离心泵的设计

离心泵的设计
离心泵的设计

齿轮油泵工艺设计和夹具设计

第一章引言

利用油输水的想法最早出现在列奥纳多达芬奇所作的草图中。1689年,法国物理学家帕潘发明了四叶片叶轮的蜗壳油泵。但更接近于现代油泵的,则是1818年在美国出现的具有径向直叶片、半开式双吸叶轮和蜗壳的所谓马萨诸塞泵。1851~1875年,带有导叶的多级油泵相继被发明,使得发展高扬程油泵成为可能。

尽管早在1754年,瑞士数学家欧拉就提出了叶轮式水力机械的基本方程式,奠定了油泵设计的理论基础,但直到19世纪末,高速电动机的发明使油泵获得理想动力源之后,它的优越性才得以充分发挥。在英国的雷诺和德国的普夫莱德雷尔等许多学者的理论研究和实践的基础上,油泵的效率大大提高,它的性能范围和使用领域也日益扩大,已成为现代应用最广、产量最大的泵。

油泵的应用是很广泛的,在国民经济的许多部门要用到它。在给水系统中几乎是不可缺少的一种设备,如若把自来水管网当作人身的血管系统,那么油泵就是压送血液的心脏。

齿轮油泵是在原有的KS型单级单吸油泵的基础上进行的一种改进,现市面上大多的油泵,在安装叶轮时,是采用的泵轴的锥度进行定位的,这样的定位,对于轴的加工精度要求很高,在一般的小型加工单位很难达到这样的精度等级,所以通过把锥度轴变为直轴的方法来避免因为加工精度不高而导致的安装不便的弊端,同时在叶轮安装时通过加轴套的方法进行定位,这样的改进在提高轴强度的同时,加工也方便了,且其他部件的制作模具的改动也很少,生产成本也没有增加。

第二章型号意义示例及名词解释

2.1 型号名称:KS 125 —100 —200

KS:符合国际标准的用语空调制冷等领域的单级单吸油泵。

125:泵吸入口直径(mm)。

100:泵排出口的直径(mm)。

200:叶轮名义直径(mm).

2.2 名词解释

油泵:通过利用离心力输水的水泵。

单级单吸:单级是指一个叶轮,单吸是指只有一个进水口。

在油泵系列中还有双级双吸、双级单吸、单级双吸油泵,至于叶轮和进水口的数量主要是通过考虑到油泵的功率和性能参数来确定的,其中单级单吸油泵是功率和性能最简单的一种。

第三章齿轮油泵的主要性能参数

3.1 流量Q(m3/h或m3/s)

油泵的流量即为油泵的送液能力,是指单位时间内泵所输送的液体体积。

泵的流量取决于泵的结构尺寸(主要为叶轮的直径与叶片的宽度)和转速等。操作时,泵实际所能输送的液体量还与管路阻力及所需压力有关。

注意:因为泵安装在特定的管路上,所以管路的特性必然要影响流量的大小。

3.2 扬程H(m)

油泵的扬程又称为泵的压头,是指单体重量流体经泵所获得的能量。

泵的扬程大小取决于泵的结构(如叶轮直径的大小,叶片的弯曲情况等、转速。目前对泵的压头尚不能从理论上作出精确的计算,一般用实验方法测定。

泵的扬程可同实验测定,即在泵进口处装一真空表,出口处装一压力表,若不计两表截面上的动能差(即Δu2/2g=0),不计两表截面间的能量损失(即∑f1-2=0),则泵的扬程可用下式计算

注意以下两点:

(1)式中p2为泵出口处压力表的读数(Pa);p1为泵进口处真空表的读数(负表压值,Pa)。

(2) 注意区分油泵的扬程(压头)和升扬高度两个不同的概念。

扬程是指单位重量流体经泵后获得的能量。在一管路系统中两截面间(包括泵)列出柏努利方程式并整理可得

式中H为扬程,而升扬高度仅指Δz一项。

3.3 效率

油泵的效率η---反映泵对液体提供的有效能量与原动机提供给泵的能量(轴功率N)之比。

油泵的能量损失包括以下几项:

各种泄漏、回流,使泵对这部分液体作了无用功,减少了泵的实际输3.3.1 容积损失η

v

与泵结构及液体在泵进、出口处的压强差有关。

送能量。η

v

3.3.2 机械损失η

m

由泵轴与轴承之间、泵轴与填料函之间以及叶轮盖板外表面与液体之

间产生摩擦而引起的能量损失。其值一般为0.96—0.99。

3.3.3 水力损失η

h

叶片间涡流造成的损失、液体入泵时的水力冲击损失、液体与泵壳、

叶片间的摩擦损失之和。水力损失η

h

与泵的结构、流量及液体的性质有关。

油泵的效率反映这三项能量损失的总和,故又称为总效率η,总效率为这三个效率的乘积,即:

η=η

v η

m

η

h

这里η

v 、η

m

与流量Q无关。

由水力损失图示(右图)可知:额定流量

Qs(η

h =0.8--0.9)下h

f

最小,η最高。一般

小型油泵的效率为50%--70%,大型泵可高达

90%。

泵的效率值与泵的类型、大小、结构、制

造精度和输送液体的性质有关。大型泵效率值高些,小型泵效率值低些。

3.4 轴功率N(W或kW)

泵的轴功率即泵轴所需功率,其值可依泵的有效功率Ne和效率η计算,即

泵的效率不是一个独立性能参数,它可以由别的性能参数例如流量、扬程和轴功率按公式计算求得。反之,已知流量、扬程和效率,也可求出轴功率。

第四章齿轮油泵的特性曲线

泵的各个性能参数之间存在着一定的相互依赖变化关系,可以通过对泵进行试验,分别测得和算出参数值,并画成曲线来表示,这些曲线称为泵的特性曲线。每一台泵都有特定的特性曲线,由泵制造厂提供。通常在工厂给出的特性曲线上还标明推荐使用的性能区段,称为该泵的工作范围。

泵的实际工作点由泵的曲线与泵的装置特性曲线的交点来确定。选择和使用泵,应使泵的工作点落在工作范围内,以保证运转经济性和安全。此外,同一台泵输送粘度不同的液体时,其特性曲线也会改变。通常,泵制造厂所给的特性曲线大多是指输送清洁冷水时的特性曲线。对于动力式泵,随着液体粘度增大,扬程和效率降低,轴功率增大,所以工业上有时将粘度大的液体加热使粘性变小,以提高输送效率。

特性曲线指H~Q、N~Q及η~Q(也有含△h~Q或hs~Q的)等的关系曲线。

***特性曲线图见附图(1)***

特性曲线的共同特点:

(1)H~Q:Q↑→H↓

(2)N~Q:Q↑→N↑,Q=0,Nmin;

(3)η~Q:先Q↑→η↑,达ηmin后Q↑→η↓,ηmax点——设计点。

其下的H、Q(即Os)、N是最佳工况参数——标于铭牌上。

选择泵时至少应使其在≥92%ηmax下工作。

第五章齿轮油泵工作原理

离心其实是物体惯性的表现.比如雨伞上的水滴,当雨伞缓慢转动时,水滴会跟随雨伞转动,这是因为雨伞与水滴的摩擦力做为给水滴的向心力使然。

但是如果雨伞转动加快,这个摩擦力不足以使水滴在做圆周运动,那么水滴将脱离雨伞向外缘运动.就象用一根绳子拉着石块做圆周运动,如果速度太快,绳子将会断开,石块将会飞出.这个就是所谓的离心。

油泵就是根据这个原理设计的.高速旋转的叶轮叶片带动水转动,将水甩出,从而达到输送的目的。油泵有好多种.从使用上可以分为民用与工业用泵,从输送介质上可以分为清水泵、杂质泵、耐腐蚀泵等。

单级单吸油泵的主要过流部件有吸水室、叶轮和压水室。吸水室位于叶轮的进水口前面,起到把液体引向叶轮的作用;压水室主要有螺旋形压水室(蜗壳式)、导叶和空间导叶三种形式;叶轮是泵的最重要的工作元件,是过流部件的心脏,叶轮由盖板和中间的叶片组成。

单级单吸油泵工作前,先将泵内充满液体,然后启动油泵,叶轮快速转动,叶轮的叶片驱使液体转动,液体转动时依靠惯性向叶轮外缘流去,同时叶轮从吸入室吸进液体,在这一过程中,叶轮中的液体绕流叶片,在绕流运动中液体作用一升力于叶片,反过来叶片以一个与此升力大小相等、方向相反的力作用于液体,这个力对液体做功,使液体得到能量而流出叶轮,这时液体的动能与压能均增大。

启动后,叶轮由轴带动高速转动,叶片间的液体也必须随着转动。在离心力的作用下,液体从叶轮中心被抛向外缘并获得能量,以高速离开叶轮外缘进入蜗形泵壳。在蜗壳中,液体由于流道的逐渐扩大而减速,又将部分动能转变为静压能,最后以较高的压力流入排出管道,送至需要场所。液体由叶轮中心流向外缘时,在叶轮中心形成了一定的真空,由于贮槽液面上方的压力大于泵入口处的压力,液体便被连续压入叶轮中。可见,只要叶轮不断地转动,液体便会不断地被吸入和排出。

***工作原理图见附图(2)***

第六章齿轮油泵的主要部件

单级单吸油泵的基本构造是由七部分组成的,分别是:叶轮,泵体(即泵体和泵盖),泵轴,轴承,悬架,机械密封,填料函。

两个主要部分构成:一是包括叶轮和泵轴的旋转部件;二是由泵壳、填料函和轴承组成的静止部件。

6.1 叶轮

6.1.1叶轮是油泵的核心部分,它转速高出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。

叶轮的作用是将原动机的机械能直接传给液体,以增加液体的静压能和动能(主要增加静压能)。

叶轮室是泵的流部件的核心,泵通过叶轮对液体的作功,使其能量增加。叶轮按液体流出的方向分为三类:

(1)径流式叶轮(离心式叶轮)液体是沿着与轴线垂直的方向流出叶轮。

(2)斜流式叶轮(混流式叶轮)液体是沿着轴线倾斜的方向流出叶轮。

(3)轴流式叶轮液体流动的方向与轴线平行的。

叶轮按吸入的方式分为二类:

(1)单吸叶轮(即叶轮从一侧吸入液体)。

(2)双吸叶轮(即叶轮从两侧吸入液体)。

叶轮按盖板形式分为三类:

(1)封闭式叶轮。

(2)敞开式叶轮。

(3)半开式叶轮。

其中封闭式叶轮应用很广泛,前述的单吸叶轮双吸叶轮均属于这种形式。

***叶轮图见附图(3)***

叶轮加工的工艺步骤:

6.1.2固定叶轮的螺母的加工工艺步骤:

6.2 泵壳(即泵体和泵盖)

6.2.1泵体作用是将叶轮封闭在一定的空间,以便由叶轮的作用吸入和压出液体。泵壳多做成蜗壳形,故又称蜗壳。由于流道截面积逐渐扩大,故从叶轮四周甩出的高速液体逐渐降低流速,使部分动能有效地转换为静压能。泵壳不仅汇集由叶轮甩出的液体,同时又是一个能量转换装置。

***泵体图见附图(4)***

泵体加工的工艺步骤:

6.2.2 泵盖的加工工艺步骤:

双吸离心泵毕业设计-开题报告

双吸离心泵毕业设计-开题报告

毕业设计(论文)开题报告 学生姓名:陈乐东学号:20121698 学院:机电工程学院 专业:热能动力工程 设计(论文)题目:800S26型双吸泵的设计 指导教师:杨辉 2016年2月15日

开题报告填写要求 1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效; 2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇; 4.有关年月日等日期,按照如“2002年4月26日”方式填写。

1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写1500字左右的文献综述(包括研究进展,选题依据、目的、意义) 文献综述 800S26型双吸泵的型号意义是,入口直径为800mm,设计点扬程为26m的单极双吸水平中开式离心清水泵。要想了解此泵,首先要了解双吸离心泵。 双吸离心泵是从叶轮两面进水的双吸离心泵,因泵盖和泵体是采用水平接缝进行装配的,又称为水平中开式离心泵。与单级单吸离心泵相比,效率高、流量大、扬程较高。但体积大,比较笨重,一般用于固定作业。适用于丘陵、高原中等面积的灌区,也适用于工厂、矿山、城市给排水等方面。 S型单极双吸离心泵也被称为为中开式离心泵,供抽送清水或物理化学性质类似于水的其他液体之用。S系列单级双吸离心泵主要适用于自来水厂、空调循环用水、建筑供水、灌溉、排水泵站、电站、工业供水系统、消防系统、船舶工业等输送液体的场合。 S型中开泵与其他同类型泵相比较具有寿命长、效率高、结构合理,运行成本低、安装及维修方便等特点,是消防、空调、化工、水处理及其他行业的理想用泵。泵体设计压力为1.6MPa和2.0MPa。泵体的进出口法兰均位于下泵体,这样可以在不拆卸系统管路的情况下取出转子,维修方便。部分泵体采用双流道设计,以减少径向力,从而延长机封和轴承的寿命。叶轮叶轮的水力设计采用了最先进的 CFD 技术,因此提高了S泵的水力效率。对叶轮进行动平衡, 确保S泵的运行平稳。轴轴径较粗,轴承间距较短,从而减小了轴的挠度,延长了机械密封和轴承的寿命。轴套可以采用多种不同的材料,以防止轴被腐蚀和磨损,轴套可更换。磨损环泵体与叶轮间采用可更换的磨损环,防止泵体和叶轮的磨损,更换方便,维修费用低,同时保证运行间隙和较高的工作效率。既可以使用填料也可以使用机械密封,可以在不拆卸泵盖的情况下更换密封装置。轴承独特的轴承体设计使轴承可采用油脂或稀油润滑,轴承的设计寿命10万小时以上,也可使用双列推力轴承和封闭轴承。材料根据用户的实际需要,S型中开泵的材料可为铜、铸铁、球铁、316不锈钢、416;7锈钢、双向钢、哈氏合金、蒙耐合金,钛合金及20号合金等材料。 我国水泵技术的现状 1、我国泵产品图样的来源可分为联合设计、引进、自行开发等几种,引进的这些

离 心 泵 安 装 手 册

离 心 泵 安 装 手 册 荏原UCW 型号泵 1. 拆箱与储存程序 本安装手册是关于离心泵长期储存程序的描述。当泵需要长期储存时要求购货商小心、仔细 采取保护措施。 由于不正确或不适当储存或不遵照此手册引起的装置故障或损毁,制造商将不承担责任。 2. 装箱状态下的长期储存 2-1. 储存地点的选择 (1)装箱的泵必须储存在户内。 集装箱上特别注意要有防湿标志的标记。 (2)选择通风、干燥、温差不大的场所。 (3)为确保良好的通风,不要直接将箱子置于地上。如图2.1所示,在箱子下面垫上枕木,并且箱子 离窗户或其它通风口最少30cm 。 特别注意防水。 (4)为确保良好的通风,存储时设备周围需留出最少为30cm 的空间。 (5)多种设备叠放时,将轻的箱子放在重的上面。如图2.2所示。 在箱子之间放置枕木或板条。 叠放储藏时,上面的箱子重心应与下面被压箱子的支柱竖直。 超过3吨重的箱子禁止叠放在其它箱子上。 枕木 地面 图2.1 板条 枕木

(6)如果泵置于无墙的建筑物内,应使木箱到屋顶的距离至少为2m,并且在木箱外面包裹油毡用以防水防尘。 图 2.3 最少 2 m 油毡 2-2. 储存检查 当箱子抵达储存场所时,须按以下几点检查其是否异常: (1)储存之前 核对箱内货物是否与装箱单所示一致。 (a)检查货物是否受潮。 (b)检查货物的损伤,核对聚乙烯膜是否放入箱中。 (c)仔细检查“防湿蓬”。 (2)储存期间 (a)每个月检查一次,检查箱内的货物和保护用聚乙烯膜是否已经物理损坏或受潮,在每次大雨后都需进行检查。 (b)储存室每月至少两次在晴天的时候通风,如果有防湿蓬,须将其移走。 2-3.长期储存期间的检测与防锈措施 如果储存时间(包括运输时间)长达6个月,必须进行以下检查,并且还包括前述的检查。 在储存前重新装箱,只有在安装前才能拆箱,如果安装后不准备让泵运行要求读者参考第3段。 (1)每六个月拆箱并实施以下措施: 在彻底处理后转动转子,通过吸入管和吐出管将防锈油喷洒在泵体上重新装箱并盖上聚乙烯膜,不适当的处理方法可能会导致湿气或粉尘的侵蚀。因此,正确操作非常重要。 (2)在机组上包上一层薄膜以防粉尘,有一点须特别注意,联轴器、地脚螺栓、法兰等须涂上一层 防锈油MIL-P-19(NOX-RUST.366) 或其它同类产品。 2-4. 储存末期检查 在储存末期检查以下几点: (1)表面(粉尘、凹陷或其它损伤) (2)移走机组外面的保护薄膜,用清洗剂将暴露于空气中的轴和联轴器的粉尘清洗掉,检查其是否 已被腐蚀。这项检查之后,在损伤的地方涂上一层防锈油MIL-P-19(NOX-RUST.366) 或其它同类产品。 (3)如果在泵内发现粉尘或尘土,用真空吸尘器将其彻底清除,使用压缩空气时,确保空气干燥。

水泵及水泵站课程设计心得【模版】

水泵及水泵站课程设计 1基本设计资料 1.1 基本情况 本区地势较高,历年旱情比较严重,粮食产量低。根据规划,拟从附近河流扬水灌溉该区的10万亩农田,使之达到高产稳产的目的。 机电扬水灌区内主要作物有小麦、玉米、谷子和棉花等。灌区缺少灌溉制度,现参考附近老灌区的灌水经验,拟定出本灌区灌溉保证率为75%的灌溉制度。其设计灌水率如表1所示。 1.2地质及水文地质资料 根据可能选择的站址,布置6个钻孔。由地质柱状图明显的看出,3米以内表土主要是粘壤土,经土工试验,得到的有关物理指标为粘壤土的内摩擦角φ=35°,承载力为220kN/m2。 站址附近的地下水位多年平均在202.2m左右(系黄海高程)。 1.3气象资料 夏季多年平均旬最高气温34℃,春、秋季干旱少雨,年平均降雨量为524mm,降雨年内分配极不均匀,每年7、8、9月的降雨量占全年降雨量的80%以上。年平均无霜期为200天左右,多年平均最低气温为-8℃,最大冻土深度为o.44m。平均年地面温度为15℃,平均年日照时数为2600.4h。累积年平均辐射总量为527.4l kJ/cm,平均日照百分率为59 %。热量和积温都比较丰富,能满足一年两熟作物生长的需要。 1.4 水源 灌区南侧有一河流,是规划灌区的水源,其水量充沛。灌溉保证率为75 %时的河流月平均水位如表2所示。 达2l6.5m,夏季多年旬平均最高水温为20℃。 1.5其它 根据规划,为保证扬水后自流灌溉,出水池水位均不应低于234m。站址附近有8 kV高压电力线通过,已经有关部门批准,可供泵站使用。该地区劳动力充足,交通方便。除水泥、金属材料以及泵站建设中所需的特殊材料外,当地可提供砖、石、砂、瓦、木材等建筑用材。 根据机电设备的运行特性,每天按20h运行设计。

水泵课程设计

水泵课程设计 综合说明 1.1 兴建缘由 该排涝泵站的兴建是为了满足某市城市防洪需要。 1.2 工程位置、规模、作用 工程位置:该排涝泵站拟建在距该县城区以东15公里的新沟河上。 3工程规模:由泵站设计流量Q=8.0m/s,由《泵站设计规范GBT50265-97》可知该排涝泵站属于中型泵站。 工程作用:满足城市的防洪需求 1.3 基本资料 地面以下土质为中粉质壤土,夹铁锰质结核,贯入击数为24击,地基土容3重19.4 kN/ m,含水率26.8%,空隙比为0.833,允许承载力220kPa,内摩擦角 -723?,凝聚力19 kPa,渗透系数2.66×10,地下水埋深7.3m。 1.3.2水位特征值 泵站上下游水位资料见表1-1。 表1-1 泵站上下游水位资料 下游水位(m) 上游水位(m) 设计运行水最低运行水最高运行水设计运行水最低运行水最高运行水 位位位位位位 26.4 25.8 30.6 31.4 31.1 31.8 1.3.3工程布置和主要建筑物

泵站工程的主要建筑物有进水建筑物、站房和出水建筑物。进水建筑物包括前池、进水池和进水管道等。出水建筑物包括出水管路和出水池等。泵站站房内安装水泵、动力机和辅助设备以及泵站附属设备。 1.3.4其他 该站建筑物等级为?级,站址北首附近有10kV电源,水陆交通方便。已知该泵站上下游引水河道断面设计参数如表1-2所示。其中上下游河道堤顶高程自行设计,规定下游地面高程低于引水河道堤顶0.5m。 表1-2 泵站上下游引水河道断面设计参数 1 下游引水河道上游引水河道河底高程河底宽度堤顶宽河底高程河底宽度堤顶宽边坡边坡 (m) (m) (m) (m) (m) (m) 24.1 7 1:2.5 6 27.7 7 1:2.5 6 第2章设计参数确定 2.1 设计流量的确定 3 泵站设计流量Q=8.0m/s。 2.2 水位分析及特征扬程的确定 考虑此泵站的主要功能为排涝,则本设计的水位组合如表2-1所示。表2-1 排涝泵站水位组合 下游(m) 上游(m) 设计运行水位 26.4 设计运行水位 31.4 最低运行水位 25.8 最低运行水位 31.1 最高运行水位 30.6 最高运行水位 31.8 泵站各特征扬程为: 设计扬程:H=H, H=31.4 ,26.4=5m; 设设上设下 最大扬程:H=H,H=31.8,25.8 =6m; 高最高上最低下

水泵课设

第一章基本资料的分析与整理 第一节地形资料 图1:黄墩湖水系示意图 1.水文资料 (一)水位 内河设计水位:18.2m; 内河最低水位:17.0m; 内河最高水位:19.5m; 外河设计水位:21.5m; 外河最高水位:22.5m; 外河最低水位:19.8m。 (二)流量 设计流量为4.0m3/s。 第二节其他资料 (一)能源资料 泵站用电由徐州或宿迁电网供给,从徐州或宿迁电网接电,通过升压站变电后,进行泵站供电。 (二)交通、建材资料

本地交通方便,陆路可通汽车,水路可通船舶;建筑材料可以保证供应,砂石料更可就地取材。 第二章 工程规划 第一节 站址确定 一、选址原则 1.泵站站址应根据流域或城建建设总体规划,泵站工程规模、运行特点和综合利用要求,考虑地形、地质、水源或容泄区、电源、枢纽布置、对外交通、占地、拆迁、施工、管理等因素,并考虑扩建的可能性,经技术经济比较确定; 2.站址最好选在地形开阔、岸坡适宜,有利于工程布置的地点;宜选择在岩土坚实、抗渗性能良好的天然地基上,不应设在大的或活动性的断裂构造带及其他不良地质地段,如果当地不具备较好的地质条件,同时考虑到本次设计的泵站规模较小,可以在建站处进行地基处理; 3.站址应尽量选在交通方便和靠近电源的地方以方便机械设备、建筑材料的运输和减少输电线路的长度; 4.选址时还要特别注意进水水流的平稳和流速分布的均匀以及避免发生流向改变或形成回流、漩涡等现象。 根据这些原则可确定黄墩湖泵站的站址,其具体位置见图5:黄墩湖排涝泵站平面布置图。 第二节 泵站设计流量和扬程 一、泵站设计流量Q 设 本次设计根据设计书要求,取34.0/Q m s 设。 二、水泵的设计扬程H 设 1.根据所给的水文、地形等资料,可以确定内、外河最低水位、设计水位及最高水位分别为: 内河设计水位:18.2m ; 内河最低水位:17.0m ; 内河最高水位:19.5m ; 外河设计水位:21.5m ;

离心泵设计论文解析

XXXXX 学院 毕业设计(论文) 题目 学生姓名 年级专业 学号 指导教师 起止日期 20 年月日

XXXXX学院 毕业设计 (论文)任务书机电工程系班级()姓名学号

北海职业学院 学生毕业设计(论文)成绩鉴定表

综述离心泵的完好标准 泵与风机、压缩机是流体机械的重要组成部分,一直是制冷与空调专业人士学习的基本科目。泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加。泵主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。 离心泵就是根据设计高速旋转的叶轮叶片带动水转动,将水甩出,从而达到输送的目的. 离心泵有好多种.从使用上可以分为民用与工业用泵,从输送介质上可以分为清水泵、杂质泵、耐腐蚀泵等。 一离心泵的分类方式类型特点一览表

二、离心泵基本构造 离心泵的基本构造是由六部分组成的,分别是:叶轮,泵体,泵轴,轴承,密封环,填料函。 1、叶轮是离心泵的核心部分,它转速高输出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。 2、泵体也称泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。 3、泵轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。 4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。太多油要沿泵轴渗出并且漂*,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理! 5、密封环又称减漏环。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封环,密封的间隙保持在0.25~1.10mm之间为宜。 6、填料函主要由填料,水封环,填料筒,填料压盖,水封管组成。填料函的作用主要是为了封闭泵壳与泵轴之间的空隙,不让泵内的水流不流到外面来也不让外面的空气进入到泵内。始终保持水泵内的真空!当泵轴与填料摩擦产生热量就要靠水封管住水到水封圈内使填料冷却!保持水泵的正常运行。所以在水泵的运行巡回检查过程中对填料函的检查是特别要注意!在运行600个小时左右就要对填料进行更换。 三、离心泵的工作原理 离心泵的工作原理是:离心泵所以能把水送出去是由于离心力的作用。水泵在工作前,泵体和进水管必须罐满水行成真空状态,当叶轮快速转动时,叶片促使水很快旋转,旋转着的水在离心力的作用下从叶轮中飞去,泵内的水被抛出后,叶轮的中心部分形成真空区域。水在大气压力(或水压)的作用下通过管网压到了进水管内。这样循环不已,就可以实现连续抽水。在此值得一提的是:离心泵启动前一定要向泵壳内充满水以后,方可启动,否则将造成泵体发热,震动,出水量减少,对水泵造成损坏(简称“气蚀”)造成设备事故! 四、离心泵的主要性能参数 (一)流量Q(m3/h或m3/s)离心泵的流量即为离心泵的送液能力,是指单位时间内泵所输送的流体体积。 (二)扬程H(m) 扬程又称为泵的压头,是指单体重量流体经泵所获得的能量。 (三)转速叶轮每分钟的旋转周数叫转数,单位为r/min . (四)效率η泵的效率为有效功率和轴功率之比。效率的表达式为:η=P e/P*100% (五)轴功率N (W或kW)泵的轴功率即泵轴所需功率,其值可依泵的有效功率Ne和效率η 计算,即 五、离心泵的性能曲线

离心泵课程设计

离心泵课程设计 课程设计说明书 题目: 流体机械及工程课程设计______ 院(部):能源与动力工程学院_____ 专业班级: __________ 流体1002班________ 学号:3100201079 ___________ 学生姓名: _____________ 刘成强___________ 指导教师: _____________ 赵斌娟___________

离心泵课程设计 起止日期:2014.1.72012.1.17

流体机械及工程课程设计设计任务书 设计依 据: 流量Q:30m3/h 扬程H:18.5m 转 速n: 2900 r/min 效率:68% 任务要求: 1. 用速度系数法进行离心泵叶轮的水力设计。 2. 绘制叶轮的木模图和零件图,压出室水力设 计图。 3. 写课程设计说明书 4. 完成Auto CAD 出图

目录 第一章结构方案的确定 (5) 1.1确定比转数 (3) 1.2确定泵进、出口直径 (3) 1.3泵进出口流速 (3) 1.4确定效率和功率 (4) 1.5电动机的选择轴径的确定 (4) 第二章叶轮的水力设计 (5) 2.1叶轮进口直径D0的确定 (5) 2.2叶轮出口直径D2的确定 (6) 2.3确定叶片出口宽度b2 (6) 2.4确定叶片出口安放角 2 6 2.5确定叶片数Z (6) 2.6精算叶轮外径D (6) 2.7叶轮出口速度 (8) 2.8确定叶片入口处绝对速度M和圆周速度U1 (9) 第三章画叶轮木模图与零件图 (9) 3.1叶轮的轴面投影图 (9) 3.2绘制中间流线 (11) 3.3流线分点(作图分点法) (11) 3.4确定进口角1 (13) 3.5作方格网 (14) 3.6绘制木模图 (15) 第四章压水室的设计 (17) 4.1 基圆直径D3的确定 (17) 4.2压水室的进口宽度 (17) 4.3 隔舌安放角0 (17) 4.4隔舌的螺旋角0 (17) 4.5断面面积F (17) 4.6当量扩散角 (18) 4.7各断面形状的确定 (18) 4.8压出室的绘制 (20) 1. 各断面平面图 (20) 2. 蜗室平面图画 (20) 3. 扩散管截线图 (21)

离心泵设计

离心泵设计 目录 1 概述 (2) 2 工艺说明 (2) 2.1 工艺简介 (2) 2.2 物料性质 (2) 2.3 工作温度 (2) 2.4 工作压力 (2) 2.5 尺寸参数 (2) 2.6 其他说明................................. 错误!未定义书签。 3 机械设计....................................... 错误!未定义书签。 3.1 材料选择................................. 错误!未定义书签。 3.2 结构设计 (3) 3.3 设计参数 (3) 4 零部件的选型 (4) 4.1 法兰的选型 (4) 4.2 泵体的选型 (4) 4.3 叶轮的选型 (4) 4.4 其他零部件的选型 (4) 5 总结 (4) 参考文献 (5)

1 概述 本门课程是关于化工机械与设备的基础课程,完成一项相关设计是课程学习的主要目的,也是学好课程的重要方法。 目的是将论运用于实践,提高综合运用知识的能力。 本课程设计的目标是提高查阅资料、理论计算、工程制图、数据处理的能力。 完成本设计需要先学好理论知识再参考各类标准按照规范完成作品。 本设计的主要内容有确定工艺参数、确定材料与结构、完成相关计算以及零部件选型。 2 工艺说明 2.1 工艺简介 即合成氨的生产工艺,工艺大致流程如下: 造气→半水煤气脱硫→压缩机1,2工段→变换→变换气脱硫→压缩机3段→脱硫→压缩机4,5工段→铜洗→压缩机6段→氨合成→产品NH 3 本设备主要在其中起输送液体作用。 2.2 物料性质 水在70℃下的物性数据: 热导率:λ 2 = 0.624 W/(m?℃) 粘度:μ 2 = 0.742×10-3 Pa?s 2.3 工作温度 热流体进口温度70℃。 2.4 工作压力 根据工艺要求,设备允许压强不大于2×105Pa。 2.5 尺寸参数 外型尺寸 L: 352 H:320 a:80 h:180

离心泵的设计

齿轮油泵工艺设计和夹具设计 第一章引言 利用油输水的想法最早出现在列奥纳多达芬奇所作的草图中。1689年,法国物理学家帕潘发明了四叶片叶轮的蜗壳油泵。但更接近于现代油泵的,则是1818年在美国出现的具有径向直叶片、半开式双吸叶轮和蜗壳的所谓马萨诸塞泵。1851~1875年,带有导叶的多级油泵相继被发明,使得发展高扬程油泵成为可能。 尽管早在1754年,瑞士数学家欧拉就提出了叶轮式水力机械的基本方程式,奠定了油泵设计的理论基础,但直到19世纪末,高速电动机的发明使油泵获得理想动力源之后,它的优越性才得以充分发挥。在英国的雷诺和德国的普夫莱德雷尔等许多学者的理论研究和实践的基础上,油泵的效率大大提高,它的性能范围和使用领域也日益扩大,已成为现代应用最广、产量最大的泵。 油泵的应用是很广泛的,在国民经济的许多部门要用到它。在给水系统中几乎是不可缺少的一种设备,如若把自来水管网当作人身的血管系统,那么油泵就是压送血液的心脏。 齿轮油泵是在原有的KS型单级单吸油泵的基础上进行的一种改进,现市面上大多的油泵,在安装叶轮时,是采用的泵轴的锥度进行定位的,这样的定位,对于轴的加工精度要求很高,在一般的小型加工单位很难达到这样的精度等级,所以通过把锥度轴变为直轴的方法来避免因为加工精度不高而导致的安装不便的弊端,同时在叶轮安装时通过加轴套的方法进行定位,这样的改进在提高轴强度的同时,加工也方便了,且其他部件的制作模具的改动也很少,生产成本也没有增加。

第二章型号意义示例及名词解释 2.1 型号名称:KS 125 —100 —200 KS:符合国际标准的用语空调制冷等领域的单级单吸油泵。 125:泵吸入口直径(mm)。 100:泵排出口的直径(mm)。 200:叶轮名义直径(mm). 2.2 名词解释 油泵:通过利用离心力输水的水泵。 单级单吸:单级是指一个叶轮,单吸是指只有一个进水口。 在油泵系列中还有双级双吸、双级单吸、单级双吸油泵,至于叶轮和进水口的数量主要是通过考虑到油泵的功率和性能参数来确定的,其中单级单吸油泵是功率和性能最简单的一种。

水泵设计说明书

水泵设计说明书 学校: 学号: 姓名:

一设计流量及设计扬程的计算 1.1设计流量 最大日供水量Q1=26000+221×10=28210m3/d 给水泵站拟采用分级供水,0~4点钟,每小时供水量为2.5%,4~24点钟,每小时供水量为4.5%。 Q min=28210×2.5%=705.25 m3/h=195.9L/s Q max=28210×4.5%=1269.45 m3/h=352.6L/s 1.2设计扬程 ①扬程H ST的计算 H ST=3.8+25.5+16+2=47.3m ②输水干管中的水头损失∑h Σh=23.5+2=25.5m 可得总的扬程: H=Σh+H ST=72.8m 二方案的确定 在型谱图上,扬程在47.3m和72.8m,流量在195.9L/s和352.6L/s范围内选择合适的泵。 2.1性能参数及方案选择 做水泵的性能曲线及总和曲线 做装置需能曲线:管路的水头损失Σh=SQ2,其中S为管路系统的当量摩阻,当用水量变化时近似为常数,当Σh已知时可得S=Σh/Q2=25.5/352.62 m(s2/l2)=0.0002m(s2/l2)

由此可作管路特性曲线:H=47.3+0.0002 Q2 由图可知选用两台10sh—6的方案可行,比较合适。然后进行消防检测 2.2消防时的核算 消防时的流量:Q=110%×352.6×1.05=407.3L/s 消防时的扬程:取安全水头:2m H=2+4.3+23.5+25.5+2+16=73.3m 两台12sh—6A水泵全部开机,水泵在扬程H=73.3m处工作时出水量Q=407.3L/s<430L/s,可增设消防泵。

水泵课程设计

1泵站设计参数的确定 1.1水泵站流量确定 泵站工作时设计流量 ()3 ¢?80000*1.1/24*1.3/4766.7m 1324.1/S h Q L == 1.2水泵站的扬程确定 /m c o H Z H h h H 21432122 1.572.5=++∑+∑+=+++++=(泵站内) (安全) 水泵的涉及扬程; Zc ——地形高差; Ho ——自由水压; h ——总水头损失; h ——泵站内水头损失; 2选择泵站 可用管路特性曲线和型谱图进行选泵。管路特性曲线和水泵特性曲线交点为水泵工况点。 球馆路特性曲线失球管路特性曲线方程中的参数Hst 和S 因为 st H 4213257=++= ()()()2 5 2 2 /h .h /122/4766.7 6.27S m h Q E -=+=+=-∑∑泵站内 故管路特性曲线方程为 2 57 6.27*H E Q =+- 根据水泵扬程,与流量查手册选取型号为35075S 的单机双吸式水泵。然后,根据手册中所给出的水泵扬程曲线和效率曲线以及功率曲线。运用“抛物线”拟合法,在高效段内相距较远的曲线上选取两点A (900,80)和B (1400,68)运用两点法求出公式2Q x x H H S =-中的未知数x H ,x S 。由此求出x H 为88.42;x S 为1.04E-5。 及水泵扬程曲线方程为 H=88.42-1.04E-5*Q^2 运用“横加法”求出2台水泵,3台水泵,4台水泵的曲线。 在坐标纸上画出图形如下:

G : (4980.80,72.20) J : (4203.75,76.86)I : (3113.29,77.15) H : (1683.19,81.00)F : (4208.26,67.84)E : (3114.99,63.05)D : (1688.01,58.77) 然后根据此列表如下: 水量变化范围 运行水泵台数 水泵扬程 管路所需扬程 扬程浪费 水泵效率 4972~4206 4.00 76.89~72.25 67.86~72.25 9.03~0 85~83 4206~3116 3.00 77.10~67.86 63.03~67.86 14.07~0 83.5~83 3116~1688 2.00 80.94~63.03 58.77~63.03 22.17~0 83~74 该型号的水泵的性能参数如下: 型号为350S75 Q=972~1440,H=80~65;85%η=;n=1480r/min ;电机功率N=355Kw ;Hs=3.5m ;质量为1200Kg 。 4台水泵并联工作时其工况点G 点,G 点对应的流量和扬程为4998M^3/H,72.2M 。 满足4766M^3/H 和71.5M 再选一台同型号的350S75型水泵备用,泵站共有5台350S75型水泵,4用一备。 确定电机 根据水泵样本提供的配套可选电机,选定Y400-39-4(6KV )电机,其参数如下: 额定电压V=6000Kv ;N=355Kw ;n=1480r/min ;W=

水泵设计说明书

目录 摘要 绪论 1.矿水的来源及性质 2.新形势下对排水系统的要求 3.设计的指导思想 4.有关的方针政策 5. 设计原始资料的估似 第一章.设计必备的原始资料和设计任务 1.1设计原始资料 1.2设计任务 第二章.初选排水系统 第三章.设备选型 3.1定水泵参数、选择水泵型号和台数 3.2选择水管 3.3水泵装置的工况 3.4筛选方案、校验计算 第四章. 确定泵房、水仓和管子道尺寸并绘制泵房布置图4.1估算泵房尺寸 4.2经济计算 4.3确定泵房、水仓和管子道尺寸 第五章.论述水泵注水方式及底阀泄漏与防治 5.1水泵的注水方式 5.2水泵底阀产生泄漏的原因 5.3消除和防止水锤破坏作用的措施 5.4水泵底阀堵塞的防治 参考文献

矿井主排水设备选型设计 摘要: 认真分析题目要求,根据矿井安全生产的政策,法规,应用历史设计经验,结合煤炭行业发展现状,确定以严格遵守《矿井安全规程》和《煤矿工业设计规范》所规定的有关条款为依据,以安全可靠为根本,以投入少、运行费用低为原则的设计指导思想。 根据设计任务书所提供资料,拟估矿井条件,确定矿井对排水系统的具体要求:通过多种渠道掌握给排水行业最新信息,初步选择排水方案并对设备选型,进行相关计算,确定设备工况;校验水泵的稳定工作条件、经济运行条件,排除不合理方案。对所剩方案进行经济核算,以吨水百米费用和初期投入为指标筛选出最终方案。 选择系统配套附件,根据各设备外形尺寸及安装要求,并考虑其运行条件,最终确定泵房及管路的布置图。 最后对水泵的充水方式及底阀泄漏与防治进行专题论述。

绪论 ⑴对排水系统的要求 在矿井建设和生产过程中,随时都有各种来源的水涌入矿井。只有极少数例外的矿井是干燥。将涌入矿井的水排出,只是和矿水斗争的一方面,另一方面是采取有效措施,减少涌入矿井的水量。特别是防止突然涌水的袭击,对保证矿井生产有重要意义。 矿井排水设备不仅要排除各时期涌入矿井的矿水,而且在遭到突然涌水的袭击有可能淹没矿井的情况下,还要抢险排水。在恢复被淹没的矿井时,首要的工作就是排水。排水设备始终伴随着矿井建设和生产而工作,直至矿井寿命截止才完成它的使命。因此,排水设备是煤矿建设和生产中不可缺少的,它对保证矿井正常生产起着非常重要的作用。 为了使排水设备能在安全、可靠和经济的状况下工作,必须做好确定排水方案,选择排水设备,进行布置设计,施工试运转,直到正常运行各环节的工作。 ⑵矿水 在矿井建设和生产过程中,涌入矿井的水流称为矿水。 ①矿水来源 矿井水的来源分为地面水和地下水,地面水是江、河、湖、溪、池塘的存水及雨水、融雪和山洪等,如果有巨大裂缝与井下沟通时,就会造成水灾。地下水包括含水层水、断层水和老空水。地下水在开采过程中不断涌出。 ②涌水量 矿水可以用单位时间涌入矿井内的体积来度量,称为绝对涌水量。一般用“q”表示,其单位为m3/h。涌水量的大小与该矿区的地理位置、地形、水文地质及气候等条件有关;同一矿井在一年四季中涌水量也是不同的,如春季融雪或雨季里涌水量大些,其他季节则变化不大,因此前者称最大涌水量,而后者称为正常涌水量。 为了对比不同矿井涌水量的大小,通常还采用同一时期内,相对于单位煤炭产量(以吨计)的涌水量作为比较参数,称它为相对涌水量,或称为含水系数。若以K表示相对涌水量,则

长江大学毕业设计开题报告(离心泵的设计)

长江大学 毕业设计开题报告 题目名称离心泵设计及基于solidworks 三维设计院(系)机械工程学院 专业班级装备11001 学生姓名胡强 指导教师门朝威 辅导教师门朝威 开题报告日期2014.04.10

离心泵设计及基于solidworks 三维设计 学生:胡强机械工程学院 指导老师:门朝威机械工程学院 一、题目来源: 生产实际 二、研究目的和意义: 泵是一种通用的工业机械,特别是离心泵,可以说在是在工业生产中不可缺少的一部分,而在工业生产中,研究泵往往是为了更加高效的液体介质输送水力和结构,能适合更多(甚至是苛刻)的工况条件,泵的生命周期成本更低,环 三、阅读的主要参考文献及资料名称 [1] 关醒凡.现代泵技术手册[M].北京:宇航出版社,1995 [2] 濮良贵,纪名刚.机械设计[M].西安:高等教育出版社,2006 [3] 柴立平.泵选用手册[M].北京:机械工业出版社,2009 [4] 侯作富,胡述龙,张新红.材料力学[M].武汉:武汉理工大学出版社,2012 [5] 张锋,古乐.机械设计课程设计手册[M]. 北京:高等教育出版社,2002 [6] 李世煌,吴桐林.水泵设计教程[M]. 北京:机械工业出版社,1987 [7] 于慧力,冯新敏.轴系零部件设计与实用数据查询[M]. 北京.机械工业出版社, 2010 [8] 王朝晖.泵与风机[M].北京.中国石化出版社,2007 [9] 钱锡俊,陈弘.泵与压缩机[M]. 山东.石油大学出版社,1994 [10] 李云,姜培正.过程流体机械[M]. 北京.化学工业出版社,2008 [11] 汪云英,张湘亚.泵与压缩机[M]. 北京:石油工业出版社,1985 [12] 袁恩熙.工程流体力学[M].北京:石油工业出版社,2012 [13] 查森.叶片泵原理及水力设计[M]. 北京:机械工业出版社,1987 [14] Mario ?avar.Improving centrifugal pump efficiency by impeller trimming .[D].Desalination 249(2009)654-659

(完整版)离心泵——叶轮设计说明书

主要设计参数 本设计给定的设计参数为: 流量Q=3 3 500.01389m m h s =,扬程H=32m ,功率P=15Kw ,转速 1450min r n =。 确定比转速s n 根据比转速公式 3 4 3.65145046.3632s n ?=== 叶轮主要几何参数的计算和确定 1. 轴径与轮毂直径的初步计算 1.1. 泵轴传递的扭矩 3 15 9.5510955098.81450 t P M N m n =?=?=? 其中P ——电机功率。 1.2泵的最小轴径 对于35号调质钢,取[]52 35010N m τ=?,则最小轴径 0.02424d m mm ==== 根据结构及工艺要求,初步确定叶轮安装处的轴径为40B d mm =,而轮毂直径为(1.2~1.4)h B d d =,取51h d mm = 2. 叶轮进口直径 j D 的初步计算 取叶轮进口断面当量直径系数0 4.5K =,则 0 4.50.09696D K m mm ==== 对于开式单级泵,096j D D mm == 3. 叶片进口直径1D 的初步计算

由于泵的比转速为46.36,比较小,故1k 应取较大值。不妨取10.85k =,则 110.859682j D k D mm ==?= 4. 叶片出口直径2D 的初步计算 2 20.5 0.5 246.369.359.3513.73 10010013.730.292292s D D n K D K m mm --???? ==?= ? ? ?? ?? ==== 5. 叶片进口宽度1b 的初步计算 ()00222 111 4/4//v v m j j h v Q Q V V D D d Q b DV ηηππηπ===-= 所以 220111 1 44j j v V D D b V D K D = = 其中,10v V K V =,不妨取0.8v K =,则 22 118535.42440.863.75j v D b mm K D ===?? 6. 叶片出口宽度2b 的初步计算 225/6 5/6 246.360.640.640.3373 1001000.33730.00727.2s b b n K b K m mm ?? ?? ==?= ? ? ?? ??==== 7. 叶片出口角2β的确定 取2β=15° 8. 叶片数Z 的计算与选择 取叶片数Z=8,叶片进口角0155.8β=。 9. 计算叶片包角? ()0 000360/360360 2.491128 t Z Z φλ??====

水泵课设

目录 第一章绪论——————————————————————————2 第二章水泵基础的初步选择———————————————————3 2.1 泵站设计参数的确定—————————————————————3 2.2 型号选择——————————————————————————3第三章消防校核———————————————————————5第四章泵房形式的选择————————————————————5第五章水泵机组的基础设计———————————————————6 5.1 设计要求——————————————————————————7 5.2 布置及选择配件———————————————————————7 5.3 管径计算——————————————————————————7 第六章水泵吸水管和压水管的计算————————————————9 6.1 设计要求——————————————————————————9 6.2 布置及选择配件———————————————————————9 6.3 管径计算——————————————————————————9第七章吸水井的设计—————————————————————10 第八章管道配件的选取————————————————————11 第九章泵房各工艺标高的确定水损校核——————————————12 9.1 泵轴安装高度———————————————————————12 9.2 其它各个工艺标高的计算——————————————————12 9.3 泵房形式的选择——————————————————————12 9.4 泵房高度的计算——————————————————————13第十章水泵机组的布置及泵房尺寸的确定—————————————14 10.1 机组布置—————————————————————————14 10.2 泵房尺寸—————————————————————————14第十一章水损校核——————————————————14 11.1 吸水管路水头损失—————————————————————15 11.2 压水管路水头损失—————————————————————15第十二章复核水泵和电机———————————————15 第十三章附属设备的选择———————————————16 13.1 起重设备—————————————————————————16 13.2 引水设备—————————————————————————16 13.3 排水设备—————————————————————————16 13.4 通风设备—————————————————————————17 13.5 计量设备—————————————————————————17 参考文献———————————————————————————17 设计心得———————————————————————————17 附录

水泵课程设计

水泵与水泵站课程设计 任务书 福建工程学院建筑环境与设备系 给水排水教研室 2009年11月

《泵与泵站》课程设计任务书 一、教学目的与基本要求 泵和泵站课程设计,是给水排水工程专业的重要的集中性实践性环节之一。该课程的任务是使学生在掌握水泵及水泵站基本理论知识的基础上,进一步掌握给、排水泵站的工艺设计步骤和设计方法,使学生所获得的专业理论知识加以系统化,整体化,以便于巩固和扩大所学的专业知识。通过本课程设计还可以训练学生工程设计的基本技能,提高其设计计算能力、编写说明书的能力和工程图纸的表达能力。 基本要求: 1.培养学生严谨的科学态度,严肃认真的学习和工作作风,树立正确的设计思想,形成科学的研究方法。 2.培养学生独立工作的能力,包括收集设计资料、综合分析问题、理论计算、数据处理、工程制图、文字表达等能力。 3.通过课程设计,使学生得到较为全面的工程设计的初步训练。 4.掌握给、排水泵站设计的一般程序,学会灵活地处理复杂的工程问题。 5.学会编写“设计说明书”和“设计计算书”,按规范和标准绘制有关图纸。 6.本设计原则上是由学生在指导教师的指导下,独立完成。 二、设计内容 1.确定泵站的设计流量和扬程,拟定选泵方案。 2.选择水泵和电动机(包括水泵型号、电动机型号、工作和备用泵台数等); 3.确定水泵机组的基础尺寸; 4.吸水管路和压水管路的设计计算(包括进出水管内的流速、管径、阀门等,压水管长度计算至泵房外1m); 5.确定泵站内的附属设备,引水设备(如真空泵)、起重设备、排水泵等; 6.泵站的平面布置; 7.泵站的高程布置(包括水泵的基础、进出水管、泵轴、泵站地面等的标高); 8.根据起重设备的型号,确定泵房的建筑高度; 9.绘制泵站的平面图1张,剖面图1张,并列出主要设备表及材料表。 10.整理设计计算书1份,设计说明书1份。 最终的设计成果: (1)设计计算书和设计说明书各1份

泵的设计方法及发展趋势

泵的设计方法及其发展趋势 刘华志1,王春波2(1.焦作工学院机械工程系,河南焦作454000;2.河南省武陟县电业局,河南武陟454350) 摘要: 叙述了泵的各种设计方法,认为计算机辅助设计将成为泵设计行业的主流发展方向,借助于计算机辅助设计可以大大的缩短设计周期,并可按规定目标对泵进行快速优化,从而大大减少试验的次数,降低生产成本. 关 键 词:泵;相似设计法;速度系数法;CAD中图分类号:TH164 文献标识码:A 文章编号:1007 7332(2003)03 0214 031 传统设计方法在传统的泵设计方法中,设计人员把许多半经验公式应用于设计中,对于泵主要技术参数的确定主要有相似设计法和速度系数法. 1.1 相似设计法相似设计法是根据流体力学中的相似原理,选用性能好且与所设计泵相似的模型泵,对其过流部分的全部尺寸进行放大或者缩小而进行设计.其对模型泵的要求是: 与设计泵具有相等或者相似的比转速; 效率、抗气蚀性能、特性曲线均符合要求;!技术资料齐全;?所设计的泵和模型泵雷诺数之比Re/Rem=1.0~1.5.这样设计出的泵一般具有和模型泵相等或者相近的性能.对于实型泵的参数用注脚#p?表示,对模型泵的参数用注脚#m?表示.有上式可以推出两台相似泵的尺寸关系(2)相似设计法简单、方便, 但也存在以下几个方面的问题[2]: (1)关于性能和效率问题.在进行相似设计时,所有的换算都是在模型泵和实型泵效率相等的条件下进行的.实际上,相似放大或缩小时泵的效率并不完全相等,如果实型泵比模型泵大,则实型泵的实际扬程和效率比计算值略大一些,实型泵和模型泵尺寸相差的越大,扬程和效率计算值和实际值差的越大.因此在选择模型泵时,应尽可能选择尺寸差的不大的泵. (2)关于结构形式的影响.如果模型泵和实型泵结构形式相差太大,则实型泵不再具备模型泵性能的优点.例如:锅炉给水泵功率大、轴径粗,如果用一般单级悬臂泵模型相似设计给水泵,则效果不好.因此,应尽量选用同一种结构形式的模型进行相似设计. (3)关于修改模型问题.设计泵时,如果找不到与比转数ns完全相等的模型,则可以找比转数相接近的模型来进行修改,通常用修改模型泵流量的办法来改变模型泵的比转数,使之等于要设计的比转数,这就带来一定的误差. (4)关于气蚀相似问题.根据相似原理,相似泵的气蚀转数C应该相等.但实践表明,2台泵要做到入口部分完全相似是非常困难的,所以,实型泵的气蚀性能参数最后应该以实际试验值为准.(5)关于修正实型泵入口部分.在进行设计时,要保证模型泵和实型泵完全相似,特别是入口部分的完全相似是很困难的,因为泵的结构形式、叶片厚度、相对粗糙度、雷诺数和液体粘度都影响叶轮入口的相似.一般情况下,小泵放大,轮毂直径过小,而大泵缩小,轮毂直径过大,所以要根据具体情况修正实型泵入口部分.总之,用相似设计法虽然很方便,但它只能保持在原有水力模型的水平.因此,在采用相似设计法时,必须结合模型试验,不断分析和改进原有模型不足之处,逐步提高产品水平. 1.2 速度系数法速度系数法就是设计时按ns选取速度系数,作为设计叶轮尺寸的依据.速度系数法实质也是相似设计,只是它是建立在一系列而不是1台相似泵的基础上,它是利用大量的经验公式、统计系数计算各个过流部件的尺寸.对于缺少合适的模型泵的情况,一般都广泛地采用速度系数法来确定泵各部件的尺寸.速度系数法总的经验公式和半经验公式很多,对于同一个变量的确定往往有不同的经验公式可以利用,因而不是生搬硬套就能设计出优秀的水力设计,而往往要融入设计人员的经验和智慧.和相似设计法一样的是,用速度系数法进行产品设计时,虽然设计计算比较方便,但是产品只能保持原有的水平.因此,在采用速度系数法设计产品时,应结合模型试验,不断创造新的优秀的模型,并充分应用这些模型的速度系

相关文档
最新文档