;至多可数个零测集的并集仍为零测集】。 自测题: 1、叙述n R 中Lebesgue 外侧度的定义及性质,并用定义和性质解决如下问题: (1)设n n Q R ?为有理点集,计算*n m Q 0=; (2)设n R E ?为至多可数集,计算*m 0E =; (3)设n ,R E F ?,*m 0E =,则()()***m m m \F E F F E ?==。 2、据理说明下面的结论是否成立:设n R E ?, (1)若E 为有界集,则*m E <+∞; (2)若*m E <+∞,则E 为有界集; (3)若*m E =+∞,则E 为无界集; (4)若E 为无界集,则*m E =+∞。 3、设n R I ?为区间,证明:*m I I =,其中I 表示I 的体积(注意I 分有界和无界两种情况来证明);并利用此结论和外侧度的性质再解决如下问题: (1)设1[0,1]R P ??为三分Cantor 集,则*m 0P =;(注意三分Cantor 集的构造) (2)设()f x 为定义在1[,]R a b ?上的黎曼可积函数, {}2()(,)(),[,]R p G f x y y f x x a b ==∈?, ()f x 在[,]a b 的图像,则*m ()0p G f =;(注意黎曼可积的充要条件的使用) (3)设n R E ?有内点,则*m 0E >; (4)(外侧度的介值性)设1R E ?为有界集,*m 0E >,则对任意*0m c E ≤≤,存在1E E ?,使得,*1m E c =;(注意构造适当的连续函数,利用连续函数的介值

离散数学第七章图的基本概念知识点总结docx

图论部分 第七章、图的基本概念 7.1 无向图及有向图 无向图与有向图 多重集合: 元素可以重复出现的集合 无序积: A&B={(x,y) | x∈A∧y∈B} 定义无向图G=, 其中 (1) 顶点集V≠?,元素称为顶点 (2) 边集E为V&V的多重子集,其元素称为无向边,简称边. 例如, G=如图所示, 其中V={v1, v2, …,v5}, E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)} , 定义有向图D=, 其中 (1) V同无向图的顶点集, 元素也称为顶点 (2) 边集E为V?V的多重子集,其元素称为有向边,简称边. 用无向边代替D的所有有向边所得到的无向图称作D的基图,右图是有向图,试写出它的V和E 注意:图的数学定义与图形表示,在同构(待叙)的意义下是一一对应的

通常用G表示无向图, D表示有向图, 也常用G泛指 无向图和有向图, 用e k表示无向边或有向边. V(G), E(G), V(D), E(D): G和D的顶点集, 边集. n 阶图: n个顶点的图 有限图: V, E都是有穷集合的图 零图: E=? 平凡图: 1 阶零图 空图: V=? 顶点和边的关联与相邻:定义设e k=(v i,v j)是无向图G=的一条边, 称v i,v j 为e k的端点, e k与v i (v j)关联. 若v i ≠v j, 则称e k与v i (v j)的关联次数为1;若v i = v j, 则称e k为环, 此时称e k与v i 的关联次数为2; 若v i不是e k端点, 则称e k与v i 的关联次数为0. 无边关联的顶点称作孤立点. 定义设无向图G=, v i,v j∈V, e k,e l∈E,若(v i,v j) ∈E, 则称v i,v j相邻; 若e k,e l 至少有一个公共端点, 则称e k,e l相邻. 对有向图有类似定义. 设e k=?v i,v j?是有向图的一条边,又称v i是e k的始点, v j是e k的终点, v i邻接到v j, v j邻接于v i.

图论在交叉学科中的应用

数学科学学院 课程名称图论导引 题目图论在交叉学科中的应用姓名闫二路 学号 A01014134 专业数学与应用数学 授课老师汪毅

图论在交叉学科中的应用 [摘要]利用图论知识可以解决一些交叉学科中的实际问题。对于更好地理解问题,思考问题从而求解问题具有现实意义。图论知识的应用是相当广泛的,它是数学的重要分支,使今年来较为活跃的数学分支,它是源于生活,高于生活。图论作为组合数学的一分支,与其他数学分支,如信息论,矩阵论都有着重要的联系。 [关键字] 树、即时码、hamilton圈、Hamilton路 1.即时码的树图构造法 即时码定义:在唯一可译变长码中,有一类码,它在译码时无须参考后续的码符号就能立即做出判断,译成对应的信源符号,则这类码称为即时码。 树的定义:一个图G若是无圈的且连通,则称图G是树。 为了联系树与即时码的关系我们引入关于判断树的一个定理; 定理1:图G是树当且仅当G的任何两个顶点都被唯一的路连接。 从上述定理1我们可以判断利用树构造的码为即时码,如下图构造的即时码:

从上面我们可以得到码字集合C1={000,001,010,011,100,101,110,111},C2={00,01,02,10,11,12,20,210,211,212,220,221,222} 我们根据即时码的定义可得利用树构造的码都是即时码,我们也知道即时码一定是唯一可译码,因此树图能给我们带来比较方便的方法来构造即时码。 问题求解反思:我们从即时码的树图构造法中,我们得到:使用图论中的树我们能很容易得到信息论中即时码的一种构造方法,这里利用了交叉学科相互结合的思想,利用图我们能更好的理解一些实际问题,有利于我们的理解,从这个方面我们能得出图论在其他学科有着很重要的联系,有利于实际问题更好的解决。 2.Hamilton图的应用 Hamilton图的定义:一个含图G的每个顶点的圈称为是G的Hamilton 圈,这个含有Hamilton圈的图称为是一个Hamilton图。 Hamilton圈在现实中有着广泛的应用,当我们给出一个实际问题时,我们应该怎样Hamilton图来解决实际问题,这需要我们从联系实际

1040 【图论基础】求连通子图的个数 1041 【图论基础】求最小生成树(prim)

【图论基础】求连通子图的个数 Time Limit:10000MS Memory Limit:65536K Total Submit:42 Accepted:30 Description 求一个无向图中连通子图的个数。 Input 第一行一个数n,表示无向图的顶点的数量(n<=5000),接下来从第2行到第n+1行,每行有n个数(1表示相应点有直接通路,0表示无直接通路),形成一个n*n的矩阵,用以表示这个无向图。示例: Output 输出一个数,表示这个图含有连通子图的个数。 Sample Input 5 1 0 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 1 Sample Output 自己算吧! Source

?var ? i,j,n,ans,x:longint; ? a:array[1..5000,0..5000] of longint; ? b:array[1..5000] of boolean; ?procedure dfs(x:longint); ?var i:longint; ?begin ? b[x]:=false; ? for i:=1 to a[x,0] do if b[a[x,i]] then ? dfs(a[x,i]); ?end; ? ?begin ? readln(n); ? for i:=1 to n do ? for j:=1 to n do begin ? read(x); ? if x=1 then begin ? inc(a[i,0]); a[i,a[i,0]]:=j; ? end; ? end; ? fillchar(b,sizeof(b),true); ? for i:=1 to n do if b[i] then begin ? inc(ans); ? dfs(i); ? end; ? writeln(ans); ?end.

测度论的知识要点与复习自测

第二章测度论的知识要点与复习自测 一、Lebesgue外测度的知识要点: ?熟练掌握Lebesgue外测度的定义和外测度的基本性质(包括基本性质:非负性、单调性、次可数可加性;Lebesgue外测度的特有性质:距离分离性); ?会用定义或性质求一些典型集合的外测度(例如:R n中至多可数集,区间,Cantor (三分)集,黎曼可积函数(特别是连续函数)图象等的外测度) ; ?特别注意零测集的含义和性质【如R n中的任何集合并上零测集或减去零测集外侧度不变;零测集的子集仍为零测集;至多可数个零测集的并集仍为零测集】。 自测题: 1、叙述只“中Lebesgue外侧度的定义及性质,并用定义和性质解决如下问 题: (1)设Q n R n为有理点集,计算m*Q n0 ; (2)设E R n为至多可数集,计算m*E 0 ; (3)设E,F R n,m E 0,贝U mF E mFmFE。 2、据理说明下面的结论是否成立:设 E R n, (1)若E为有界集,则m*E ; (2)若m*E ,则E为有界集; (3)若m*E ,则E为无界集; (4)若E为无界集,则m*E 。 3、设I R n为区间,证明:m*l |l|,其中I表示I的体积(注意I分有界和无界两种情况来证明);并利用此结论和外侧度的性质再解决如下问题: (1)设P [0,1] R1为三分Can tor集,贝U m*P 0 ;(注意三分Cantor集的构造) (2)设f(x)为定义在[a,b] R1上的黎曼可积函数, G p(f) (x,y) y f(x),x [a,b] R2, f (x)在[a,b]的图像,贝9 m*G p(f) 0 ;(注意黎曼可积的充要条件的使用) (3)设E R n有内点,贝V m*E 0 ; (4) (外侧度的介值性)设E R1为有界集,m*E 0,则对任意0 c m*E,存在E1 E,使得,m*E1 c ;(注意构造适当的连续函数,利用连续函数的介值

电子科技大学研究生图论总结

第一章:图论基本概念 1.定义 平凡图/非平凡图 简单图/复合图 空图 n 阶图 连通图/非连通图 完全图n K 12 n n n m K 偶图,m n K 完全偶图 ,m n m K mn K 正则图 图和补图,自补图 自补图判定方法 定点的度 d v 最小度 最大度 握手定理 2d v m 图的度序列与图序列,图序列判定方法(注意为简单图) 图的频序列 2.图运算 删点/删边 图并/图交/图差/图对称差 图联 积图/合成图111122,u adjv u v u adjv 或 超立方体 3.连通性 途径 迹 路 图G 不连通,其补图连通 一个图是偶图当且仅当它不包含奇圈 4.最短路算法(b t A T ) 5.矩阵描述 邻接矩阵及其性质,图的特征多项式 关联矩阵 6.极图?? L 补图 完全L 部图 完全L 几乎等部图 托兰定理 第二章:树 1.定义 树:连通的无圈图 森林 树的中心和树的形心? 入<=sqrt(2m(n-1)/n)

生成树 根树 出度 入度 树根 树叶 分支点 m 元根树 完全m 元根树 2.性质 每棵非平凡树至少有两片树叶 图G 是树当且仅当G 中任意两点都被唯一的路连接 T 是(n,m)树,则m = n – 1 具有k 个分支的森林有n-k 条边 每个n 阶连通图边数至少为n-1(树是连通图中边的下界) 每个连通图至少包含 一棵生成树 3.计算 生成树计数 递推计数法: G G e G e 关联矩阵计数法:去一点后,每个非奇异阵对应一棵生成树 最小生成树(边赋权) 避圈法 破圈法 完全m 元树: 11m i t 第三章:图的连通性 1. 割边、割点和块(性质使用反证法) 割边: w G e w G 边e 为割边当且仅当e 不在任何圈中 割点: w G v w G v 是无环连通图G 的一个顶点,v 是G 的割点当且仅当V(G-e)可以被划分为两个子 集,v 在两个子集内点互连的路上 块:没有割点的连通子图 G 顶点数>=3,G 是块当且仅当G 无环且任意两顶点位于同一圈上 v 是割点当且仅当v 至少属于G 的两个不同的块 2. 连通度 点割 k 顶点割 最小点割(最少用几个点把图割成两份) G 的连通度 G 连通图没顶点割时连通度 1G n ,非连通图 0G 边割 k 边割 最小边割(最少用几条边把图割成两份) G 的边连通度 G 递推到无圈,自环不算圈

概率论和统计中常用的收敛极限小结

概率论和统计中的收敛总结 概率论中的极限定理和数理统计学中各种统计量的极限性质,都是按随机变量序列的各种不同的收敛性来研究的。 设{X n,n≥1}是概率空间(Ω,F,P)(见概率)上的随机变量序列,从随机变量作为可测函数看,常用的收敛概念有以下几种: 以概率1收敛若,则称{X n,n≥1}以概率1收敛于X。强大数律(见大数律)就是阐明事件发生的频率和样本观测值的算术平均分别以概率 1收敛于该事件的概率和总体的均值。以概率 1收敛也常称为几乎必然(简记为α.s)收敛,它相当于测度论中的几乎处处(简记为α.e.)收敛。 依概率收敛若对任一正数ε,都有,则称{X n,n≥1}依概率收敛于X。它表明随机变量X n与X发生较大偏差(≥ε)的概率随n无限增大而趋于零。概率论中的伯努利大数律就是最早阐明随机试验中某事件 A发生的频率依概率收敛于其概率P(A)的。依概率收敛相当于测度论中的依测度收敛。 r阶平均收敛对r≥1,若X n-X的r阶绝对矩(见矩)的极限,则称{X n,n≥1}r阶平均收敛于X。特别,当r=1时,称为平均收敛;当r=2时,称为均方收敛,它在宽平稳过程(见平稳过程)理论中是一个常用的概念。 弱收敛设X n的均值都是有限的,若对任一有界随机变量Y都有,则称{X n,n≥1}弱收敛于X,由平均收敛可以推出弱收敛。 从随机变量的分布函数(见概率分布)看,常用的有如下收敛概念。 分布弱收敛设F n、F分别表示随机变量X n、X的分布函数,若对F的每一个连续点x 都有,则称X n的分布F n弱收敛于X的分布F,也称X n依分布收敛于X。分布弱收敛还有各种等价条件,例如,对任一有界连续函数?(x), img src="image/254-6.gif" align="absmiddle">。 分布弱收敛是概率论和数理统计中经常用到的一种收敛性。中心极限定理就是讨论随机变量序列的标准化部分和依分布收敛于正态随机变量的定理。大样本统计中也要讨论各种统计量依分布收敛的问题。 分布淡收敛设{F n(x),n≥1}为分布函数列,而F(x)为一非降右连续函数(不一定是 分布函数),若对F(x)的每一个连续点x都有,则称F n淡收敛于F。 上述各种收敛之间有如下蕴含关系(A=>B表示由A可推出B),若r′≥r≥1,则有:。 此外,依概率收敛于常数与依分布收敛于常数是等价的。当是独立随机变量序列{Y j,j≥1}的部分和时,X n依分布收敛、依概率收敛和以概率1收敛三者是等价的。

相关文档
最新文档