苏教版学高中数学必修五不等式一元二次不等式一元二次不等式的应用讲义

苏教版学高中数学必修五不等式一元二次不等式一元二次不等式的应用讲义
苏教版学高中数学必修五不等式一元二次不等式一元二次不等式的应用讲义

习目标

核心素养

1.掌握一元二次不等式的实际应用.(重点)2.理解三个“二次”之间的关系.

3.会解一元二次不等式中的恒成立问题.(难点)1.通过分式不等式的解法及不等式的恒成立问题的学习,培养数学运算素养.

2.借助一元二次不等式的应用培养数学建模素养.

1.分式不等式的解法

主导思想:化分式不等式为整式不等式

思考1:错误!>0与(x—3)(x+2)>0等价吗?将错误!>0变形为(x—3)(x+2)>0,有什么好处?

[提示] 等价;好处是将不熟悉的分式不等式化归为已经熟悉的一元二次不等式.

2.(1)不等式的解集为R(或恒成立)的条件

不等式ax2+bx+c>0ax2+bx+c<0

a=0b=0,c>0b=0,c<0

a≠0错误!错误!

f(x)≤a恒成立?f(x)max≤a

f(x)≥a恒成立?f(x)min≥a

有什么关系?

[提示] x—1>0在区间[2,3]上恒成立的几何意义是函数y=x—1在区间[2,3]上的图象恒在x轴上方.区间[2,3]内的元素一定是不等式x—1>0的解,反之不一定成立,故区间[2,3]是不等式x—1>0的解集的子集.

3.从实际问题中抽象出一元二次不等式模型的步骤

(1)阅读理解,认真审题,分析题目中有哪些已知量和未知量,找准不等关系.

(2)设出起关键作用的未知量,用不等式表示不等关系(或表示成函数关系).

(3)解不等式(或求函数最值).

(4)回扣实际问题.

思考3:解一元二次不等式应用题的关键是什么?

[提示] 解一元二次不等式应用题的关键在于构造一元二次不等式模型,选择其中起关键作用的未知量为x,用x来表示其他未知量,根据题意,列出不等关系再求解.

1.若集合A={x|—1≤2x+1≤3},B=错误!,则A∩B等于()

A.{x|—1≤x<0} B.{x|0

C.{x|0≤x<2} D.{x|0≤x≤1}

B[∵A={x|—1≤x≤1},B={x|0

2.不等式错误!≥5的解集是________.

错误![原不等式?错误!≥错误!?错误!≤0?错误!解得0

3.已知关于x的不等式x2—ax+2a>0在R上恒成立,则实数a的取值范围是________.

(0,8)[因为x2—ax+2a>0在R上恒成立,

所以Δ=a2—4×2a<0,所以0

4.在如图所示的锐角三角形空地中,欲建一个面积不小于300m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是________.

[10,30] [设矩形高为y,由三角形相似得:错误!=错误!,且x>0,y>0,x<40,y<40,xy≥300,整理得y+x=40,将y=40—x代入xy≥300,整理得x2—40x+300≤0,解得10≤x≤30.]

分式不等式的解法

【例1】解下列不等式:

(1)错误!<0;

(2)错误!≤1.

[解] (1)错误!<0?(x—3)(x+2)<0?—2

∴原不等式的解集为{x|—2

(2)∵错误!≤1,

∴错误!—1≤0,

∴错误!≤0,

即错误!≥0.

此不等式等价于(x—4)错误!≥0且x—错误!≠0,

解得x<错误!或x≥4,

∴原不等式的解集为错误!.

1.对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意分母不为零.

2.对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.

1.解下列不等式:(1)错误!≥0;(2)错误!<3.

[解] (1)根据商的符号法则,不等式错误!≥0可转化成不等式组错误!

解这个不等式组,可得x≤—1或x>3.

即知原不等式的解集为{x|x≤—1或x>3}.

(2)不等式错误!<3可改写为错误!—3<0,

即错误!<0.

可将这个不等式转化成2(x—1)(x+1)<0,

解得—1

所以,原不等式的解集为{x|—1

一元二次不等式的应用

【例2】

每收入100元纳税8元(称作税率为8个百分点,即8%).为了减轻农民负担,制定积极的收购政策.根据市场规律,税率降低x个百分点,收购量能增加2x个百分点.试确定x的范围,使税率调低后,国家此项税收总收入不低于原计划的78%.

思路探究:将文字语言转换成数学语言:“税率降低x个百分点”即调节后税率为(8—x)%;“收购量能增加2x个百分点”,此时总收购量为m(1+2x%)吨,“原计划的78%”即为24

00m×8%×78%.

[解] 设税率调低后“税收总收入”为y元.

y=2400m(1+2x%)·(8—x)%

=—错误!m(x2+42x—400)(0

依题意,得y≥2400m×8%×78%,

即—错误!m(x2+42x—400)≥2400m×8%×78%,

整理,得x2+42x—88≤0,解得—44≤x≤2.

根据x的实际意义,知0

解不等式应用题的步骤

2.某校园内有一块长为800 m,宽为600 m的长方形地面,现要对该地面进行绿化,规划四周种花卉(花卉带的宽度相同),中间种草坪,若要求草坪的面积不小于总面积的一半,求花卉带宽度的范围.[解] 设花卉带的宽度为x m(0

不等式恒成立问题

[探究问题]

1.若函数f(x)=ax2+2x+2对一切x∈R,f(x)>0恒成立,如何求实数a的取值范围?

[提示] 若a=0,显然f(x)>0不能对一切x∈R都成立.所以a≠0,此时只有二次函数f(x)=

ax2+2x+2的图象与直角坐标系中的x轴无交点且抛物线开口向上时,才满足题意,则错误!解得a>错误!.

2.若函数f(x)=x2—ax—3对x∈[—3,—1]上恒有f(x)<0成立,如何求a的范围?

[提示] 要使f(x)<0在[—3,—1]上恒成立,则必使函数f(x)=x2—ax—3在[—3,—1]上的图象在x轴的下方,由f(x)的图象可知,此时a应满足

错误!即错误!

解得a<—2.

故当a∈(—∞,—2)时,有f(x)<0在x∈[—3,—1]时恒成立.

3.若函数y=x2+2(a—2)x+4对任意a∈[—3,1]时,y<0恒成立,如何求x的取值范围?

[提示] 由于本题中已知a的取值范围求x,所以我们可以把函数f(x)转化为关于自变量是a的函数,求参数x的取值问题,则令g(a)=2x·a+x2—4x+4.

要使对任意a∈[—3,1],y<0恒成立,只需满足错误!即错误!

因为x2—2x+4<0的解集是空集,

所以不存在实数x,使函数y=x2+2(a—2)x+4对任意a∈[—3,1],y<0恒成立.

【例3】已知f(x)=x2+ax+3—a,若x∈[—2,2],f(x)≥0恒成立,求a的取值范围.思路探究:对于含参数的函数在闭区间上的函数值恒大于等于零的问题,可以利用函数的图象与性质求解.

[解] 设函数f(x)=x2+ax+3—a在x∈[—2,2]时的最小值为g(a),则

(1)当对称轴x=—错误!<—2,即a>4时,g(a)=f(—2)=7—3a≥0,解得a≤错误!,与a>4矛盾,不符合题意.

(2)当—错误!∈[—2,2],即—4≤a≤4时,g(a)=3—a—错误!≥0,解得—6≤a≤2,此时—4≤a≤2.

(3)当—错误!>2,即a<—4时,g(a)=f(2)=7+a≥0,解得a≥—7,此时—7≤a<—4.综上,a的取值范围为—7≤a≤2.

1.(变结论)本例条件不变,若f(x)≥2恒成立,求a的取值范围.

[解] 若x∈[—2,2],f(x)≥2恒成立可转化为:当x∈[—2,2]时,f(x)min≥2?错误!

或错误!

或错误!

解得a的取值范围为[—5,—2+2错误!].

2.(变条件)将例题中的条件“f(x)=x2+ax+3—a,x∈[—2,2],f(x)≥0恒成立”变为“不等式x2+2x+a2—3>0的解集为R”求a的取值范围.

[解] 法一:∵不等式x2+2x+a2—3>0的解集为R,

∴函数f(x)=x2+2x+a2—3的图象应在x轴上方,

∴Δ=4—4(a2—3)<0,

解得a>2或a<—2.

法二:令f(x)=x2+2x+a2—3,要使x2+2x+a2—3>0的解集为R,则a满足f(x)min =a2—4>0,解得a>2或a<—2.

法三:由x2+2x+a2—3>0,得a2>—x2—2x+3,

即a2>—(x+1)2+4,要使该不等式在R上恒成立,必须使a2大于—(x+1)2+4的最大值,即a2>4,故a>2或a<—2.

1.不等式ax2+bx+c>0的解是全体实数(或恒成立)的条件是:当a=0时,b=0,c>0;

当a≠0时,错误!

2.不等式ax2+bx+c<0的解是全体实数(或恒成立)的条件是:当a=0时,b=0,c<0;

当a≠0时,错误!

3.f(x)≤a恒成立?a≥[f(x)]max,

f(x)≥a恒成立?a≤[f(x)]min.

1.解分式不等式时,一定要等价变形为一边为零的形式,再化归为一元二次不等式(组)求解.当不等式含有分母时,分母不为零.

2.对于某些恒成立问题,分离参数是一种行之有效的方法.这是因为将参数分离后,问题往往会转化为函数问题,从而得以迅速解决.当然,这必须以参数容易分离作为前提.分离参数时,经常要用到以

下简单结论

(1)若f(x)有最大值f(x)max,则a>f(x)恒成立?a>f(x)max;(2)若f(x)有最小值f (x)min,则a

1.判断正误

(1)不等式错误!>1的解集为x<1.()

(2)求解m>f(x)恒成立时,可转化为求解f(x)的最小值,从而求出m的范围.()[答案] (1)×(2)×

[提示] (1)错误!>1?错误!—1>0?错误!<0?{x|0

(2)m>f(x)恒成立转化为m>f(x)max,(2)错.

2.不等式错误!>0的解集为________.

{x|—4—1} [原式可转化为(x+1)(x+2)2(x+3)(x+4)>0,

根据数轴穿根法,解集为—4—1.]

3.设x2—2x+a—8≤0对于任意x∈(1,3)恒成立,则a的取值范围是________.

(—∞,5] [原不等式x2—2x+a—8≤0转化为a≤—x2+2x+8对任意x∈(1,3)恒成立,设f(x)=—x2+2x+8,易知f(x)在[1,3]上的最小值为f(3)=5.

∴a∈(—∞,5].]

4.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏.为了使这批台灯每天能获得400元以上的销售收入,应怎样制定这批台灯的销售价格?

[解] 设每盏台灯售价x元,则x≥15,并且日销售收入为x[30—2(x—15)],由题意知,当x≥15时,有x[30—2(x—15)]>400,解得:15≤x<20.

所以为了使这批台灯每天获得400元以上的销售收入,应当制定这批台灯的销售价格为x∈[15,20).

高中数学必修5基本不等式知识点总结

高中数学必修5基本不等式知识点总结 一.算术平均数与几何平均数 1.算术平均数 设a 、b 是两个正数,则 2 a b +称为正数a 、b 的算术平均数 2.几何平均数 a 、 b 的几何平均数 二基本不等式 1.基本不等式: 若0a >,0b >,则a b +≥,即 2 a b +≥2.基本不等式适用的条件 一正:两个数都是正数 二定:若x y s +=(和为定值),则当x y =时,积xy 取得最大值2 4 s 若xy p =(积为定值),则当x y =时,和x y +取得最小值 三相等:必须有等号成立的条件 注:当题目中没有明显的定值时,要会凑定值 3.常用的基本不等式 (1)()22 2,a b ab a b R +≥∈ (2)()22 ,2 a b ab a b R +≤∈ (3)()20,02a b ab a b +??≤>> ??? (4)()222,22a b a b a b R ++??≥∈ ??? . 三.跟踪训练 1.下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x =+,(0,)2x π∈ C .2 y = D .1y x =+ 2.当02x π <<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值是( )。

A. 1 B. 2 C. 4 D. 3.x >0,当x 取什么值,x +1x 的值最小?最小值是多少? 4.用20cm长的铁丝折成一个面积最大的矩形,应该怎样折? 5.一段长为30m的篱笆围成一个一边靠墙的矩形花园,墙长18m,这个矩形的长,宽各为多少时,花园的面积最大?最大面积是多少? 6.设0,0x y >>且21x y +=,求11x y +的最小值是多少? 7.设矩形ABCD(AB>AD)的周长是24,把?ABC沿AC向?ADC折叠,AB折过去后交CD与点P,设AB=x ,求?ADP的面积最大值及相应x 的值

新人教版高中数学必修5知识点总结(详细)

高中数学必修5知识点总结 第一章 解三角形 1、三角形三角关系:A+B+C=180°;C=180°-(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若 222a b c +<,则90C >. 注:正余弦定理的综合应用:如图所示:隔河看两目标

一元二次方程练习题(难度较高)

元二次方程练习题 1、已知关于X 的方程X 2 —2(k —1)x + k 2 =0有两个实数根 ⑴、求k 的取值范围; ⑵、若x 1 + X 2 = X i " X 2 —1,求 k 的值。 2.、已知关于X 的一元二次方程 亠 2(擀+5 +存+5=0 有两个实数根X 1与X 2 (1)求实数m 的取值范围; ⑵若(X i -1)(x 2 -1)=7,求 m 的值。 2 3.已知A(X 1 , yj , B(X 2 , y 2)是反比例函数y =-一图象上的两点,且x^ x^ -2 X (1)求5 72的值及点A 的坐标; (2)若一4V y < —1,直接写出X 的取值范围. k 2 4.(本小题 8分)已知关于X 的方程x 2-(k+1)x + +1=0的两根是一个矩形的两邻边的长。 4 (2)当矩形的对角线长为亦时,求k 的值。 (1) k 为何值时,方程有两个实数根; x 1、x 2

5已知关于x 的一兀二次方程F-(2上+1)才+4^■- 3- 0 . (1) 求证:方程总有两个不相等的实数根; (2) 当Rt △ ABC 的斜边长□二后,且两直角边i 和C 是方程的两根时,求△ ABC 的周长和面 积. 那么称这个方程有邻近根” (1)判断方程X 2 -(J 3+i)x + 73 =0是否有 邻近根”并说明理由; (2)已知关于x 的一元二次方程mx 2-(m-1)x-1 = 0有 邻近根”求m 的取值范围. 7设关于x 的一元二次方程X 2+2px+1=0有两个实数根,一根大于1,另一根小于1,试求实数P 的范围. 8已知方程X 2 -mx +m + 5=0有两实数根P ,方程x 2-(8 m + 1)x + 15m + 7 = 0有两实数根 Y ,求a 2 PY 的值。6如果一元二次方程ax 2+bx+c=0的两根X 1、x ?均为正数,且满足1< x X 2 <2 (其中 X 1 > X 2),

高中数学必修五-不等式知识点精炼总结

高中数学必修五-不等式知识点精炼总结 4.公式: 3.解不等式 (1)一元一次不等式 3.基 本不等式定理 ? ?? ? ? ??????? ? ?????????????????-≤+?<≥+?>≥+ ??? ????+≤+≥+?? ?? ???????? ?+≤??? ??+≤+≥+≥+2a 1a 0a 2a 1a 0a b ,a (2b a a b )b a (2b a ab 2 b a 2b a ab 2b a ab )b a (2 1b a ab 2b a 2 22222 2 222倒数形式同号)分式形式根式形式整式形 式11 22a b a b --+≤≤≤+???? ? <<>> ≠>)0a (a b x )0a (a b x )0a (b ax 2.不等式的性质:8条性质.

(2)一元二次不等式: +bx+c x 1 x 2 x y O y x O x 1 y x O

一元二次不等式的求 解流程: 一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象. 五解集:根据图象写出不等式的解集. (3)解分式不等式: 高次不等式: (4)解含参数的不等式:(1) (x – 2)(ax – 2)>0 (2)x 2 – (a +a 2)x +a 3>0; (3)2x 2 +ax +2 > 0; 注:解形如ax 2+bx+c>0的不等式时分类讨 论的标准有: 1、讨论a 与0的大小; 2、讨论⊿与0的大小; 3、讨论两根的大小; 二、运用的数学思想: 1、分类讨论的思想; 2、数形结合的思想; 3、等与不等的化归思想 (4)含参不等式恒成立的问题: ??????????≠≤??≤>??>0)x (g 0)x (g )x (f 0) x (g )x (f 0)x (g )x (f 0)x (g ) x (f 0 )())((21>---n a x a x a x Λ

人教新课标版数学高一必修5人教A版 第三章3.2第3课时一元二次不等式解法

第三章 不等式 3.2 一元二次不等式及其解法 第3课时 一元二次不等式解法(习题课) A 级 基础巩固 一、选择题 1.不等式(x -1)x +2≥0的解集是( ) A .{x |x >1} B .{x |x ≥1} C .{x |x ≥1或x =-2} D .{x |x ≤-2或x =1} 解析:(x -1)x +2≥0, 所以???x -1≥0,x +2≥0 或x =-2, ?x ≥1或x =-2,故选C. 答案:C 2.若集合A ={x |ax 2-ax +1<0}=?,则实数a 的值的集合是 ( ) A .{a |00,Δ≤0????a >0,a 2-4a ≤0 ?0≤a ≤4. 综上知,0≤a ≤4.选D. 答案:D

3.已知集合M =???? ??x ???x +3x -1<0,N ={x |x ≤-3},则集合{x |x ≥1}等于( ) A .M ∩N B .M ∪N C .?R(M ∩N ) D .?R(M ∪N ) 解析:因为M ={x |-33 C .12 解析:f (x )=x 2+(a -4)x +4-2a >0,a ∈[-1,1]恒成立?(x -2)a +x 2-4x +4>0,a ∈[-1,1]恒成立.

人教版高中数学必修五教案1

第一章解三角形 1.1正弦定理和余弦定理 1.1.1正弦定理 知识结构梳理 几何法证明 正弦定理的证明 向量法证明 已知两角和任意一边 正弦定理正弦定理 正弦定理的两种应用 已知两边和其中一角的对角 解三角形 知识点1 正弦定理及其证明 1正弦定理: 2.正弦定理的证明: (1)向量法证明 (2)平面几何法证明 3.正弦定理的变形 知识点2 正弦定理的应用 1.利用正弦定理可以解决以下两类有关三角形的问题: (1)已知两角和任意一边,求其他两边和另一角; (2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角。 2.应用正弦定理要注意以下三点: (1) (2) (3) 知识点3 解三角形

1.1.2余弦定理 知识点1 余弦定理 1. 余弦定理的概念 2. 余弦定理的推论 3. 余弦定理能解决的一些问题: 4. 理解应用余弦定理应注意以下四点: (1) (2) (3) (4) 知识点2 余弦定理的的证明 证法1: 证法2: 知识点3 余弦定理的简单应用 利用余弦定理可以解决以下两类解三角的问题: (1)已知三边求三角; (2)已知两边和它们的夹角,可以求第三边,进而求出其他角。 例1(山东高考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,tanC=73. (1) 求C cos ; (2) 若 =2 5 ,且a+b=9,求c.

1.2应用举例 知识点1 有关名词、术语 (1)仰角和俯角: (2)方位角: 知识点2 解三角形应用题的一般思路 (1)读懂题意,理解问题的实际背景,明确已知和所求,准确理解应用题中的有关术语、名称,如仰角、俯角、视角、方位角等,理清量与量之间的关系; (2)根据题意画出示意图,将实际问题抽象成解三角形模型; (3)合理选择正弦定理和余弦定理求解; (4)将三角形的解还原为实际问题,注意实际问题中的单位、结果要求近似等。 1.3实习作业 实习作业的方法步骤 (1)首先要准备皮尺、测角仪器,然后选定测量的现场(或模拟现场),再收集测量数据,最后解决问题,完成实习报告。要注意测量的数据应尽量做到准确,为此可多测量几次,取平均值。要有创新意识,创造性地设计实施方案,用不同的方法收集数据,整理信息。 (2)实习作业中的选取问题,一般有:○1距离问题,如从一个可到达点到一个不可到达点之间的距离,或两个不可到达点之间的距离;②高度问题,如求有关底部不可到达的建筑物的高度问题。一般的解决方法就是运用正弦定理、余弦定理解三角形。

一元二次不等式及其解法知识梳理及典型练习题(含答案)

一元二次不等式及其解法 1.一元一次不等式解法 任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式. 当a>0时,解集为;当a<0时,解集为. 2.一元二次不等式及其解法 (1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式. (2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________. (3)一元二次不等式的解: (1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为 f(x) g(x) 的形式. (2)将分式不等式转化为整式不等式求解,如: f(x) g(x) >0?f(x)g(x)>0; f(x) g(x) <0 ?f(x)g(x)<0; f(x) g(x) ≥0 ? ?? ? ??f(x)g(x)≥0, g(x)≠0; f(x) g(x) ≤0 ? ?? ? ??f(x)g(x)≤0, g(x)≠0. (2014·课标Ⅰ)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( ) A.[-2,-1] B.[-1,2) C.[-1,1] D.[1,2)

解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A . 设f (x )=x 2 +bx +1且f (-1)=f (3),则f (x )>0的解集为( ) A.{x |x ∈R } B.{x |x ≠1,x ∈R } C.{x |x ≥1} D.{x |x ≤1} 解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b , 由f (-1)=f (3),得2-b =10+3b , 解出b =-2,代入原函数,f (x )>0即x 2 -2x +1>0,x 的取值围是x ≠1.故选B. 已知-12<1 x <2,则x 的取值围是( ) A.-22 D.x <-2或x >1 2 解:当x >0时,x >1 2;当x <0时,x <-2. 所以x 的取值围是x <-2或x >1 2,故选D. 不等式1-2x x +1>0的解集是 . 解:不等式1-2x x +1>0等价于(1-2x )(x +1)>0, 也就是? ?? ??x -12(x +1)<0,所以-1<x <12. 故填???? ??x |-1<x <1 2,x ∈R . (2014·武汉调研)若一元二次不等式2kx 2 +kx -38 <0对一切实数x 都成立,则k 的 取值围为________. 解:显然k ≠0.若k >0,则只须(2x 2+x )max <38k ,解得k ∈?;若k <0,则只须38k <(2x 2 +x )min ,解得k ∈(-3,0).故k 的取值围是(-3,0).故填(-3,0). 类型一 一元一次不等式的解法 已知关于x 的不等式(a +b )x +2a -3b <0的解集为? ????-∞,-13,求关于x 的 不等式(a -3b )x +b -2a >0的解集. 解:由(a +b )x <3b -2a 的解集为? ????-∞,-13, 得a +b >0,且3b -2a a +b =-1 3 ,

人教版高中数学必修5不等式练习题及答案

第三章 不等式 一、选择题 1.若a =20.5,b =log π3,c =log πsin 5 2π ,则( ). A .a >b >c B .b >a >c C .c >a >b D .b >c >a 2.设a ,b 是非零实数,且a <b ,则下列不等式成立的是( ). A .a 2<b 2 B .ab 2<a 2b C . 21ab <b a 21 D . a b <b a 3.若对任意实数x ∈R ,不等式|x |≥ax 恒成立,则实数a 的取值范围是( ). A .a <-1 B .|a |≤1 C .|a |<1 D .a ≥1 4.不等式x 3-x ≥0的解集为( ). A .(1,+∞) B .[1,+∞) C .[0,1)∪(1,+∞) D .[-1,0]∪[1,+∞) 5.已知f (x )在R 上是减函数,则满足f (11 -x )>f (1)的实数取值范围是( ). A .(-∞,1) B .(2,+∞) C .(-∞,1)∪(2,+∞) D .(1,2) 6.已知不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为图中( ). A B C D 7.设变量x ,y 满足约束条件?? ? ??y x y x y x 2++- 则目标函数z =5x +y 的最大值是( ). A .2 B .3 C .4 D .5 8.设变量x ,y 满足?? ? ??5 --31+-3-+y x y x y x 设y =kx ,则k 的取值范围是( ). A .[ 21,3 4 ] B .[ 3 4 ,2] C .[ 2 1 ,2] D .[ 2 1 ,+∞) ≥0 ≤1 ≥1 ≥0 ≥1 ≤ 1 (第6题)

人教版高中数学必修5期末测试题

期末测试题 考试时间:90分钟 试卷满分:100分 一、选择题:本大题共14小题,每小题4分,共56分. 在每小题的4个选项中,只有一项是符合题目要求的. 1.在等差数列3,7,11…中,第5项为( ). A .15 B .18 C .19 D .23 2.数列{}n a 中,如果n a =3n (n =1,2,3,…) ,那么这个数列是( ). A .公差为2的等差数列 B .公差为3的等差数列 C .首项为3的等比数列 D .首项为1的等比数列 3.等差数列{a n }中,a 2+a 6=8,a 3+a 4=3,那么它的公差是( ). A .4 B .5 C .6 D .7 4.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若a =3,b =4,∠C =60°, 则c 的值等于( ). A .5 B .13 C .13 D .37 5.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4 B .8 C .15 D .31 6.△ABC 中,如果A a tan =B b tan =C c tan ,那么△ABC 是( ). A .直角三角形 B .等边三角形 C .等腰直角三角形 D .钝角三角形 7.如果a >b >0,t >0,设M =b a ,N =t b t a ++,那么( ). A .M >N B .M <N C .M =N D .M 与N 的大小关系随t 的变化而变化 8.如果{a n }为递增数列,则{a n }的通项公式可以为( ). A .a n =-2n +3 B .a n =-n 2-3n +1 C .a n = n 21 D .a n =1+log 2n

一元二次方程练习题(较难)

一元二次方程练习题 1、已知关于x 的方程0)1(222=+--k x k x 有两个实数根1x 、2x ⑴、求k 的取值范围; ⑵、若12121-?=+x x x x ,求k 的值。 、 2.、已知关于x 的一元二次方程 有两个实数根1x 与2x (1)求实数m 的取值范围; (2)若7)1)(1(21=--x x ,求m 的值。 } 3.已知)(11y x A , ,)(22y x B , 是反比例函数x y 2 -= 图象上的两点,且212-=-x x ,3 21=?x x . (1)求21y y - 的值及点A 的坐标; (2)若-4<y ≤ -1,直接写出x 的取值范围. 【 4.(本小题8分)已知关于x 的方程014)1(2 2=+++-k x k x 的两根是一个矩形的两邻边的长。 (1)k 为何值时,方程有两个实数根; (2)当矩形的对角线长为 时,求k 的值。 ;

5.已知关于x 的一元二次方程 . 】 (1)求证:方程总有两个不相等的实数根; (2)当Rt△ABC 的斜边长 ,且两直角边和是方程的两根时,求△ABC 的周长和面积. ~ 6.如果一元二次方程02=++c bx ax 的两根1x 、2x 均为正数,且满足1< 2 1x x <2(其中1x >2x ),那么称这个方程有“邻近根”. (1)判断方程03)13(2=++-x x 是否有“邻近根”,并说明理由; (2)已知关于x 的一元二次方程01)1(2 =---x m mx 有“邻近根”,求m 的取值范围. 。 7.设关于x 的一元二次方程0122=++px x 有两个实数根,一根大于1,另一根小于1,试求实数p 的范围. ¥ 8.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,商店为适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可

高中数学必修五基本不等式题型(精编)

高中数学必修五基本不等式题型(精编) 变 2.下列结论正确的是 ( ) A .若a b >,则ac bc > B .若a b >,则22a b > C .若a c b c +<+,0c <,则a b > D >a b > 3. 若m =(2a -1)(a +2),n =(a +2)(a -3),则m ,n 的大小关系正确的是 例2、解下列不等式 (1)2230x x --≥ (2)2280x x -++> (3) 405x x ->- (4)405 x x -≥- (5)112x ≥ (6)已知R a ∈,解关于x 的不等式()()01<--x x a .

变、若不等式02<--b ax x 的解集为{} 32<

例5、 1. 积为定值 (1)函数1y x x =+ (x >0)的最小值是 . (2)设2a >,12 p a a =+-的最大值是 . (3)函数1y x x =+ (x <0)的最小值是 . (4) 变、 (1 )2y = 的最小值是 . (2) . 2. 和为定值 (1) ,y=x(4-x) 的最大值是 . (2), 的最大值是 . 例6、“1”的妙用 1. 2.已知正数,x y 满足21x y +=,则 y x 11+的最小值为______

必修5一元二次不等式解法

一元二次不等式及其解法 [考点梳理] 1.解不等式的有关理论 (1)若两个不等式的解集相同,则称它们是; (2)一个不等式变形为另一个不等式时,若两个不等式是同解不等式,这种变形称为不等式的; (3)解不等式变形时应进行同解变形;解不等式的结果,一般用集合表示. 2.一元一次不等式解法 任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax >b (a ≠0)的形式.当a >0时,解集为_______;当a <0时,解集为.若关于x 的不等式ax >b 的解集是R ,则实数a ,b 满足的条件是_______. 3.一元二次不等式及其解法 (1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式. (2)使某个一元二次不等式成立的x 的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________. (3)若一元二次不等式经过同解变形后,化为一元二次不等式ax 2+bx +c >0(或ax 2+bx +c <0)(其中a >0)的形式,其对应的方程ax 2+bx +c =0有两个不相等的实根x 1,x 2,且x 1<x 2(此时Δ=b 2-4ac >0),则可根据“大于号取,小于号取”求解集. (4)一元二次不等式的解: 函数与不等式 Δ>0 Δ=0 Δ<0 二次函数y =ax 2+bx +c (a >0)的图象 一元二次方程ax 2+bx +c =0 (a >0)的根 有两相异实根 x 1,x 2(x 1<x 2) 有两相等实根 x 1=x 2=-b 2a 无实根 ax 2+bx +c >0(a >0)的解集 ① ② R ax 2+bx +c <0(a >0)的解集 {x |x 1<x <x 2} ? ③ (1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为 f (x ) g (x ) 的形式. (2)将分式不等式转化为整式不等式求解,如: f (x ) g (x )>0 ? f (x )g (x )>0;f (x ) g (x ) <0 ? f (x )g (x )<0; f (x ) g (x )≥0 ? ???f (x )g (x )≥0,g (x )≠0;f (x )g (x )≤0 ? ???f (x )g (x )≤0,g (x )≠0.

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总 第一章 解三角形 一、知识点总结 正弦定理: 1.正弦定理:2sin sin sin a b c R A B C === (R 为三角形外接圆的半径). 步骤1. 证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA 得到b b a a s i n s i n = 同理,在△ABC 中, b b c c sin sin = 步骤2. 证明:2sin sin sin a b c R A B C === 如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90° 因为同弧所对的圆周角相等,所以∠D 等于∠C. 所以C R c D sin 2sin == 故2sin sin sin a b c R A B C === 2.正弦定理的一些变式: ()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a b ii A B C R R ==2c R =; ()2sin ,2sin ,2sin iii a R A b R B b R C ===; (4)R C B A c b a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题: (1)已知两角和任意一边,求其他的两边及一角. (2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ?中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算 解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:

一元二次不等式练习题

一元二次不等式及其解法 1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式. 2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程20(0)ax bx c a ++=>判别式ac b 42-=? 0>? 0=? 0a )的图象 ()002>=++a c bx ax 的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。(如果是负,那么在不等式两边都乘以-1,把系数变为正) 2、解对应的一元二次方程。(先看能否因式分解,若不能,再看△,然后求根) 3、求解一元二次不等式。(根据一元二次方程的根及不等式的方向) 不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2 (2-x)3 <0 x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4且x ≠5}. (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图 不等式解集为 {x |x< 1 3 或 1 2 ≤x ≤1或x>2}. 2 -4 -5 2 2 1 1 3 1

高中数学必修5(人教A版)第三章不等式3.3知识点总结含同步练习及答案

描述:例题:高中数学必修5(人教A版)知识点总结含同步练习题及答案 第三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题 一、学习任务 1. 能从实际情景中抽象出二元一次不等式组;了解二元一次不等式组的集合意义,能用平面区 域表示二元一次不等式组. 2. 能从实际情景中抽象出一些简单的二元线性规划问题,并能加以解决. 二、知识清单 平面区域的表示 线性规划 非线性规划 三、知识讲解 1.平面区域的表示 二元一次不等式表示的平面区域 已知直线 :,它把坐标平面分为两部分,每个部分叫做开半平面,开半平面 与 的并集叫做闭半平面.以不等式解 为坐标的所有点构成的集合,叫做不等式表示的 区域或不等式的图象. 对于直线 : 同一侧的所有点 ,代数式 的符号相同,所 以只需在直线某一侧任取一点 代入 ,由 符号即可判断 出 (或)表示的是直线哪一侧的点集.直线 叫做这 两个区域的边界(boundary). 二元一次不等式组表示的平面区域 二元一次不等式组所表示区域的确定方法:①直线定界②由几个不等式组成的不等式组所表示的 平面区域,是各个不等式所表示的平面区域的公共部分. l Ax +By +C =0l (x ,y )l Ax +By +C =0(x ,y )Ax +By +C (,)x 0y 0Ax +By +C A +B +C x 0y 0A +B +C >0x 0y 0<0Ax +By +C =0画出下列二元一次不等式表示的平面区域. (1) ;(2). 解:(1)① 画出直线 ,因为这条直线上的点不满足 ,所以画 成虚线. ② 取原点 ,代入 ,所以原点在不等式 所表示的平 面区域内,不等式表示的区域如图. 3x +2y +6>0y ?3x 3x +2y +6=03x +2y +6>0(0,0)3x +2y +6=6>03x +2y +6>0

高中数学必修五教案-基本不等式

第一课时 3.4基本不等式 2a b +≤(一) 教学要求:通推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 教学重点: 2 a b +≤的证明过程; 教学难点:理解“当且仅当a=b 时取等号”的数学内涵 教学过程: 一、复习准备: 1. 回顾:二元一次不等式(组)与简单的线形规划问题。 2. 提问:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 二、讲授新课: 1. 教学:基本不等式 2a b +≤ ①探究:图形中的不等关系,将图中的“风车”抽象成如图,在 正方形ABCD 中右个全等的直角三角形。设直角三角形的两条直角边长为a,b 那么正方形的 4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。(教师提问→学生思考→师生总结) ②思考:证明一般的,如果)""(2R,,2 2号时取当且仅当那么==≥+∈b a ab b a b a ③基本不等式:如果a>0,b>0,我们用分别代替a 、b ,可得a b +≥, (a>0,b>0)2a b +≤ 2 a b +≤ : 用分析法证明:要证 2a b +≥, 只要证 a+b ≥ (2), 要证(2),只要证 a+b- ≥0(3)要证(3), 只要证( - )2(4), 显然,(4)是成立的。当且仅当a=b 时,(4)中的等号成立。 ⑤练习:已知x 、y 都是正数,求证:(1)y x x y +≥2;(2)(x +y )(x 2+y 2)(x 3+y 3)≥8 x 3y 3.

【数学】3.2《一元二次不等式及其解法》教案(新人教A版必修5)(2课时)

课题: §3.2一元二次不等式及其解法 第1课时 授课类型:新授课 【教学目标】 1.知识与技能:理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力; 2.过程与方法:经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法; 3.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。 【教学重点】 从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法。 【教学难点】 理解二次函数、一元二次方程与一元二次不等式解集的关系。 【教学过程】 1.课题导入 从实际情境中抽象出一元二次不等式模型: 教材P84互联网的收费问题 教师引导学生分析问题、解决问题,最后得到一元二次不等式模型: 2 50x x -< (1) 2.讲授新课 1)一元二次不等式的定义 象250x x -<这样,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式 2)探究一元二次不等式250x x -<的解集 怎样求不等式(1)的解集呢? 探究: (1)二次方程的根与二次函数的零点的关系 容易知道:二次方程的有两个实数根:120,5x x == 二次函数有两个零点:120,5x x == 于是,我们得到:二次方程的根就是二次函数的零点。 (2)观察图象,获得解集 画出二次函数2 5y x x =-的图象,如图,观察函数图象,可知: 当 x<0,或x>5时,函数图象位于x 轴上方,此时,y>0,即2 50x x ->; 当0

人教版高二数学必修五学案(全套)

加油吧,少年,拼一次,无怨无悔! 高二数学必修五全套学案 §1.1.1 正弦定理 学习目标 1. 掌握正弦定理的内容; 2. 掌握正弦定理的证明方法; 3. 会运用正弦定理解斜三角形的两类基本问题. 学习过程 一、课前准备 试验:固定?ABC的边CB及∠B,使边AC绕着顶点C转动. 思考:∠C的大小与它的对边AB的长度之间有怎样的数量关系? 显然,边AB的长度随着其对角∠C的大小的增大而.能否用一个等式把这种关系精确地表示出来? 二、新课导学 ※学习探究 探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直 角三角形中,角与边的等式关系. 如图,在Rt?ABC中,设BC=a, AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,

有 sin a A c =,sin b B c =,又sin 1c C c ==, 从而在直角三角形ABC 中,sin sin sin a b c A B C == . ( 探究2:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况: 当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义, 有CD =sin sin a B b A =,则sin sin a b A B = , 同理可得sin sin c b C B = , 从而sin sin a b A B = sin c C =. 类似可推出,当?ABC 是钝角三角形时,以上关系式仍然成立.请你试试导. 新知:正弦定理 在一个三角形中,各边和它所对角的 的比相等,即 sin sin a b A B = sin c C =. 试试: (1)在ABC ?中,一定成立的等式是( ). A .sin sin a A b B = B .cos cos a A b B =

一元二次不等式练习题含答案

一元二次不等式练习 一、选择题 1.设集合S ={x |-50 B .a ≥13 C .a ≤13 D .02} C .{x |-1≤x ≤2} D .{x |-1≤x <2} 4.若不等式ax 2+bx -2>0的解集为???? ??x |-2a 的解集是{}x |x <-1或x >a ,则( ) A .a ≥1 B .a <-1 C .a >-1 D .a ∈R 6.已知函数f (x )=ax 2+bx +c ,不等式f (x )>0的解集为{}x |-3

二、填空题 8.若不等式2x2-3x+a<0的解集为(m,1),则实数m的值为________. 9.若关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等式ax+b x-2 >0的解集是 ________. 10.若关于x的方程9x+(4+a)3x+4=0有解,则实数a的取值范围是________. 三、解答题 11.解关于x的不等式:ax2-2≥2x-ax(a<0). . 12.设函数f(x)=mx2-mx-1. (1)若对于一切实数x,f(x)<0恒成立,求m的取值范围; (2)若对于x∈[1,3],f(x)<-m+5恒成立,求m的取值范围.

必修五不等式知识点总结

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间

三、均值不等式 1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2 112a b a b ++(当a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方. 五、其他常见不等式形式总结:

相关文档
最新文档