天线基础概念

天线基础概念
天线基础概念

天线已随处可见,它已与我们的日常生活密切相关。例如,收听无线电广播的收音机需要天线,电视机需要天线,手机也需要天线。在一些建筑物,汽车,轮船,飞机上都可以看见各种形式的天线。天线就像人得嘴与耳朵一样,相互之间不停地传递着信息,方便了人类社会生活的信息交流。

从电磁场理论出发,天线问题实质上就是研究天线所产生的可见电磁场分布,以及由空间电磁场分布所决定的电特性。空间任何一点的电磁场满足电磁场方程——麦克斯韦方程及其边界条件。因此,天线问题是时变电磁场问题的一种特殊形式。

从信号系统的角度出发,天线问题可以理解为考察由一个电磁波激励源产生的当初响应特性。

从通信系统的角度出发,天线可以理解为信号发射和接收器,收发天线之间的无线电信号强度满足通道传输方程和多径衰落特性。

电磁场可以脱离电荷、电流而独立存在,它具有能量,是物质的一种形态。电磁场这种物质形态具有自己的特点,这就是它存在于电荷、电流周围的空间,并以波的形式传播。电磁波是由时变电荷及电流激发出来的,时变电荷和电流是电磁波的源。理论和实践证明,电磁波的能量可以脱离源向外传播。电磁能量向外传播不再返回波源的现象称为电磁辐射,辐射电磁能量的装置称为天线。

由此可见天线的功能:

①天线应能将高频电流能量尽可能多地转变为电磁波能量。这首先要求是一个良好的“电磁开放系统”,其次要求天线与发射机(源)匹配或与接收机(负载)匹配。

②天线应使电磁波尽可能集中于所需的方向上,或对所需方向的来波有最大的接收,即天线有方向性。

③天线应有发射或接收规定极化的电磁波,即天线有适当的极化。(波的极化是指电场强度矢量E 在垂直于传播方向平面内随时间变化的方式,亦即电场矢量在空间的取向。)

④天线应有足够的工作频带。

电偶极子是一段载有均匀同相随时间变化电流I (t )的导线,其直径d 远小于长度△l 又远小于波长λ及观察距离r 。(这里所谓的均匀同相电流是指线上的各点的电流振幅相等,相位相同。)电流元可看为点偶极子。电流元所产生的场和电偶极子所产生的场,形式上是一样的,与稳恒场的区别仅在于ω≠0。所以电流元辐射也称为电偶极子辐射。电流元也称为基本电振子。

天线的近场和远场

满足条件Kr<<1的场区称为天线的近场,又称感应场。近场的场强与半径的平方或更高次方成反比。即随着半径的减小,场强迅速增大。从这个概念还可以看出,近场场强与天线的形状相关。

满足条件Kr>>1的场区称为天线的远场,又称辐射场。远场的场强与半径成反比。远场场强与天线形状关系不大,但与观察方向有关。

近场与远场之间通过快速傅里叶变换相关联。因此天线的近场测试与远场测试在一定范围内是等效的,只是精度会有所不同。

在远区,电流元所产生的电磁场是以波动形式沿径向传播的球面波,称为电磁波的辐射。式五和式六所表征的场,也称为辐射场,我们把这样的电流元称为元天线。

为描述元天线的辐射特性,定义以下几个主要参量:

(1)辐射功率和辐射电阻

以元天线为中心,r 为半径作一球面,取面积元2sin r ds e r d d θθφ=。在此闭合面上的积分,

得到元天线向全空间的辐射功率2

2040r i l p πλ???= ???

。这里元天线电流的振幅为I ,于是仿照电路的做法,我们定义一个等效电阻220223r r P l R Z I πλ???== ???称为元天线的辐射电阻,它代表天线的辐射本领。在空气中2

80r l R πλ???= ???

。 (2)方向性函数,方向图和波瓣宽度 sin 4jkr jki l H e e r φθπ-?≈

和sin jkr E e θθ-≈中的sin θ表示元天线的辐射磁场和电场角分布函数,称此角分布函数为磁场或电场的方向性函数。

为了直观地分析场强(或功率)的空间分布,元天线的方向性函数绘制成图,称为方向图。 功率方向图中,最大辐射功率的方向,称为主波瓣方向,最大辐射功率之半的方向,称为半功率点方向。定义主波瓣两侧半功率点方向之间的夹角为主波瓣宽度,它表示辐射功率的集中程度。以m θ代表主波瓣方向,n θ代表半功率点方向,则主波瓣宽度为12m n θθθ=-。

(3)方向性系数和增益系数

为了定量的表示天线辐射功率在空间的集中程度,我们定义天线的方向性系数: 设天线的辐射功率为Pr ,其最大辐射方向单位立体角内辐射功率为

Pr m d d θθ=Ω。如Pr 按4π立体角均匀辐射,单位立体角内辐射的功率为Pr 4π

,则方向性系数D 为Pr Pr

4m d d D θθπ

Ω==。方向性系数D 越大,主波瓣宽度越窄,辐射能量越集中。 定义增益系数G 为Pr 4n d d G Pi

θθπ

Ω==(天线的输入功率Pi )。 线天线

辐射体有截面半径远小于波长的金属导线构成的天线称为线天线。线天线是由许多电基本振子组成的,由各个点基本振子产生的辐射场的叠加,可以求出线天线的辐射场,叠加必须考虑各个电基本振子产生的辐射场之间在空间和时间上的相互关系,进而确定表征其性能的各参数。

如果要增加辐射功率,必须加长天线。但是当天线长度大于0.1λ时,计算功率公式,计算辐射场用公式不再适用。实际中,发射高频信号(VHF )的线状天线的长度为0.5λ,通常将它称为半波偶极子(半波振子)。半波振子的阻抗与传输线相匹配。(半径a 远小于波长,a <0.001λ,总长l =h1+h2,与波长相当。)

天线阵或阵列天线

天线阵或阵列天线是以一定规律排列的相同天线的组合。组成天线阵的独立单元称为阵元或天线单元。如果阵元排列在一直线上或一平面上,则称为直线阵或平面阵。可以利用迭加原理求出天线阵的方向图。由相同形式和相同取向的天线单元阵组成的天线阵,它的方向图是天线单元的方向图乘上阵因子。方向图相乘原理:单元天线阵方向图*单元天线方向图=天线阵方向图。

互易定理

互易定理是电磁场理论的基本定理之一,有许多应用,它联系着两个场源及场源在空间区域和封闭面上产生的场。互易定理为证明电路理论中的线性网络参数的互易关系提供了理论基础。利用互易定理还可以证明同一副天线具有相同的收发特性。

1.洛仑兹互易定理

设两个电流源J1和J2均在空间区域V 外,则空间区域V 内为无源空间,所以洛仑兹互易定理的简化形式为∮[(E1×H2)-(E2×H1)]●en●ds =0。

2.卡森互易定理

当V 表示整个空间时,s 为无限大的封闭面S∞,且设两个电流源J1和J2均在空间区域V 内。由于空间区域V1中的电流源J1产生电磁场E1和H1,以及空间区域V2中的电流源J2产生电磁场E2和H2,且在包围v 的无限大的封闭面S∞上电磁场趋于零,所以式左边的面积分等于零。

211212

v v E J dv E J dv =?? 这是最有用的互易定理形式,称为卡森形式的互易定理。它反应了两个场源与其场之间的互易关系。这种互易性源自线性媒质中麦克斯韦方程的线性性质。

通信天线品种繁多,主要有下列几种分类方式:

按用途可分为基地台天线(base station antenna )和移动台天线(mobile portable antennas )。

按工作频率可划分为超长波,长波,中波,短波,超短波和微波。

按其方向性可划分为全向和定向天线。

按其结构性可划分为线天线和面天线。

参考文献:

[1]工程电磁场基础,P278~302,晁立东,仵杰,王仲弈编。

(2)运动副是两构件通过直接接触形成的可动联接。(3)两构件通过点或线接触形成的联接称为高副。一个平面高副所引入的约束数为1。(4)两构件通过面接触形成的联接称为高副,一个平面低副所引入的约束数为2。(5)机构能实现确定相对运动的条件是原动件数等于机构的自由度,且自由度大于零。(6)虚约束是对机构运动不起实际约束作用的约束,或是对机构运动起重复约束作用的约束。(7)局部自由度是对机构其它运动构件的运动不产生影响的局部运动。(8)平面机构组成原理:任何机构均可看作是由若干基本杆组依次联接于原动件和机架上而构成。(8)基本杆组的自由度为0。(1)瞬心是两构件上瞬时速度相等的重合点-------即等速重合点。(2)两构件在绝对瞬心处的速度为0。(3)相构件在其相对瞬心处的速度必然相等。(4)两构件中若有一个构件为机架,则它们在瞬心处的速度必须为0。(5)用瞬心法只能求解机构的速度,无法求解机构的加速度。(1)驱动机械运动的力称为驱动力,驱动力对机械做正功。(2)阻止机械运动的力称为阻抗力,阻抗力对机械做负功。(1)机械的输出功与输入功之比称为机械效率。(2)机构的损失功与输入功之比称为损失率。(3)机械效率等于理想驱动力与实际驱动力的比值。(4)平面移动副发生自锁条件:作用于滑块上的驱动力作用在其摩擦角之内。(5)转动副发生自锁的条件:作用于轴颈上的驱动力为单力,且作用于轴颈的摩擦圆之内。(1)机构平衡的目的:消除或减少构件不平衡惯性力所带来的不良影响。(2)刚性转子总可通过在转子上增加或除去质量的办法来实现其平衡。(3)转子静平衡条件:转子上各偏心质量产生的离心惯性力的矢量和为零(或质径积矢量和为零)。(4)对于静不平衡转子只需在同一个平面内增加或除去平衡质量即可获得平衡,故称为单面平衡。(5)对于宽径比b/D<0.2的不平衡转子,只做静平衡处理。(6)转子动平衡条件:转子上各偏心质量产生的离心惯性力的矢量和为零,以及这些惯性力所构成的力矩矢量的和也为零。(7)实现动平衡时需在两个平衡基面增加或去除平衡质量,故动平衡又称为双面平衡。(8)动平衡的转子一定是静平衡的,反之则不然。(9)转的许用不平衡量有两种表示方法:许用质径积+许用偏心距。(1)机械运转的三阶段:启动阶段、稳定运转阶段、停车阶段。(2)建立机械系统等动力学模型的等效条件:瞬时动能等效、外力做功等效。(3)机器的速度波动分为:周期性速度波动和非周期性速度波动。(4)周期性速度波动的调节方法:安装飞轮。(5)非周期性速度波动的调节方法:安装调速器。(6)表征机械速度波动程度的参量是:速度不均匀系数δ。(8)飞轮调速利用了飞轮的储能原理。(9)飞轮宜优先安装在高速轴上。(10)机械在安装飞轮后的机械仍有速度波动,只是波动程度有所减小。(1)铰链四杆机构是平面四杆机构的基本型式。(2)铰链四杆机构的三种表现形式:曲柄摇杆机构、双曲柄机构、双摇杆机构。(3)曲柄摇杆机构的功能:将曲柄的整周转动变换为摇杆的摆动或将摇杆的摆动变换为曲柄的回转。(4)曲柄滑动机构的功能:将回转运动变换为直线运动(或反之)。(5)铰链四杆机构存在曲柄的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为连架杆或机架。(6)铰链四杆机构成为曲柄摇杆机构的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为连架杆。(7)铰链四杆机构成为曲柄摇杆机构的条件:最短杆与最长杆长度之和小于等于其它两杆长度之和;最短杆为机架。(8)铰链四杆机构成为又摇杆机构的条件:不满足杆长条件;或者是满足杆长条件但最短杆为连杆。(9)曲柄滑块机构存在曲柄的条件是:曲柄长度r+偏距r小于等于连杆长度l(12)曲柄摇杆机构以曲柄为原动件时,具有急回性质。(13)曲柄摇杆机构以曲柄为主动件,当曲柄与连杆共线时,机构处于极限位置。(14)曲柄滑块机构以曲柄为主动件,当曲柄与连杆共线时,机构处于极限位置。(15)偏置曲柄滑块机构以曲柄为原动件时,具有急回性质。(16)对心曲柄滑块机构不具有急回特性。(17)曲柄导杆机构以曲柄为原动件时,具有具有急回性质。(18)连杆机构的传动角越大,对传动越有利。(19)连杆机构的压力角越大,对传动越不利。(20)导杆机构的传动角恒为90o。21)曲柄摇杆机构以曲柄为主动杆时,最小传动角出现在曲柄与机架共线的两位置之一。(22)曲柄摇杆机构以摇杆为主动件,当从动曲柄与连杆共线时,机构处于死点位置。(23)当连杆机构处于死点时,机构的传动角为0。(1)凸轮机构的优点是:只要适当地设计出凸轮轮廓曲线,就可使打推杆得到各种运动规律。(2)凸轮机构的缺点:凸轮轮廓曲线与推杆间为点、线接触,易磨损。(3)常用的推杆运动规律:等速运动规律、等加速等减速运动规律、余弦加速度运动规律、正弦加速度运动规律、五次多项式运动规律。(4)采用等速运动规律会给机构带来刚性冲击,只能用于低速轻载。(5)采用等加速等减速运动规律会给机构带来柔性冲击,常用于中速轻载场合。(6)采用余弦加速度运动规律也会给机构带来柔性冲击,常用于中低速重载场合。(7)余弦加速度运动规律无冲击,适于中高速轻载。(8)五次多项式运动规律无冲击,适于高速中载。(9)增大基圆半径,则凸轮机构的压力角减少。(10)对凸轮机构进行正偏置,可降低机构的推程压力角。(11)设计滚子推杆盘形凸轮机构时,对于外凸的凸轮廓线段,若滚子半径大于理论廓线上的最小曲率半径,将使工作廓线出现交叉,从而使机构出现运动失真现象。(12)设计滚子推杆盘形凸轮机构时,对于外凸的凸轮廓线段,若滚子半径等于理论廓线上的最小曲率半径,将使凸轮廓线出现变尖现象。(1)圆锥齿轮机构可实现轴线相交的两轴之间的运动和动力传递。(2)蜗

基本电振子(赫兹偶极子) 电基本振子是一段长度l远小于波长, 电流I等幅同相的直线电流元i(t)=I cosωt, 它是线天线的基本组成部分, 任意线天线均可看成是由一系列电基本振子构成的。 立体角: 定义:立体角是以圆锥体的顶点为球心,半径为1的球面被锥面所截得的面积来度量的,度量单位称为“立体弧度”。和平面角的定义类似。在平面上我们定义一段弧微分S与其矢量半径r的比值为其对应的圆心角记作dθ=ds/r;所以整个圆周对应的圆心角就是2π;与此类似,定义立体角为曲面上面积微元ds与其矢量半径的二次方的比值为此面微元对应的立体角记作dΩ=ds/r^2;由此可得,闭合球面的立体角都是4π。 单位:steradian->sr=stereos+radian 球坐标系中计算:dΩ= ds /R2= ds=sin θ *d θ* dφ (sr) 辐射强度 定义:给定方向上单位立体角辐射的功率。 计算: 物理意义:反应在给定方向上辐射的大小 辐射功率: 定义: 辐射效率 定义:天线的输入功率仅有一部分转换为辐射功率,其余被天线及其附近结构所吸收。辐射效率定义为天线的辐射功率与净输入功率之比。 其中:为辐射电阻,为损耗电阻。 场强方向图: 定义:在固定距离r=r0的球面上,辐射电场强度随着角坐标的相对变化(函数)图形为场强方向图。方向图函数

作图二维平面图:○1极坐标图○2直角坐标图 功率方向图: 在固定距离r=r0的球面上,波印廷矢量的r分量随着角坐标的相对变化(函数关系)图形为功率方向图。方向图函数记为 按方向图特征的天线分类 各向同性天线:天线向各个方向均匀辐射。 方向性天线:天线在某些方向的辐射比其他方向的辐射强得多 全向天线:天线在某个平面内的辐射为无方向性,在其正交面具有方向性 波瓣: 半功率波瓣宽度: 定义:从方向图的原点过辐射强度是最大值一半(对应场强是最大值的)的点的矢量所夹的角度。(3dB波瓣宽度)。E面和H面的半功率波瓣宽度分别用2θHPE 和2θHPH表示。 第一零陷波瓣宽度: 定义:从方向图的原点与主瓣的根部相切的矢量所夹的角度。用2θ0表示 副瓣电平(SLL): 定义:副瓣峰值与主瓣最大值之比。

射频基本概念 概念辨析:dBm, dBi, dBd, dB, dBc, dBuV 1、 dBm dBm是一个考征功率绝对值的值,计算公式为:10lgP(功率值/1mw)。 [例1] 如果发射功率P为1mw,折算为dBm后为0dBm。 [例2] 对于40W的功率,按dBm单位进行折算后的值应为: 10lg(40W/1mw)=10lg(40000)=10lg4+10lg10+10lg1000=46dBm。 2、dBi 和dBd dBi和dBd是考征增益的值(功率增益),两者都是一个相对值,但参考基准不一样。dBi的参考基准为全方向性天线,dBd的参考基准为偶极子,所以两者略有不同。一般认为,表示同一个增益,用dBi表示出来比用dBd表示出来要大2. 15。[例3] 对于一面增益为16dBd的天线,其增益折算成单位为dBi时,则为 18.15dBi(一般忽略小数位,为18dBi)。 [例4] 0dBd=2.15dBi。 [例5] GSM900天线增益可以为13dBd(15dBi),GSM1800天线增益可以为 15dBd(17dBi)。 3、dB dB是一个表征相对值的值,当考虑甲的功率相比于乙功率大或小多少个dB时,按下面计算公式:10lg(甲功率/乙功率) [例6] 甲功率比乙功率大一倍,那么10lg(甲功率/乙功率)=10lg2=3dB。也就是说,甲的功率比乙的功率大3 dB。 [例7] 7/8 英寸GSM900馈线的100米传输损耗约为3.9dB。 [例8] 如果甲的功率为46dBm,乙的功率为40dBm,则可以说,甲比乙大6 dB。[例9] 如果甲天线为12dBd,乙天线为14dBd,可以说甲比乙小2 dB。 4、dBc 有时也会看到dBc,它也是一个表示功率相对值的单位,与dB的计算方法完全一样。一般来说,dBc 是相对于载波(Carrier)功率而言,在许多情况下,用来度量与载波功率的相对值,如用来度量干扰(同频干扰、互调干扰、交调干扰、带外干扰等)以及耦合、杂散等的相对量值。在采用dBc的地方,原则上也可以使用dB 替代。 5、dBuV

基站天线选型 一.天线概念 在无线通信系统中,天线是收发信机与外界传播介质之间的接口。同一副天线既可以辐射又可以接收无线电波:发射时,把高频电流转换为电磁波;接收时把电磁波转换为高频电流。 在选择基站天线时,需要考虑其电气和机械性能。电气性能主要包括:工作频段、增益、极化方式、波瓣宽度、预置倾角、下倾方式、下倾角调整范围、前后抑制比、副瓣抑制、零点填充、回波损耗、功率容量、阻抗、三阶互调等。机械性能主要包括:尺寸、重量、天线输入接口、风载荷等。 基站所用天线类型按辐射方向来分主要有:全向天线、定向天线。 按极化方式来区分主要有:垂直极化天线(也叫单极化天线)、交叉极化天线(也叫双极化天线)。上述两种极化方式都为线极化方式。圆极化和椭圆极化天线一般不采用。 按外形来区分主要有:鞭状天线、平板天线、帽形天线等。 在继续论述天线相关理论之前必须首先介绍各向同性(Isotropic)天线。各向同性天线是一种理论模型,实际中并不存在,它把天线假设为一个辐射点源,能量以该点为中心以电磁场的形式向四周均匀辐射,为一球面波。 另外全向天线并不是没有方向性,它只是在水平方向为全向,但在垂直方向是有方向性的。它与各向同性天线是两个不同的概念。 半波振子是基站主用天线的基本单元,半波振子的优点是能量转换效率高。1.天线增益 天线作为一种无源器件,其增益的概念与一般功率放大器增益的概念不同。功率放大器具有能量放大作用,但天线本身并没有增加所辐射信号的能量,它只是通过天线振子的组合并改变其馈电方式把能量集中到某一方向。增益是天线的重要指

标之一,它表示天线在某一方向能量集中的能力。表示天线增益的单位通常有两个:dBi、dBd。两者之间的关系为:dBi=dBd+2.17 dBi定义为实际的方向性天线(包括全向天线)相对于各向同性天线能量集中的相对能力,“i”即表示各向同性——Isotropic。 dBd定义为实际的方向性天线(包括全向天线)相对于半波振子天线能量集中的相对能力,“d”即表示偶极子——Dipole。 两种增益单位的关系见图1: 图1 dBi与dBd的关系 天线增益不但与振子单元数量有关,还与水平半功率角和垂直半功率角有关。 2.天线方向图 天线辐射的电磁场在固定距离上随角坐标分布的图形,称为方向图。用辐射场强表示的称为场强方向图,用功率密度表示的称之功率方向图,用相位表示的称为相位方向图。 天线方向图是空间立体图形,但是通常用两个互相垂直的主平面內的方向图来表示,称为平面方向图。一般叫作垂直方向图和水平方向图。就水平方向图而言,有全向天线与定向天线之分。而定向天线的水平方向图的形状也有很多种,如心型、8字形等。 天线具有方向性本质上是通过振子的排列以及各振子馈电相位的变化来获得的,在原理上与光的干涉效应十分相似。因此会在某些方向上能量得到增强,而某

基本概念与原理:溶液 主要考点: 1.常识:温度、压强对物质溶解度的影响;混合物分离的常用方法 ① 一般固体物质.... 受压强影响不大,可以忽略不计。而绝大部分固体随着温度的升高,其溶解度也逐渐升高(如:硝酸钾等);少数固体随着温度的升高,其溶解度变化不大(如:氯化钠等);极少数固体随着温度的升高,其溶解度反而降低的(如:氢氧化钙等)。 气体物质.... 的溶解度随着温度的升高而降低,随着压强的升高而升高。 ② 混合物分离的常用方法主要包括:过滤、蒸发、结晶 过滤法用于分离可溶物与不溶物组成的混合物,可溶物形成滤液,不溶物形成滤渣而遗留在滤纸上; 结晶法用于分离其溶解度受温度影响有差异的可溶物混合物,主要包括降温结晶法及蒸发结晶法 降温结晶法用于提取受温度影响比较大的物质(即陡升型物质),如硝酸钾中含有少量的氯化钠; 蒸发结晶法用于提取受温度影响不大的物质(即缓升型物质),如氯化钠中含有少量的硝酸钾; 2.了解:溶液的概念;溶质,溶剂的判断;饱和溶液与不饱和溶液的概念、判断、转换的方法;溶解度的概念;固体 溶解度曲线的应用 ① 溶液的概念就是9个字:均一的、稳定的、混合物。溶液不一定是液体的,只要同时满足以上三个条件的物质, 都可以认为是溶液。 ② 一般简单的判断方法:当固体、气体溶于液体时,固体、气体是溶质,液体是溶剂。两种液体相互溶解时,通常把量多的一种叫做溶剂,量少的一种叫做溶质。当溶液中有水存在的时候,无论水的量有多少,习惯上把水看作溶剂。通常不指明溶剂的溶液,一般指的是水溶液。 在同一个溶液中,溶质可以有多种。特别容易判断错误的是,经过化学反应之后,溶液中溶质的判断。 ③ 概念:饱和溶液是指在一定温度下,在一定量的溶剂里,不能再溶解某种物质的溶液。还能继续溶解某种溶质的溶液,叫做这种溶质的不饱和溶液。 在一定温度下,某溶质的饱和溶液只是说明在该温度下,不能够继续溶解该物质,但还可以溶解其他物质,比如说,在20℃的饱和氯化钠溶液中,不能再继续溶解氯化钠晶体,但还可以溶解硝酸钾固体。 判断:判断是否是饱和溶液的唯一方法:在一定温度下,继续投入该物质,如果不能继续溶解,则说明原溶液是饱和溶液,如果物质的质量减少,则说明原溶液是不饱和溶液。 当溶液中出现有固体时,则该溶液一定是该温度下,该固体的饱和溶液。 转换:饱和溶液与不饱和溶液的相互转换: 改变溶解度,实际一般就是指改变温度,但具体是升高温度还是降低温度,与具体物质溶解度曲线有 ④ 溶解度曲线的意义: 饱和溶液 不饱和溶液 增加溶剂,增加溶解度 减少溶剂,增加溶质,减少溶解度

天线基本知识 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。 天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。 对于众多品种的天线,进行适当的分类是必要的: 按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。 两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a 。 另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b 。 1.3 天线方向性的讨论 1.3.1 天线方向性

发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。垂直放置的半波对称振子具有平放的“面包圈”形的立体方向图(图1.3.1 a)。立体方向图虽然立体感强,但绘制困难,图1.3.1 b 与图1.3.1 c 给出了它的两个主平面方向图,平面方向图描述天线在某指定平面上的方向性。从图 1.3.1 b 可以看出,在振子的轴线方向上辐射为零,最大辐射方向在水平面上;而从图1.3.1 c 可以看出,在水平面上各个方向上的辐射一样大。 1.3.2 天线方向性增强 若干个对称振子组阵,能够控制辐射,产生“扁平的面包圈”,把信号进一步集中到在水平面方向上。下图是4个半波对称振子沿垂线上下排列成一个垂直四元阵时的立体方向图和垂直面方向图。 也可以利用反射板可把辐射能控制到单侧方向 平面反射板放在阵列的一边构成扇形区覆盖天线。下面的水平面方向图说明了反射面的作用--反射面把功率反射到单侧方向,提高了增益。天线的基本知识全向阵(垂直阵列不带平面反射板)。

第一章LTE基站概述 1.1 基站概念 基站是移动通信中组成蜂窝小区的基本单元,主要完成移动通信网和移动通信用户之间的通信和管理功能,从狭义上就可以把基站理解成一种无线电收发信电台。换句话说,你的手机信号从哪里来,手机能上网、打电话都是因为你的手机(专业术语称为终端UE)驻留在一个基站上,在基站信号的覆盖范围内。 基站不是孤立存在的,它仅仅属于网络架构中的一部分,它是连接移动通信网和用户终端的桥梁 基站一般由机房,信号处理设备,室外的射频模块、收发信号的天线、GPS、各种传输线缆等等组成。 下面将以基站接收信号,从室外到室内这样的顺序给大家介绍一下基站。 1.2基站室外设备 (1)首先需要通过室外的天线接收信号,天线也是我们在室外判断是否周围有基站最明显的标志。天线的形状如下图所示,类似扁平的长方体。

天线有很多不同的安装方式,下面列举了一些天线安装在不同地方的照片,当你看见这些天线,那么这个天线附近就应该有我们的基站了。

天线的各种安装场景 (2)天线接收的信号送往射频单元进行处理,远端射频模块(Remote Radio Unit),简称RRU。接收信号时,RRU将天线传来的射频信号(射频信号就是经过调制的,拥有一定发射频率的电波)转化成光信号,传输给室内处理设备;发送信号时,RRU将从机房传来的光信号转成射频信号通过天线放大发送出去。当然这只是简单地解释了RRU功能,其实RRU对收发信号还有很多其他处理,在后面的模块介绍里会介绍。 RRU有很多类型,在后面的模块介绍里会详细给大家列举。

(3)接收的信号经过射频模块RRU处理后,通过光缆传入机房内的信号处理模块。 (4)室外还有用于系统定位和提供时钟同步的信号的GPS模块,因为长的像蘑菇,也称GPS蘑菇头。 1.3 基站室内设备 (1)基站设备普通情况下,除了天线、射频处理单元RRU、GPS蘑菇头等设备安装在铁塔、抱杆等室外环境,其他的设备是安装在特定的机房内的,如果当前建站的地方处在野外或没有合适的建筑作为机房,则使用一体化机柜,下面通过照片给大家展示一下机房和一体化机柜。

天线基础知识 1 天线 1.1 天线的作用与地位 无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。 *电磁波的辐射 导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图 1.1 b 所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度 L 远小于波长λ 时,辐射很微弱;导线的长度 L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。 图1.1 a 图1.1 b 1.2 对称振子 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a。另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b。

基本电振子(赫兹偶极子) 电基本振子就是一段长度l远小于波长, 电流I等幅同相的直线电流元i(t)=I cosωt, 它就是线天线的基本组成部分, 任意线天线均可瞧成就是由一系列电基本振子构成的。 立体角: 定义:立体角就是以圆锥体的顶点为球心,半径为1的球面被锥面所截得的面积来度量的,度量单位称为“立体弧度”。与平面角的定义类似。在平面上我们定义一段弧微分S与其矢量半径r的比值为其对应的圆心角记作dθ=ds/r;所以整个圆周对应的圆心角就就是2π;与此类似,定义立体角为曲面上面积微元ds与其矢量半径的二次方的比值为此面微元对应的立体角记作dΩ=ds/r^2;由此可得,闭合球面的立体角都就是4π。 单位:steradian->sr=stereos+radian 球坐标系中计算:dΩ= ds /R2= ds=sin θ *d θ* dφ (sr) 辐射强度 定义:给定方向上单位立体角辐射的功率。 计算: 物理意义:反应在给定方向上辐射的大小 辐射功率: 定义: 辐射效率 定义:天线的输入功率仅有一部分转换为辐射功率,其余被天线及其附近结构所吸收。辐射效率定义为天线的辐射功率与净输入功率之比。 其中:为辐射电阻,为损耗电阻。 场强方向图: 定义:在固定距离r=r0的球面上,辐射电场强度随着角坐标的相对变化(函数)图形为场强方向图。方向图函数 作图二维平面图:○1极坐标图○2直角坐标图 功率方向图: 在固定距离r=r0的球面上,波印廷矢量的r分量随着角坐标的相对变化(函数关系)图形为功率方向图。方向图函数记为 按方向图特征的天线分类 各向同性天线:天线向各个方向均匀辐射。 方向性天线:天线在某些方向的辐射比其她方向的辐射强得多 全向天线:天线在某个平面内的辐射为无方向性,在其正交面具有方向性 波瓣: 半功率波瓣宽度:

化工原理基本概念和原理 蒸馏––––基本概念和基本原理 利用各组分挥发度不同将液体混合物部分汽化而使混合物得到分离的单元操作称为蒸馏。这种分离操作是通过液相和气相之间的质量传递过程来实现的。 对于均相物系,必须造成一个两相物系才能将均相混合物分离。蒸馏操作采用改变状态参数的办法(如加热和冷却)使混合物系内部产生出第二个物相(气相);吸收操作中则采用从外界引入另一相物质(吸收剂)的办法形成两相系统。 一、两组分溶液的气液平衡 1.拉乌尔定律 理想溶液的气液平衡关系遵循拉乌尔定律: p A=p A0x A p B=p B0x B=p B0(1—x A) 根据道尔顿分压定律:p A=Py A而P=p A+p B 则两组分理想物系的气液相平衡关系: x A=(P—p B0)/(p A0—p B0)———泡点方程 y A=p A0x A/P———露点方程 对于任一理想溶液,利用一定温度下纯组分饱和蒸汽压数据可求得平衡的气液相组成; 反之,已知一相组成,可求得与之平衡的另一相组成和温度(试差法)。 2.用相对挥发度表示气液平衡关系 溶液中各组分的挥发度v可用它在蒸汽中的分压和与之平衡的液相中的摩尔分率来表示,即v A=p A/x A v B=p B/x B 溶液中易挥发组分的挥发度对难挥发组分的挥发度之比为相对挥发度。其表达式有:α=v A/v B=(p A/x A)/(p B/x B)=y A x B/y B x A 对于理想溶液:α=p A0/p B0 气液平衡方程:y=αx/[1+(α—1)x] Α值的大小可用来判断蒸馏分离的难易程度。α愈大,挥发度差异愈大,分离愈易;α=1时不能用普通精馏方法分离。 3.气液平衡相图 (1)温度—组成(t-x-y)图 该图由饱和蒸汽线(露点线)、饱和液体线(泡点线)组成,饱和液体线以下区域为液相区,饱和蒸汽线上方区域为过热蒸汽区,两曲线之间区域为气液共存区。 气液两相呈平衡状态时,气液两相温度相同,但气相组成大于液相组成;若气液两相组成相同,则气相露点温度大于液相泡点温度。 (2)x-y图 x-y图表示液相组成x与之平衡的气相组成y之间的关系曲线图,平衡线位于对角线的上方。平衡线偏离对角线愈远,表示该溶液愈易分离。总压对平衡曲线影响不大。 二、精馏原理 精馏过程是利用多次部分汽化和多次部分冷凝的原理进行的,精馏操作的依据是混合物中各组分挥发度的差异,实现精馏操作的必要条件包括塔顶液相回流和塔底产生上升蒸汽。精馏塔中各级易挥发组分浓度由上至下逐级降低;精馏塔的塔顶温度总是低于塔底温度,原因之一是:塔顶易挥发组分浓度高于塔底,相应沸点较低;原因之二是:存在压降使塔底压

基站天线基本原理 网优雇佣军微信号:hr_opt 通信路上,我们一起走! 蜂窝通信系统要求从基站到移动台的可靠通信,对天线系统有特别的要求。蜂窝系统是一个双工系统,理想的天线是在发射和接收两个方向提供同样的性能。天线的增益、覆盖方向、波束、可用驱动功率、天线配置、极化方式等都影响系统的性能。 1天线增益 天线增益一般常用dBd和dBi两种单位。dBi用于表示天线在最大辐射方向场强相对于全向辐射器的参考值;而dBd表示相对于半波振子的天线增益。两者有一个固定的dB差值,即0dBd等于2.15dBi,如图错误!文档中没有指定样式的文字。-1所示。 2.15dB 图错误!文档中没有指定样式的文字。-1 dBi与dBd的不同参考示意图0dBd=2.15dBi 目前国内外基站天线的增益范围从0dBi到20dBi以上均有应用。用于室内微蜂窝覆盖的天线增益一般选择0-8 dBi,室外基站从全向天线增益9dBi到定向天线增益18dBi应用较多。增益20dBi左右波束相对较窄的天线多用于地广人稀的道路等方向性较强的特殊环境的覆盖。 2辐射方向图 基站天线辐射方向图可分为全向辐射方向图和定向辐射方向图两大类,分别被称为全向天线和定向天线。如图错误!文档中没有指定样式的文字。-2所示,左边所示分别为全向天线的水平截面图和立体辐射方向图;右边所示分别为定向天线的水平截面图和立体辐射方向图。全向天线在同一水平面内各方向的辐射强度理论上是相等的,它适用于全向小区;图中红色所示为定向天线罩中的金属反射板,它使天线在水平面的辐射具备了方向性,适用于扇形小区。

图错误!文档中没有指定样式的文字。-2 空间辐射方向图(全向天线和定向天线) 3波瓣宽度 3.1水平波瓣宽度 在天线的水平面(垂直面)方向图上,相对于主瓣最大点功率增益下降3dB的两点之间所张的角度,定义为天线的水平(垂直)波瓣宽度,也称水平(垂直)波束宽度或者水平(垂直)波瓣角。天线辐射的大部分能量都集中在波瓣宽度内,波瓣宽度的大小反映了天线的辐射集中程度。 全向天线的水平波瓣宽度为360°,而定向天线的常见水平波瓣宽度有20°、30°、65°、90°、105°、120°、180°多种(如图错误!文档中没有指定样式的文字。-3)。 图错误!文档中没有指定样式的文字。-3 基站天线水平波瓣3dB宽度示意图 各种水平波瓣宽度的天线有相应的适用环境,水平波瓣宽度为20°、30°的天线一般增益较高,多用于狭长地带或高速公路的覆盖;65°天线多用于密集城市地区典型基站三扇

第一讲天线基本原理 一、天线的基本概念 1.天线的作用 在任何无线电通信设备中,总存在一个向空间辐射电磁能量和从空间接收电磁能量的装置,这个装置就是天线。 天线的作用就是将调制到射频频率的数字信号或模拟信号发射到空间无线信道,或从空间无线信道接收调制在射频频率上的数字或模拟信号。 2.天线问题的实质 从电磁场理论出发,天线问题实质上就是研究天线所产生的空间电磁场分布,以及由空间电磁场分布所决定的电特性。空间任何一点的电磁场满足电磁场方程——麦克斯韦方程及其边界条件。因此,天线问题是时变电磁场问题的一种特殊形式。 从信号系统的角度出发,天线问题可以理解为考察由一个电磁波激励源产生的电磁响应特性。从通信系统的角度出发,天线可以理解为信号发射和接收器,收发天线之间的无线电信号强度满足通道传输方程和多径衰落特性。 3.对天线结构的概念理解 采用不同的模型,对天线可以有不同的理解。典型的模型比如: ●开放的电容 [思考] 野外电台或电视发射塔,无线电视或电台接收机,为什么能构成一个天线,其电流回路在什么地方? ●开放的传输线 从传输线理论理解,天线可以看做是将终端开路的传输线终端掰开。 ●TM mn型波导 将天线辐射看做是在4π空间管道中传输的波导,则对应的传输波型是TM型波,但在传输过程中不断遇到波导的不连续性,因此不断激励高次模。

由电磁波源和电磁波传输媒质形成电磁波传输的机构 波的形成都需要波源和传输媒质。在一盆水中形成机械波纹,可以使用点激励源产生波,并在水面上传播。波的传播特性只与媒质特性有关而与波源无关。将一个肉包子扔出去,这个肉包子可能产生不同的结果,或者被狗吃了,或者掉在什么地方了,都与扔包子的人不再有任何关系。而对天线来说,馈点的激励源就是这种波源,天线导体和外界空间就是传输媒质。不过电磁波的传输媒质可以是真空。 [思考] 电磁波具有波粒二象性。频率越低,波动性越强;频率越高,粒子性越强。所以光波主要表现出粒子性,而长波表现出波动性。射频电磁波就是介于这二者之间的一种电磁波,它既有显著的波动性,又有显著的粒子性。只要认清这一点,许多问题就会变得易于理解。认清事物的本质规律我们才能很好地利用它,我们不能把一头驴当马使,否则就会出现许多荒唐的错误。有人认为射频很复杂,有人认为很简单,就是这个道理。 [哲学启示] 电磁波由于看不见,摸不着,所以在很多人看来它很抽象。但考虑到世界是普遍联系的,尽管不同的事物也有许多不相同点,但找到它们之间的联系,就能获得认识抽象事物的“火眼金睛”。 二、电磁场基本方程 1.麦克斯韦方程 (电生磁。若电场变化,则磁场随之变化) (磁生电。若磁场变化,则电场随之变化) (磁力线是无始无终的封闭闭合曲线) (电力线出发和终止于自由电荷) 麦克斯韦方程的物理含义:变化的电场可以产生磁场,变化的磁场可以产生电场,这是电磁波可以脱离辐射体在空间存在的物理基础。 [思考] 自然界存在一些有趣的现象,尽管机理与电磁波不完全一致,但是其过程却可以帮助我们加深对我们问题的理解。请大家考虑一下,孩童吹肥皂泡时,肥皂泡能够

建筑力学基本概念和基本原理 一、判断 1、材料的横向变形系数(泊松比)和弹性模量E、剪切模量G都是材料固有的力学性质。 2、一对等大反向的平行力(即力偶)既可使物体发生转动,也可使物体发生移动。 3、铸铁试件压缩破坏是沿45度斜截面被剪断。 4、矩形梁危险截面的最大拉、压应力发生在截面的上下边缘处。 5、梁的合理截面是使大部分材料分布于靠近中性轴(梁的横截面与线应变=0的纵向面的交线)。 6、梁在集中力偶作用处,剪力图有突变。 7、忽略杆件自重,杆件上无荷载,荷载作用于结点上的杆件都是二力杆。 8、作用于弹性体一小块区域上的载荷所引起的应力,在离载荷作用区较远处,基本上只同载荷的主矢和主矩有关;载荷的分布情况只影响作用区域附近的应力分布,这就是圣维南原理。 9、轴向拉(压)直杆的斜截面只有正应力,没有剪应力。 10、铸铁和砖石、混凝土等材料的抗拉能力远小于抗压能力。 11、某T形铸铁梁最大弯矩为正(截面下侧受拉、上侧受压),该T形梁应该正放而不是倒放。 12、某矩形钢筋混凝土梁最大弯矩为负(截面上侧受拉、下侧受压),钢筋应该配置在截面的下侧。 13、杆件某截面内力反映的是该截面处两部分杆件因为外力作用发生小变形而产生的相互作用,内力成对出现、等大反向,因此求内力要用截面法。 14、构件的内力与横截面的尺寸大小和材料的力学性质都有关。 15、应力是内力的分布集度。 16、平面一般力系向平面内某点平移的简化结果可能有三种情形:平衡状态、合力不为零、合力矩不为零。 17、各种材料对应力集中的敏感程度相同。 18、当某力的作用线通过某点时,该力对该点存在力矩。 19、因为杆件受到外力作用发生的变形是小变形,所以求支座约束力和杆件内力时,杆件都使用原始尺寸。 20、杆件的稳定性是针对细长压杆的承载能力,此时稳定性要求超过强度要求。 二、填空 1. 理想弹性体模型包括四个基本简化假设:假设、假设、假设、线弹性假设;在变形体静力学分析中,对所研究的问题中的变形关系也作了一个基本假设,它是假设。

1.1天线的基本参数 从左侧的传输线的角度看,天线是一个阻抗(impedance)为Z的2终端电路单元(2-terminal circuit element),其中Z包含的电阻部分(resistive component)被称为辐射电阻(radiation resistance,R r);从右侧的自由空间角度来看,天线的特征可以用辐射方向图(radiation pattern)或者包含场量的方向图。R r不等于天线材料自己的电阻,而是天线、天线所处的环境(比如温度)和天线终端的综合结果。 影响辐射电阻R r的还包括天线温度(antenna temperature,T A)。对于无损天线来说,天线温度T A和天线材料本身的温度一点都没有关系,而是与自由空间的温度有关。确切地说,天线温度与其说是天线的固有属性,还不如说是一个取决于天线“看到”的区域的参数。从这个角度看,一个接收天线可以被视作能遥感测温设备。 辐射电阻R r和天线温度T A都是标量。另一方面,辐射方向图包括场变量或者功率变量(功率变量与场变量的平方成正比),这两个变量都是球体坐标θ和Φ的函数。 1.2天线的方向性(D,Directivity)和增益(G,Gain) D=4π/ΩA,其中ΩA是总波束范围(或者波束立体角)。ΩA由主瓣范围(立体角)ΩM+副瓣范围(立体角)Ωm。 如果是各向同性的(isotropic)天线,则ΩA=4π,因此D=1。各向同性天线具有最低的方向性,所有实际的天线的方向性都大于1。 如果一个天线只对上半空间辐射,则其波束范围ΩA=2π,因此D=4π/2π=2=3.01dBi。 简单短偶极子具有波束范围ΩA=2.67πsr,和定向性D=1.5(1.76dBi)。 如果一个天线的主瓣在θ平面和Φ平面的半功率波束宽度HPBW都是20度,则D=4πsr/ΩA sr=41000 deg2/(20 deg)*(20 deg) ≈103≈20dBi(dB over isotropic)。这意味着,当输入功率相同时,该天线在主瓣方向的辐射功率是各向同性天线的103倍。 天线增益G既考虑天线的方向性,又考虑天线的效率。G=kD。只要天线不是100%损耗,那么G就小于D。k是天线的效率因子(0≤k≤1)。天线效率只

一.物质的组成、性质和分类: (一)掌握基本概念 1.分子 分子是能够独立存在并保持物质化学性质的一种微粒。 (1)分子同原子、离子一样是构成物质的基本微粒. (2)按组成分子的原子个数可分为: 单原子分子如:、、、… 双原子分子如:O2、H2、、… 多原子分子如:H2O、P4、C6H12O6… 2.原子 原子是化学变化中的最小微粒。确切地说,在化学反应中原子核不变,只有核外电子发生变化。 (1)原子是组成某些物质(如金刚石、晶体硅、二氧化硅等原子晶体)和分子的基本微粒。 (2)原子是由原子核(中子、质子)和核外电子构成的。 3.离子 离子是指带电荷的原子或原子团。 (1)离子可分为: 阳离子:、、、4+… 阴离子:–、O2–、–、42–… (2)存在离子的物质: ①离子化合物中:、2、24… ②电解质溶液中:盐酸、溶液… ③金属晶体中:钠、铁、钾、铜… 4.元素

元素是具有相同核电荷数(即质子数)的同—类原子的总称。 (1)元素与物质、分子、原子的区别与联系:物质是由元素组成的(宏观看);物质是由分子、原子或离子构成的(微观看)。 (2)某些元素可以形成不同的单质(性质、结构不同)—同素异形体。 (3)各种元素在地壳中的质量分数各不相同,占前五位的依次是:O、、、、。 5.同位素 是指同一元素不同核素之间互称同位素,即具有相同质子数,不同中子数的同一类原子互称同位素。如H有三种同位素:11H、21H、31H(氕、氘、氚)。 6.核素 核素是具有特定质量数、原子序数和核能态,而且其寿命足以被观察的一类原子。 (1)同种元素、可以有若干种不同的核素—同位素。 (2)同一种元素的各种核素尽管中子数不同,但它们的质子数和电子数相同。核外电子排布相同,因而它们的化学性质几乎是相同的。 7.原子团 原子团是指多个原子结合成的集体,在许多反应中,原子团作为一个集体参加反应。原子团有几下几种类型:根(如42-、ˉ、3ˉ等)、官能团(有机物分子中能反映物质特殊性质的原子团,如—、—2、—等)、游离基(又称自由基、具有不成价电子的原子团,如甲基游离基·3)。 8.基 化合物中具有特殊性质的一部分原子或原子团,或化合物分子中去掉某些原子或原子团后剩下的原子团。 (1)有机物的官能团是决定物质主要性质的基,如醇的羟基(—)和羧酸的羧基(—)。 (2)甲烷(4)分子去掉一个氢原子后剩余部分(·3)含有未成对的价电子,称甲基或甲基游离基,也包括单原子的游离基(·)。

基本概念和原理 复习方法指导 化学基本概念是学习化学的基础,是化学思维的细胞,是化学现象的本质反映。就初中化学而言,概念繁多(有近百个),要较好地掌握概念应做到以下几点: 1、弄清概念的来胧去脉,掌握其要点,特别注意概念的关键词语。 2、要分清大概念和小概念,掌握概念之间的区别和联系,把概念分成块,串成串,纵横成片,形成网状整体,融汇贯通。 3、熟练地运用化学用语,准确表达化学概念的意义。 化学基本原理在教学中占有重要地位,它对化学的学习起着指导作用,要较好掌握这些理论,应做到以下几点: 1、掌握理论的要点和涵义。 2、抓住理论要点和实际问题的关系,注意理论指导实际,实际问题联挂理论。 3、加强练习,深化对理论联系实际的理解。 知识结构梳理 溶液 混合物 浓溶液 稀溶液 溶解度 饱和溶液 不饱和溶液 溶质质量分数 质量守恒定律 可溶性碱 不溶性碱 酸性氧化物 碱性氧化物 无氧酸 含氧酸 氧化物 酸 碱 盐吸热现象 放热现象 氧化反应 还原反应 化合反应 分解反应 置换反应 复分解反应 原子结构简图离子结构简图 元素符号离子符号 化学方程式化学式化合价 物质分类 变化 元素 原子 分子 离子 物质 化合物 纯净物 单质 金属单质 非金属单质 稀有气体 物理变化 化 学 变 化 组成结构 性质 物理性质 化学性质 溶剂溶质

专题1 物质的微观构成 一、中考复习要求 1、正确描述分子、原子、离子概念的含义以及区别与联系,并能将它们进行区分。 2、会用分子、原子的知识解释日常生活中的一些现象。 3、准确描述原子的构成,知道原子核外的电子是分层排布的,认识常见原子的原子结构示意图。 二、基础知识回顾 自然界的物质是由微粒构成的,、、是构成物质的三种基本微粒。 1、分子、原子、离子的区别与联系

第1章 动态规划的基本概念和基本原理 在这一章中,我们将通过一个具体而典型的例子(最短行军路线问题),引出有关动态规划的一些名词和记号,进而得到动态规划的基本原理。 1.1 最短行军路线问题及标号法 问题描述:图1.1中给出一个行军路线网络,从A 点要走到G 点,中间要经过B 、C 、D 、……等很多点,各点间的距离如图中所示,今要求选择一条由A 点到G 点的最短行军路线。 图 1.1 这是个多阶段决策问题。从A 点到G 点可以分为6个阶段,从A 点出发到B 点为第一阶段。这时有两个选择:一是到B 1点;二是到B 2点。若我们选择到B 2点的决策,则B 2点就是第一阶段决策的结果,它既是第一阶段的终点,又是下一阶段(第二阶段)路线的始点。在第二阶段,再从B 2点出发,这时有三个选择,即对应于B 2点就有一个可供选择的终点集合{,,}。若选择由B 2C 3C 4C 2走到C 2为第二阶段的决策,则C 2就是第二阶段的终点,同时又是第三阶段的始点。类似地可以递推下去,直到终点G 点。我们可以看到,各个阶段的决策不同,所走的路线也就不同。现在要求:在各个阶段中选取一个恰当的决策,使由这些决策所决定的一条路线,其总距离最近。 下面我们利用“标号法”来求解这个问题。首先要注意到下面一个明显面重要的事实:如果某一条路线,如是最优路线,那么无论从该路线中的哪一点开始(如从D G F E D C B A →→→→→→221211点开始)到达终点G 点的那一段路线,仍然是从D 1点到达终点G 的所有可能选择的不同的路线的最优路线,称为由D 1出发的最短子路线。这一事实,以后我们称之为“最优化原理”。因为如果不是这样,从D 1点到终点还有另一条更短的子路线存在,那么把它和原来最短路线由始点A 到达D 1点的那部分连接起来,就会形成一条比原来最短路线更短的路线,而这是不可能的。 根据上面的事实,我们可以从后段开始逐段往前求最优子路线,从而得到全

天线原理
日常应用的基本原则
天线定义
什么是天线? - 天线是基站/馈缆与自由空间之间的有效接口。是电磁能和 空间电磁场之间的转换设备 - 它是在空间上和频率上具有选择性的能量接收器和发射器。
Base Station Antenna Systems August 2007
PRIVATE AND CONFIDENTIAL ? ANDREW CORPORATION 3/06
PRIVATE AND CONFIDENTIAL ? ANDREW CORPORATION 3/06
天线的构成
半波偶极子
F0 (MHz) λ (Meters) 10.0 3.75 1.87 1.07 0.65 0.38 0.31 0.18 0.15 λ (Inches) 393.6 147.6 73.8 42.2 25.7 14.8 12.3 6.95 5.9
辐射单元 馈电网络 反射器 引向器
F0
30

80 160 280 460 800

960 1700 2000
PRIVATE AND CONFIDENTIAL ? ANDREW CORPORATION 3/06
PRIVATE AND CONFIDENTIAL ? ANDREW CORPORATION 3/06
增益dBd 与dBi
电压驻波比VSWR
Good VSWR is only one component of an efficient antenna.
VSWR 1.00 1.10 1.20 Return Loss (dB) ∞ 26.4 20.8 17.7 15.6 14.0 9.5 Power Power Reflected (%) Trans. (%) 0.0 0.2 0.8 1.7 2.8 4.0 11.1 100.0 99.8 99.2 98.3 97.2 96.0 88.9
一个半波偶极子的辐射图象
一个各向同向的辐射器向所 有的方向辐射等同的能量 同偶极子相比的天线的增益以 “dBd” 表示 同各向同性辐射器相比的天线的增益 以 “dBi”表示 例如: 3dBd = 5.15dBi
1.30 1.40 1.50 2.00
2.15dB
偶极子的增益高 2.15dB
PRIVATE AND CONFIDENTIAL ? ANDREW CORPORATION 3/06 PRIVATE AND CONFIDENTIAL ? ANDREW CORPORATION 3/06
1

相关文档
最新文档