电子元器件失效机理

电子元器件失效机理
电子元器件失效机理

摘要:电子元器件被广泛的应用于人们的生产和生活的各种装置中,是社会进步发展必不可少,具有极为重要的作用。然而各类电子元器件在使用过程中不可避免地会出现失效现象。因此分析元器件失效原因和老化机理,并提出可行的老化方法就显得尤为重要。

关键字:老化机理,失效原因

Abstract:Electronic components are widely used in people's production and life, is essential for social progress and development, an extremely important role. However, the use of various electronic components will inevitably occur during the failure phenomenon. Therefore, the aging analysis of the causes and mechanisms of component failure, and put forward feasible method of aging is particularly important.

Keyword:Aging mechanisms,failure causes

1引言

电子元器件在各种电子产品中有广泛的应用。电子产品都有一定的使用寿命,这与电子元器件的寿命密切相关。电子元器件在使用的过程有可能出现故障,即失去了原有的功能,从而使电子产品失效。电子产品的应用十分的广泛,是生产生活所不能缺少的重要部分。因此研究电子元器件的失效原因和老化机理,并提出可行的老化方法就具有重要意义。老化是一种方法,即给电子元器件施加环境应力试验。若了解电子元器件的老化机理就能提出可靠的老化,就可以剔除产生出有缺陷将会早期失效的元器件,因而保证了出产产品的使用寿命。一个有效的老化方法能降低生产成本,提高收益,减少不必要的损失和麻烦。

2 研究电子元器件失效的意义

电子元器件的失效即为特性的改变,表现为激烈或缓慢变化,不能正常工作。

在文献[1]中介绍了电子元器件的失效原因。

其主要分为:

1致命性失效:如过电应力损伤

2缓慢退化:如MESFET(金属—半导体场效应晶体管)的IDSS(饱和漏源电流)下降

3间歇失效:如塑封器件随温度变化间歇失效

在文献[1]中也介绍了研究电子元器件失效的实验方法。

其主要可分为:

1应力----强度模型即保持元器件所在的环境不发生任何变化只改变应力的大小。从一个低的应力下缓慢增加直至应力超过元器件的强度承受范围(如过电应力(EOS)静电放电(ESD)闩锁等等),纪录下在各种应力的电子元器件的各种电气特性的数据,用来在实验结束后进行数据处理和分析。

2应力----时间模型即保持元器件所处的环境下各种应力是保证不发生变化的,在某一特定的应力下随着时间的积累效应,特性变化超差(如金属电迁移,腐蚀,热疲劳等等)。同样也要纪录下在各个时间段内元器件的各种电气特性数据,用来在实验结束后进行数据处理和分析。

研究电子元器件的失效原理能确定它的失效模式、失效机理,研究分析老化机理,防止失效重复出现,并提出可行的老化方法。

3 各种电子元器件失效原因和老化机理

3.1电容器的失效原理

在文献[1]中介绍了各种电容器的失效原因和老化

一:电解电容

电解电容主要应用于电源滤波,一旦短路后果严重。它的优点是电容量大,价格低;缺点是寿命短,漏电流大,易燃。

在经过大量的研究后发现电解电容的失效原因主要有以下几点。

1:漏液:电容减小,阳极氧化膜损伤难以修补,漏电流增大

2:短路放电:大电流烧坏电极

3:电源反接:大电流烧坏电极,阴极氧化,绝缘膜增厚,电容量下降

4:长期放置:不通电,阳极氧化膜损伤难以修补,漏电流增大

与其对应的老化主要是:降温使用,不做短路放电,电源不反接,经常通电。

二:固体钽电容失效原因:过流烧毁;正负极反接。

三:陶瓷电容失效原因:电路板弯曲引起芯片断裂,漏电流增大;银迁引起边缘漏电和介质内部漏电。

3.2微电子器件的失效原理

在文献[1]中介绍了微电子器件的失效原理主要有如下几种情况。

开路的可能失效原因:过电烧毁、静电损伤、金属电迁移、金属的电化学腐蚀、压焊点脱落、CMMOS电路的闩锁效应。

漏电和短路的可能失效原因:颗粒引发短路、介质击穿、PN微等离子击穿、Si-Al互熔。参数漂移的可能失效原因:封装内水汽凝结、介质的离子玷污、欧姆接触退化、金属电迁移、辐射损伤。

在文献[1]中也介绍了一些环境应力对微电子器件的影响。

例如水汽对电子元器件的影响主要包括:电参数漂移;外引线腐蚀;金属化腐蚀;金属半导体接触退化等。

辐射对电子元器件的影响主要包括:参数漂移、软失效。

过电:PN结烧毁、电源内引线烧毁、电源金属化烧毁。

静电:MOS器件氧化层击穿、输入保护电路潜在损伤或烧毁。

热:键合失效、Al-Si互熔、PN结漏电

热电:金属电迁移、欧姆接触退化。

高温:芯片断裂、芯片粘接失效。

低温:芯片断裂。

3.3ZnO 压敏电阻失效原理

在文献[2-5]中介绍了ZnO 压敏电阻的导电机理和失效原因。

ZnO 压敏电阻由于具有优良的非线性伏安特性和冲击能量吸收能力,在高、中、低压电气工程领域均有广泛的应用,用以限制过电压对回路或系统的危害。ZnO 压敏电阻在电力系统中主要用作ZnO避雷器的关键器件,ZnO压敏电阻的电气性能决定了ZnO避雷器限制过电压的水平。其主要的导电机理如表3-1所示。

表3-1氧化锌电阻片导电机理的研究历程

年份研究者模型

1971Matsuoka 空间电荷限制电流(SCLC)

1975 Levinson&Phillip 晶粒界面层的遂穿过程

1975 Levine 肖特基势垒的遂穿过程

1976 Morris 肖特基势垒遂穿过程

1977 Emtage 有异质结的肖特基势垒遂穿过程

1978 Einzinger 有异质结的遂穿过程

1979 Mahan、Levinson&philip 有穴参与肖特基势垒的遂穿过程

1980 Eda 异质结的旁路效应

1982 Pike 空穴诱导导通

1986 Levinson&philip 异质结的旁路模型

1986 Blatter&Greuter 空穴诱导导通

1987 Suzuoki 空间电荷诱导电流

1999 章天金晶界存在多个驰豫时间不同的德拜驰豫机构

2001 Bueno p-n异质结局域态

由于ZnO 压敏电阻的广泛应用。所以吸引了许多学者对它的失效原因和老化机理进行了大量的研究。目前提出的失效原因主要包括离子迁移、载流子陷阱、偶极子极化、氧离子解吸附和化学反应等,归纳其中具有代表性的研究成果如表3-2所示。

表3-2 ZnO 压敏电阻老化机理的研究进展

研究者产生老化现象的原因

Eda,Matsuoka 老化的样品会产生热刺激电流,可能与离子迁移有关Eda,Iga 离子迁移导致肖特基势垒畸变

Chiang,Kingery 掺杂离子在晶界层不对称分布

Gupta 提出晶界缺陷模型,填隙锌离子的迁移影响老化特性

Sonder 高温下氧离子迁移,微裂纹会形成氧离子的导电通道

李盛涛,刘辅宜离子迁移和由于离子浓度梯度所导致的热扩散Sato 电子被耗尽层中陷阱中心所捕获,在晶界层附近积累

李惠峰偶极子取向使得极化时间变长

Takahashi 晶界层氧离子的解吸附

Bui,Loubiere

局部放电产生HNO3使得势垒高度降低

Ramfrez

氧元素减少与β相Bi2O3消失

Wang Mao-Hua 填隙锌离子在晶界与带负电锌空位发生反应生成中性填隙锌原子Erhart 填隙锌与锌空位的扩散

在文献[2-5]中针对目前对ZnO压敏电阻老化机理的研究成果,主要提出了如下的几种老化。

1 提高ZnO粉体的质量,如制备纯度高、粒径分布好、易于分散的纳米ZnO粉体,特别是将其他掺杂成分如Bi2O3等在制粉过程引入,制备纳米复合粉末,将可从根本上改善掺杂成分的均匀性,从而大幅度地提高氧化锌电阻片的性能。

2 采用新的烧结工艺,如微波或微波等离子烧结氧化锌电阻片,已展示良好的应用前景,但还存在工艺控制稳定性和规模化生产等问题。因此,应进一步探讨和完善新的烧结工艺,以降低烧结能耗,提高烧成质量和产品合格率。

3.4发光二极管(LED)的失效原理

在文献[6-11]中介绍了各类LED的失效原因和老化机理。

很多研究已经证实,发光二极管(LED)在失效过程中将导致芯片、封装、荧光粉区域失

效。LED老化实验条件普遍为施加电应力、热应力,由于不同材料热膨胀系数之间差异和缺陷生长,导致LED光通量的衰减,主要的老化机理包括暗点缺陷、金属合金迁移、组分变化等。

随着LED 生产技术水平的提高, 其理论寿命已达到10万小时, 而常规应力下的寿命试验很难对它的寿命和可靠性及时地做出客观的评价, 因此研究时通常采用加速寿命实验方法。加速实验是在加大应力情况下加快LED 内部物理化学的变化, 能够在较短时间内暴露出器件结构设计和材料的缺陷,为LED 结构设计和材料选择提供依据和参考。由于LED 是功率型器件, 受电流和温度影响较大, 因此采用加大LED 工作电流应力和环境温度应力的方法。常用的加速寿命实验分为恒定应力加速实验和步进应力加速实验。

通过国内外众多科研机的研究得出LED的失效原因有如下几点。

1:芯片材料缺陷引起器件光输出的衰减。

这主要是由以下这些国内外学者经过研究得到的。

W.Y.Ho 等在电流加速寿命试验中采用DLTS技术, 发现在退化前后距导带1.1eV处的深能级缺陷密度从2.7×1013 cm- 3 上升到4.2×1013 cm- 3,异质结分界面因晶格失配产生的缺陷密度增加。F.Manyakhin等分析了GaN 基LED在电流加速寿命试验中光电参数的变化及空间电荷层离化受主的分布,解释了发光强度在老化过程中的变化原因, 认为在老化过程中的第一阶段, 以有源层中的Mg- H 化合物受热电子迁移影响分解形成Mg+为主, 使P 型层的离化受主浓度增加, 复合几率增大从而增强了发光强度; 在第二阶段, 施主缺陷N 空位形成增多, 而Mg- H浓度较低制约受主浓度的增加, 从而使非辐射复合中心增加, 降低了发光强度。郑代顺等认为这些深能级缺陷由于对载流子有较强俘获作用而降低了器件的发光效率, 而注入载流子的非辐射复合造成的晶格振动又导致了缺陷的运动和增加, 从而使发光效率在老化过程中持续降低。

2:封装材料热退化造成失效。

温度升高及蓝光和紫外线照射会使环氧树脂的透明度严重下降。Barton 等研究发现150℃左右环氧树脂的透明度降低, LED光输出减弱, 在135℃~145 ℃范围内还会引起树脂严重退化, 对LED 寿命有重要的影响。在大电流情况下, 封装材料甚至会碳化, 在器件表面形成导电通道, 使器件失效。

3:荧光粉的退化造成失效。

PN 结高温会造成LED 光谱波长的红移, 而荧光粉在热效应下也会产生退化, 从而导致荧光粉的受激发光光谱区跟芯片的发光光谱区不匹配, 荧光粉吸收光而不发光的部分增加, 荧光粉激发的光减少, 从而导致失效。荧光粉的不透明性会造成光的大量散射, 还会对光产生阻隔作用。

4:散热不良导致电极缓慢或灾变性失效。

电极引线一般具有较强的承受电流冲击和震动能力, 但是由于环氧树脂、电极引线与芯片材料的热膨胀系数有差异, 在高温下产生的不同形变会导致引线断裂, 造成灾变性失效。5:p 型欧姆接触的金属电迁移和退化。

研究表明在老化过程中, 大电流下P型欧姆接触的金属会沿着缺陷通道电迁移到达结

区造成短路, 从而导致了器件失效。

6:静电导致器件灾变性失效。

由于LED 芯片内部串联电阻较低,在无静电防护情况下, 人体等产生的静电通过LED 放电, 会导致LED 局部击穿。

针对以上各类失效原因也提出了对应的各种老化。

1:改善芯片的衬底材料和外延制作工艺, 可少缺陷和位错。采用失配度更小的衬底材料能减少生长带来的缺陷, 有效改善芯片质量。

2:采用热系数接近的材料是有效提高使用寿命的方法。

3:采用新型封装材料—硅树脂。这种材料抗热和抗紫外线能力更强, 不会产生采用环氧材料导致的感光层变黄和分层问题, 并且具有良好的机械特性, 发光效率更高, 使用寿命更长。

4:采用的新技术可以制备实心球形YAG 荧光粉。

5: 在生产过程、驱动电路和芯片中增加静电保护措施有利于提高大功率LED 的使用寿命。

4 实验和试验

本设计主要的研究方法就是通过实验和试验来获得大量必需的数据,得出它们的各种电气特性。从而研究各种电子元器件的失效原理和老化机理,提出可行的老化方法,应用于实践中。

实验和试验准备从应力-----强度模型,应力-----时间模型两个方面入手,由文献[1]得到启发。选取多种常用的电子元器件(如电阻,发光二极管,三极管等)进行实验和试验使得到的理论更加的可靠和具有说服力。

具体的实验如下:

1 选取12个相同的样品发光二极管,再将12个随机分为3组,每组4个。将3组样品分别放入3个相同的等温容器中,分别施加不同的电应力(可分别取100毫安、1000毫安、1500毫安3种情况),保持其他环境因素都不变,再施加不同的电应力一段时间(可以是300小时),利用瞬态热计量测试仪来测量样品在各种电应力条件下温度的结果。再用工具测量各样品的用电流电压特性(I–V )和光输出和输入电流的特性(L-I)。

纪录下不同电应力下的不同的温度的结果。描述出各样品的用电流电压特性(I–V )和光输出和输入电流特性(L-I)

2选取12个相同的样品发光二极管,再将12个随机分为3组,每组4个。将3组样品分别放入3个相同的等温容器中,分别施加相同的电应力并且保持其他环境因素都不变,对每组样品的施加电应力的时间不同(可分别为100小时、300小时、500小时)利用瞬态热计量测试仪来测量样品在各种电应力条件下温度的结果。再用工具测量各样品的用电流电压特性(I–V )和光输出和输入电流特性(L-I)。

纪录下相同电应力下时间不同时的各种不同温度的结果。描述出各样品的用电流电压特性(I–V )和光输出和输入电流特性(L-I)。

3选取相同的12个电阻,再将12个随机分为3组,每组4个。先测试出电阻实验前的阻值。将3组样品分别放置在不同温度的相同的容器中,保持其他环境因素不变。即将对样品施加不同的热应力其他条件相同,经过一定的时间(可以是300小时),再测试各电阻的伏安特性等来测量出电阻的实际值。

记录数据比较电阻在不同热应力下的阻值。

4选取相同的12个电阻,再将12个随机分为3组,每组4个。先测试出电阻实验前的阻值。将3组样品分别放置在相同温度下相同的容器中,保持其他环境因素不变。即将对样品施加相同的热应力并且其他条件也相同,经过不同的时间(可以分别取100小时、300小时、500小时),再测试各电阻的伏安特性来测量出电阻的实际值。

记录数据比较电阻在相同热应力下作用不同时间的各个阻值。

5结束语

电子元器件在各种电子产品中有广泛的应用。电子产品都有一定的使用寿命,这与电子元器件的寿命关系紧密,老化可以剔除有缺陷将会早期失效的元器件,因而保证了出厂产品的使用寿命。一个有效的老化方法能降低生产成本,提高收益,减少不必要的损失和麻烦。因此研究电子元器件的失效原因和老化机理,并提出可行的老化方法就具有重要意义。

本设计的主要目的就是培养学生的自主学习能力,增加学生的实践动手能力。通过查找资料,学习到和设计相关的技术知识,知道各种电子元器件的特性。再对所选的多种元器件设计实验和试验电路,通过实验来得到各种数据,得到多种元器件的失效原因和老化机理提出可行的老化方法。

参考文献

[1]URL: https://www.360docs.net/doc/e29845295.html,/p-82075684.html

[2] 刘俊,何金良,胡军,龙望成.ZnO压敏电阻老化机理的研究进展[J].电工电能新技术,2010,29(3)

[3] 洪秀成,肖汉宁,黄彩清,成茵.高性能氧化锌电阻片的研究进展[J].2008年6月

[4] 钟庆东, 施利毅. 高性能氧化锌阀片研究新进展[J].2007,29(1): 20-29

[5] 高宏玲, 吕树臣. 纳米氧化锌压敏电阻的制备及性能研究[J].2005,21(1)

[6] 陈宇彬,李炳乾, 范广涵. 白光LED老化机理研究进展[J].2007,1

[7] 苏佳槟, 吴杜雄, 曾亚光, 李炳乾. 基于LabVIEW的多路LED老化实时测量系统[J]. 1671- 1041( 2008) 04- 0038- 02

[8] 陈焕庭,吕毅军,陈忠,张海兵,高玉琳,陈国龙. 基于电容和电导特性分析GaN蓝光发光二极管老化机理[J].物理学报,2009,58(8)

[9] 乐淑萍, 郑畅达, 江风益. 静电对Si衬底GaN基蓝光LED老化寿命的影响[J].2007,31(3)

[10] 曾志斌, 朱传云, 李乐, 赵锋, 王存达.GaN蓝光发光二极管的负电容现象研究[J].2004,15(4)

[11] M. Broussely, Ph. Main aging mechanisms in Li ion batteries,Journal of Power Sources 146 (2005) 90–96

典型电子元器件失效分析方法

典型电子元器件失效分析方法 纵观当今电子信息技术发展状况,自进入二十世纪后期以来发展尤为猛烈,而电子元器件作为发展电子信息技术的基础,一直扮演着十分重要的角色。于是,了解电子元器件失效分析是人们一直关心的问题,那么这次华强北IC代购网就为大家简要的介绍几种典型电子元器件失效分析方法。 1、微分析法 (1)肉眼观察是微分析技术的第一步,对电子元器件进行形貌观察、线系及其定位失准等,必要时还可以借助仪器,例如:扫描电镜和透射电子显微镜等进行观察; (2)其次,我们需要了解电子元器件制作所用的材料、成分的深度分布等信息。而AES、SIMS和XPS仪器都能帮助我们更好的了解以上信息。不过,在作AES测试时,电子束的焦斑要小,才能得到更高的横向分辨率; (3)最后,了解电子元器件衬底的晶体取向,探测薄膜是单晶还是多晶等对其结构进行分析是一个很重要的方面,这些信息主要由XRD结构探测仪来获取。 2、光学显微镜分析法 进行光辐射显微分析技术的仪器主要有立体显微镜和金相显微镜。将其两者的技术特点结合使用,便可观测到器件的外观、以及失效部位的表面形状、结构、组织、尺寸等。亦可用来检测芯片击穿和烧毁的现象。此外我们还可以借助具有可提供明场、暗场、微干涉相衬和偏振等观察手段的显微镜辅助装置,以适应各种电子元器件失效分析的需要。 3、红外显微分析法

与金相显微镜的结构相似,不同的是红外显微镜是利用近红外光源,并采用红外变像管成像,利用此工作原理不用对芯片进行剖切也能观察到芯片内部的缺陷及焊接情况。 红外显微分析法是针对微小面积的电子元器件,在对不影响器件电学特性和工作情况下,利用红外显微技术进行高精度非接触测温方法,对电子元器件失效分析都具有重要的意义。 4、声学显微镜分析法 电子元器件主要是由金属、陶瓷和塑料等材料制成的,因此声学显微镜分析法就是基于超声波可在以上这些均质传播的特点,进行电子元器件失效分析。此外,声学显微镜分析法最大的特点就是,能观察到光学显微镜无法看到的电子元器件内部情况并且能提供高衬度的检测图像。 以上是几种比较常见的典型电子元器件失效分析方法,电子元器件失效一直都是历久弥新的话题,而对电子元器件失效分析是确定其失效模式和失效机理的有效途径之一,对电子元器件的发展具有重要的意义。

半导体器件失效原因分析

半导体器件失效原因分析 发信站: 紫金飞鸿 (Mon Oct 2 12:02:48 2000) 多年来,用户要求有更可靠的电子设备,而与此同时,电子设备发展得越来越复杂。这两个因素的结合,促使人们更加关注电子设备在长期运行中确保无故障的能力。通过失效分析可以深入理解失效机理和原因,引导元器件和产品设计的改进,有助于提高电子设备(系统)的可靠性。 半导体器件的失效通常是因为产生的应力超过了它们的最大额定值。电气应力、热应力、化学应力、辐射应力、机械应力及其他因素都会造成器件失效。半导体器件的失效机理主要划分成以下6种: 一、包封失效。这类失效发生在用于封装器件的包封出现缺陷,通常是开裂。机械应力或热应力以及包封材料与金属引线之间热膨胀系数的不同都会引起包封开裂,当环境湿度很高或器件暴露在溶剂、清洗剂等中时,这些裂缝会使湿气浸入,产生的化学反应会使器件性能恶化,使它们失效。 二、导线连接失效。由于通过大电流造成过量的热应力、或由于连接不当使连接线中产生机械应力、连接线与裸芯之间界面的开裂、硅中的电致迁移、以及过量的连接压力,都会引起导线连接失效。 三、裸芯粘接故障。裸芯与衬底之间粘接不当时,就会恶化两者之间的导热性,结果会使裸芯过热,产生热应力和开裂,使器件失效。 四、本征硅的缺陷。由晶体瑕疵或本征硅材料中的杂质和污染物造成的缺陷使器件失效,在器件制造期间扩散工艺产生的工艺瑕疵也会造成器件失效。 五、氧化层缺陷。静电放电和通过器件引线的高压瞬时传送,可能会使氧化层(即绝缘体)断开,造成器件功能失常。氧化层中的开裂、划伤、或杂质也会导致器件失效。 六、铝金属缺陷。这类缺陷往往由下列几种情况造成:由于大电场导致在电流流动方向上发生铝的电迁移;由于大电流造成过量电气应力,导致铝导体断裂;铝被腐蚀;焊接引起铝金属耗损;接触孔被不适当地淀积上金属;有小丘和裂缝。 半导体器件应该工作在由生产厂确定的电压、电流和功耗限定范围内,当器件工作在这个“安全工作范围(SOA)”之外时,电气应力过 度(EOS)就会引起内部电压中断,导致器件内部损伤。如果EOS产生大电流,会使器件过热,形成热应力过度而使器件失效,即增加的热应力会导致“二次状态”失效。

电容失效模式和机理

电容的失效模式和失效机理 电容器的常见失效模式有: ――击穿短路;致命失效 ――开路;致命失效 ――电参数变化(包括电容量超差、损耗角正切值增大、绝缘性能下降或漏电流上升等;部分功能失效 ――漏液;部分功能失效 ――引线腐蚀或断裂;致命失效 ――绝缘子破裂;致命失效 ――绝缘子表面飞弧;部分功能失效 引起电容器失效的原因是多种多样的。各类电容器的材料、结构、制造工艺、性能和使用环境各不相同,失效机理也各不一样。 各种常见失效模式的主要产生机理归纳如下。 3.1失效模式的失效机理 3.1.1 引起电容器击穿的主要失效机理 ①电介质材料有疵点或缺陷,或含有导电杂质或导电粒子; ②电介质的电老化与热老化; ③电介质内部的电化学反应; ④银离子迁移; ⑤电介质在电容器制造过程中受到机械损伤; ⑥电介质分子结构改变; ⑦在高湿度或低气压环境中极间飞弧;

⑧在机械应力作用下电介质瞬时短路。 3.1.2 引起电容器开路的主要失效机理 ①引线部位发生“自愈“,使电极与引出线绝缘; ②引出线与电极接触表面氧化,造成低电平开路; ③引出线与电极接触不良; ④电解电容器阳极引出箔腐蚀断裂; ⑤液体电解质干涸或冻结; ⑥机械应力作用下电介质瞬时开路。 3.1.3 引起电容器电参数恶化的主要失效机理 ①受潮或表面污染; ②银离子迁移; ③自愈效应; ④电介质电老化与热老化; ⑤工作电解液挥发和变稠; ⑥电极腐蚀; ⑦湿式电解电容器中电介质腐蚀; ⑧杂质与有害离子的作用; ⑨引出线和电极的接触电阻增大。 3.1.4 引起电容器漏液的主要原因 ①电场作用下浸渍料分解放气使壳内气压上升; ②电容器金属外壳与密封盖焊接不佳; ③绝缘子与外壳或引线焊接不佳;

电子元器件失效模式总结

元器件的失效模式总结 Beverly Chen 2016-2-4 一、失效分析的意义 失效分析(Failure Analysis)的意义在于通过对已失效器件进行事后检查,确定失效模式,找出失效机理,确定失效的原因或相互关系,在产品设计或生产工艺等方面进行纠正以消除失效的再次发生。 一般的失效原因如下: 二、失效分析的步骤 失效分析的步骤要遵循先无损,后有损的方法来一步步验证。比如先进行外观检查,再进行相关仪器的内部探查,然后再进行电气测试,最后才可以进行破坏性拆解分析。这样可以避免破坏性的拆解破坏证据。拿到失效样品,首先从外观检查开始。 1. 外观检查:收到失效样品后,首先拍照,记录器件表面Marking信息,观察器件颜色外观等有何异常。 2.根据器件类型开始分析:

2.1贴片电阻,电流采样电阻 A: 外观检查,顶面覆盖保护层有针状圆形鼓起或黑色击穿孔->内部电阻层烧坏可能->万用表测量阻值:测得开路或者阻抗偏大->内部电阻层烧毁可能->可能原因:过电压或过电流烧毁—>检查改电阻的稳态功率/电压或者瞬时功率/电压是否已超出spec要求。 Coating 鼓起并开裂黑色击穿点 ●可失效样品寄给供应商做开盖分析,查看供应商失效报告:如发现烧毁位置位于激光切 割线下端,可确定是过电压导致失效。需要考虑调整应用电路,降低电压应力,或者换成能承受更大应力的电阻。 激光切割线 去除coating保护层后,可以看到烧毁位置位于激光切割线旁边,该位置电应力最集中。 B: 外观检查,顶面底面均无异常->万用表测量阻值:测得开路或者阻抗偏大->内部电阻层烧毁或者电极因硫化断开或阻抗增大->检查改电阻的稳态功率或者瞬时功率是否已超出spec要求,如有可能是过电压或过功率烧毁;应力分析在范围内,考虑硫化->失效样品寄给供应商分析。查看供应商失效报告: ●如发现烧毁位置位于激光切割线下端,可确定是过电压导致失效。需要考虑降低应用电 路中的电压应力,或者换成能承受更大应力的电阻。 ●如果测试发现保护层附近电极硫元素含量高且电极沿保护层边缘发生断裂情况,可确认 是应用中硫化物污染导致银电极被硫化生成AgS而断开需确认应用环境是否硫含量比较高。如果有必要,更换为抗硫化电阻。

电阻器常见的失效模式与 失效机理

电阻器常见的失效模式与失效机理失效模式:各种失效的现象及其表现的形式。 失效机理:是导致失效的物理、化学、热力学或其他过程。 1、电阻器的主要失效模式与失效机理为: 1)开路:主要失效机理为电阻膜烧毁或大面积脱落,基体断裂,引线帽与电阻体脱落。 2)阻值漂移超规范:电阻膜有缺陷或退化,基体有可动钠离子,保护涂层不良。 3)引线断裂:电阻体焊接工艺缺陷,焊点污染,引线机械应力损伤。 4)短路:银的迁移,电晕放电。 2、失效模式占失效总比例表 (1)、线绕电阻 失效模式占失效总比例 开路90% 阻值漂移2% 引线断裂7% 其它1% (2)、非线绕电阻 失效模式占失效总比例 开路49% 阻值漂移22% 引线断裂17% 其它7% 3、失效机理分析 电阻器失效机理是多方面的,工作条件或环境条件下所发生的各种理化过程是引起电阻器老化的原因。 (1)、导电材料的结构变化:

薄膜电阻器的导电膜层一般用汽相淀积方法获得,在一定程度上存在无 定型结构。按热力学观点,无定型结构均有结晶化趋势。在工作条件或环境条 件下,导电膜层中的无定型结构均以一定的速度趋向结晶化,也即导电材料内 部结构趋于致密化,能常会引起电阻值的下降。结晶化速度随温度升高而加快。 电阻线或电阻膜在制备过程中都会承受机械应力,使其内部结构发生畸变,线径愈小或膜层愈薄,应力影响愈显著。一般可采用热处理方法消除内应力,残余内应力则可能在长时间使用过程中逐步消除,电阻器的阻值则可能因 此发生变化。 结晶化过程和内应力清除过程均随时间推移而减缓,但不可能在电阻器 使用期间终止。可以认为在电阻器工作期内这两个过程以近似恒定的速度进行。与它们有关的阻值变化约占原阻值的千分之几。 电负荷高温老化:任何情况,电负荷均会加速电阻器老化进程,并且电负 荷对加速电阻器老化的作用比升高温度的加速老化后果更显著,原因是电阻体 与引线帽接触部分的温升超过了电阻体的平均温升。通常温度每升高10℃, 寿命缩短一半。如果过负荷使电阻器温升超过额定负荷时温升50℃,则电阻 器的寿命仅为正常情况下寿命的1/32。可通过不到四个月的加速寿命试验, 即可考核电阻器在10年期间的工作稳定性。 直流负荷-电解作用:直流负荷作用下,电解作用导致电阻器老化。电解 发生在刻槽电阻器槽内,电阻基体所含的碱金属离子在槽间电场中位移,产生 离子电流。湿气存在时,电解过程更为剧烈。如果电阻膜是碳膜或金属膜,则 主要是电解氧化;如果电阻膜是金属氧化膜,则主要是电解还原。对于高阻薄 膜电阻器,电解作用的后果可使阻值增大,沿槽螺旋的一侧可能出现薄膜破坏 现象。在潮热环境下进行直流负荷试验,可全面考核电阻器基体材料与膜层的 抗氧化或抗还原性能,以及保护层的防潮性能。 (2)、气体吸附与解吸: 膜式电阻器的电阻膜在晶粒边界上,或导电颗粒和黏结剂部分,总可能 吸附非常少量的气体,它们构成了晶粒之间的中间层,阻碍了导电颗粒之间的 接触,从而明显影响阻值。 合成膜电阻器是在常压下制成,在真空或低气压工作时,将解吸部分附 气体,改善了导电颗粒之间的接触,使阻值下降。同样,在真空中制成的热分 解碳膜电阻器直接在正常环境条件下工作时,将因气压升高而吸附部分气体,

半导体元器件的制造工艺及其失效

半导体元器件的制造工艺及其失效 一、元器件概述 1、元器件的定义: 欧洲空间局ESA标准中的定义:完成某一电子、电气和机电功能,并由一个或几个部分构成而且一般不能被分解或不会破坏的某个装置。GJB4027-2000《军用电子元器件破坏性物理分析方法》中的定义:在电子线路或电子设备中执行电气、电子、电磁、机电或光电功能的基本单元,该基本单元可由一个或多个零件组成,通常不破坏是不能将其分解的。 2、元器件的分类:两大类 a)元件:在工厂生产加工时不改变分子成分的成品,本身不产生电子,对电压、电流无控制和变换作用。 b)器件:在工厂生产加工时改变了分子结构的成品,本身能产生电子,对电压电流的控制、变换(放大、开关、整流、检波、振荡和调制等),也称电子器件。分类(来源:2007年版的《军用电子元器件合格产品目录》) ? 3、电气元件 (1)电阻

最可靠的元器件之一,失效模式:开路、机械损伤、接点损坏、短路、绝缘击穿、焊接点老化造成的电阻值漂移量超过容差。 ? (2)电位器 失效模式:接触不良、滑动噪声大、开路等。 (3)二极管 (4)集成电路 失效模式:漏电或短路,击穿特性劣变,正向压降劣变,开路可高阻失效机理:电迁移,热载流子效应,与时间相关的介质击穿(TDDB),表面氧化层缺陷,绝缘层缺陷,外延层缺陷

(5)声表面波器件 (6)MEMS压力传感器 MEMS器件的主要失效机理: a.粘附两个光滑表面相接触时,在力作用下粘附在一起的现象; b.蠕变机械应力作用下原子缓慢运动的现象;变形、空洞; c.微粒污染阻碍器件的机械运动;

d.磨损尺寸超差,碎片卡入; e.疲劳断裂疲劳裂纹扩展失效。 (7)真空电子器件(vacuum electronic device) 指借助电子在真空或者气体中与电磁场发生相互作用,将一种形式电磁能量转换为另一种形式电磁能量的器件。具有真空密封管壳和若干电极,管内抽成真空,残余气体压力为10-4~10-8帕。有些在抽出管内气体后,再充入所需成分和压强的气体。广泛用于广播、通信、电视、雷达、导航、自动控制、电子对抗、计算机终端显示、医学诊断治疗等领域。 真空电子器件按其功能分为: 实现直流电能和电磁振荡能量之间转换的静电控制电子管; 将直流能量转换成频率为300兆赫~3000吉赫电磁振荡能量的微波电子管; 利用聚焦电子束实现光、电信号的记录、存储、转换和显示的电子束管; 利用光电子发射现象实现光电转换的光电管; 产生X射线的X射线管; 管内充有气体并产生气体放电的充气管; 以真空和气体中粒子受激辐射为工作机理,将电磁波加以放大的真空量子电子器件等。 自20世纪60年代以后,很多真空电子器件已逐步为固态电子器件所取代,但在高频率、大功率领域,真空电子器件仍然具有相当生命力,而电子束管和光电管仍将广泛应用并有所发展。[1] 真空电子器件里面就包含真空断路器,真空断路器具有很多优点,所以在变电站上应用很多。真空断路器已被快易优收录,由于采用了特殊的真空元件,随着近年来制造水平的提高,灭弧室部分的故障明显降低。真空灭弧室无需检修处理,当其损坏时,只能采取更换。真空断路器运行中发生的故障以操作机构部分所占比重较大,其次为一次导电部分,触头导电杆等。 二、元器件制造工艺与缺陷 1、芯片制造缺陷的分类: 全局缺陷:光刻对准误差、工艺参数随机起伏、线宽变化等;在成熟、可控性良好的工艺线上,可减少到极少,甚至几乎可以消除。 局域缺陷:氧化物针孔等点缺陷,不可完全消除,损失的成品率更高。 点缺陷:冗余物、丢失物、氧化物针孔、结泄漏 来源:灰尘微粒、硅片与设备的接触、化学试剂中的杂质颗粒。 2、混合集成电路的失效混合集成电路工艺:

片式电阻的主要失效机理与失效模式

片式电阻的主要失效机理与失效模式 1.什么是片式电阻,片式电阻的概念。 片式电阻器又称为片式电阻,也叫表面贴装电阻,它与它片式元器件(SMC 及SMD)一样,是适用于表面贴装技术(SMT)的新一代无引线或短引线微型电子元件。其引出端的焊接面在同一平面上。片式电阻在电路内的主要作用是降低电压,分担一部分电压即分压,限流保护电路,分流等,也可以用做时间电路元件和传感器等。 2.片式电阻的特性及分类。 表面组装的电阻器是表面组装元气件的组成之一,它属于无源元件,其作用主要供厚膜、薄膜电路作外贴元件用。它一般按两种方式进行分类。按特性与材料分类分为:厚膜电阻、薄膜电阻。按外形结构分类分为:矩形片式电阻、圆柱片式电阻、异形电阻。矩形片式电阻的结构如下图(a): (a)矩形片式电阻结构示意图 2.1矩形片式电阻结构介绍: 矩形片式电阻由基板、电阻膜、保护膜、电极四大部分组成。 基板:基板材料一般使用96%的Al2O3(三氧化二铝)陶瓷。基本应具体有

良好的电绝缘性,在高温下具有良好的导热性、电性能和一定强度的机械性能。电阻膜:电阻膜是用具有一定电阻率的电阻浆料印刷在陶瓷基本上的,在经过烧结而形成厚膜电阻。电阻浆料一般用RuO2(二氧化钉)。近年来开始使用贱金属系的电阻浆料,比如氧化系(TaN-Ta)、碳化系(WC-W)和Cu系材料,目的是降低成本。 保护膜:将保护膜覆盖在电阻膜上,保护膜的主要作用是保护电阻。它一方面起机械保护作用,另一方面使电阻体表面具有绝缘性,避免电阻与邻近导体接触而产生故障。保护膜一般是低熔点的玻璃浆料,进过印刷烧结而成。 电极:电极是为了保证电阻器具有良好的可焊性和可靠性,一般采用三层电极结构:内层电极、中间电极、外层电极。内层电极作用:连接电阻体的内部电极。中间电极是镀镍层,其阻挡作用,提高电阻散热,缓冲焊接的热冲击。外层电极是锡铅层,主要作用是使电极具有可焊性。 3片式电阻常见的失效模式与失效机理。 图(1)线绕电阻失效总比例图(2)非线绕电阻失效总比例 片式电阻的主要失效模式与失效机理为: 1) 开路:主要失效机理为电阻膜烧毁或大面积脱落,基体受力发生断裂,引线帽与电阻体发生脱落。

电子元器件失效性分析

电子元器件失效性分析与应用 赵春平公安部第一研究所 摘要: 警用装备作为国内特种装备制造业之一,其可靠性、精确性要求非一般企业及产品所能满足,因其关系到现场使用者及人民的生命财产安全,故设备选材更是严之又严。电子元器件作为警用电子系统的基础及核心部件,它的失效及潜在缺陷都将对装备的可靠性产生重要影响;电子器件失效分析的目的是通过确定失效模式和失效机理,提出对策、采取措施,防止问题出现,失效分析对于查明元器件的失效原因并及时向设计者反馈信息是必须的。随着警用装备制造水平的不断进步,元器件的可靠性问题越来越受到重视,设备研制单位和器件生产厂家对失效分析技术及工程实践经验的需求也越来越迫切。 关键词:警用装备、可靠性、失效模式、失效机理。 一、失效分析的基本内容,定义和意义 1.1失效分析的基本内容 电子元器件失效分析的目的是借助各种测试分析技术和分析程序认定器件的失效现象,判断其失效模式和机理,从而确定失效原因,对后续设计提出建议,在生产过程中改进生产工艺,器件使用者在系统设计时改进电路设计,并对整机提出相应测试要求、完成测试。因此,失效分析对元器件的研制速度、整机的可靠性有着重要意义。 1.2失效的分类 在实际使用中,可以根据需要对失效做适当分类:按模式分为:开路、短路、无功能、特性退化、重测合格;按原因分为:误用失效、本质失效、早起失效、偶然失效、耗损失效、自然失效;按程度分为:完全失效、局部失效、按时间分为:突然失效、渐变失效、退化失效;按外部表现分为:明显失效、隐蔽失效等。 二、失效的机理、模式 2.1失效的机理 由于电子器件的失效主要来自于产品制造、实验、运输、存储、使用等一系列过程中发生的情况,与材料、设计、制造、使用密切相关。且电子元器件种类繁多,故失效机理也很多,失效机理是器件失效的实质原因,在此说明器件是如何失效,相当于器件失效的物理和化学过程,从而表现出来性能、性质(如腐蚀、疲劳、过应力等)。元器件主要失效机 理有: 2.1.1过应力(EOS): 指元器件承受的电流、电压应力或功率超过了其允许的最大范围。 2.1.2静电损伤(ESD) 指电子器件在加工生产、组装、贮存、运输中与可能带静电的容器、测试及操作人员接触,所带经典经过器件引脚放电到地面,使器件收到损伤或失效。

半导体器件失效分析的研究

半导体器件失效分析的研究Research on Semiconductor Device Failure Analysis

中文摘要 半导体失效分析在提高集成电路的可靠性方面有着至关重要的作用。随着集成度的提高,工艺尺寸的缩小,失效分析所面临的困难也逐步增大。因此,失效分析必须配备相应的先进、准确的设备和技术,配以具有专业半导体知识的分析人员,精确定位失效位置。在本文当中,着重介绍多种方法运用Photoemission 显微镜配合IR-OBIRCH精确定位失效位置,并辅以多项案例。 Photoemission是半导体元器件在不同状态下(二极管反向击穿、短路产生的电流、MOS管的饱和发光,等等),所产生的不同波长的光被捕获,从而在图像上产生相应的发光点。Photoemission在失效分析中有着不可或缺的作用,通过对好坏品所产生的发光点的对比,可以为后面的电路分析打下坚实的基础,而且在某些情况下,异常的发光点就是最后我们想要找到的defect的位置。 IR-OBIRCH(Infrared Optical beam Induced Resistance Change)主要是由两部分组成:激光加热器和电阻改变侦测器。电阻的改变是通过激光加热电流流经的路径时电流或者电压的变化来表现的,因此,在使用IR-OBIRCH时,前提是必须保证所加电压两端产生的电流路径要流过defect的位置,这样,在激光加热到defect位置时,由于电阻的改变才能产生电流的变化,从而在图像上显现出相应位置的热点。 虽然Photoemission和IR-OBIRCH可以很好的帮助我们找到defect的位置,但良好的电路分析以及微探针(microprobe)的使用在寻找失效路径方面是十分重要的,只有通过Photoemission的结果分析,加上电路分析以及微探针(micr oprobe)测量内部信号的波形以及I-V曲线,寻找出失效路径后,IR-OBIRCH才能更好的派上用场。因此,在失效分析中,各个步骤缺一不可。 关键词:失效分析;Photoemission;IR-OBIRCH;微探针(microprobe);

电容失效模式及失效机理

电容器失效模式和失效机理 电容器的常见失效模式有:击穿、开路、电参数变化(包括电容量超差、损耗角正切值增大、绝缘性能下降或漏电流上下班升等)、漏液、引线腐蚀或断裂、绝缘子破裂或表面飞弧等.引起电容器失效的原因是多种多样的.各类电容器的材料、结构、制造工艺、性能和使用环境各不相同,失效机理也各不一样. 各种常见失效模式的主要产生机理归纳如下. 1、常见的七种失效模式 (1) 引起电容器击穿的主要失效机理 ①电介质材料有疵点或缺陷,或含有导电杂质或导电粒子; ②电介质的电老化与热老化; ③电介质内部的电化学反应; ④银离子迁移; ⑤电介质在电容器制造过程中受到机械损伤; ⑥电介质分子结构改变; ⑦在高湿度或低气压环境中极间飞弧; ⑧在机械应力作用下电介质瞬时短路. (2) 引起电容器开路的主要失效机理 ①引线部位发生“自愈“,使电极与引出线绝缘; ②引出线与电极接触表面氧化,造成低电平开路; ③引出线与电极接触不良; ④电解电容器阳极引出箔腐蚀断裂; ⑤液体工作台电解质干涸或冻结; ⑥机械应力作用下电介质瞬时开路. (3) 引起电容器电参数恶化的主要失效机理 ①受潮或表面污染; ②银离子迁移; ③自愈效应; ④电介质电老化与热老化; ⑤工作电解液挥发和变稠; ⑥电极腐蚀; ⑦湿式电解电容器中电介质腐蚀; ⑧杂质与有害离子的作用; ⑨引出线和电极的接触电阻增大. (4) 引起电容器漏液的主要原因 ①电场作用下浸渍料分解放气使壳内气压一升; ②电容器金属外壳与密封盖焊接不佳; ③绝缘了与外壳或引线焊接不佳; ④半密封电容器机械密封不良; ⑤半密封电容器引线表面不够光洁; ⑥工作电解液腐蚀焊点. (5) 引起电容器引线腐蚀或断裂的主要原因 ①高温度环境中电场作用下产生电化学腐蚀; ②电解液沿引线渗漏,使引线遭受化学腐蚀;

半导体器件失效分析与检测

半导体器件失效分析与检测 半导体元件的失效将直接影响相关产品的正常使用,文章主要就对半导体器件的失效原因进行了细致地分析并提出了几种检测的方法,供相关人士借鉴。 标签:半导体;器件;失效分析;检测 1 半导体器件失效分析 通过分析可知造成半导体器件失效的因素有很多,我们主要从几个方面进阐述。 1.1 金属化与器件失效 环境应力对半导体器件或集成电路可靠性的影响很大。金属化及其键合处就是一个不容忽视的失效源。迄今,大多数半导体器件平面工艺都采用二氧化硅作为掩膜钝化层。为在芯片上实现互连,往往在开窗口的二氧化硅层上淀积铝膜即金属化。 从物理、化学角度分析,金属化失效机理大体包括膜层张力、内聚力、机械疲劳、退火效应、杂质效应及电迁移等。 1.2 晶体缺陷与器件失效 晶体缺陷导致器件失效的机理十分复杂,有些问题至今尚不清楚。晶体缺陷分晶体材料固有缺陷(如微缺陷)和二次缺陷两类。后者是在器件制造过程中,由于氧化、扩散等热处理后出现或增殖的大量缺陷。两种缺陷或者彼此相互作用,都将导致器件性能的退化。二次击穿就是晶体缺陷招来的严重后果。 1.2.1 位错 这种缺陷有的是在晶体生长过程中形成的(原生位错),有的是在器件工艺中引入的(诱生位错)。位错易沿位错线加速扩散和析出,间接地促成器件劣化。事实证明,外表杂质原子(包括施主和受主)沿位错边缘的扩散比在完美晶体内快很多,其结果往往使P-N结的结平面不平整甚至穿通。鉴于位错具有“吸除效应”,对点缺陷如杂质原子、点阵空位、间隙原子等起到内部吸收的作用,故适量的位错反而对器件生产有利。 1.2.2 沉淀物 除位错造成不均匀掺杂外,外界杂质沾污也会带来严重后果,特别是重金属沾污,在半导体工艺中是经常发生的。如果这些金属杂质存在于固溶体内,其危害相对小一些;但是,一旦在P-N结处形成沉积物,则会产生严重失效,使反

光电子元器件的失效模式和失效机理

光电子元器件的失效模式和失效机理 朱炜容 1.1 光电子器件的分类 在光电子技术中,光电子元器件包括光源器件以及光探测器件。其中光源器件主要有发光二极管和激光器。光探测器件主要是光电二极管。作为电气元件,光纤和光缆也是光电子技术中不可缺少的组成元件。 1.2 激光器的失效模式及失效机理 随着工作时间的增加,半导体激光器的工作性能将会劣化,发射功率和效率下降,有时还会发生突然失效的灾变性损坏。造成半导体激光器退化的原因除了其本身的因素外,还有使用温度、工作条件等环境因素。 一、暗线缺陷 暗线缺陷是激光器工作时形成的缺陷网络,这些缺陷最终会导致发射功率的下降。暗线缺陷的形成除了材料、工艺过程中会引入外,其形成过程与温度有很大的关系,它所引起的退化速率强烈地依赖于温度。 二、腔面损伤退化 腔面的损伤退化一般有灾变性退化和化学腐蚀损伤退化。 在高功率密度激光的作用下,由于局部过热、氧化、腐蚀、介质膜的针孔和杂质等因素使腔面遭受损伤,从而使局部电流密度增加,局部大量发热,在热电正反馈的作用下,最终腔面局部熔融,导致灾难性的损伤,器件完全失效。 腔面的化学腐蚀是由于光化学作用使腔面表面发生氧化,并形成局部缺陷,导致腔面局部发热,使激光器性能退化甚至失效。 三、电极退化 高功率半导体激光器的欧姆接触退化和热阻退化与其他电子器件的电极退化相似。电极金属和半导体材料间存在互扩散,在烧结的部位,孔洞和晶须的生长现象是常见的退化模式。另外,热应力导致的电极损伤也很常见。由于电极远离器件的有源区,电极退化对器件特性的影响一般在老化或工作一定时间后再表现出来。

半导体激光器的工作性能对温度非常敏感,温度升高将加速暗线缺陷的生长,腔面氧化等失效机理,严重影响激光器的寿命。激光器的转换效率不高,自身的功耗很大,因此降低热阻是提高激光器寿命和可靠性的主要方法之一。芯片电极烧结质量的好坏不但影响了热阻的大小,而且还关系到电极的电阻,因为激光器在正常工作时,其一般工作电流为几十甚至上百安培,即使是很小的电极电阻,也将产生很大的热功耗,减小电极电阻可以减小激光器本身的热功耗。此外,烧结工艺控制不好会造成焊料沾污腔面、焊料导致pn结短路以及烧结应力导致芯片损伤等。因此电极的烧结质量与半导体激光器的性能、稳定性和可靠性紧密相关。 1.3 光电二极管的失效模式和失效机理 光电二极管的失效模式主要有:结构损伤、光纤断裂、开路、短路、性能参数退化(暗电流上升、响应度降低、击穿电压降低等)和IV特性变化等。 引起这些失效的主要原因如下: 1、结构损伤 整个光电二极管结构由于外力导致构成器件的各有机组成部分产生大的机械变形、位移,严重影响到器件的使用性能或致使器件失去规定的功能。这些外形结构的损伤失效容易通过目检并结合使用环境来判定。 1)机械应力如震动、冲击、碰撞、压力,可能会导致二极管的结构变形毁坏,外引线脱(断)落,光窗破裂,光纤塑套皱缩,纤芯断裂等失效。 2)热应力容易导致器件不同性质的材料之间因热膨胀系数的差异而位移、形变,从而导致结构(绝缘子、光窗、封边等)漏气、光纤位移甚至脱落。 3)高湿环境中器件金属表面容易受到电化学腐蚀,导致光窗脱落、封边漏气、外引出端及其与管脚间的绝缘电阻降低。 2、光纤断裂 1)各方向的应力超过了光纤承受的限度。 2)与金属或陶瓷插针粘接的光纤纤芯因机械或热应力作用导致光纤在插针结合部位断裂或损伤。

半导体器件烧毁的物理机理

半导体器件烧毁的物理机理* 余稳蔡新华黄文华刘国治 摘要叙述了半导体器件烧毁的物理机理、目前的研究进展及作者正在开展的工作. 关键词半导体器件,烧毁,高功率微波 MECHANISM OF BURNOUT OF SEMICONDUCTOR DEVICES Yu Wen Cai Xinhua (Institute of EM Theory, Changde Teachers' College,Hunan415000) Huang Wenhua Liu Guozhi (Northwest Institute of Nuclear Technology, Xi'an710024) Abstract The general mechanism of burnout of semiconductor devices is described,as well as recent progress and our present research. Key words semiconductor devices, burnout, high power microwave(HPM) 1前言 高功率微波(HPM)对电子系统进行破坏,可使系统暂时失灵或永久失效,这直接涉及系统内部电子元器件的暂时失灵或永久失效.因此要研究HPM对电子系统的破坏机理,首先要研究半导体器件烧毁的物理机理.另外,从系统的抗辐射能力和加固方面看,也需要对电子系统进行在电过应力(EOS)环境下的易损性评估.以下几个问题使得评估很困难:(1)对任意一个电子器件,很难得到精确的理论或实验失效阈值;(2)实际的EOS应力参数必须与用于理论或实验上确定失效阈值时使用的理想参数相比较,过度保守的估计将导致系统的超加固,增加不必要的成本,拖延进度,降低系统性能,而过高的估计则可使系统易损;(3)器件的复杂性问题[不同的制造过程、不同种类的器件(甚至同种器件间)有变化];(4)产生EOS的电磁环境问题[如电磁脉冲(EMP)、核电磁脉冲(NEMP)、光电磁脉冲(LEMP)、电磁干扰(EMI)、静电放电(ESD)、系统电磁脉冲(SGEMP)、微波(MW)等等];(5)同一批器件,数据变化也很大,不同一批器件和不同厂家的产品,数据变化就更大.因此,从理论上探讨器件烧毁的物理机理,找出大致规律,很有意义. 2器件烧毁的物理机理 半导体器件承受EOS测试时,将表现出很多失效物理机理[1],几乎器件的每一部分都有可能失效:(1)敷金属和引线能被熔化,电迁移能使金属膜导体变薄,甚至导致开路;(2)在器件的绝缘材料或氧化区或器件表面,可产生导致局部高温的电击穿;(3)在有源结区,可产生导致强流和高温的二次击穿. 根据研究,对双极型器件,90%的失效是由结区击穿引起的,敷金属失效仅占10%,但对MOS 器件,则63%的失效来源于敷金属失效,27%则属于氧化物击穿. 通常在局部温度升高到熔点时发生敷金属和引线失效,该热量来自于金属中的强流密度或金属附近的热硅(由其他地方的强流密度引起).敷金属失效将因线路分开(有点像保险丝烧毁)而导致开路.引起失效的强流可能来自于击穿或器件其他地方的失效,所以敷金属和引线失效可能只是一种结果而不是器件失效的原因.电迁移应用于强流密度情形下金属中的质量输运.最近,人们认为,对金属膜导体截面不够的半导体器件,电迁移可能是一种消耗失效模式,该失效将导致电路开路.当半导体或绝缘体两条蚀刻导电通道之间的电场超过中间介质击穿极限时,将因产生电弧形成熔融金属通道而使电路短路,器件线度越小,该失效机制越重要. PN结的表面条件将影响其电特性.依赖于表面条件的表面复合过程,对自由载流子来说像一个阱.强场表面击穿是表面损伤的原因之一.对半导体器件,该强场发生于靠近结区与表面的交界处.器件绝缘区失效主要是高压击穿(由材料中的强瞬间电场或硅材料附近热点的热损伤或机械损伤所致).半导体器件有源结区的失效通常来自于局部熔化及随后的硅再结晶,或来自于从结表面来的实际热注入,该热量由通过结的强流密度引起,反过来又导致热或电流二次击穿. 二次击穿模式有热模式和电流模式两种[2—4]. 随入射EOS功率不同而采取不同的模式,

失效模式

电子元器件主要失效模式和机理介绍 本报编辑:韩双露时间: 2009-5-22 17:16:45 来源: 电子制造商情 中国赛宝实验室分析中心陈媛 摘要:电子元器件的种类繁多,相应的失效模式和机理也很多,本文归纳和总结电子元器件的 失效模式、分析和验证电子元器件的失效机理。针对失效模式和失效机理采取有效措施,是不 断提高电子元器件可靠性水平的过程。 关键词:电子元器件、可靠性、失效模式、失效机理 引言 电子元器件的失效主要是在产品的制造、试验、运输、存储和使用等过程中发生的,与原材料、设计、制造、使用密切相关。电子元器件的种类很多,相应的失效模式和机理也很多。失效模式是指失效的外在直观失效表现形式和过程规律,通常指测试或观察到的失效现象、失效形式,如开路、短路、参数漂移、功能失效等。失效机理是指失效的物理、化学变化过程,微观过程可以追溯到原子、分子尺度和结构的变化,但与此相对的是它迟早也要表现出的一系列宏观(外在的)性能、性质变化,如疲劳、腐蚀和过应力等。 从现场失效和试验失效中去收集尽可能多的信息(包括失效形态、失效表现现象及失效结果等)进行归纳和总结电子元器件的失效模式,分析和验证失效机理,并针对失效模式和失效机理采取有效措施,是不断提高电子元器件可靠性水平的过程。

1 集成电路失效模式和机理介绍 集成电路的主要失效模式有功能失效、参数漂移、短路、开路等。集成电路失效模式统计分布见图1。 图1 集成电路失效模式分布 集成电路的主要失效机理有: 1)过电应力(EOS):是指元器件承受的电流、电压应力或功率超过其允许的最大范围。 2)静电损伤(ESD):微电子器件在加工生产、组装、贮存以及运输过程中,可能与带静电的容器、测试设备及操作人员相接触,所带静电经过器件 引脚放电到地,使器件受到损伤或失效 3)闩锁效应(latch-up):集成电路由于过电应力触发内部寄生晶体管结构而呈现的一种低阻状态,这种低阻状态在触发条件去除或终止后仍会 存在。 4)电迁移(EM):当器件工作时,金属互连线内有一定的电流通过,金属离子会沿导体产生质量的运输,其结果会使导体的某些部位出现空洞或 晶须。 5)热载流子效应(HC):热载流子是指其能量比费米能级大几个kT以上的载流子。这些载流子与晶格不处于热平衡状态,当其能量达到或超过 Si-SiO 界面势垒时(对电子注入为3.2eV,对空穴注入为4.5eV)便会注 2 入到氧化层中,产生界面态、氧化层陷阱或被陷阱所俘获,使氧化层电 荷增加或波动不稳,这就是热载流子效应。

FMEA 失效模式与影响分析

FMEA(失效模式与影响分析) Failure Mode and Effects Analysis潜在失效模式与后果分析在设计和制造产品时,通常有三道控制缺陷的防线:避免或消除故障起因、预先确定或检测故障、减少故障的影响和后果。FMEA正是帮助我们从第一道防线就将缺陷消灭在摇篮之中的有效工具。 FMEA是一种可靠性设计的重要方法。它实际上是FMA(故障模式分析)和FEA(故障影响分析)的组合。它对各种可能的风险进行评价、分析,以便在现有技术的基础上消除这些风险或将这些风险减小到可接受的水平。及时性是成功实施FMEA的最重要因素之一,它是一个“事前的行为”,而不是“事后的行为”。为达到最佳效益,FMEA必须在故障模式被纳入产品之前进行。 FMEA实际是一组系列化的活动,其过程包括:找出产品/过程中潜在的故障模式;根据相应的评价体系对找出的潜在故障模式进行风险量化评估;列出故障起因/机理,寻找预防或改进措施。 由于产品故障可能与设计、制造过程、使用、承包商/供应商以及服务有关,因此FMEA又细分为设计FMEA、过程FMEA、使用FMEA和服务FMEA四类。其中设计FMEA和过程FMEA 最为常用。 设计FMEA(也记为d-FMEA)应在一个设计概念形成之时或之前开始,并且在产品开发各阶段中,当设计有变化或得到其他信息时及时不断地修改,并在图样加工完成之前结束。其评价与分析的对象是最终的产品以及每个与之相关的系统、子系统和零部件。需要注意的是,d-FMEA在体现设计意图的同时还应保证制造或装配能够实现设计意图。因此,虽然d-FMEA不是靠过程控制来克服设计中的缺陷,但其可以考虑制造/装配过程中技术的/客观的限制,从而为过程控制提供了良好的基础。 进行d-FMEA有助于: ·设计要求与设计方案的相互权衡; ·制造与装配要求的最初设计; ·提高在设计/开发过程中考虑潜在故障模式及其对系统和产品影响的可能性; ·为制定全面、有效的设计试验计划和开发项目提供更多的信息; ·建立一套改进设计和开发试验的优先控制系统; ·为将来分析研究现场情况、评价设计的更改以及开发更先进的设计提供参考。 过程FMEA(也记为p-FMEA)应在生产工装准备之前、在过程可行性分析阶段或之前开始,而且要考虑从单个零件到总成的所有制造过程。其评价与分析的对象是所有新的部件/过程、更改过的部件/过程及应用或环境有变化的原有部件/过程。需要注意的是,虽然p-FMEA 不是靠改变产品设计来克服过程缺陷,但它要考虑与计划的装配过程有关的产品设计特性参数,以便最大限度地保证产品满足用户的要求和期望。 p-FMEA一般包括下述内容: ·确定与产品相关的过程潜在故障模式; ·评价故障对用户的潜在影响; ·确定潜在制造或装配过程的故障起因,确定减少故障发生或找出故障条件的过程控制变量;

半导体器件失效分析_半导体器件芯片焊接技巧及控制

半导体器件失效分析_半导体器件芯片焊接技巧及控制 随着技术的发展,芯片的焊接(粘贴)技巧也越来越多并不断完善。半导体器件焊接(粘贴)失效主要与焊接面洁净度差、不平整、有氧化物、加热不当和基片镀层质量有关。树脂粘贴法还受粘料的组成结构及其有关的物理力学性能的制约和影响。要解决芯片微焊接不良问题,必须明白不同技巧的机理,逐一分析各种失效模式,及时发现影响焊接(粘贴)质量的不利因素,同时严格生产过程中的检验,加强工艺管理,才能有效地避免因芯片焊接不良对器件可靠性造成的潜在危害。 本文首先介绍了芯片焊接(粘贴)技巧及机理,其次介绍了失效模式分析,最后介绍了焊接质量的三种检验技巧以及焊接不良原因及对应措施,具体的跟随小编一起来了解一下。 芯片焊接(粘贴)技巧及机理芯片的焊接是指半导体芯片与载体(封装壳体或基片)形成牢固的、传导性或绝缘性连接的技巧。焊接层除了为器件提供机械连接和电连接外,还须为器件提供良好的散热通道。其技巧可分为树脂粘接法和金属合金焊接法。 树脂粘贴法是采用树脂粘合剂在芯片和封装体之间形成一层绝缘层或是在其中掺杂金属(如金或银)形成电和热的良导体。粘合剂大多采用环氧树脂。环氧树脂是稳定的线性聚合物,在加入固化剂后,环氧基打开形成羟基并交链,从而由线性聚合物交链成网状结构而固化成热固性塑料。其过程由液体或粘稠液→凝胶化→固体。固化的条件主要由固化剂种类的选择来决定。而其中掺杂的金属含量决定了其导电、导热性能的好坏。 掺银环氧粘贴法是当前最流行的芯片粘贴技巧之一,它所需的固化温度低,这能够避免热应力,但有银迁移的缺点。近年来应用于中小功率晶体管的金导电胶优于银导电胶。非导电性填料包括氧化铝、氧化铍和氧化镁,能够用来改善热导率。树脂粘贴法因其操作过程中载体不须加热,设备简单,易于实现工艺自动化操作且经济实惠而得到广泛应用,尤其在集成电路和小功率器件中应用更为广泛。树脂粘贴的器件热阻和电阻都很高。树脂在高温下简单分解,有可能发生填料的析出,在粘贴面上只留下一层树脂使该处电阻增大。因此它不适于要求在高温下工作或需低粘贴电阻的器件。另外,树脂粘贴法粘贴面的机械强

常见的电子元器件失效机理与分析

常见的电子元器件失效机理与分析 电子元器件的主要失效模式包括但不限于开路、短路、烧毁、爆炸、漏电、功能失效、电参数漂移、非稳定失效等。对于硬件工程师来讲电子元器件失效是个非常麻烦的事情,比如某个半导体器件外表完好但实际上已经半失效或者全失效会在硬件电路调试上花费大把的时间,有时甚至炸机。 硬件工程师调试爆炸现场 所以掌握各类电子元器件的实效机理与特性是硬件工程师比不可少的知识。下面分类细叙一下各类电子元器件的失效模式与机理。 电阻器失效 失效模式:各种失效的现象及其表现的形式。失效机理:是导致失效的物理、化学、热力学或其他过程。 电阻器的失效模式与机理 ?开路:主要失效机理为电阻膜烧毁或大面积脱落,基体断裂,引线帽与电阻体脱落。 ?阻值漂移超规范:电阻膜有缺陷或退化,基体有可动钠离子,保护涂层不良。?引线断裂:电阻体焊接工艺缺陷,焊点污染,引线机械应力损伤。 ?短路:银的迁移,电晕放电。 失效模式占失效总比例表 ?线绕电阻: ?非线绕电阻:

失效模式机理分析电阻器失效机理是多方面的,工作条件或环境条件下所发生的各种理化过程是引起电阻器老化的原因。 ?导电材料的结构变化: 薄膜电阻器的导电膜层一般用汽相淀积方法获得,在一定程度上存在无定型结构。按热力学观点,无定型结构均有结晶化趋势。在工作条件或环境条件下,导电膜层中的无定型结构均以一定的速度趋向结晶化,也即导电材料内部结构趋于致密化,能常会引起电阻值的下降。结晶化速度随温度升高而加快。 电阻线或电阻膜在制备过程中都会承受机械应力,使其内部结构发生畸变,线径愈小或膜层愈薄,应力影响愈显著。一般可采用热处理方法消除内应力,残余内应力则可能在长时间使用过程中逐步消除,电阻器的阻值则可能因此发生变化。结晶化过程和内应力清除过程均随时间推移而减缓,但不可能在电阻器使用期间终止。可以认为在电阻器工作期内这两个过程以近似恒定的速度进行。与它们有关的阻值变化约占原阻值的千分之几。 电负荷高温老化:任何情况,电负荷均会加速电阻器老化进程,并且电负荷对加速电阻器老化的作用比升高温度的加速老化后果更显著,原因是电阻体与引线帽接触部分的温升超过了电阻体的平均温升。通常温度每升高10℃,寿命缩短一

相关文档
最新文档