机械能部分典型例题

机械能部分典型例题
机械能部分典型例题

机械能部分典型例题

★如图所示,把A、B两球由图示位置同时由静止释放(绳开始时拉直),则在两球向左下摆动时.下列说法正确的是

A、绳子OA对A球做正功

B、绳子AB对B球不做功

C、绳子AB对A球做负功

D、绳子AB对B球做正功

解析:由于O点不动,A球绕O点做圆周运动,OA对球A不做功。对于AB段,我们可以想象,当摆角较小时.可以看成两个摆长不等的单摆,由单摆的周期公式就可以看出,A摆将先回到平衡位置.B摆将落后于A摆,AB绳对A球做负功,对B球做正功。答案:CD

★如图1所示,是健身用的“跑步机”示意图. 质量为m的运动员踩在与水平面成α角的皮带上,用力后蹬皮带,使皮带以速度v匀速运动,已知皮带在运动过程中受到的阻力大小恒定为f,则在皮带运动过程中

A. 人对皮带的摩擦力是皮带运动的动力

B. 人对皮带不做功

C. 人对皮带做功的功率为mgv

D. 人对皮带做功的功率为fv

★如图,一轻质弹簧固定于0点,另端系一重物,将重物从悬点0在同一水平面且弹簧保持原长的A点无初速地释放,让它自由摆下(不计空气阻力),在重物由A点摆向最低点的过

程中

A.重物的重力势能减少

B.重物的重力势能增加

C.重物的机械能不变

D.重物的机械能减少

★在利用自由落体运动验证机械能守恒定律的实验中,除了铁架台夹子,学生电源、纸带和重物外,还需要 A.秒表 B.天平 C.打点计时器 D.刻度尺

★一根内壁光滑的细金属管,形状如图所示,为四分之三圆弧,放置在竖直平面内,一小钢球自A 正上方,距A 高度不同处无初速释放,第一次小钢球落入A 后恰能抵达B ,第二次落入A 后,从B 射出后又恰能进入A ,

那么两次小钢球下落的高度(以A 为参考面) 之比h 1:h 2等于多少?

19、没弯管的半径为R

⑴当小球恰能到达B 点时 V B =0

据机械能守恒定律 mgh 1=mgR ∴h 1=R

⑵当小球恰能到达A 点时,设小球经过B 点的速度为V 0 则:V 0t=R ① 1/2gt 2=R ②

mgh 2=mgR+1/2mv 02 ③ 由①②③式得:h2=5/4R

★物体在离地面高h=0.45米的A 点沿光滑圆弧形槽自静止下滑,并进入水平轨道BC ,如图所示,BC 段的滑动摩擦系数 =0.2,求: (1)物体滑到B 点时速度大小;

(2)物体在水平轨道上滑行的加速度大小;

(3

★如图2—23所示,质量都为m 的两质点系于细线两端,细线跨过同一高度的两个光滑的钉子,两钉间距离为2a .如果另用一个质量为m ’(m ’< 2m ) 的砝码悬于两钉间线段的中点,问m ’落到什么位置时系统能处于平衡状态?

15.d=2

'2

4m

m ám -

★如图所示,一条质量不计的细线一端拴一个质量为M 的砝码,另一端系一个质量为m 的

圆环,将圆环套在一根光滑的竖直杆上.滑轮与竖直杆相距0.3m ,环与滑轮在同一水平位置,由静止开始释放,环向下滑的最大距离是0.4m ,不计摩擦力.问(1)M ∶m=?(2)圆环下

滑0.3m 时速度多大?

16. M :m=2:1 0.72m/s

★如图所示,AB 是一个半径为R 的

4

1

圆弧(B 点切线水平且距地面高也为R),在AB 的圆

弧轨道。上放一个半径也为R 的带钩的 小圆弧片CD ,再在CD 的D 端放一个质量 为m 的小物块(可视为质点),已知小物块与 CD 弧片间动摩擦因数为3=

μ。现沿圆弧

AB 缓缓向上拉动CD 弧片,直到小物块开始 滑离CD 弧片为止(计算时,可以认为最大静 摩擦力大小等于滑动摩擦力大小)。则:

(1)此过程中,CD 弧片对小物块的静摩擦力对其所做的功为多少?

(2)若小物块滑离CD 厉沿AB 轨道下滑又从B 端滑出,并做平抛运动,而后落到离E 点水平距离也为R 的水平地面上,则AB 弧对小物块的滑动摩擦力对其所做的功为多少?

如图所示,一轻质杆上有两个质量均为m 的小球a 、b ,轻杆可绕O 点在竖直平面内自由转动,Oa=ab=L ,先将杆拉成水平,再静止释放,当杆转到竖直方向时,试问: ⑴.两小球各获得多少动能? ⑵.杆对小球b 做了多少功?

⑶.假如轻杆换作轻绳,两个小球仍从水平位置释放,试问哪个小球先到竖直位置?

★如图所示,PQ 是固定在水平桌面上的固定挡板,质量为m 的小木块N 从靠近P 以一定的初速度向Q 运动,已知物块与桌面间的动摩擦因数为μ,P 与Q 相距为s ,物块与Q 板碰撞n 次后,最后静止于 PQ 的中点,则整个过程摩擦力所做的功为多少?(n 为自然数) 解析:物块与Q 板碰撞n 次后,最后停在PQ 中点,会有两种可能,一种可能是与Q 板碰后向P 板运动至中点而停止,设与Q 板碰撞n 次,则物体运动的路程为(2n 一2

1

)s ,摩擦力所做的功为W f1=μmg (2n 一

2

1

)s 第二种可能是物块与Q 板碰后再与P 板碰撞向Q 板运动至中点而停止,在这种情况下,物体运动的路程为(2n +2

1

)s ,摩擦力所做的功为 W f2= μmg (2n +

2

1

)s ,两种情况下,摩擦力对物体均做负功。

★面积很大的水池,水深为H ,水面上浮着一正方体木块,木块边长为a 。,密度为水密度的?,质量为m,开始时,木块静止,如图所示,现用力F 将木块缓慢

地压到水池底,不计摩擦,求:

(1)从木块刚好完全没人水中到停止在池底的过程中,池水势能的改

变量.

(2)从开始到木块刚好完全没入水中的过程中,力F 所做的功. 解析:(1)木块刚好没入水中到到达池底的过程中,相当于有相同体积的水从池底到达水面,因木块的密度为水的冗长度的?,故相同体积的水

的质量为2m,,故池水势能的改变量为ΔE P =2mg(H -a );

(2)因水池面积很大,可忽略因木块压入而引起的水深的变化,木块刚好

完全没入水中时,图中原来划线区域的水被排开,相当于这部分水平铺于水面,这部分水的质量为m,其势能的改变量为:

解析:用力F 缓慢下压,据平衡方程2

(2)F mg ga a x ρ+=+水得

232F ga x g a mg ρρ=+-水水

整理得:2

3

2

3

2

22F ga x g a mg ga x ga mg ga x ρρρρρ=+-=+-=水木水木水

a b

即F是位移的线性函数。

___

12

2

F F

W F x x

+

=?=?则:当原来状态开始下压时0

x=所以

10

F=

功率

★随着生活水平的提高,伴随着心血管病也比以前增加了.为了提高生活质量,延长人的寿命,掌握心血管健康活动的常识就显得十分重要,心脏在人的一生之中之所以能够不停地跳动而不疲倦,其原因之一在于它的活动具有节律性,图中是心脏每跳动一次,心房和心室的舒张、收缩情况:

(1)从图分析,心脏在人的一生中不停地跳动,为什么不会疲倦?

(2)如果有人心率为75次/min,则每搏的输出量为70ml,每分钟输出量为,一般情况下,长跑运动员与正常人相比,心率较慢,但较多,所以能满足运动时的供血.

(3)如果有人的心率为 75次/min,则心脏每跳动一次所需的时间是,心房、心室共同处于期,所占的时间约为

(4)若某人的心脏每分钟跳动75次,心脏收

缩压为135mmHg(lmmHg=133.322Pa)收缩一

次输出血量平均为70ml,那么心脏收缩时的平

均功率有多大?

解析:(1)从图中可以看出,如果心率是75

次/min,其中心房只工作(收缩)了0.1s,休息(舒张)了0.7s,心室工作了0.3s,休息了0.5s,可见心脏每跳动一次,心房、心室的舒张期比收缩期长,心脏有充分休息的时间,因此人的一生,心脏不停地跳动而不知疲倦.

(2)5250ml(每搏输出量是指心脏跳动一次,心脏收缩时向动脉输出的血量,每收缩一次输出70ml,每分输出量为70×75=5250ml)

经常参加体育锻炼的人,心肌发达,搏动有力,每搏输出量比一般人要大.

(3)0.8s 舒张0.4s(心脏每分钟跳动的次数叫心率)

(4)心脏收缩一次做功:W=P·ΔV

∵P=135mmHg=1.8×104Pa ΔV=70ml=7×10-5m3

∴W=1.8×104Pa×7×10-5m3=1.26J ∴每分钟,心脏做功W/=75×1.26=94.5J ∴心脏收缩时平均功率为P=94.5/60=1.6W

★一传送带装置示意如图,其中传送带经过AB 区域时是水平的,经过BC 区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD 区域时是倾斜的,AB 和CD 都与BC 相切。现将大量的质量均为m 的小箱一个一个在A 处放到传送带上,放置时初速为零,经传送带运送到D 处,D 和A 的高度差为h 。稳定工作时传送带速度不变,CD 段上各箱等距排列,相邻两箱的距离为L 。每个箱子在A 处投上后,在到达B 之前已经相对于传送带静止,且以后也不再滑动(忽略经BC 段时的微小滑动)。己知在一段相当长的时间T 内,共运送小货箱的数目为N ,这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦。求电动机的平均输出功率P 。

【解析】以地面为参考(下同),设传送带的运动速度为v 0,在水平段运输的过程中,小货箱先在滑动摩擦力作用下做匀加速运动,设这段路程为S ,所用时间为t ,加速度为a ,则对小箱有:S =?at 2……①

v 0=at ………②。在这段时间内,传送带运动的路程为:S 0= v 0t ……③,由以上可得S 0=2S ……④。用f 表示小箱与传送带之间的滑动摩擦力,则传送带对小箱做功为:W 1=fS=?mv 02……⑤;传送带克服小箱对它的摩擦力做功:W 0=Fs 0=2·?mv 02……⑥ 两者之差就是克服摩擦力做功发出的热量:Q=?mv 02……⑦ 可见,在小箱加速运动过程中,小箱获得的动能与发热量相等。 T 时间内,电动机输出的功为:W=PT ……⑧

此功用于增加小箱的动能、势能以及克服摩擦力发热,即W=?Nmv 02十Nmgh +NQ ……⑨ 已知相邻两小箱的距离为L ,所以:v 0T =NL ……⑩

联立⑦⑧⑨⑩得222

Nm N L P gh T T ??

=+????

★质量为m 的飞机以水平v 0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒

定升力(该升力由其他力的合力提供,不含重力).今测得当飞机在水平方向的位移为L 时,它的上升高度为h,求(1)飞机受到的升力大小?(2)从起飞到上升至h 高度的过程中升力所做的功及在高度h 处飞机的动能?

解析(1)飞机水平速度不变,L= v 0t,竖直方向的加速度恒定,h=?at 2,消去t 即得2

02

2h a v l = 由牛顿第二定律得:F=mg +ma=20221h mg v gl ?

?+

???

(2)升力做功W=Fh=20221h mgh v gl ?

?+

??

?

在h 处,v t 0

2hv l =, ()222

2002114122k t h E m v v mv l ??

∴=+=+ ???

★质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为()

A.mgR/4

B. mgR/3

C. mgR/2

D.mgR

解析:小球在圆周运动最低点时,设速度为v 1,则7mg -mg=mv 12/R ……① 设小球恰能过最高点的速度为v 2,则mg=mv 22/R ……②

设设过半个圆周的过程中小球克服空气阻力所做的功为W,由动能定理得:-mg2R -W=?mv 22-?mv 12……③

由以上三式解得W=mgR/2. 答案:C

★在水平面上沿一条直线放两个完全相同的小物体A 和B ,它们相距s ,在B 右侧距B2s 处有一深坑,如图所示,现对A 施以瞬间冲量,使物体A 沿A 、B 连线以速度v 0开始向B 运动.为使A 与B 能发生碰撞,且碰撞之后又不会落入右侧深坑中,物体A 、B 与水平面间的动摩擦因数应满足什么条件?设A,B 碰撞时间很短,A 、B 碰撞后不再分离.

解析:A 与B 相碰,则22

001,.22v mv mgs gs μμ??

A 和

B 碰前速度v 1,2210112

2

mv mv mgs μ-=-,1v =

A 与

B 碰后共同速度v 2.mv 1=2mv 2,211

2

v v ==

AB 不落入坑中,2

21222,2mv mg s μ?≤ 解得2014v gs μ≥

综上,μ应满足条件22

00142v v gs gs

μ≤≤

★如图所示,两个完全相同的质量为m 的木板A 、B 置于水平地面上它们的间距s =2.88m .质

量为2m 、大小可忽略的物块C 置于A 板的左端. C 与A 之间的动摩擦因数为μ1=0.22, A 、B 与水平地面的动摩擦因数为μ2=0.10, 最大静摩擦力可认为等于滑动摩擦力. 开始时, 三个物体处于静止状态.现给C 施加一个水平向右,大小为

mg 5

2

的恒力F , 假定木板A 、B

碰撞时间极短且碰撞后粘连在一起.要使C 最终不脱离木板,每块木板的长度至少应为多少? 【分析】:这题重点是分析运动过程,我们必须看到A 、B 碰撞前A 、C 是相对静止的,A 、B 碰撞后A 、B 速度相同,

且作加速运动,而C 的速度比A 、B 大,作减速运动,最终A 、B 、C 达到相同的速度,此过程中当C 恰好从A 的左端运动到B 的右端的时候,两块木板的总长度最短。

【解答】:设l 为A 或B 板的长度,A 、C 之间的滑动摩擦力大小为f 1,A 与水平面的滑动摩擦力大小为f 2

∵μ1=0.22。 μ2=0.10 ∴mg f mg 252F 11μ=<=

……① 且()g m m f mg +=>=25

2

F 22μ…② 一开始A 和C 保持相对静止,在F 的作用下向右加速运动.有

()()21222

1v m m s f F +?=?- …③

A 、

B 两木板的碰撞瞬间,内力的冲量远大于外力的冲量。由动量守恒定律得

mv 1=(m +m )v 2 …④

碰撞结束后到三个物体达到共同速度的相互作用过程中,设木板向前移动的位移为s 1. 选三个物体构成的整体为研究对象,外力之和为零,则

()()32122v m m m v m m mv ++=++ …⑤

设A 、B 系统与水乎地面之间的滑动摩擦力大小为f 3。对A 、B 系统,由动能定理

2

2

23132122

1221mv mv s f s f -=

?-? … ⑥ ()g m m m f ++=23.μ…⑦ 对C 物体,由动能定理()()212

311122122122mv mv s l f s l F -=+?-+?……… ⑧

由以上各式,再代人数据可得l =0.3(m)

★如图所示,在光滑的水平面内有两个滑块A 和B ,其质量m A =6kg ,m B =3kg ,它们之间用一

根轻细绳相连.开始时绳子完全松弛,两滑块靠在一起,现用了3N 的水平恒力拉A ,使A 先起动,当绳被瞬间绷直后,再拖动B 一起运动,在A 块前进了0.75 m 时,两滑块共同前进的速度v=2/3m /s ,求连接两滑块的绳长.

解析:本题的关键在于“绳子瞬间绷直”时其张力可看成远大于外力F ,所以可认为A 、B 组成的系统动量守恒.此过程相当于完全非弹性碰撞,系统的机械能有损失.

根据题意,设绳长为L ,以绳子绷直前的滑块A 为对象,由动能定理得FL=?m A v 12① 绳绷直的瞬间,可以认为T >>F ,因此系统的动量守恒,m A v 1=(m A 十m B )v 2② 对于绳绷直后,A 、B 组成的系统(看成一个整体)的共同运动过程,由动能定理 F (0.75-L )=?(m A 十m B )v 12-?(m A 十m B )v 22……③ 由式①一③解得L =0.25m 答案:0.25 m

★如图,斜面与半径R=2.5m 的竖直半圆组成光滑轨道,一个小球从A 点斜向上抛,并在半圆最高点D 水平进入轨道,然后沿斜面向上,最大高度达到h=10m,求小球抛出的速度和位置. 解析:小球从A 到D 的逆运动为平抛运动,由机械能守恒,平抛初速度v D 为mgh —mg2R=?mv D 2

;

10/D v m s

所以A 到D 的水平距离为

10D s v t m = 由机械能守恒得A 点的速度

v 0为mgh=?

mv 02

;0/v s = 由于平抛运动的水平速度不变,则V D =V

0cos θ,所以,仰角为00arccos

45D v v θ===

★质量为m 的小球,由长为L 的细绳系住,细绳的另一端固定在A 点,AB 是过

A 的竖直

线,E 为AB 上的一点,且/2AE L =,过E 作水平线EF ,在EF 上钉一铁钉D ,如图所示,若细绳能承受的最大拉力为9mg ,现将小球拉至水平,然后由静止释放,若小 球能绕钉子在竖直面内完成圆周运动,求钉子位置在水平线上的取值范围。不计细绳与钉子

碰撞时的能量损失。

★如图,长为L 的细绳一端拴一质量为m 的小球,另一

端固定在O 点,在O 点的正下方某处P 点有一钉子,把线拉成水平,由静止释放小球,使线碰到钉子后恰能在竖直面内做圆周运动,求P 点的位置

解析: 设绳碰到钉子后恰能绕P 点做圆周运动的半径为r ,运动到最高点的速率为V ,由机械能守恒定律得:

()2122

mg l r mv -=

在最高点,由向心力公式有:2v mg m r =,25r l =,3

5

OP l =

★如图5—69所示,长为l 不可伸长的细绳一端系于O 点,一端系一质量

为m 的物体,物体自与水平夹角300

(绳拉直)由静止释放,问物体到达O 点正下方处的动能是多少?

分析:小球运动过程是:先由A 点自由下落至B .自B 点做圆周运动,就在B 处绳使其速度改变的瞬间小球的动能减少,下面我们通过运算来说明这个问题.

正确解法: v B =gl 2,其方向竖直向下,将该速度分解如图5一

70所示 v 2=vcos300=gl 2cos300

由B 至C 的过程中机械能守恒 ?mv 22十mg0.5l=?mv 2

C

由此得?mv 2C =5mgl/4

答案:5mgl/4

★如图5 -4 -5所示,长度相同的三根轻杆构成一个正三角形支架,在A 处固定质量为2m 的小球,B 处固定质量为m 的小球.支架悬挂在0点,可绕过O 点并与支架所在平面相垂直的固定轴转动.开始时OB 与地面相垂直,放手后开始运动,在不计任何阻力的情况下,

下列说法正确的是

A. A球到达最低点时速度为零

B. A球机械能减少量等于B球机械能增加量

C. B球向左摆动所能达到的最高位置应高于A球开始运动时的高度

D.当支架从左向右回摆时,A球一定能回到起始高度

解析:因A处小球质量大,所处的位置高,图中三角形框架处于不稳定状态,释放后支架就会向左摆动.摆动过程中只有小球受的重力做功,故系统的机械能守恒,选项B正确,D 选项也正确.A球到达最低点时,若设支架边长是L. A球下落的高度便是L/2,有2mg·(L/2)的重力势能转化为支架的动能,因而此时A球速度不为零,选项A错.当A球到达最低点时有向左运动的速度,还要继续左摆,B球仍要继续上升,因此B球能达到的最高位置比A 球的最高位置要高,C选项也正确.

★图中,容器A、B各有一个可自由移动的轻活塞,活塞下面是水,上面是大气.大气压恒定,A、B的底部由带有阀门K的管道相连,整个装置与外界绝热,原先,A中水面比B中高,打开阀门,使A中的水逐渐向B中流,最后达到平衡,在这个过程中.()

A.大气压力对水做功,水的内能增加

B.水克服大气压力做功,水的内能减少

C.大气压力对水做功,水的内能不变

D.大气压力对水不做功,水的内能增加

【解析】由题设条件可知,打开阀门k,由于水的重力作用·水从A流向B中,由于水与器壁间的摩擦作用,振动一段时间最后达到平衡状态;A和B中水面静止在同一高度上,水受到重力、器壁压力和两水面上大气压力的作用,器壁压力与水流方向垂直,。不做功,最后A、B中水面等高。相当于A中部分水下移到B中,重力对水做功,设A、B的横截面积分别为S A、S B,两个活塞竖直位移分别为L A、L B,大气压力对容器A中的活塞做的功为W A=P0S A L A,容器B中的活塞克服大气压力做的功W B=P0S B L B,因此大气压力通过活塞对整个水做功为零,即大气压力对水不做功,根据能量守恒定律,重力势能的减少等于水的内能的增加,所以选项D是正确答案.

★如图半径分别为R 和r 的甲、乙两圆形轨道放置在同一竖直平面内,两轨道之间由一条水平轨道CD 相连,现有一小球从斜面上高为3R 处的A 点由静止释放,要使小球能滑上乙轨道并避免出现小球脱离圆形轨道而发生撞轨现象,试设计CD 段可取的长度。小球与CD 段间的动摩擦因数为μ,其作各段均光滑。

解析:有两种情况,一种是小球恰过乙轨道 最高点,在乙轨道最高点的mg=mv 2/r ,从开始运

动到乙轨道最高点,由动能定理得 mg (3R-2r )-μmgCD=?mv 2

-0联立解得

CD=(6R-5r )/2μ,故应用CD <(6R-5r )/2μ。 另一种是小球在乙轨道上运动?圆周时,速度变为零,由mg (3R-r )=μmgCD 解出CD=(3R-r )/μ,故应有CD >(3R-r )/μ

★如图所示,三个质量均为m 的弹性小球用两根长均为L 的轻绳连成一条直线而静止在光滑水平面上.现给中间的小球B 一个水平初速度v 0,方向与绳垂直.小球相互碰撞时无机械能损失,轻绳不可伸长.求:

(1)当小球A 、C 第一次相碰时,小球B 的速度.

(2)当三个小球再次处在同一直线上时,小球B 的速度. (3)运动过程中小球A 的最大动能E KA 和此时两根绳的夹角θ.

(4)当三个小球处在同一直线上时,绳中的拉力F 的大小. 解析:(1)设小球A 、C 第一次相碰时,小球B 的速度为B v ,考虑到对称性及绳的不可伸长特性,小球A 、C 沿小球B 初速度方向的速度也为B v ,由动量守恒定律,得03B mv mv = 由此解得01

3

B v v =

(2)当三个小球再次处在同一直线上时,则由动量守恒定律和机械能守恒定律,得

02B A mv mv mv =+,222

01112222

B A

mv mv mv =+? 解得013B v v =- 02

3

A v v =(三球再次处于同一直线)0

B v v =,0A v =(初始状态,舍

去)

所以,三个小球再次处在同一直线上时,小球B 的速度为01

3

B v v =-(负号表明与初速度反向)

(3)当小球A 的动能最大时,小球B 的速度为零。设此时小球A 、C 的速度大小为u ,两根绳间的夹角为θ(如图),则仍由动量守恒定律和机械能守恒定律,得

02sin

2

mv mu θ

=

22011

222

mv mu =? 另外,2

12

KA E mu =

由此可解得,小球A 的最大动能为201

4

KA E mv =

,此时两根绳间夹角为90θ=?

(4)小球A 、C 均以半径L 绕小球B 做圆周运动,当三个小球处在同一直线上时,以小球B 为参考系(小球B 的加速度为0,为惯性参考系),小球A (C )相对于小球B 的速度均

为0A B v v v v =-=所以,此时绳中拉力大小为22

0v v F m m L L

==

(完整版)2018初中物理功和机械能练习题及答案

2018初中物理功和机械能练习题 一、选择填空 1. 如图3所示,小朋友沿着滑梯匀速下滑的过程中,下列说法中正确的是(忽略空气阻力)( ) A.他受重力、支持力、下滑力和摩擦力的共同作用 B.他受重力、支持力和摩擦力的共同作用 C.他的重力势能转化成了动能和内能 D.他的重力势能减小,动能增大,机械能不变 2. 直升机在匀速下降过程中,能量变化情况是() A.势能减少,动能增加,机械能不变B.势能减少,动能不变,机械能减少 C.势能不变,动能不变,机械能不变D.势能减少,动能不变,机械能不变 3. 关于机械能的论述,下列说法正确的是() A.在空中飞行的飞机只具有动能B.炮弹具有的机械能一定比子弹具有的机械能大 C.质量和速度都相同的物体具有的动能一样大D.质量大的物体的具有的重力势能一定大5. 甲、乙两辆汽车,功率之比为2∶1,在相同时间内沿水平路面通过的距离之比为1∶2.则它们所做的功之比为() A.2∶1 B.1∶1C.1∶4D.4∶1 6. 下列单位中不是功的单位的是() A.W·s B.J C.J/s D.N·m 8. 跳水运动员从最高点向水面下落的过程中,他的________能逐渐减少,________能逐渐增加. 9. 一只小鸟在空中飞行时具有40J的机械能,若它具有10J的势能,则它具有________J的动能. 10. 小明在水平面上用50 N的水平推力,加速推着一辆重120 N的小车,前进了10 m,小明的推 力做功是________J.水平面对小车的支持力做功是________J. 11. 甲、乙两辆汽车在公路上匀速行驶.如果它们的功率相同,行驶速度之比v甲∶v乙=2∶1.在 相同的时间内,甲、乙两车牵引力做功之比为________.

(完整版)高中物理经典选择题(包括解析答案)

物理 1.一中子与一质量数为A(A>1)的原子核发生弹性正碰。若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( ) A. B. C. D. [解析] 1.设中子质量为m,则原子核的质量为Am。设碰撞前后中子的速度分别为v0、v1,碰后原子核的速度为v2,由弹性碰撞可得mv0=mv1+Amv2,m=m+Am,解得v1=v0,故=,A正确。 2.很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。让条形磁铁从静止开始下落。条形磁铁在圆筒中的运动速率( ) A.均匀增大 B.先增大,后减小 C.逐渐增大,趋于不变 D.先增大,再减小,最后不变[解析] 2.对磁铁受力分析可知,磁铁重力不变,磁场力随速率的增大而增大,当重力等于磁场力时,磁铁匀速下落,所以选C。 3.(2014大纲全国,19,6分)一物块沿倾角为θ的斜坡向上滑动。当物块的初速度为v时, 上升的最大高度为H,如图所示;当物块的初速度为时,上升的最大高度记为h。重力加速度大小为g。物块与斜坡间的动摩擦因数和h分别为( )

A.tan θ和 B.tan θ和 C.tan θ和 D.tan θ和 [解析] 3.由动能定理有 -mgH-μmg cos θ=0-mv2 -mgh-μmg cos θ=0-m()2 解得μ=(-1)tan θ,h=,故D正确。 4.两列振动方向相同、振幅分别为A1和A2的相干简谐横波相遇。下列说法正确的是( ) A.波峰与波谷相遇处质点的振幅为|A1-A2| B.波峰与波峰相遇处质点离开平衡位置的位移始终为A1+A2 C.波峰与波谷相遇处质点的位移总是小于波峰与波峰相遇处质点的位移 D.波峰与波峰相遇处质点的振幅一定大于波峰与波谷相遇处质点的振幅 [解析] 4.两列振动方向相同的相干波相遇叠加,在相遇区域内各质点仍做简谐运动,其振动位移在0到最大值之间,B、C项错误。在波峰与波谷相遇处质点振幅为两波振幅之差,在波峰与波峰相遇处质点振幅为两波振幅之和,故A、D项正确。

验证机械能守恒定律实验(吐血整理经典题)

实验:验证机械能守恒定律 1.下列关于“验证机械能守恒定律”实验的实验误差的说法中,正确的是 ( ) A .重物质量的称量不准会造成较大误差 B .重物质量选用得大些,有利于减小误差 C .重物质量选用得较小些,有利于减小误差 D .纸带下落和打点不同步不会影响实验 2.用如图所示装置验证机械能守恒定律,由于电火花计时器两限位孔不在同一竖直线上,使纸带通过时受到较大的阻力,这样实验造成的结果是( ) A .重力势能的减少量明显大于动能的增加量 B .重力势能的减少量明显小于动能的增加量 C .重力势能的减少量等于动能的增加量 D .以上几种情况都有可能 3.有4条用打点计时器(所用交流电频率为50 Hz)打出的纸带A 、B 、C 、D ,其中一条是做“验证机械能守恒定律”实验时打出的。为找出该纸带,某同学在每条纸带上取了点迹清晰的、连续的4个点,用刻度尺测出相邻两个点间距离依次为s 1、s 2、s 3。请你根据下列s 1、s 2、s 3的测量结果确定该纸带为(已知当地的重力加速度为9.791 m/s 2) ( ) A .61.0 mm 65.8 mm 70.7 mm B .41.2 mm 45.1 mm 53. 0mm C .49.6 mm 53.5 mm 57.3 mm D .60.5 mm 61.0 mm 60.6 mm

4.如图是用自由落体法验证机械能守恒定律时得到的一条纸带.有关尺寸在图中已注明.我们选中n 点来验证机械能守恒定律.下面举一些计算n 点速度的方法,其中正确的是( ) A .n 点是第n 个点,则v n =gnT B .n 点是第n 个点,则v n =g (n -1)T C .v n =s n +s n +1 2T D .v n =h n +1-h n -1 2T 5.某研究性学习小组在做“验证机械能守恒定律”的实验中,已知打点计时器所用电源的频率为50 Hz ,查得当地的重力加速度g =9.80 m/s 2。测得所用重物的质量为1.00 kg 。 (1)下面叙述中正确的是________。 A .应该用天平称出重物的质量 B .可选用点迹清晰,第一、二两点间的距离接近2 mm 的纸带来处理数据 C .操作时应先松开纸带再通电 D .打点计时器应接在电压为4~6 V 的交流电源上 (2)实验中甲、乙、丙三学生分别用同一装置得到三条点迹清晰的纸带,量出各纸带上第一、二两点间的距离分别为0.18 cm 、0.19 cm 、0.25 cm ,则可肯定________同学在操作上有错误,错误是________。若按实验要求正确地选出纸带进行测量,量得连续三点A 、B 、C 到第一个点O 间的距离分别为15.55 cm 、19.20 cm 和23.23 cm 。则当打点计时器打点B 时重物的瞬时速度v =________ m/s ;重物由O 到B 过程中,重力势能减少了________J ,动能增加了________J(保留3位有效数字), 6.在“验证机械能守恒定律”的实验中,图(甲)是打点计时器打出的一条纸带,选取

大学物理竞赛指导-经典力学例题-物理中心

大学物理竞赛指导-经典力学选例 一.质点运动学 基本内容:位置,速度,加速度,他们的微积分关系,自然坐标下切、法向加速度,*极坐标下径向速度,横向速度,直线运动,抛物运动,圆周运动,角量描述,相对运动 1.运动学中的两类问题 (1)已知运动方程求质点的速度、加速度。这类问题主要是利用求导数的方法。 例1 一艘船以速率u驶向码头P ,另一艘船以速率v 自码头离去,试证当两船的距离最短时,两船与码头的距离之比为: ()()ααcos :cos v v ++u u 设航路均为直线,α为两直线的夹角。 证:设任一时刻船与码头的距离为x 、y ,两船的距离为l ,则有 α c o s 2222xy y x l -+= 对t求导,得 ()()t x y t y x t y y t x x t l l d d c o s 2d d c o s 2d d 2d d 2d d 2αα--+= 将v , =-=t y u t x d d d d 代入上式,并应用0d d =t l 作为求极值的条件,则得 ααcos cos 0yu x y ux +-+-=v v ()()αα c o s c o s u y u x +++-=v v 由此可求得 ααc o s c o s v v ++=u u y x 即当两船的距离最短时,两船与码头的距离之比为 ()()αα c o s c o s v : v ++u u (2)已知质点加速度函数a =a (x ,v ,t )以及初始条件,建立质点的运动方程。这类问题主要用积分方法。 例2 一质点从静止开始作直线运动,开始时加速度为a 0,此后加速度随时间均匀增加,经过时间τ后,加速度为2a 0,经过时间2τ后,加速度为3 a 0 ,…求经过时间n τ后,该质点的速度和走过的距离。 解:设质点的加速度为 a = a 0+α t ∵ t = τ 时, a =2 a 0 ∴ α = a 0 /τ 即 a = a 0+ a 0 t /τ , 由 a = d v /d t , 得 d v = a d t t t a a t d )/(d 0 000τ??+=v v ∴ 2002t a t a τ +=v

高中物理机械能守恒定律经典例题及技巧

一、单个物体的机械能守恒 判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。 物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。 所涉及到的题型有四类:(1)阻力不计的抛体类。(2)固定的光滑斜面类。(3)固定的光滑圆弧类。(4)悬点固定的摆动类。 (1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。 ( 例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地 时的速度大小 分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能 守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等 2202 121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类 在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。 例,以初速度v 0 冲上倾角为光滑斜面,求物体在斜面上运动的距离是多少 分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等 θsin 2120?==mgs mgh mv 得:θ sin 220g v s = $ (3)固定的光滑圆弧类 在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。 例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低点至少具有多大的速度才能作一个完整的圆周运动 分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等 2202 1221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度为: Rg v t = 所以 gR v 50= (4)悬点固定的摆动类 [

高中物理选修3-5经典例题

物理选修3-5动量典型例题 【例1】质量为0.1kg 的小球,以10m /s 的速度水平撞击在竖直放置的厚钢板上,而后以7m /s 的速度被反向弹回,设撞击的时间为0.01s ,并取撞击前钢球速度的方向为正方向,则钢球受到的平均作用力为( ). A .30N B .-30N C .170N D .-170N 【例2】质量为m 的钢球自高处落下,以速率1v 碰地,竖直向上弹回,碰撞时间极短离地的速率为2v ,在碰撞过程中,地面对钢球的冲量的方向和大小为( ). A .向下,12()m v v - B .向下,12()m v v + C .向上,12()m v v - D .向上,12()m v v + 【例3】质量为2m 的物体A ,以一定的速度沿光滑水平面运动,与一静止的物体B 碰撞后粘为一体继续运动,它们共同的速度为碰撞前A 的速度的2/3,则物体B 的质量为( ). A .m B .2m C .3m D . 2 3 m 【例4】一个不稳定的原子核,质量为M ,处于静止状态,当它以速度0v 释 放一个质量为m 的粒子后,则原子核剩余部分的速度为( ). A .0 m v M m - B . m v M - C .0m v M m -- D .0 m v M m - + 【例5】带有光滑圆弧轨道、质量为M 的滑车静止置于光滑水平面上,如图所示.一质量为m 的小球以速度v 0水平冲上滑车,当小球上滑再返回并脱离滑车时,有①小球一定水平向左做 平抛运动 ②小球可能水平向左做平抛运动 ③小球可能做自由落体运动 ④小球一定水平向右做平抛运动 以上说法正确的是( ) A.① B .②③ C.④ D.每种说法都不对 【例6】质量为m 的物体静止在足够大的水平面上,物体与桌面的动摩擦因数为μ,有一水平恒力作用于物体上,并使之加速前进,经1t 秒后去掉此恒力,求物体运动的总时间t . 【例7】将质量为0.10kg 的小球从离地面20m 高处竖直向上抛出,抛出时 的初速度为15m /s ,当小球落地时,求: (1)小球的动量; (2)小球从抛出至落地过程中的动量增量; (3)小球从抛出至落地过程中受到的重力的冲量. 【例8】气球质量为200kg ,载有质量为50kg 的人,静止在空中距地面20m 高的地方,气球下方悬根质量可忽略不计的绳子,此人想从气球上沿绳慢慢下滑至地面,为了安全到达地面,则这根绳长至少为多少米?(不计人的高度)

高中物理机械能守恒定律经典例题及技巧

一、单个物体的机械能守恒 判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。 物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。 所涉及到的题型有四类:(1)阻力不计的抛体类。(2)固定的光滑斜面类。(3)固定的光滑圆弧类。(4)悬点固定的摆动类。 (1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。 例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地 时的速度大小? 分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等 2202 121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类 在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。 例,以初速度v 0 冲上倾角为光滑斜面,求物体在斜面上运动的距离是多少? 分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等 θsin 2120?==mgs mgh mv 得:θ sin 220g v s = (3)固定的光滑圆弧类 在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。 例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低点至少具有多大的速度才能作一个完整的圆周运动? 分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等 2202 1221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度为: Rg v t = 所以 gR v 50= (4)悬点固定的摆动类 和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。因此只有重力做功,物体的机械能守恒。 例:如图,小球的质量为m ,悬线的长为L ,把小球拉开使悬线和竖直方向的夹角为,然后从静止释放,

八年级物理功和机械能经典题型

八年级物理功和机械能经典题型

简单机械、功和能综合练习 综合练习 例1:在图1中画出力F1、F2对支点O的力臂,并分别用字母L1、L2表示. 分析和画力臂的步骤如下: (1)在杠杆的示意图上确定支点.将力的作用线用虚线延长.如图2所示.得到动力作用线和阻力作用线. (2)再从支点O向力的作用线做垂线,画出垂足.则支点列垂足的距离就是力臂. 力臂用虚线表示,支点到垂足用大括号勾出,并用字母L1、L2分别表示动力臂和阻力臂. 注意: (1)力臂是从支点到力的作用线的垂直距离.不要错误地理解为从支点到力的作用点的距离. (2)画力臂,要规范.力的延长线、力臂要用虚线表示,力臂要用大括号括出,且在力臂旁边用字母L表示出来. 例2:如图3所示,在距杠杆右端20厘米的B处挂有600牛的重物.要使杠杆平衡,需要在距B处60厘米的A处至少加牛的力,且方向为 . 分析和运用杠杆的平衡条件解题注意: (1)在杠杆的示意图上标明支点、动力、阻力、动力臂、阻力臂. (2)再根据杠杆平衡条件列出方程,代入数据,求出结果.

挂在B处的重物,对杠杆的力为阻力用F2表示,阻力臂l2 = 20厘米,作用在A点的力用F1表示,当竖直向上用力时,所用动力F1最小,此时,动力臂为l1 = 20厘米 + 60厘米 = 80厘米,如图4所示.利用杠杆平衡条件,求解. 应在A处加150牛的力. 判断力的方向的方法:作用在B点的F2×l2的作用效果是使杠杆绕支点沿顺时针的方向转动.要使杠杆平衡,作用在A点的F1×l1的作用效果应使杠杆沿逆时针方向转动,因而动力F1的方向应是竖直向上. 说明: (1)杠杆平衡条件的另一种表达方式为: 即动力臂是阻力臂的几倍,动力就是阻力的几分之一. 所以×600牛 = 150牛 (2)使用杠杆平衡条件解题时,等号两边力臂的单位可约去,所以只要动力臂和阻力臂单位相同就可以了. 例3:如图5所示,O为杠杆的支点,杠杆的重物G和力F1的作用下处于水平位置并且平衡.如果用力F2代替力F1使杠杆在图中位置保持平衡,下面关系中正确的是 A. B. C. D. 分析和杠杆在重物和力F1作用下处于平衡.设杠杆平衡时,物体用在

机械能守恒定律典型例题精析(附答案)

机械能守恒定律 一、选择题 1.某人用同样的水平力沿光滑水平面和粗糙水平面推动一辆相同的小车,都使它移动相同的距离。两种情况下推力做功分别为W1和W2,小车最终获得的能量分别为E1和E2,则下列关系中正确的是()。 A、W1=W2,E1=E2 B、W1≠W2,E1≠E2 C、W1=W2,E1≠E2 D、W1≠W2,E1=E2 2.物体只在重力和一个不为零的向上的拉力作用下,分别做了匀速上升、加速上升和减速上升三种运动.在这三种情况下物体机械能的变化情况是() A.匀速上升机械能不变,加速上升机械能增加,减速上升机械能减小 B.匀速上升和加速上升机械能增加,减速上升机械能减小 C.由于该拉力与重力大小的关系不明确,所以不能确定物体机械能的变化情况 D.三种情况中,物体的机械能均增加 3.从地面竖直上抛一个质量为m的小球,小球上升的最大高度为H.设上升过程中空气阻力F阻恒定.则对于小球的整个上升过程,下列说法中错误的是() A.小球动能减少了mgH B.小球机械能减少了F阻H C.小球重力势能增加了mgH D.小球的加速度大于重力加速度g 4.如图所示,一轻弹簧的左端固定,右端与一小球相连,小球处于光滑水平面上.现对小球施加一个方向水平向右的恒力F,使小球从静止开始运动,则小球在向右运动的整个过程中() A.小球和弹簧组成的系统机械能守恒 B.小球和弹簧组成的系统机械能逐渐增加 C.小球的动能逐渐增大 D.小球的动能先增大后减小 二、计算题 1.如图所示,ABCD是一条长轨道,其AB段是倾角为的斜面,CD段是水平的,BC是与AB和CD相切的一小段弧,其长度可以略去不计。一质量为m的物体在A点从静止释放,沿轨道滑下,最后停在D点,现用一沿轨道方向的力推物体,使它缓慢地由D点回到A点,设物体与轨道的动摩擦因数为,A点到CD间的竖直高度为h,CD(或BD)间的距离为s,求推力对物体做的功W为多少 2.一根长为L的细绳,一端拴在水平轴O上,另一端有一个质量为m的小球.现使细绳位于 水平位置并且绷紧,如下图所示.给小球一个瞬间的作用,使它得到一定的向下的初速度. (1)这个初速度至少多大,才能使小球绕O点在竖直面内做圆周运动 (2)如果在轴O的正上方A点钉一个钉子,已知AO=2/3L,小球以上一问中的最小速度开始运动,当它运动到O点的正上方,细绳刚接触到钉子时,绳子的拉力多大 3.如图所示,某滑板爱好者在离地h=1.8m高的平台上滑行,水平离开A点后落在水平地

浙江省大学物理试题库204-热力学第一定律、典型的热力学过程

浙江工业大学学校 204 条目的4类题型式样及交稿式样 热力学第一定律、典型的热力学过程 一. 选择题 题号:20412001 分值:3分 难度系数等级:2 1 如图所示,一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B等压过程,A→C等温过程;A→D绝热过程,其中吸热量最多的过程 (A) 是A→B. (B) 是A→ C. (C) 是A→D. (D) 既是A→B也是A→C, 两过程吸热一样多。 [ ] 答案:A 题号:20412002 分值:3分 难度系数等级:2 2 质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加一倍.那么气体温度的改变(绝对值)在 (A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小. (D) 等压过程中最大,等温过程中最小.[] 答案:D 题号:20412003 分值:3分 难度系数等级:2 V

3 一定量的理想气体,从a 态出发经过①或②过程到达b 态,acb 为等温线(如图),则①、②两过程中外界对系统传递的热量Q 1、Q 2是 (A) Q 1>0,Q 2>0. (B) Q 1<0,Q 2<0. (C) Q 1>0,Q 2<0. (D) Q 1<0,Q 2>0. [ ] 答案:A 题号:20413004 分值:3分 难度系数等级:3 4 一定量的理想气体分别由初态a 经①过程ab 和由初态a ′经 ②过程a ′cb 到达相同的终态b ,如p -T 图所示,则两个过程中 气体从外界吸收的热量 Q 1,Q 2的关系为: (A) Q 1<0,Q 1> Q 2. (B) Q 1>0,Q 1> Q 2. (C) Q 1<0,Q 1< Q 2. (D) Q 1>0,Q 1< Q 2. [ ] 答案:B 题号:20412005 分值:3分 难度系数等级:2 5. 理想气体向真空作绝热膨胀. (A) 膨胀后,温度不变,压强减小. (B) 膨胀后,温度降低,压强减小. (C) 膨胀后,温度升高,压强减小. (D) 膨胀后,温度不变,压强不变. [ ] 答案:A 题号:20412006 分值:3分 难度系数等级:2 6. 一定量的理想气体,从p -V 图上初态a 经历(1)或(2)过程到达末态b ,已知a 、b 两 态处于同一条绝热线上(图中虚线是绝热线),则气体在 (A) (1)过程中吸热,(2) 过程中放热. (B) (1)过程中放热,(2) 过程中吸热. (C) 两种过程中都吸热. (D) 两种过程中都放热. [ ] 答案:B 题号:20412007 分值:3分 p p p V

(完整版)高中物理机械能守恒经典习题30道带答案

一.选择题(共30小题) 1.(2015?金山区一模)一物体静止在粗糙水平地面上,现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度为v,若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v,对于上述两个过程,用W F1、W F2分别表示拉力F1、F2所做的功,W f1、W f2分别表示前两次克服摩擦力所做的功,则()A.W F2>4W F1,W f2>2W f1B.W F2>4W F1,W f2=2W f1 C.W F2<4W F1,W f2=2W f1D.W F2<4W F1,W f2<2W f1 2.(2008?山东)质量为1500kg的汽车在平直的公路上运动,v﹣t图象如图所示,由此可求() A.前25s内汽车的平均速度 B.前10s内汽车的加速度 C.前10s内汽车所受的阻力 D.15﹣25s内合外力对汽车所做的功 3.(2007?上海)物体沿直线运动的v﹣t图如图所示,已知在第1秒内合外力对物体做的功为W,则下列结论正确的是() A.从第1秒末到第3秒末合外力做功为W B.从第3秒末到第5秒末合外力做功为﹣2W C.从第5秒末到第7秒末合外力做功为W D.从第3秒末到第4秒末合外力做功为﹣0.75W 4.(2015?武清区校级学业考试)如图所示,物体在力F的作用下沿水平面移动了一段位移L,甲、乙、丙、丁四种情况下,力F和位移L的大小以及θ角均相同,则力F做功相同的是() A.甲图与乙图B.乙图与丙图C.丙图与丁图D.乙图与丁图5.(2015?赫山区校级一模)如图所示,A、B两物体质量分别是m A和m B,用劲度系数为k的弹簧相连,A、B 处于静止状态.现对A施竖直向上的力F提起A,使B对地面恰无压力.当撤去F,A由静止向下运动至最大速度时,重力做功为()

高中物理必修1知识点汇总(带经典例题)

高中物理必修1 运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2.参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 4.时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5.位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。

大学物理期末考试经典题型(带详细答案的)

例1:1 mol 氦气经如图所示的循环,其中p 2= 2 p 1,V 4= 2 V 1,求在1~2、2~3、3~4、4~1等过程中气体与环境的热量交换以及循环效率(可将氦气视为理想气体)。O p V V 1 V 4 p 1p 2解:p 2= 2 p 1 V 2= V 11234T 2= 2 T 1p 3= 2 p 1V 3= 2 V 1T 3= 4 T 1p 4= p 1V 4= 2 V 1 T 4= 2 T 1 (1)O p V V 1 V 4 p 1p 21234)(1212T T C M m Q V -=1→2 为等体过程, 2→3 为等压过程, )(2323T T C M m Q p -=1 1123)2(23RT T T R =-=1 115)24(2 5RT T T R =-=3→4 为等体过程, )(3434T T C M m Q V -=1 113)42(2 3 RT T T R -=-=4→1 为等压过程, )(4141T T C M m Q p -=1 112 5)2(25RT T T R -=-= O p V V 1 V 4 p 1p 21234(2)经历一个循环,系统吸收的总热量 23121Q Q Q +=1 112 13 523RT RT RT =+=系统放出的总热量1 41342211 RT Q Q Q =+=% 1.1513 2 112≈=-=Q Q η三、卡诺循环 A → B :等温膨胀B → C :绝热膨胀C → D :等温压缩D →A :绝热压缩 ab 为等温膨胀过程:0ln 1>=a b ab V V RT M m Q bc 为绝热膨胀过程:0=bc Q cd 为等温压缩过程:0ln 1<= c d cd V V RT M m Q da 为绝热压缩过程:0 =da Q p V O a b c d V a V d V b V c T 1T 2 a b ab V V RT M m Q Q ln 11= =d c c d V V RT M m Q Q ln 12= =, 卡诺热机的循环效率: p V O a b c d V a V d V b V c ) )(1 212a b d c V V V V T T Q Q (ln ln 11-=- =ηT 1T 2 bc 、ab 过程均为绝热过程,由绝热方程: 11--=γγc c b b V T V T 1 1--=γγd d a a V T V T (T b = T 1, T c = T 2)(T a = T 1, T d = T 2) d c a b V V V V =1 212T T Q Q -=- =11η p V O a b c d V a V d V b V c T 1T 2 卡诺制冷机的制冷系数: 1 2 1212))(T T V V V V T T Q Q a b d c ==(ln ln 2 122122T T T Q Q Q A Q -= -== 卡ω

(完整版)初三物理机械能习题及答案

初三物理第一章机械能02 有关动能和势能转化的例题 【例1】一只乒乓球由高处静止下落撞击地板后又上升,在整个过程中,乒乓球机械能转化的情 况是 [ ] A.势能→动能→势能。 B.动能→势能→势能。 C.动能→势能→动能→势能→动能。 D.势能→动能→势能→动能→势能。 【例2】物体沿斜面匀速滑下时,它的 [ ] A.动能增加,重力势能减少,机械能不变 B.动能不变,重力势能不变,机械能不变 .动能不变,重力势能减少,机械能减少 C .动能增加,重力势能减少,能械能减少 D1 用一根不可伸长的细线,一端拴住一小球,另一端固定,如图【例3】 →C→的过程中机械能发生怎样的转化?动,小球从B→O 竖直向上抛起的石块,上升过程中,它的速度越来越小(空气的作用不计),这是为什么?【例4】 【课后练习】一、判断题 ( ) 1.向上抛出的小球速度越来越小,因而动能越来 越小。 ( ) .一块大石头与一块小石头都被高举以后,大石头的势能一定比小石头势能大。 2 ( ) .一个人乘在电梯里,当电梯匀速上升时,人的势能增加了,动能减少了。 3 ( ) 4.小孩在荡秋千的过程中,一定是动能转化为势能。 ( ) 5.悬挂在天花板上的吊灯处于静止状态,没有做功,所以也就没有能。( ) 6.因为机械能可以相互转化,所以有动能的物体就一定有势能。 ( ) 7.被抛出的铅球在空 中运动时,因为没有对其他物体做功,所以它没有能。 ( ) .一个人乘在飞机里,当飞机在匀速飞行时人的势能一定保持不变。 8 ( ) 9.跳伞运动员在匀速下降过程中势能在减少,动能在增加。 ( ) 10 .所谓机械能就是机械所具有的能。 二、填空题,这是因为它在近地点的重1 .人造地球卫星在近地点的速度比它在远地点的速度 ______

(完整word版)高考物理经典大题练习及答案

14.(7分)如图14所示,两平行金属导轨间的距离 L=0.40 m,金属导轨所在的平面与水平面夹角θ=37°,在 导轨所在平面内,分布着磁感应强度B=0.50 T、方向垂直于 导轨所在平面的匀强磁场.金属导轨的一端接有电动势 E=4.5 V、内阻r=0.50 Ω的直流电源.现把一个质量m=0.040 kg的导体棒ab放在金属导轨上,导体棒恰好静止.导体棒 与金属导轨垂直、且接触良好,导体棒与金属导轨接图14 触的两点间的电阻R0=2.5 Ω,金属导轨电阻不计,g取 10 m/s2.已知sin 37°=0.60,cos 37°=0.80,求: (1)通过导体棒的电流; (2)导体棒受到的安培力大小; (3)导体棒受到的摩擦力 15.(7分)如图15所示,边长L=0.20m的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R0=1.0 Ω, 金属棒MN与正方形导线框的对角线长度恰好相等,金属棒MN的电 阻r=0.20 Ω.导线框放置在匀强磁场中,磁场的磁感应强度B=0.50 T,方向垂直导线框所在平面向里.金属棒MN与导线框接触良好,且 与导线框的对角线BD垂直放置在导线框上,金属棒的中点始终在BD 连线上.若金属棒以v=4.0 m/s的速度向右匀速运动,当金属棒运动 至AC的位置时,求(计算结果保留两位有效数字): 图15 (1)金属棒产生的电动势大小; (2)金属棒MN上通过的电流大小和方向; (3)导线框消耗的电功率. 16.(8分)如图16所示,正方形导线框abcd的质量为m、边长为l, 导线框的总电阻为R.导线框从垂直纸面向里的水平有界匀强磁场的上 方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直 平面内,cd边保持水平.磁场的磁感应强度大小为B,方向垂直纸面向 里,磁场上、下两个界面水平距离为l已.知cd边刚进入磁场时线框 恰好做匀速运动.重力加速度为g. (1)求cd边刚进入磁场时导线框的速度大小. (2)请证明:导线框的cd边在磁场中运动的任意瞬间,导线框克 服安培力做功的功率等于导线框消耗的电功率.图16 (3)求从导线框cd边刚进入磁场到ab边刚离开磁场的过程中,导 线框克服安培力所做的功. 17.(8分)图17(甲)为小型旋转电枢式交流发电机的原理图,其矩形线圈在匀强磁场中绕垂直于磁场方向的固定轴OO′匀速转动,线圈的匝数n=100、电阻r=10 Ω,线圈的两端经集流环与电阻R连接,电阻R=90 Ω,与R并联的交流电压表为理想电表.在t=0时刻,线圈平面与磁场方向平行,穿过每匝线圈的磁通量φ随时间t按图17(乙)所示正弦规律变化.求: (1)交流发电机产生的 电动势最大值;

高考物理经典考题300道(10)

一、计算题(解答写出必要的文字说明、方程式和重要的演算步骤。只写出最后答案的不能得分。有数值计算的题,答案中必须明确写出数值和单位。本题包含55小题,每题?分,共?分) 1.如图所示,在光滑的水平面上,有两个质量都是M 的小车A 和B ,两车间用轻质弹簧相连,它们以共同的速度向右运动,另有一质量为 0M 的粘性物体,从高处自由下落,正好落 至A 车并与之粘合在一起,在此后的过程中,弹簧获得最大弹性势能为E ,试求A 、B 车开始匀速运动的初速度 0v 的大小. 解析:物体 0M 落到车A 上并与之共同前进,设其共同速度为1v , 在水平方向动量守恒,有 100)(v M M M v += 所以 0 01v M M M v += 物体0M 与A 、B 车共同压缩弹簧,最后以共同速度前进,设共同速度为2v ,根据动量守 恒有 200)2(2v M M Mv += 所以 0222v M M M v += 当弹簧被压缩至最大而获得弹性势能为E ,根据能量守恒定律有: ()()202102202121221 Mv v M M v M M E ++=++ 解得 ()()002 0022M M M M MM E v ++= . 2.如图所示,质量为M 的平板小车静止在光滑的水平地面上,小车左端放一个质量为m 的木块,车的右端固定一个轻质弹簧.现给木块一个水平向右的瞬时冲量I ,木块便沿小车向右滑行,在与弹簧相碰后又沿原路返回,并且恰好能到达小车的左端.试求: (1)木块返回到小车左端时小车的动能. (2)弹簧获得的最大弹性势能. 解:(1)选小车和木块为研究对象.由于m 受到冲量I 之后系统水平方向不受外力作用,系统动量守恒.则v m M I )(+=

机械能守恒定律典型分类例题

机械能守恒定律典型题分类 一、单个物体的机械能守恒 判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。(2)物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。 所涉及到的题型有四类:(1)阻力不计的抛体类。(2)固定的光滑斜面类。(3)固定的光滑圆弧类。(4)悬点固定的摆动类。 (1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。 (2)固定的光滑斜面类 在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。 (3)固定的光滑圆弧类 在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。 (4)悬点固定的摆动类 和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。因此只有重力做功,物体的机械能守恒。 作题方法: 一般选取物体运动的最低点作为重力势能的零势参考点,把物体运动开始时的机械能和物体运动结束时的机械能分别写出来,并使之相等。 注意点:在固定的光滑圆弧类和悬点定的摆动类两种题目中,常和向心力的公式结合使用。这在计算中是要特别注意的。 习题: 1、三个质量相同的小球悬挂在三根长度不等的细线上,分别把悬线拉至水平位置后轻轻释放小球,已知线长L a>L b>L c,则悬线摆至竖直位置时,细线中张力大小的关系是() A T c>T b>T a B T a>T b>T c C T b>T c>T a D T a=T b=T c 4、一质量m = 2千克的小球从光滑斜面上高h = 3.5米高处由静止滑下斜面底端紧接着一个半径R = 1m的 光滑圆环(如图)求: (1)小球滑至圆环顶点时对环的压力; (2)小球至少要从多高处静止滑下才能越过圆环最高点; (3)小球从h0 = 2米处静止滑下时将在何处脱离圆环(g =9.8米/秒2)。 二、系统的机械能守恒 由两个或两个以上的物体所构成的系统,其机械能是否守恒,要看两个方面 (1)系统以外的力是否对系统对做功,系统以外的力对系统做正功,系统的机械能就增加,做负功,系统的机械能就减少。不做功,系统的机械能就不变。 (2)系统间的相互作用力做功,不能使其它形式的能参与和机械能的转换。 系统内物体的重力所做的功不会改变系统的机械能 系统间的相互作用力分为三类:

八下物理机械能经典习题含答案

八下物理机械能习题 一、实验,探究题 1、在探究“物体动能的大小与哪些因素有关”的实验中,小丽同学设计了如图所示甲、乙、丙三次实验。让铁球从同一斜面上某处由静止开始向下运动,然后与放在水平面上的纸盒相碰,铁球与纸盒在水平面上共同移动一段距离后静止。 (1)要探究动能大小与物体质量的关系应按照_____________两图进行实验;实验中为了使两次小球在斜面底端时速度相同,采取的具体操作方法是_____________________。 (2)选用甲、丙两次实验可以得出的结论是________________________________。 (3)该实验是通过观察________________________来比较铁球动能的大小,从而得出结论的。下面的四个实例中也采用这种研究方法的是。 A.认识电压时,我们可以用水压来类比 B.用磁感线来描述磁场 C.探究电功大小与哪些因素有关,通过重物提升的高度来判断电流做功的多少 D.保持电阻不变,改变电阻两端电压,探究电流与电压关系 2、如图所示:在“探究物体的动能大小与哪些因素有关”的实验中,小球由斜面某位置滚下,撞击水平面上的小木块. (1)实验过观察小木块被推动的距离的大小,来判断小球动能的大小. (2)让质量不同的小球A和B(m A<m B),从同一斜面的同一度度由静止开始滚下,目的是为了使小球到达水平面的相同.得出的结论是. (3)为了探究动能大小与速度的关系,应选择两个图进行比较,理由是.

3、利用如图16所示装置探究“物体的动能大小与哪些因素有关”。将小球A、B分别拉到与竖直方向成一定角度θ的位置,然后都由静止释放,当小球摆动到竖直位 置时,将与静止在水平面上的木块C发生碰撞,木块都会在水平面上滑行一定距离后停止。图中的摆长L 都相同,θ1<θ2,球A、B的质量分别为m A、m B ( m A<m B) 。(l)如图甲、乙所示,同时释放A、B,观察到它们并排摆动且始终相对静止,同时到达竖直位置,这表明两小球在摆动过程中的任一时刻的速度大小与小球 的无关。 (2)如图甲、乙所示,观察到B球能将木块C撞得更远,由此可得出结 论: 。 (3)图乙中小球B到达竖直位置时的速度(填“大于”、“小于”或“等于”)图丙中小球B 到达竖直位置时的速度,图丙中木块C滑行得更远些,由此可得出结 论:。 4、在探究“物体动能的大小与哪些因素有关”的实验中,让质量不同的铁球从斜面的同一高度由静止释放,撞击同一木块,能将木块撞出一段距离。如图甲所示。请回答下列问题: (1)从同一高度由静止释放的目的是_,该实验的目的是研究铁球的动能大小与(选填“质量”或“速度”)的关系。 (2)该实验是通过观察的大小,来说明铁球对木块做功的多少,从而判断出(“铁球”或“木块”)具有的动能的大小。 (3)有同学将实验装置改进成图乙所示,利用质量不同的铁球将同一弹簧压缩相同程度后静止释放,撞击同一木块,将木块撞出一段距离进行比较。该实验方案是否可行? 答:______你的理由 是。

相关文档
最新文档