函数大小比较

函数大小比较
函数大小比较

㈠ 与幂函数αx y =有关的大小比较

⑴ 两个幂函数的指数相同(底数为负数时须先化为正数),利用幂函数的单调性判定大小;

⑵ 两个幂函数的指数不同,能化为同指数的,利用幂函数的单调性判定大小,不能化为同指数的,利用中间数0来比较大小;

幂函数αx y =的性质:

⑴ 在),0(∞上,0>α时是增函数,0<α时是减函数:

⑵ 1>x 时,指数大的图象在上方,10<

⑶ 0>α时,图象过(0,0)

,(1,1),0<α时,图象过(1,1)。 ㈡ 与指数函数x a y =有关的大小比较

⑴ 两个指数函数的底数相同指数不同时,利用指数函数的单调性判定大小;

⑵ 两个指数函数的底数不同指数相同时,可根据图象与底数的关系进行比较;

⑶ 两个指数函数的底数和指数都不同时,可引进第3个数(如0,1)分别与之比较,通过常数传递比较大小。 指数函数的性质:

⑴ 1>a 时,x a y =是增函数,10<

⑵ 1>a 时,a 越大图象上升越快,10<

⑶ x a y =的图象过(0,1)点,R x y ∈∞∈),,0(。

㈢ 与对数函数x y a log =有关的大小比较

⑴ 两个对数函数的底数相同真数不同时,利用对数函数的单调性判定大小;

⑵ 两个指数函数的底数不同真数相同时,可按图象与底数的关系进行比较,或用换底变成同底函数进行比较; ⑶ 两个对数函数的底数和真数都不同时,可引进第3个数(如0,1)分别与之比较,通过常数传递比较大小。 ⑷ 解与对数有关的不等式,通常借助对数函数的单调性,由外向里逐步化简,最终变形为整式不等等式求解。 对数函数的性质:

⑴ 1>a 时,x y a log =是增函数,10<

⑵ 1>a 时,010,01?>y x y x ,10<?<<y x y x ; ⑶ x y a log =的图象过(1,0)点,),0(,∞∈∈x R y 。

对数的性质:N a

a N a a a ===log ,1log ,01log ,零和负数没有对数。 对数运算公式:

⑴ N M MN a a a log log )(log +=

⑵ N M N

M a a a log log )(log -= ⑶ M n M a n a log log =

⑷ 换底公式:)1,0,1,0(,log log log ≠>≠>=c c a a a

N N a a a ⑸ a b b a log 1log =

⑹ )1,0,1,0(,log log ≠>≠>=b b a a b n m M a m a n

高三数学专项训练:函数值的大小比较

高三数学专项训练:函数值的大小比较 一、选择题 1,则c b a ,,的大小关系是( ). A. b c a >> B. b a c >> C. c b a >> D. c a b >> 2 .设2 lg ,(lg ),a e b e c === ( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 3.设a b c ,,分别是方程的实数根 , 则有( ) A.a b c << B.c b a << C.b a c << D.c a b << 4.若13 (1)ln 2ln ln x e a x b x c x -∈===,, ,,,则( ) A .a > B 、c a b >> C 、b a c >> D 、b c a >> 9.若)1,0(∈x ,则下列结论正确的是( ) A B C D 10.若0m n <<,则下列结论正确的是( ) A .22m n > B C .22log log m n > D

高考题:函数值比较大小

在康成 ----无所不能 1.设 232555322555a b c ===(),(),(),则a ,b ,c 的大小关系是 A (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 4.(全国Ⅰ卷理8文10)设a=3log 2,b=In2,c=1 2 5-,则 C A. a> B .b a c >> C .c a b >> D .b c a >> 15.(湖南卷文6)下面不等式成立的是( A ) 23log 5< B .3log 5log 2log 223<< 2<0< B . 4 1 log 52 a ,log log a a z = C ) A .x y z >> B .z y x >> C .y x z >> D .z x y >> 18.(全国Ⅱ卷理4文5)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C ) A .a ≠,的图象如图所示,则a b ,满足的关系是( A ) A .101a b -<<< B .101b a -<<< C .101b a -<<<- D .1101a b --<<<

函数大小比较问题

一、两幂值比大小的方法: (1)同底数的两幂值比大小时,利用指数函数的单调性可直接比较大小; (2)底、指都不同的两幂值比大小时,可借用中间值间接比较大小,也可利用函数图象的位置关系来比较大小。 例2 :比较下列各组中各数的大小. (1)0.40.3与0.40.2;(2)-0.75-0.1与-0.750.1 (3)()1/5与()3/4;(4)()-2/3与()-3/2 解:(1)考察指数函数y=0.4x,∵0<0.4<1,此函数为减函数,而0.3>0.2,∴0.40.3<0.40.2 (2)∵0<0.75<1,-0.1<0.1,∴0.75-0.1>0.750.1,故-0.75-0.1<-0.750.1. 另解:分别画出函数y=()x和y=()x的图象,图象中A 点的纵坐标为()1/5,B点的纵坐标为()3/4,C点的纵坐标为()1/5 由于A点高于C点,C点又高于B点,所以()1/5>()3/4 (4)∵()-2/3>()0=1, ()-3/2<()0=1,∴()-2/3>()-3/2 二、两对数值比大小的方法:

(1)同底数的两对数值比大小时,利用对数函数的单调性可直接比较大小; (2)同真数的两对数值比大小时,可换底后比较大小,也可利用同类函数图象的高低比大小; (3)底与真数都不同的两对数值比大小时,可以借用中间值间接比较大小,也可利用函数图象的 位置关系来比较大小。 例3:比较下列各组中两个对数值的大小. (1)log0.20.5, log0.20.3; (2) log23, log1.53 (3) log59, log68 ; (4) log1/50.3, log20.8 . 解:(下面的解答由师生共同完成) (2)考察指数函数y=log0.2x,∵0<0.2<1, 此函数为减函数,而 0.5>0.3,∴log0.20.5< log0.20.3 (3)log23=, log1.53=,∵lg3>0,lg2>lg1.5>0,∴log23< log1.53 另解:分别画出函数y=log1.5x,y=log2x的图象,x>1以后y=log1.5x的图象 在y=log2x的图象的上方。当x=3时A点高于B点,因为A点纵坐标为log1.53,B点纵坐标为log23,所以log23< log1.53

函数的最大(小)值

第一章 1.3. 1(下)函数的最大(小)值 教学目的:⑴初步了解复合函数单调性的判断方法. ⑵理解函数的最大(小)值及其几何意义; ⑶学会运用函数图象理解和研究函数的性质; 教学重点:函数的最大(小)值及其几何意义. 教学难点:利用函数的单调性求函数的最大(小)值. 教学过程: 一.复习引入 1、函数单调性定义----上升的意义为单调递增,下降的意义为单调上升.,如何精确说明x 越大(小),y 越大(小),单调函数的定义. 2、初等函数:一次函数)0(≠+=k b kx y 、二次函数)0(2≠++=a c bx ax y ,对称轴为界,反比例函数)0(≠= k x k y 的单调性,单调区间: 3、单调性的判定、单调区间的求法:(1)初等函数直接给出(2)画函数图象(3)定义法 比如作业:《作业本》1.3.1(一)10. 若函数()()2 15f x ax a x =--+在区间1 ,12?? ??? 上是增函数,求实数a 的范围. 解:若0a =,则()5f x x =-+,符合 若0a >,则对称轴11022 a x a a -=≤?> 若0a <,则对称轴11102a x a a -= ≥?-≤< 综上:1a ≥- 4、单调性的证明方法:单调性的证明一般分五步:取 值 → 作 差 → 变 形 → 定 号 → 下结论 5、补充作业:证明函数f(x)=x 3 在(-∞,+∞)上是增函数.错解:分类1212 0,0x x x x <<<<讨论,只说明了在()(),0,0,-∞+∞上递增,但并不是(),-∞+∞上递增;即使再分120x x <<讨论也还不够,12,x x 中可以有0吗? 就此说明:(1)并不因为0x >递增,0x <递增,而得出R 上递增. 也可以有解法:2 222 2 2 212 1122 122132422x x x x x x x x x x x ??? ++=++=+++ ? ??? 或2 2 22 2222 12 12 1122122 2 x x x x x x x x x x ++++≥+- = (2)确定符号时,因式分解到底:

关于比较一次函数的函数值与二次函数的函数值大小之我见

关于比较一次函数的函数值与二次函数的函数值大小之我见 多力昆·阿布都热西提 2014.6.3

关于比较一次函数的函数值与二次函数的 函数值大小之我见 多力昆·阿布都热西提 在初中数学中,一次函数的图像和二次函数的图像的复杂的和潜在的概念现象大部分的师生分析问题陷入困惑。数学教师对这一点的忽略引起了学生对这个容的探究精神的欠缺。 数学没有明确概念,解决问题一定会受阻,如果概念里模糊,问题与学过知识之间的技术处理一定会失败。我认为,一次函数的图像与二次函数的图像之间的函数值的大小问题应该分层次分析。 下面,我来分析二次函数的图像与一次函数的图像之间存在的模糊问题的看法。 1、在同一个平面直角坐标中,二次函数y 1 = ax2+bx+c和一次函 数y 2 =ax+b的函数值的大小问题 (1)判断二次函数的图像与一次函数的图像的关系,如果二次函 数y 1 = ax2+bx+c的图像与一次函数的图像相交,则函数值相等,即 y 1= y 2 。 由上可得:ax2+bx+c=ax+b。 整理得:ax2+(b-a)x+c-b=0。 检验:Δ=b2—4ac=(b—a)2—4a(c—b) 第一:当Δ>0时,二次函数的图像与一次函数相交于不同的两个点。

设交点的坐标为(x 1,y 1 ),(x 2 ,y 2 ), 在y= ax2+bx+c中,当a>0(x 1< x 2 )时,x 1 y 1 , 当x> x 2或x< x 1 时,y 2 < y 1 (图1)在y= ax2+bx+c中,当a<0(x 1 < x 2)时,x 1 y 2 。当x> x 2 或x< x 1 时,y 2 > y 1 。(图2) 图1 图2 在图1中,在直线x= x 1与直线x= x 2 之间,一次函数的图像在 二次函数的上方,即,y 1> y 2 在直线x= x 1 的右边与直线x= x 2 的右 边,一次函数的图像在二次函数的下方,即y 1> y 2 。 在图2,在直线x= x 2 之间,二次函数的图像在一次函数的图像, 即:y 1> y 2 。在直线x= x1的左边与直线x= x2的右边,一次函数的 图像在二次函数的图像上方,即y2> y1。 第二,当Δ=0时,一次函数的图像与二次函数的图像有一个交 点,此时,设交点的坐标为(x 0,y ),在y 1 =ax2+bx+c,当a>0时, 在x= x 0的条件下,y 1 > y 2 ,(图3)。在x≠ x 的条件下,y 1 > y 2 ,(图 4)。

高考题:函数值比较大小

1.设 232555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 A (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 4.(全国Ⅰ卷理8文10)设a= 3 log 2,b=In2,c=1 2 5 - ,则 C A. a> B .b a c >> C .c a b >> D .b c a >> 15.(湖南卷文6)下面不等式成立的是( A ) A .322log 2log 3log 5<< B .3log 5log 2log 223<< C .5log 2log 3log 232<< D .2log 5log 3log 322<< 16(江西卷文4)若01x y <<<,则( C ) A .33y x < B .log 3log 3x y < C .44log log x y < D .1 1()()44 x y < 17.(辽宁卷文4)已知01a << ,log log a a x =,1 log 52 a y = , log log a a z =,则( C ) A .x y z >> B .z y x >> C .y x z >> D .z x y >> 18.(全国Ⅱ卷理4文5)若1 3 (1)ln 2ln ln x e a x b x c x -∈===,, ,,,则( C ) A .a ≠,的图象如图所示,则a b ,满足的关系是( A ) A .1 01a b -<<< B .101b a -<<< C .1 01b a -<<<- D .1 101a b --<<<

函数的最大(小)值

第一章 集合号函数概念 1.3 函数的基本性质 1.3.1 单调性与最大(小)值 第2课时 函数的最大(小)值 A 级 基础巩固 一、选择题 1.已知函数f (x )=2x -1 (x ∈[2,6]),则函数的最大值为( ) A .0.4 B .1 C .2 D .2.5 解析:因为函数f (x )=2x -1 在[2,6]上是单调递减函数,所以f (x )max =f (2)=22-1 =2. 答案:C 2.函数f (x )=? ????2x +4,1≤x ≤2,x +5,-1≤x <1,则f (x )的最大值、最小值分别为( ) A .8,4 B .8,6 C .6,4 D .以上都不对 解析:f (x )在[-1,2]上单调递增,所以最大值为f (2)=8,最小值为f (-1)=4. 答案:A 3.函数f (x )=11-x (1-x ) 的最大值是( )

A.54 B.45 C.43 D.34 解析:因为1-x (1-x )=x 2-x +1=? ?? ??x -122+34≥34,所以1 1-x (1-x )≤43 ,得f (x )的最大值为43. 答案:C 4.若函数y =ax +1在[1,2]上的最大值与最小值的差为2,则实数a 的值是( ) A .2 B .-2 C .2或-2 D .0 解析:a >0时,由题意得2a +1-(a +1)=2,即a =2;a <0时,a +1-(2a +1)=2,所以a =-2,所以,a =±2. 答案:C 5.已知f (x )=x 2-2x +3在区间[0,t ]上有最大值3,最小值2,则t 的取值范围是( ) A .[1,+∞) B .[0,2] C .(-∞,2] D .[1,2] 解析:因为f (0)=3,f (1)=2,函数f (x )图象的对称轴为x =1,结合图象可得1≤t ≤2. 答案:D 二、填空题 6.函数f (x )=x 2-4x +2,x ∈[-4,4]的最小值是________,最

函数大小比较

㈠ 与幂函数αx y =有关的大小比较 ⑴ 两个幂函数的指数相同(底数为负数时须先化为正数),利用幂函数的单调性判定大小; ⑵ 两个幂函数的指数不同,能化为同指数的,利用幂函数的单调性判定大小,不能化为同指数的,利用中间数0来比较大小; 幂函数αx y =的性质: ⑴ 在),0(∞上,0>α时是增函数,0<α时是减函数: ⑵ 1>x 时,指数大的图象在上方,10<α时,图象过(0,0),(1,1),0<α时,图象过(1,1)。 ㈡ 与指数函数x a y =有关的大小比较 ⑴ 两个指数函数的底数相同指数不同时,利用指数函数的单调性判定大小; ⑵ 两个指数函数的底数不同指数相同时,可根据图象与底数的关系进行比较; ⑶ 两个指数函数的底数和指数都不同时,可引进第3个数(如0,1)分别与之比较,通过常数传递比较大小。 指数函数的性质: ⑴ 1>a 时,x a y =是增函数,10<a 时,a 越大图象上升越快,10<a 时,x y a log =是增函数,10<a 时,010,01?>y x y x ,10<?<<y x y x ; ⑶ x y a log =的图象过(1,0)点,),0(,∞∈∈x R y 。 对数的性质:N a a N a a a ===log ,1log ,01log ,零和负数没有对数。 对数运算公式: ⑴ N M MN a a a log log )(log += ⑵ N M N M a a a log log )(log -= ⑶ M n M a n a log log = ⑷ 换底公式:)1,0,1,0(,log log log ≠>≠>=c c a a a N N a a a ⑸ a b b a log 1log = ⑹ )1,0,1,0(,log log ≠>≠>=b b a a b n m M a m a n

利用函数单调性比大小-第二章总结

【第二章计算题类型】 计算: (1)2lg2+lg31+12lg0.36+13lg8; (2)23×612×332. (3)lg2·lg 52 +lg0.2·lg40. (利用函数单调性比大小)★常考类型★ 1-1.设120.7a =,120.8b =,c 3log 0.7=,则( ). A. c > B. b a c >> C. c a b >> D. b c a >> 1-3.设a =log 132,b =log 13 3,c =? ????120.3,则( ) A .a成立的x 的取值范围是( ). A. 3(,)2+∞ B. 2(,)3+∞ C. 1(,)3+∞ D.1 (,)3 -+∞ 1-5.设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与 最小值之差为1 2,则a =( ). B. 2 C. D. 4 1-6. 函数y=log a x 在[2,4]上的最大值比最小值大1,求a 的值。 1-7. 若a>0且a ≠1,且log a 4 3<1,则实数a 的取值范围是( )。 A.043或01 1-8. 若实数a 满足log a 2>1,则a 的取值范围为________. 【恒过定点问题★常考类型★】 2-1.函数y =a x +1(a >0且a ≠1)的图象必经过点( ). A.(0,1) B. (1,0) C.(2,1) D.(0,2) 2-2. 若a >0且a ≠1,则函数y =a x -1-1的图像一定过点___。 2-3.函数y= log a (x+1)-2(a>0,且a≠1)的图象恒过定点 。 2-4. 已知函数y =3+log a (2x +3)(a >0且a ≠1)的图象必经 过点P ,则P 点坐标________. 2-5. 函数f (x )=log a (3x -2)+2(a >0且a ≠1)恒过定点_______。 (幂函数的解析式求值)★常考类型★ 3-1.如果幂函数()f x x α=的图象经过点,则(4)f 的值等于( ). A. 16 B. 2 C. 116 D. 12 3-2. 幂函数()y f x =的图象过点1(4,)2,则(8)f 的值为 (指数型函数应用题——人口计算) 4-1. 世界人口已超过56亿,若千分之一的年增长率,则两年增长的人口可相当于一个( ).

函数值的大小比较

二次函数、反比例函数比较大小 一、二次函数的大小比较方法: 1、特殊值代入法: 直接根据题目要求,分别代入具体的数值,再比较大小。 2、利用函数的增减性: 当各点都在对称轴的一侧时,利用函数的增减性进行比较。 3、计算各点到对称轴的距离,结合抛物线的开口方向比较大小:(本法适用于各点在对称轴同侧和异侧的大小比较,尤其是异侧。) (1)当抛物线开口向上时(即a>0时),离对称轴距离越远,函数值越大,反之越小。 当抛物线开口向上与x 轴有两个交点,两点在对称轴的两侧时,若221x x +>a b 2-(x 1<a b 2-<x 2)时,y 1<y 2;若221x x +<a b 2-(x 1<a b 2-<x 2)时,y 1>y 2 【推理:由x 2-(a b 2- )>a b 2--x 1得x 2+x 1>a b -得221x x +>a b 2-;即x 2离对称轴距离较远;由x 2-(a b 2- )<a b 2--x 1,得x 2+x 1<a b -,得221x x +<a b 2-,即x 1离对称轴距离较远.】 (2)当抛物线开口向下时(即a <0时),离对称轴距离越远,函数值越小,反之越大。 当抛物线开口向下与x 轴有两个交点,两点在对称轴的两侧时,若221x x +>a b 2-(x 1<a b 2-<x 2)时,y 1>y 2;若221x x +<a b 2-(x 1<a b 2-<x 2)时,y 1<y 2,推理同(1) 4、图象法: 结合具体图象,利用y 轴“上大下小”的特点比较具体各点的函数值的大小。(第一、二象限的函数值总是大于第三、四象限的函数值) 5、移点法: 利用抛物线的对称性将各点转化到对称轴的同一侧,再利用函数的增减性比较大小。

人教版·数学Ⅰ_§1.3.1函数的最大(小)值

——————————————第 1 页 (共 3页)—————————————— 课题:§1.3.1函数的最大(小)值 教学目的:(1)理解函数的最大(小)值及其几何意义; (2)学会运用函数图象理解和研究函数的性质; 教学重点:函数的最大(小)值及其几何意义. 教学难点:利用函数的单调性求函数的最大(小)值. 教学过程: 一、 引入课题 画出下列函数的图象,并根据图象解答下列问题: ○ 1 说出y=f(x)的单调区间,以及在各单调区间上的单调性; ○ 2 指出图象的最高点或最低点,并说明它能体现函数的什么特征? (1)32)(+-=x x f (2)32)(+-=x x f ]2,1[-∈x (3)12)(2++=x x x f (4)12)(2++=x x x f ]2,2[-∈x 二、 新课教学 (一)函数最大(小)值定义 1.最大值 一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足: (1)对于任意的x ∈I ,都有f(x)≤M ; (2)存在x 0∈I ,使得f(x 0) = M 那么,称M 是函数y=f(x)的最大值(Maximum Value ). 思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value )的定义.(学生活动) 注意: ○ 1 函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f(x 0) = M ; ○ 2 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f(x)≤M (f(x)≥M ). 2.利用函数单调性的判断函数的最大(小)值的方法 ○1 利用二次函数的性质(配方法)求函数的最大(小)值 ○2 利用图象求函数的最大(小)值 ○ 3 利用函数单调性的判断函数的最大(小)值

高考题函数值比较大小

高考题函数值比较大小 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

1.设232555322555a b c ===(),(),(),则a ,b ,c 的大小关系是 A (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 4.(全国Ⅰ卷理8文10)设a=3log 2,b=In2,c=1 25-,则 C A. a> B .b a c >> C .c a b >> D .b c a >> 15.(湖南卷文6)下面不等式成立的是( A ) A .322log 2log 3log 5<< B .3log 5log 2log 223<< C .5log 2log 3log 232<< D .2log 5log 3log 322<< 16(江西卷文4)若01x y <<<,则( C )

A .33y x < B .log 3log 3x y < C .44log log x y < D .11()()44 x y < 17.(辽宁卷文4)已知01a <<,log log a a x =1log 52a y =, log log a a z =,则( C ) A .x y z >> B .z y x >> C .y x z >> D .z x y >> 18.(全国Ⅱ卷理4文5)若13(1)ln 2ln ln x e a x b x c x -∈===,, ,,,则( C ) A .a ≠,的图象如图所示,则a b ,满足的关系是( A ) A .101a b -<<< B .101b a -<<< C .101b a -<<<- D .1101a b --<<<

浅谈比较两个数大小的方法

探讨两个数比较大小问题 陕西省西乡县第二中学 王仕林 比较大小是数学及其生活中常常遇到的问题,也是每年高考考查的热点之 一。如何比较两个数的大小,对于迎接高考或者解决现实生活都是最迫切的问题。本专题主要是针对高一年级学生对比较大小问题的迷茫和对比较两个数大小方法的未知进行探讨。 一、比较两个数大小常用的方法: (1)单调性法; (2)图象法; (3)引进中间数法; (4)范围比较法; (5)作差或作商法; (6) 公式法; 二、方法介绍及其例题精选: (1)单调性法:根据两个数构造一函数,利用函数的单调性来比较两个数 的大小,这种方法叫单调性法。 例1、比较下列各组中两个数的大小. ① 0.2log 0.5和0.2log 0.3 ② 2log 3和 1.5log 3 ③ 0.30.4和0.20.4 ④ -0.1-0.75和0.1-0.75 分析:① 可构造函数0.2()log f x x =,利用对数函数0.2()log f x x =在定义域上的 单调性比较其大小; ②先把两个数化成31log 2和31log 1.5,可构造函数3()log f x x =,利用对数函数3()log f x x =在定义域上的单调性比较3log 2与3log 1.5大小;然后再利用函数1()f x x =的单调性比较2log 3和 1.5log 3的大小。 ③ 可构造函数()0.4x f x =,利用对数函数()0.4x f x =在定义域上的单调性比较其大小;

④可构造函数()0.75x f x =,利用对数函数()0.75x f x =在定义域上的单调性比 较其大小; 例2、比较下列各组中两个数的大小. ① 0.525?? ???与0.513?? ??? ②-12-3?? ???与-1 3-5?? ??? 分析:①可构造函数0.5()f x x =在()0+∞,上是单调递增的; ②可构造函数-1()f x x =在()-0∞,上是单调递减的; 例3、①定义在R 上的偶函数()f x 满足:对于任意的[)()1212x ,x 0,x x ∈+∞≠, 1212 ()()0f x f x x x -<-。则( ) A (3)(2)(1)f f f <-< B (1)(2)(3)f f f <-< C (2)(1)(3)f f f -<< D (3)(1)(2)f f f <<- 分析:由题意[)()1212x ,x 0,x x ∈+∞≠时,有1212 ()()0f x f x x x -<-可知函数()f x 在[)0+∞,上 递减;又因为函数()f x 在R 上是偶函数,则函数()f x 在(]-0∞,上是增函数。所以要比较(3)(-2)(1)f f f 、与的大小,只需要比较(3)(2)(1)f f f 、与的大小即可。 ②已知函数()f x 在区间()0+∞,上是减少的,试比较2(a a 1)f -+与3()4 f 的大小 分析:由于22131024a a a ??-+=-+> ???,304>。根据题意:()f x 在区间()0+∞,上是减 少的;同时2314a a -+>,所以23(1)f()4 f a a -+< 小结:单调性法适用于两个数中的底数或指数有一个相同,通过构造函数,利 用函数的单调性来比较两个数的大小。 (2)图象法:把要比较的两个数看成是某个函数图象上的对应函数值;因此 通过图象比较两个数大小的方法,叫图象法。

人教版初三数学下册比较函数值的大小

盘点“比较函数值大小的方法” 杨光冬 湖北省孝感市肖港初级中学 邮编432023 初中数学第二十八章《锐角三角函数》学完后,整个第三学段的函数就结束了. 每年中考前的系统复习中, 我们经常遇到比较两函数值(或多个函数值)大小的考题,学生遇到这类题型得分率虽然较高,但笔者在课堂教学中发现,学生对这类题型的掌握并不系统,针对这种现象,笔者在此对比较函数值大小的比较方法作一个总的盘点,希望对大家的教学有所帮助. 一、同一函数中比较函数值的大小 解法1:运用增减性比大小 例1:点A (-3,y 1)、B (-5,y 2)均在双曲线x y 3 =上,试比较y 1和y 2的大小. 解析:因为反比例函数x y 3 = 的图象是双曲线,在每个象限内,y 随x 的减小而增大 且点A (-3,y 1)、B (-5,y 2)在第三象限的同一支曲线上,所以12y y >. 例2:点A (-3,y 1)、B (-5,y 2)均在抛物线322 ++=x x y 上,试比较y 1和y 2的大小. 解析:因为抛物线322 ++=x x y 的对称轴是直线1-=x ,其开口向上,所以在对称轴左侧的抛物线上y 随x 的减小而增大,因此12y y >. 解法2:运用正负性比较反比例函数值的大小 例3:点A (-3,y 1)、B (1,y 2)均在双曲线x y 3 -=上,试比较y 1和y 2的大小. 解析:因为反比例函数x y 3 -=的图象是双曲线,在每个象限内,y 随x 的减小而减小, 但是点A (-3,y 1)、B (1,y 2)不在同一支曲线上,所以不能用增减性比较1y 和2y 的大小. 又因为A (-3,y 1)、B (1,y 2)分别位于第二、第四象限的图象上,所以0 >y ,0. 解法3:运用距离比较二次函数值的大小 例4:点A (-2,y 1)、B (3.5,y 2)、C (5,y 3)均在 抛物线y =x 2-2x -3上,试比较y 1、y 2和y 3的大小. 解析:因为点A (-2,y 1)、B (3.5,y 2)、C (5,y 3) 不在对称轴(直线1=x )同侧的抛物线上,所以不 能直接用增减性比较y 1和y 2、y 3的大小,此时我们 可以用抛物线的对称性将A (-2,y 1)先转化到对称轴 右侧的抛物线上,使A 、B 、C 三点在对称轴的同侧,

函数的最大值和最小值

函数的最大值和最小值 教材分析 函数的最大(小)值是函数的一个重要性质。它和求函数的值域有密切的关系,对于在闭区间上连续的函数,只要求出它的最值,就能写出这个函数的值域。通过对本课的学习,学生不仅巩固了刚刚学过的函数单调性,并且锻炼了利用函数思想解决实际问题的能力;同时在问题解决的过程中学生还可以进一步体会数学在生活、实际中的应用,体会到函数问题处处存在于我们周围。 学情分析在初中学生对已经经历了中学函数学习的第一阶段,学习了函数的描述性概念接触了正比例函数,反比例函数一次函数二次函数等最简单的函数,了解了他们的图像和性质。鉴于学生对二次函数已经有了一个初步的了解。因此本节课从学生接触过的二次函数的图象入手,这样能使学生容易找出最高点或最低点。但这只是感性上的认识。为了让学生能用数学语言描述函数最值的概念,先从具体的函数y=x2入手,再推广到一般的函数y=ax2+bx+c (a≠0)。让学生有一个从具体到抽象的认识过程。对于函数最值概念的认识,学生的理解还不是很透彻,通过对概念的辨析,让学生真正理解最值概念的内涵。例1与它的变式是本节的重点,通过对区间的改变,让学生对求二次函数的最值有一个更深的认识。同时让学生体会到数形结合的魅力。 教学目标分析 1、知识与技能目标:掌握函数最大、最小值的概念,能够解决与二次函数有关的最值问题,以及利用函数单调性求最值,会用函数的思想解决一些简单的实际问题。 2、过程与方法目标:通过函数最值的学习进一步研究函数,感悟函数的最值对于函数研究的作用。 3、情感态度、价值观目标:培养学生积极进行数学交流,乐于探索创新的科学精神。 教学重点和难点 教学重点:函数的最大(小)值及其几何意义 教学难点:利用函数的单调性求函数的最大(小)值. 四、教学方法 本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输.为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学. 五、学习方法

函数中的最大值最小值

函数中的max min (m in),(m ax )问题 1.记{}???<≥=q p q q p p q p ,max ,设{} 1,1max ),(22+-++=x y y x y x M ,其中R y x ∈,, 则),(y x M 的最小值为 43 2.定义{}???<≥=y x y y x x y x M ,,设()R y x y xy y b x xy x a ∈++=++=,,24,22 则{}b a M ,的最小值为 61- ,此时=x 31- ,=y 6 1- 。 3.若y x ,为正实数,? ?????+=22,min y x y x a ,则a 的最大值为 22 此时=x 22 ,=y 22 。 4.设{}???<≥=y x x y x y y x ,min ,若定义域为R 的函数)(),(x g x f 满足8 2)()(2+=+x x x g x f 则{})(),(m in x g x f 的最大值为 8 2 5.设{}???<≥=y x x y x y y x ,min ,若定义域为)2,0(π 的函数)(),(x g x f 满足1sin 22sin )()(2+= +x x x g x f 则{})(),(m in x g x f 的最大值为 63 6.已知[]1,0,,∈?∈x R b a 恒有1≤+b ax 成立,则b a b a 710710-++的最大值为 40 7.已知存在[]9,1∈x ,对任意的R b a ∈,,使得kx bx ax x ≥--+2 29恒成立,则k 的最大值为 2 8.若存在R b a ∈,,使不等式[]t x b ax x ,1,12∈?≤--都成立,则实数t 的最大值为 122+ 9.设b ax x x f ++=2)(,若R b a ∈?,,总存在[]3,10∈x 使得M x f ≥)(0, 则实数M 的最大值为 3324- 10.已知?? ????∈∈--+=2,21),,(,1)(x R b a b ax x x x f 时,)(x f 的最大值为),(b a M ,

函数的最大值与最小值(二)

函数的最大值与最小值(二)

课题:3.8函数的最大值与最小值(二)教学目的: 1. 进一步熟练函数的最大值与最小值的求法; ⒉初步会解有关函数最大值、最小值的实际问题 教学重点:解有关函数最大值、最小值的实际问题. 教学难点:解有关函数最大值、最小值的实际问题. 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y =f(x0),x0是极大值 极大值 第 2页(共12页)

第 3页(共12页) 点 2.极小值:一般地,设函数f(x)在x 0附近有定义,如果对x 0附近的所有的点,都有f(x)>f(x 0).就说f(x 0)是函数f(x)的一个极小值,记作y 极小值=f(x 0),x 0是极小值点 3.极大值与极小值统称为极值 4. 判别f (x 0)是极大、极小值的方法: 若0x 满足0)(0='x f ,且在0 x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0 x f 是极值,并且如果)(x f '在0 x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0 x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0 x f 是极小值 5. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ) (2)求方程f ′(x )=0的根 (3)用函数的导数为0的点,顺次将

函数大小比较

⑴ 两个幂函数的指数相同(底数为负数时须先化为正数),利用幂函数的单调性判定大小; ⑵ 两个幂函数的指数不同,能化为同指数的,利用幂函数的单调性判定大小,不能化为同指数的,利用中间数0来比较大小; 幂函数αx y =的性质: ⑴ 在),0(∞上,0>α时是增函数,0<α时是减函数: ⑵ 1>x 时,指数大的图象在上方,10<α时,图象过(0,0),(1,1),0<α时,图象过(1,1)。 ㈡ 与指数函数x a y =有关的大小比较 ⑴ 两个指数函数的底数相同指数不同时,利用指数函数的单调性判定大小; ⑵ 两个指数函数的底数不同指数相同时,可根据图象与底数的关系进行比较; ⑶ 两个指数函数的底数和指数都不同时,可引进第3个数(如0,1)分别与之比较,通过常数传递比较大小。 指数函数的性质: ⑴ 1>a 时,x a y =是增函数,10<a 时,a 越大图象上升越快,10<a 时,x y a log =是增函数,10<a 时,010,01?>y x y x ,10<?<<y x y x ; ⑶ x y a log =的图象过(1,0)点,),0(,∞∈∈x R y 。 对数的性质:N a a N a a a ===log ,1log ,01log ,零和负数没有对数。 对数运算公式: ⑴ N M MN a a a log log )(log += ⑵ N M N M a a a log log )(log -= ⑶ M n M a n a log log = ⑷ 换底公式:)1,0,1,0(,log log log ≠>≠>=c c a a a N N a a a ⑸ a b b a log 1log = ⑹ )1,0,1,0(,log log ≠>≠>=b b a a b n m M a m a n

高中数学必修一§1.3.1函数的最大(小)值

§1.3.1函数的最大(小)值 一.教学目标 1.知识与技能: 理解函数的最大(小)值及其几何意义. 学会运用函数图象理解和研究函数的性质. 2.过程与方法: 通过实例,使学生体会到函数的最大(小)值,实际上是函数图象的最高(低)点的纵坐标,因而借助函数图象的直观性可得出函数的最值,有利于培养以形识数的解题意识. 3.情态与价值 利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发学生学习的积极性. 二.教学重点和难点 教学重点:函数的最大(小)值及其几何意义 教学难点:利用函数的单调性求函数的最大(小)值. 三.学法与教学用具 1.学法:学生通过画图、观察、思考、讨论,从而归纳出求函数的最大(小)值的方法和步骤. 2.教学用具:多媒体手段 四.教学思路 (一)创设情景,揭示课题. 画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①()3f x x =-+ ②()3 [1,2]f x x x =-+∈- ③2 ()21f x x x =++ ④2 ()21[2,2]f x x x x =++∈- (二)研探新知 1.函数最大(小)值定义 最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =. 那么,称M 是函数()y f x =的最大值. 思考:依照函数最大值的定义,结出函数()y f x =的最小值的定义. 注意: ①函数最大(小)首先应该是某一个函数值,即存在0x I ∈,使得0()f x M =; ②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x I ∈,都有()(())f x M f x m ≤≥.

相关文档
最新文档