编码器的零位

编码器的零位
编码器的零位

编码器的零位

编码器(英文名称:coder;encoder )

定义:一种按照给定的代码产生信息表达形式的器件。

旋转编码器是一种光电式旋转测量装置,它将被测的角位移直接转换成数字信号(高速脉冲信号),主要应用于机床、电梯、伺服电机配套、纺织机械、包装机械、印刷机械、起重机械等行业。

按照工作原理编码器可分为增量式和绝对式两类。

A增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小;

B绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。

二者区别:

增量型的位置从零位标记开始计算的脉冲数量确定的;

而绝对型的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。

A图(结构原理)

(1)注:光敏元件一般由极管组成。

(2)

B图(与变频器接线)

C图(增量型)

D图(绝对型)

我们通常用的是增量型编码器,可将旋转编码器的输出脉冲信号直接输入给PLC,利用PLC 的高速计数器对其脉冲信号进行计数,以获得测量结果。

这里所讲的确定零位指的是增量型。

1、编码器轴转动找零,编码器在安装时,旋转转轴对应零位,一般增量值与单圈绝对值会用这种方法,而轴套型的编码器也用这种方法。缺点,零点不太好找,精度较低。

2、与上面方法相当,只是编码器外壳旋转找零,这主要是对于一些紧凑型安装的同步法兰(也有叫伺服法兰)外壳所用。

3、通电移动安装机械对零,通电将安装的机械移动到对应的编码器零位对应位置安装。

4、偏置计算,机械和编码器都不需要找零,根据编码器读数与实际位置的偏差计算,获得偏置量,以后编码器读数后减去这个偏置量。例如编码器的读数为100,而实际位置是90,计算下在实际位置0位时,编码器的读数应该是10,而这个“10”就是偏置量,以后编码器读到的数,减去这个偏置量就是位置值。可重复多次,修正偏置量。对于增量值编码器,是

读取原始机械零位到第一个Z点的读数,作为偏置量。精度较高的编码器,或者量程较大的绝对值多圈编码器,多用这种方法。

5、智能化外部置零,有些带智能化功能的编码器,可提供外部置位功能,例如通过编码器附带的按键,或外带的软件设置功能置零。

6、需要说明的是,绝对值编码器的零位再往下就是编码的循环最大值,无论是单圈绝对值,还是多圈绝对值,如果置零位,那么再往下(下滑、移动,惯性过冲等),就可能数据一下子跳到最大了,对于高位数的绝对值多圈,可能数据会溢出原来的设定范围。另外,绝对值编码器还有一个旋转方向的问题,置零后,如果方向不对,是从0跳到最大,然后由大变小的。一些进口的编码器尽管带有外部置零功能,但建议还是不要用此功能。(我们碰到很多用进口绝对值编码器会碰到这样的困惑,不要就迷信进口的)。

7、最好的置位方法,预置一个非零位(留下下滑、过冲的余量)并预置旋转方向+偏置计算的方法。另外一种方法是置“中”,偏置量就是中点值,置位线与电源正相触后,编码器输出的就是中点位置,这样的行程是+/-半全程,在这样的行程范围内,无论旋转方向,确保不会经过零点跳变。

1、按码盘的刻孔方式不同分类:

(1)增量型:就是每转过单位的角度就发出一个脉冲信号(也有发正余弦信号,然后对其进行细分,斩波出频率更高的脉冲),通常为A相、B相、Z相输出,A相、B相为相互延迟

1/4周期的脉冲输出,根据延迟关系可以区别正反转,而且通过取A相、B相的上升和下降沿可以进行2或4倍频;Z相为单圈脉冲,即每圈发出一个脉冲。

(2)绝对值型:就是对应一圈,每个基准的角度发出一个唯一与该角度对应二进制的数值,通过外部记圈器件可以进行多个位置的记录和测量。

编码器-----------PLC

A-----------------X0

B-----------------X1

Z------------------X2

+24V------------+24V

COM------------ -24V-----------COM[1]

注:可以是DC-5V或DC-24V。

常见故障:

1、编码器本身故障:是指编码器本身元器件出现故障,导致其不能产生和输出正确的波形。这种情况下需更换编码器或维修其内部器件。

2、编码器连接电缆故障:这种故障出现的几率最高,维修中经常遇到,应是优先考虑的因素。通常为编码器电缆断路、短路或接触不良,这时需更换电缆或接头。还应特别注意是否是由于电缆固定不紧,造成松动引起开焊或断路,这时需卡紧电缆。

3、编码器+5V电源下降:是指+5V电源过低,通常不能低于4.75V,造成过低的原因是供电电源故障或电源传送电缆阻值偏大而引起损耗,这时需检修电源或更换电缆。

4、编码器安装松动:这种故障会影响位置控制精度,造成停止和移动中位置偏差量超差,甚至刚一开机即产生伺服系统过载报警,请特别注意。

一般地,旋转编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。

故障现象:1、旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而

且一会儿变频器保护,显示“PG断开”(PG可以理解为变频器检测电路模块)联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。编码器pg接线与参数矢量变频器与编码器pg之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理。

总结:

1它主要是以高精度计量光栅为检测元件,通过光电转换;

2将轴的机械角位移信息以LED光源为介质通过光栅码盘转换成相应的数字代码,用它可以实现角位移、角速度、和角加速度及其他物理量的精确测量;

3.工作原理(如下图)

1:光源(LED)2:透镜(Lens)3:指示光栅4:码盘(Disk)5:接受器(ASIC)

点光源(LED)发出的光经过透镜(Lens)的折射变成准直的平行光,通过光栅和码盘,照射到光电接受器上,如果码盘发生转动,光线就会把码盘转动的情况反应到接受器上。接受器会把这些光信号转换成电信号输出,从而以电脉冲的形式反应出物理的运动量(位移、角速度、加速度)。

K热电偶冷端温度补偿实验

实验一K型热电偶冷端温度补偿实验 一、实验目的: 了解热电偶冷端温度补偿器的原理与补偿方法。 二、需用器件与单元: 主机箱中的智能调节器单元、电压表、转速调节0~24V电源、15V直流稳压电源; 温度源、Pt100热电阻(温度控制传感器)、K热电偶(温度特性实验传感器)、温度传感器实验模板;压力传感器实验模板(作为直流mV信号发生器)、冷端温度补偿器、补偿器专用+5V直流稳压电源。 三、基本原理: 本实验为K分度热电偶。冷端补偿器外形为一个小方盒,有4个引线端子,4、3接+5V专用电源,2、1输出补偿热电势信号;它的内部是一个不平衡电桥,如图33-1所示。这个直流电桥称冷端温度补偿器,电桥在0oC时达到平衡(亦有20oC平衡)。当热电偶温度升高时(>0oC)热电偶回路电势Uab下降,由于补偿器中,PN呈负温度系数,其正向压降随温度升高而下降,促使2端电位上升,使Vi不变达到补偿目的。 图1 热电偶冷端温度补偿器原理 四、实验步骤: 1、温度传感器实验模板放大器调零:按图2示意接线。将主机箱上的电压表量程切换开关打到2V档,检查接线无误后合上主机箱电源开关,调节温度传感器实验模板中的Rw2(增益电位器)顺时针转到底,再调节Rw3(调零电位器)使主机箱的电压表显示为0V(零位调好后Rw3电位器旋钮位置不要改动)。关闭主机箱电源。 图2 温度传感器实验模板放大器调零接线示意图

2、调节温度传感器实验模板放大器的增益A为100倍:利用压力传感器实验模板的零位偏移电压作为温度实验模板放大器的输入信号来确定温度实验模板放大器的增益A。按图2示意接线,检查接线无误后合上主机箱电源开关,调节压力传感器实验模板上的Rw2(调零电位器),使压力传感器实验模板中的放大器输出电压为0.01V(用主机箱电压表测量);再将0.01V电压输入到温度传感器实验模板的放大器中,再调节温度传感器实验模板中的增益电位器Rw2(小心:不要误碰调零电位器Rw3),使温度传感器实验模板放大器的输出电压为1.000V(增益调好后Rw2电位器旋钮不要改动)。关闭电源。 图3 调节温度实验模板放大器增益A接线示意图 3、将主机箱上的转速调节旋钮(0~24V)顺时针旋转到底(24V);将调节控制对象开关拨到Rt.Vi位置。将冷端补偿器的专用电源插头插到主机箱侧面的交流220V插座上。按图33-4示意接线,检查接线无误后合上主机箱电源开关,再合上调节器电源开关和温度源电源开关,将温度源控制在60oC,待电压表显示上升到平衡点时记录数据。再按表1中温度值设置温度源的温度并将放大器的相应输出值填入表中: 温度设定方法,按住▲键约三秒,仪表进入“SP”给定值(实验值)设置,此时可按上述方法按↓、↑、←三键设定实验值,使SV窗显示值与AL-1(上限报警)值一致(如100 oC)。 图4 K热电偶冷端温度补偿实验接线示意图

KUKA机器人 轴零位校准方法 EMT

KUKA机器人6轴零位校准方法(EMT) Lyq 20150108 一.手动状态T1,在轴坐标系,将机器人1到6轴分别移动到其原始零点附近,目测每个轴上的两个零位观察缺口要对准。 二.将EMT安装在轴1的校零槽位内,将另一端连接到机器人底座上的X32插口 三.操作KUKA控制手柄,依次选择如下菜单进入零位校准模式 1. 配置,用户组

2. 选专家,密码kuka 3. 选择准备运行,零点校正,电子测量器 4. 标准,检查零点校正 5. 选择机器人轴1,将下方报警栏信息清空,左手按住手柄背面的驱动按键,等驱动 图标“I”变成绿色,按”检查“按钮对应的软键,报警栏会出现准备就绪字样。此时轴1已经开始微动,可以观察到EMT上的两个绿色指示灯会由两个全亮变为只有1个亮,伴随着咔嗒一声,校准结束。这时如果校准后零位与现零位偏差很小,报警栏直接会显示”轴1零位校准结束“,如果校准后零位与现零位偏差超限,则会

在右侧信息栏显示校准前后的数据差别,包括编码器码值差和角度差,需要选择” 存储”后才能完成零位校准。 6. 将EMT移动到轴2的校零槽位内,另一端依然连接到机器人底座上的X32插口; 在右侧信息栏选择机器人轴2,按照上述步骤对轴2进行零位校准 7. 依次对余下的4个轴进行零位校准 四.都较准完毕后,手动模式慢速运行“维修”程序,将机器人打到维修位,观察行程和位置是否正常,若正常,之后再运行主程序,手动慢速回HOME点,观察行程和位置是否正常,若正常,则进行过料测试。 五.因本次进行零位校准的是KR150割带机器人,那么在解包系统电控柜操作屏上选择“启用KR150机器人”,在机器人KCP上选择main程序,自动,启动,等待自动对烟包割带,看是否正常。若一切正常,则本次零位校准结束。

LC-MS自校准方法

Bruker Esquire HCT PLUS 大容量离子阱LC/MSn 液相色谱-质谱联用仪自校准方法 本规程参照国际法制计量组织(OIML)技术工作导则第二部分:OIML国际建设和国际文件起草与表述规程、JJG1002-1998国家计量检定规程编写和GB3100-93国际单位制及其应用编写的。 1.范围 本规程适用于新安装、使用中和调试后的液相色谱-质谱联用仪的自校准方法。 2.计量单位 本规程中的计量单位一律采用国家颁布的法定计量单位及其符号。 3.计量要求 质谱:质量范围50~3000m/z 质量稳定性:标样的离子,在仪器工作4h后,其漂移应在±0.5u以下 分辨本领:R=m/Δm 灵敏度:MS灵敏度:把溶在溶剂中的标样,用注射器进样,标样的目标离子信噪比大于10:1;MS/MS灵敏度:标样的目标二级离子信噪比大于10:1 液相色谱:可按要求做各种配比的流动相变化 流动相:甲醇、乙腈、水均应为色谱级,使用前应需过滤、脱气。 5.技术要求 5.1 外观要求 仪器应有下列标志:仪器名称、型号、制造厂名、生产日期及仪器编号等;仪器主机、色谱仪、计算机、检测器、真空部件等各部件必须完好无损;仪器各参数选择和按键形状、标记应清晰无误,并易于操作,仪器启动后应无异常噪声在。 5.2 安装条件 仪器及所有紧固良好,连接线应连接良好,活动部件应平稳适宜,气路系统应可靠密封,不泄漏,仪器的各旋钮及功能应能正常工作。 5.3 环境 室内环境:应清洁无尘,无易燃、易爆、腐蚀性气体,室内排风良好,不应放置与测定无关的其它杂物。温度:10~30℃,相对湿度:≤85% 电源:电压220±10v 频率50HZ

ABB机器人零点校准方法

FlexPendant 的操作方式 1、操作 FlexPendant 时,通常左手持设备,右手在触摸屏上操作。具体手持方法如图12所示 图12 2、手持操作器主要部件如图13所示 图 13 3、控制柜上的主要按钮和端口如图14所示 图 14 4、控制柜上钥匙开关的位置于意义如图15所示 图15 注:手动全速模式不建议使用 校准机器人零点位置的具体方法 注:需要点击操作的地方都做了浅红色标记 第一步: 选择手动操纵(参看图1,首先把钥匙开关打到手动位置) 方法: 1> 点击 ABB 2> 点击手动操纵

图 1第二步:选择动作模式(参看图2 和图3) 方法: 1> 点击动作模式 2> 点击轴1 - 3 或者轴4 - 6 3> 点击确定 第三步:选择工具坐标(参看图2 和图4) 方法: 1> 点击工具坐标 2> 点击 tGripper 3> 点击确定 图2图3第四步:选择移动速度(参看图2 和图5) 方法: 1> 点击增量 2> 点击中或者小 3> 点击确定 图 4 图 5 第五步:手动移动机器人各轴到机械零点位置(参看图2) 方法: 此时图2上操纵杆方向处显示操纵杆移动方向于轴的对应关系

注意: 如果先前选择轴1 - 3 则 1> 操纵杆上下移动为2轴动作 2> 操纵杆左右移动为1轴动作 3> 操纵杆顺/逆时针旋转为3轴动作 如果先前选择轴4 - 6 则 1> 操纵杆上下移动为5轴动作 2> 操纵杆左右移动为4轴动作 3> 操纵杆顺/逆时针旋转为6轴动作 1> 左手持示教器,四指握住示教器使能开关(在示教器下方黑色胶皮里面) 2> 右手向唯一一个方向轻轻移动操纵杆,把各轴按顺序移动到各自机械绝对零点 图 6 A(六轴机器人) 图 6B(四轴机器人) 移动顺序,依次为6轴→5轴→4轴→3轴→2轴→1轴,否则会使4,5,6轴升高以致于看不到零点位置。 机械零点位置如图6所示,当所有六个轴全部对准机械零点位置以后,机器人的姿态正如图6所示。 第六步:更新转数计数器(参看图1,此时可以示教器使能开关) 方法: 1> 点击 ABB 2> 点击校准 3> 点击 ROB_1 (参看图7)

1型,2型,3型运放

1.1型运放就是个积分器,用这种运放来补偿环路,动态特性做不到很好,但很容易调稳定~ 在要求不高的场合,用这种运放可以满足稳压的要求。 由于存在零频极点,静态误差也可以得到改善~ 2.2型运放,比较类似PID调节,但不是PID。 含有一个零频极点,可以提高低频增益,改善静态误差~ 含有一个低频零点,可以提高相位余量,增大阻尼,降低超调和调节时间~ 含有一个高频极点,提高降噪性能~ 3.这就是I型运放了~ 穿越频率f=1/2pi*R1*C1,直流增益无穷大,考虑到运放的饱和特性,直流增益应该是运放的直流增益~ 4.这个就是二型运放,含有两个极点和一个零点。 第一个极点,是零频极点 fp1=1/(2pi*R1*C1)~ 第二个极点,是R2和(C1、C2串联)形成的极点,一般来说C1要远大于C2,C1和C2串联后可以等效成C2,所以这个极点就是Fp2=1/(2pi*R2*C2) 一个零点,由R2和C1组成,也就是F=1/(2pi*R2*C1)~ 5.三型运放了,具体来说,含有三个极点和二个零点~ 含有两个零点~ 第一个零点Fz1由R1、R3串联后和C3组成,也就是Fz1=1/[2pi*(R1+R3)*C3],实际中R1远大于R3,这个零点可以等效成Fz1=1/(2pi*R1*C3),这是第一个零点~ 第二个零点由R2和C1组成,也就是Fz2=1/(2pi*R2*C1)~ 这两个零点的作用,不言而喻,用来抵消LC滤波器的双重极点。

常规用法有两种,这两个零点重合,和LC双重极点频率重合,这种计算方法很简单,但也有缺点~ 另外一种用法,就是这两个零点,在LC滤波器的双重极点左右侧形成双架,一个在前,一个在后,计算会复杂些~ 在这里提一个问题,这两个零点,哪个在前比较好些呢? 6. 常规用法在轻载状态下,突然加电的情况下,容易发生震荡,当然这是理论上的,实际上还没遇到过~ 7.3型运放,又叫双极点双零点补偿器(不包括零频极点) 第一个极点,也就是零频极点: 由R1和(C1、C2并联)形成,极点也就是Fp1=1/[2pi*R1*(C1+C2)],C1、C2并联可以等效C1(在C1远大于C2的情况下),所以这个零频极点可以等效成: Fp1=1/(2pi*R1*C1)~ 这个零频极点非常重要,它可以提高系统的低频增益,从而改善静态误差。R1和C1的乘积越小,改善效果越好~ 另外两个极点是这样~ 第一个极点由R3和C3组成,也就是Fp1=1/(2pi*R3*C3)~ 第二个极点由R2和C1、C2串联组成,一般来说C1远大于C2,C1和C2串连的效果可以等效成C2,这个极点可以表示成Fp2=1/(2pi*R2*C2)~ 这两个极点的位置,相对容易确定~ 第一个极点用来抵消滤波电容的ESR零点~ 第二个极点用来放在高频,一般来说放在希望的开环截至频率处,或者放在1/2开关频率处均可以,这个极点主要用来提高系统的抗噪声性能,位置比较灵活。 它对相位的影响,是在它所在频率的1/10就开始影响~

万能增量式光电编码器控制的伺服电机零位调整技巧

万能增量式光电编码器控制的伺服 电机零位调整技巧 下述述两种调法完全取决于你的手工能力和熟练程度,一般来说,每款伺服电机都有自己专门的编码器自动调零软件.不外传仅是出于商业羸利和技术保密.如果你是一家正规的维修店,请不要采用以下方法,应通过正常渠道购买相应的专业设备.实践证明,手工调整如果技巧掌握得当, 工作仔细负责,也可达到同样的效果. 大批量更换新编码器调零方法 第一步:折下损坏的编码器 第二步:把新的编码器按标准固定于损坏的电机上第三步:按图纸找出Z信号和两根电源引出线,一般电源均为5V. 第四步:准备好一个有24V与5V两组输出电源的开关电源和一个略经改装的断线报警器,把0V线与Z 信号线接到断线报警器的两个光耦隔离输入端上。 第五步:在电机转动轮上固定一根二十厘米长的横杆,这样转动电机时转角精度很容易控制. 第六步:所有连线接好后用手一点点转动电机轮子

直到报警器发出报警时即为编码器零位,前后反复感觉一下便可获得最佳的位置,经实测用这种方法校正的零位误差极小,很适于批量调整,经实际使用完全合格.报警器也可用示波器代替,转动时当示波器上的电压波形电位由4V左右跳变0V时或由0V跳变为4V 左右即是编码器的零位.这个也很方便而且更精确.杆子的长度越长精度则越高,实际使用还是用报警器更方便又省钱.只要用耳朵感知就行了.在编码器的转子与定圈相邻处作好零位标记,然后拆下编码器。 第七步:找一个好的电机,用上述方法测定零位后在电机转轴与处壳相邻处作好电机的机械零位标记第八步:引出电机的U V W动力线,接入一个用可控制的测试端子上,按顺序分别对其中两相通入24V 直流电,通电时间设为2秒左右,观察各个电机最终停止位置(即各相的机械零位位置)其中一个始必与刚才所作的机械零位标记是同一个位置.这就是厂方软件固定的电机机械零位,当然能通过厂方专用编码器测试软件直接更改编码器的初始零位数据就更方便了.如果你只有一台坏掉的伺服电机,你就要根据以上获得的几个相对机械零位逐个测试是不是我们所要的那个位置,这一步由伺服放大器的试运行模式来进行测试.有关资料是必须的,否则不要轻易动手,以

机器人零点标定方法

机器人零点标定方法 设备维修技术档案系列资料一.哪些情况需要标定零点: 零点是机器人坐标系的基准,没有零点,机器人就没有办法判断自身的位置。 机器人在如下情况下要重新标定零点: 1.进行更换电机、机械系统零部件之后。 2.超越机械极限位置,如机器人塌架。 3.与工件或环境发生碰撞。 4.没在控制器控制下,手动移动机器人关节。 5.整个硬盘系统重新安装。 6.其它可能造成零点丢失的情况。 二.零点标定: 按下面方法可以标定零点: *千分表:手工检测,输入数据的方法。 *EMT:电子仪表自动标定记录的方法。 我们这里只介绍EMT方法。 1.机器人切换到手动方式T1。 2.用左上角第一个软键切换工作方式到出现“+/-”号加手形图标为止。 3.左手扣住左侧底面使能杆,屏幕右侧将出现纵列布置的A1-A6图标。 4.按右侧对应轴的“+”或“-”软键,移动要标定的轴到零点前预停位置,使得机械臂关节两侧刻槽对准。 5.把EMT安装到对应轴指定的仪表零点触头安装底座位置。6.EMT电缆插头连接到机器人X32插口。 7.此时,如预停位置正确,则EMT右侧两个灯同时点亮。不亮时,可以用手动操作重新微调位置。 8.按软键SETUP(设定)。 9.在下级菜单中选择MASTER(管理,这里指标定零点)。10.在下级菜单中选择EMT,回车。屏幕显示出准备标定的机器人轴号:

如:Robot axis 1 Robot axis 2 Robot axis 3 Robot axis 4 Robot axis 5 Robot axis 6 11.按软键MASTER,显示信息“Start key required(需要按启动键)”。 12.扣住使能杆,按软键Program start forwards(程序正向启动,即左侧硬键盘的“+”号外套顺时针箭头)。对应轴在程序控制下移动。当EMT检测到参考点(参考刻槽),移动停止,零点位置被记录到计算机,对应轴标定显示被清除。 ***注意: 1)标定一定要从低轴号开始,否则系统将报警。 2)A1、A6轴关节的一侧刻度槽改成螺钉或突起标记,和其它轴不同,要注意。 三.反标定: 一个不可靠的零点也可以删除。步骤是: 1.按软键SETUP(设定)。 2.在下级菜单中选择MASTER(管理,这里指零点标定)。3.在下级菜单中选择EMT,回车。屏幕显示出准备删除零点的机器人轴号: 如:Robot axis 1 Robot axis 2 Robot axis 3 Robot axis 4 Robot axis 5 Robot axis 6 4.按软键UNMASTER,对应轴的零点被删除。该轴可以重新标定零点。 生产部设备工装科陈刚 2003/8/21 修改:2005/7/24

自校零和自校准技术

新型传感器论文题目:自校零和自校准技术

摘要 本文从原理上分析论证了自校准与自校零技术;重点论述了实时在线校准技术的实现方法,从校准的定义出发,引申出了仪器仪表自校准的概念,并对自校准实现的基本原理和过程进行了分析,提出了自校准设计过程中几个关键点,以及这些关键点对自校准的影响。 关键词:传感器;电信号;自校零技术;自校准技术

第一章引言 在传感器的测量过程中,由于仪器内部器件的零点偏移及其温漂,即使零输入时也有输出读数,产生测量误差。 进行自校准的目的,其一,不必将测试仪器仪表脱离原有的环境专门送至校准机构进行校准,在误差精度满足的前提下,提高便利性,同时保证环境的一致性;其二,某些电测仪器设备集成在大型设备中,不容易拆卸,若能够自校准,将更加方便;其三,单片机等控制器及校准电路为自校准的实现成为了可能,可实现自动化,不用进行人工校准。 本文主要针对传感器的自校零技术和自校准技术进行论述。通过对这方面的了解与学习,希望可以在现有的技术水平上进行改进,使其有更好的性能,能更准确地工作,更好地为我们所用。

第二章自校零技术 在传感器的测量过程中,由于仪器内部器件的零点偏移及其温漂,即使零输入时也有输出读数,产生测量误差。 2.1自校零的原因 因为仪器存在误差且误差很可能随环境而变化,所以就需要设计一种自校正装置,使得传感器的参数发生漂移时能够实现自我的补偿与校准,从而使得测量结果更加精确。 以线性系统为例,假设一传感器系统经标定实验得到的静态输出(y)—输入(x)特性如下: y=a 0+a 1x 式中:a 0——零位值,即当输入x=0 时之输出值; a 1——灵敏度,又称传感器系统的转换增益。 对于一个理想的传感器系统,a 0与a 1应为保持恒定不变的常量。但是实际上,由于各种内在和外来因素的影响,a 0 , a 1都不可能保持恒定不变。譬如,决定放大器增益的外接电阻的阻值就会因温度变化而变化,因此就会引起放大器增益改变,从而使得传感器系统总增益改变,也就是系统总的灵敏度发生变化。设a 1=S+Δa 1, 其中S 为增益的恒定部分,Δa 1为变化量;又设a 0=P+Δa 0,P 为零位值的恒定部分,Δa 0为变化量,则 x a S a P y )()(10?++?+= 式中:Δa 0——零位漂移; Δa 1——灵敏度漂移。 2.2传感器的实时在线自校准 2.2.1实时测量零点 实时测量零点有两种方法,方法一:不含传感器自校,如图2.1所示;方法二:含传感器自校,如图2.2所示。

编码器如何进行标零

增量式编码器的相位对齐方式 在此讨论中,增量式编码器的输出信号为方波信号,又可以分为带换相信号的增量式编码器和普通的增量式编码器,普通的增量式编码器具备两相正交方波脉冲输出信号A和B,以及零位信号Z;带换相信号的增量式编码器除具备ABZ输出信号外,还具备互差120度的电子换相信号UVW,UVW各自的每转周期数与电机转子的磁极对数一致。带换相信号的增量式编码器的UVW电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法如下: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.用示波器观察编码器的U相信号和Z信号; 3.调整编码器转轴与电机轴的相对位置; 4.一边调整,一边观察编码器U相信号跳变沿,和Z信号,直到Z信号稳定在高电平上(在此默认Z信号的常态为低电平),锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z信号都能稳定在高电平上,则对齐有效。 撤掉直流电源后,验证如下: 1.用示波器观察编码器的U相信号和电机的UV线反电势波形; 2.转动电机轴,编码器的U相信号上升沿与电机的UV线反电势波形由低到高的过零点重合,编码器的Z 信号也出现在这个过零点上。 上述验证方法,也可以用作对齐方法。 需要注意的是,此时增量式编码器的U相信号的相位零点即与电机UV线反电势的相位零点对齐,由于电机的U相反电势,与UV线反电势之间相差30度,因而这样对齐后,增量式编码器的U相信号的相位零点与电机U相反电势的-30度相位点对齐,而电机电角度相位与U相反电势波形的相位一致,所以此时增量式编码器的U相信号的相位零点与电机电角度相位的-30度点对齐。 有些伺服企业习惯于将编码器的U相信号零点与电机电角度的零点直接对齐,为达到此目的,可以: 1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线; 2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U相反电势波形; 3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置; 4.一边调整,一边观察编码器的U相信号上升沿和电机U相反电势波形由低到高的过零点,最终使上升沿和过零点重合,锁定编码器与电机的相对位置关系,完成对齐。 由于普通增量式编码器不具备UVW相位信息,而Z信号也只能反映一圈内的一个点位,不具备直接的相位对齐潜力,因而不作为本讨论的话题。 绝对式编码器的相位对齐方式 绝对式编码器的相位对齐对于单圈和多圈而言,差别不大,其实都是在一圈内对齐编码器的检测相位与电机电角度的相位。早期的绝对式编码器会以单独的引脚给出单圈相位的最高位的电平,利用此电平的0和1的翻转,也可以实现编码器和电机的相位对齐,方法如下:

校准机器人零点位置的具体方法

校准机器人零点位置的具体方法 注:需要点击操作的地方都做了浅红色标记 第一步: 选择手动操纵(参看图1,首先把钥匙开关打到手动位置)方法: 1> 点击ABB 2> 点击手动操纵 图 1 第二步: 选择动作模式(参看图2 和图3) 方法: 1> 点击动作模式 2> 点击轴1 -3 或者轴4 -6 3> 点击确定 第三步: 选择工具坐标(参看图2 和图4) 方法: 1> 点击工具坐标 2> 点击tGripper

图 2 图 3 第四步: 选择移动速度(参看图2 和图5) 方法: 1> 点击增量 2> 点击中或者小

图 4 图 5 第五步: 手动移动机器人各轴到机械零点位置(参看图2) 方法: 此时图2上操纵杆方向处显示操纵杆移动方向于轴的对应关系注意: 如果先前选择轴1 -3 则

1> 操纵杆上下移动为2轴动作 2> 操纵杆左右移动为1轴动作 3> 操纵杆顺/逆时针旋转为3轴动作 如果先前选择轴4 -6 则 1> 操纵杆上下移动为5轴动作 2> 操纵杆左右移动为4轴动作 3> 操纵杆顺/逆时针旋转为6轴动作 1> 左手持示教器,四指握住示教器使能开关(在示教器下方黑色 胶皮里面) 2> 右手向唯一一个方向轻轻移动操纵杆,把各轴按顺序移动到各 自机械绝对零点

图 6

移动顺序,依次为6轴→5轴→4轴→3轴→2轴→1轴,否则会使4,5,6轴升高以致于看不到零点位置。 机械零点位置如图6所示,当所有六个轴全部对准机械零点位置以后,机器人的姿态正如图6所示。 第六步: 更新转数计数器(参看图1,此时可以示教器使能开关) 方法: 1> 点击ABB 2> 点击校准 3> 点击ROB_1 (参看图7) 图7 4> 点击转数计数器(参看图8) 5> 点击更新转数计数器…(会弹出一个警告界面) 6> 点击是

常用玻璃量器的自校准方法

深圳市龙岗区环境监测站 作业指导书 标题:常用玻璃量器的自校准方法

文件编号:LGHJ/ZY-ZB-09(第A版,第0次修订)第1页共4页 1、目的 对常用玻璃量器进行自校准,使其适合准确度要求较高的分析工作。 2、范围 适用于本站实验室在下列情况中使用的滴定管、吸管、量瓶等玻璃量器的自校准:2.1为满足实验分析中需要准确定量的玻璃量器进行自校准。 2.2在实验过程中,对玻璃量器的标称值有怀疑时要对所用玻璃量器进行自校准。 3、职责 3.1质保人员对分析中准确定量的玻璃量器进行自校准,并对校准结果进行判定、 编写自校准报告。 3.2科室主任负责审核和签发自校报告。 4、技术要求与检定条件:见《常用玻璃量器检定规程》JJG196-1990。 5、校准程序 5.1玻璃量器的校准采用衡量法。 5.2清洗被检量器:量器用重铬酸钾洗液和等量的浓硫酸混合剂或清洁剂进行清洗,然后用水冲净,器壁上不应有挂水等沾污现象。液面下降或上升时与器壁接触处形成正常弯液面。 5.3洗净的量器应提前放入工作室,使其与室温尽可能接近。 5.4取一只容量大于被检量器的洁净有盖称量杯(如果检定量瓶则取一只洁净干燥 的待检量瓶),进行空称量平衡。 5.5滴定管的校准 5.5.1活塞密合性检查 在活塞不涂凡士林的清洁滴定管中加蒸馏水至零标线处,放置20分钟后,漏水量应不超过1小格。 5.5.2校准操作:滴定管的活塞两端涂好凡士林(以能达到润滑的目的为准,万勿沾污塞孔!),加蒸馏水到零标线处,记录水温。以滴定的速度放出0~10毫升水(相差不要超过±0.1毫升)于已称量的称量杯中,再准确称量至0.001克。两次称量之差即为放出水的质量。同法,依次称出0~20、0~30…毫升等分度线间水的质量,按实

温度传感器的连接与信号获取

情景五 温度传感器的连接与信号获取 任务1:炉温检测 5.1.1任务目标 使学生了解炉温检测器件、测温范围和测温电路。 5.1.2任务内容 针对炉温检测要求,确定温度传感器。分析制定安装位置、实施效果检测方案,成本分析。学生现场安装、连接和调测传感器电路。 5.1.3知识点 热电偶传感器是一种自发电式传感器,测量时不需要外加电源,直接将被测量转换成电势输出。使用十分方便,常被用作测量炉子、管道内的气体或液体的温度及固体的表面温度。它的测温范围很广,常用的热电偶测温范围为-50℃~+1600℃,某些特殊热电偶最低可测-270℃,最高可达+2800℃。 它具有结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等许多优点。 一、热电偶的外形结构、种类和特性 (一)常用热电偶的外形 各种普通装配型热电偶的外形如下图所示。 各种普通装配型热电偶 接线盒 引出线套管 不锈钢保护套管 热电偶工作端 固定螺纹

各种铠装型热电偶的外形如下图所示。 各种防爆型热电偶的外形如图所示。 (二)热电偶的结构 接线盒固定装置 B -B 金属导管绝缘材料 A 放大 A B B 各种防爆型热电偶 (a ) (b ) 热电偶的结构 (a )普通热电偶;(b )铠装热电偶 各种铠装型热电偶

(三)热电偶的分类 1.热电偶的结构分类: (1)普通热电偶: 普通热电偶一般由热电极、绝缘套管、保护套管和接线盒等几部分组成。常用于测量气体、蒸气和各种液体等介质的温度。 (2)铠装热电偶: 铠装热电偶又称缆式热电偶,此种热电偶是将热电极、绝缘材料连同保护管一起拉制成型,经焊接密封和装配等工艺制成的坚实的组合体。可做得很细、很长,可弯曲,外径小到1~3mm。主要特点是测量端热容量小、动态响应快、绕性好、强度高。 2.热电偶的种类: (1)标准型热电偶: 标准型热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶。标准热电偶有配套显示仪表可供选用。 国际电工委员会(IEC)向世界各国推荐了8种热电偶作为标准型热电偶。表2-1是它们的基本特性。热电偶名称的含义如下: 标准型热电偶及基本特性

编码器基础知识

各种输出形式的旋转编码器与后续设备(PLC、计数器等)接线分别怎么接? ⑴与PLC连接,以CPM1A为例 ①NPN集电极开路输出 方法1:如下图所示 这种接线方式应用于当传感器的工作电压与PLC的输入电压不同时,取编码器晶体管部分,另外串入电源,以无电压形式接入PLC。但是需要注意的是,外接电源的电压必须在DC30V以下,开关容量每相35mA以下,超过这个工作电压,则编码器内部可能会发生损坏。 具体接线方式如下:编码器的褐线接编码器工作电压正极,蓝线接编码器工作电压负极,输出线依次接入PLC的输入点,蓝线接外接电源负极,外接电源正极接入PLC的输入com端。 方法2:编码器的褐线接电源正极,输出线依次接入PLC的输入点,蓝线接电源负极,再从电源正极端拉根线接入PLC输入com端。 ②电压输出 接线方式如图所示:

具体接线方式如下:编码器的褐线接电源正极,输出线依次接入PLC 的输入点,蓝线接电源负极,再从电源正极端拉根线接入PLC输入com端。 不过需要注意的是,不能以下图方式接线。 ③PNP集电极开路输出 接线方式如下图所示: 具体接线方式如下:编码器的褐线接工作电压正极,蓝线接工作电压负极,输出线依次接入PLC的输入com端,再从电源负极端拉根线接入PLC的输入com端。 ④线性驱动输出 具体接线如下:输出线依次接入后续设备相应的输入点,褐线接工作电压的正极,蓝线接工作电压的负极。 ⑵与计数器连接,以H7CX(OMRON制)为例 H7CX输入信号分为无电压输入和电压输入。 ①无电压输入: 以无电压方式输入时,只接受NPN输出信号。 NPN集电极开路输出的接线方式如下:

零点标定操作流程

点焊机器人伺服枪零点复归操作流程 一、当下列情况出现时,需对伺服枪进行零点复归: 1.1、在机器人没有提醒 TIP 更换时,强行或误换 TIP 时; 1.2、上,下电极组件因故变形或伺服枪与外围设备碰撞导致伺服枪机械零点变化时; 1.3、 更换伺服枪编码器及编码器电缆时。 二、调整步骤: 2.1、解除机器人所有异常报警; 2.2、示教机器人到工作原点,可采用Robot_home 程序,注意采用低速及避免障碍物碰撞; 2.3、操作员取用新的电极安装好,注意把电极敲紧; 2.4、利用FCTN 菜单的的第3项3 CHANGE GROUP 切换到G2组; 图1 注:G1组包含机器人本身6轴,G2组包含伺服枪轴; 2.5 Shift+ +x/-x 示教焊枪至0点,间隙0~0.5mm; 图2 2.6、 按菜单MENUS 进入6项SYSTEM 系统设置; 图3 图4

2.7、按F1TYPE选择2Variable进入系统变量; 图5 2.8、选择MASTER_ENB零点复归可能项,将值“0”置“1”, 图6 “0”为不可能,“1”为可能; 2.9、 图7 图8 按F1TYPE选择第4项Master/cal进入Master画面; 2.10、选择第2项ZERO POSITION MASTER入力 图9 出现提示是否进行MASTER,选择按F4 YES确认; 2.11、将光标移到第6项CALIBRATE入力, 图10 出现提示是否进行设置传送,选择按F4YES;

2.12、按F5 DONE完成; 三、确认并进行电极修正、研磨 3.1、按F1TYPE可以看到第4项Master/cal消失,说明Master成功。 图11 此时按下POSN键可以看到现在枪的位置值为0.000; 图12 3.2、按下DATA键,进入参数方面的设置,按下F1选择1Registers寄存器 图13 图14 将R[99]=0置1 图15 图16 3.3、调出Robot_home程序,示教机器人回原位,选择回到RSR0001主程序,速度调回100%; 3.4、在触摸屏(没有的为操作盘)上选择“电极头研磨模式”及对应启动的GUN后自动启动机器人, 此时不研磨只是做TIP磨耗量确认; 3.4、再次启动机器人自动研磨完成; 3.5、选择模式为“生产模式”。到此已全部完成,可以正常生产。 ※注意操作不熟适的情况下必须有胜任此操作的监护人在场 2008-2-26

测厚仪自校准方法

超声波测厚仪自校准方法 1.目的 为了保证超声波测厚仪的正确使用及测量结果的准确可靠,特制定本自校准方法。 2.依据 超声波测厚仪使用手册等 3. 校准方法 3.1 采用台阶试块,分别在厚度接近待测厚度的最大值和待测厚度的最小值(或待测厚度最大值的1/2)进行校准。 3.1.1试块的基本要求和尺寸见附图。3.1.2 测定曲面工件厚度时,应使用同一曲率的试块,或者对平面试块加以修正。 3.2 将探头置于较厚试块上,调整声速,使得测厚仪显示读数接近已知值。 3.3 将探头置于较薄试块上,调整零位,使得测厚仪显示读数接近已知值。 3.4 反复调整,使得量程的高低两端都得到正确读数,仪器即告调整完毕。 3.5 如果已知材料声速,则可预先调好声速,然后在仪器附带的试块上,调节零位,使得仪器显示为试块的厚度,仪器即告调整完毕。 4.记录 校准过程应做好记录工作,记录至少包括仪器型号、探头、试块、耦合剂、校核人员、测定日期。记录格式见“超声波测厚仪自校准记录表”(SDTJ/JH-01-01)。 编制: 审核: 批准:

附图: 6.3

超声波测厚仪自校准记录表 SDTJ/JH-01-01

超声波测厚仪自校准、期间核查记录表填写说明 1、设备名称:超声波测厚仪 2、设备型号:进行自校准或核查的超声波测厚仪本身的型号;如:TT120、TT100等 3、本院编号:进行自校准或核查的超声波测厚仪在本单位内部的仪器编号 4、出厂编号:进行自校准或核查的超声波测厚仪出厂时生产厂家给定的编号 5、声速:对超声波测厚仪进行自校准或核查时,根据标准块的材质选定的超声波声速,例如:当 标准块的材质为碳钢时超声波测厚仪的声速应为v=5790m/s;当标准块的材质为不锈钢时 超声波测厚仪的声速应为v=5900m/s 6、标准块厚度:对超声波测厚仪进行自校准或核查时所使用的标准试块的实际厚度 7、显示值:进行自校准或核查的超声波测厚仪对标准块进行测厚时超声波测厚仪所显示的标准块厚度 值 8、允许误差:根据标准块实际厚度,运用允许误差计算公式计算得到的数值 9、实际误差:标准块厚度与显示值的差值 10、备注:对超声波测厚仪进行自校准或核查的结果 11、说明:对超声波测厚仪进行自校准或核查过程中需要特别说明的问题 12、校准人:对超声波测厚仪进行自校准或核查的操作者姓名 13、年月日:对超声波测厚仪进行自校准或核查的时间

爱普生机器人原点校准方法

爱普生机器人原点校准 方法 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

EPSON机械手脉冲零点校正 一、工具: 钢板尺(或卡尺)、EPSON机械手编程软件RC+等。 二、应用场合: 1.当机械手和驱动器的型号及序列号不一致时,即机械手和不同序列号的控制器混搭使用,需要重新校准机械手的位置(重新校准机械手脉冲零位)。 2.更换马达等其他问题。 三、机械手脉冲零点位置校正: 具体调节步骤如下: 1.拆除机械手丝杆上夹具,同时保证机械手有足够运动空间,用RC+软件连接机械手LS3,在软件中打开机器人管理器,如下图所示: .点击“motor on”按钮,即给机械手上电;接着点击“释放所有”按钮,即释放机械手4个伺服马达刹车;具体如图: 2.点击“motor on”按钮,即给机械手上电;接着点击“释放所有”按钮,即释放机械手4个伺服马达刹车;具体如图: 3.手动将机械手调整到脉冲零点位置;如下图所示: +Z方向 +X方向 +Y方向 具体细节: 1)因为刹车释放后,手动可以拖动J1与J2轴,手动拖动使J1与J2轴如下图所示: 2)同理,手动移动丝杆使3、4轴如图所示:( U轴0位,丝杆端面对应外套上的指针;丝杆底部端面到机体底部为75mm,用钢尺量,相差在2mm内可接受。) 3.保持机械手目前手动零点位置不动,先点击“锁定所有”按钮,即锁定机械手伺服马达刹车;接着点击“motor off”按钮,即关闭机械手;具体如图:

4. 保持机械手目前手动零点位置不动,手动将机械手内编码器重置,具体是在软件中打开命令窗口(ctrl+M)中输入: Encreset 1 按回车 Encreset 2按回车 Encreset 3按回车 Encreset 3,4按回车 如图: 5. 保持机械手目前手动零点位置不动,重启控制器,具体操作如图: 6. 保持机械手目前手动零点位置不动,在命令窗口中输入Calpls(脉冲零点位置的正确脉冲值)回车,具体如下: Calpls 0,0,0,0 回车.如下图: 8.保持机械手目前手动零点位置不动,保存各个轴当前的脉冲值,具体是在软件中打开命令窗口(ctrl+M)中输入: calib 1 按回车 1轴 calib 2按回车 2轴 calib 3按回车 3轴 calib 3,4按回车 4轴 (如只需校第一轴,calib 1即可,以上将4个轴都校正) 机械手脉冲零点的脉冲保存完成,效正基本完成。 7.保持机械手目前手动零点位置不动,打开机器人管理器,点击motor on后,在步进示教可看到如下界面: 其当前世界坐标值x:400 y:0 z:0 u:0 当前关节及脉冲值均为0, 8.验证,将机械手的位置移动,是x、y、z、u的值均有很大变化后,在软件打开命令窗口(ctrl+M)中输入:pulse 0,0,0,0 回车。此时机械手会自动回到刚校正的脉冲原点位置。

水平仪零位校准及调整方法

水平仪零位校准及调整方法 袁南香 一、水平仪零位误差产生的原因 运输、放置、震动、温度、磨损以及黏胶老化等因素都会造成水平仪零位不准确,因而在使用前应进行水平仪零位示值误差正确性检查。在实验室校准的过程中,也是先检查零位正确性,再进行下一步校准工作。 二、水平仪零位校准方法 框式、条式水平仪零位校准有两种方法:一是在大致水平的平板(或机床导轨)上对零位误差的正确性进行检查;二是依据JJF1084-2002《框式水平仪和条式水平仪校准规范》校准零位误差。现分述如下: 1.在大致水平的平板(或机床导轨)上检查零位误差的正确性。如图1所示,将水平仪放在基础稳固、大致水平的平板(或机床导轨)上,待气泡稳定后,在一端(如左端)读数,且定为零。再将水平仪调转180°,仍放在平板原来的位置上,通常放一个定位块为宜,待气泡稳定后,仍在原来一端(左端)读数(A格),则水平仪零位示值误差为1/2A格,该值应符合表1的规定。 图1 表1 水平仪零位误差 2.依据JJF1084-2002在水平仪零位检定器上进行零位误差校准。 JJF1084-2002介绍了以5种不同工作面为基准的零位误差校准方法,下面以6.2.4.1款为例说明,即采用下平工作面为基准的零位误差进行介绍。 如图2所示,测量前将(经过打磨清洗)量面清洁的被校水平仪放在水平仪零位检定器的工作台上,紧靠定位块,待气泡稳定后在气泡的一端读数a1;然后将水平仪调转180°,准确地放在原位置,按照第一次读数的一边记下气泡另一端的读数a2,两次读数差的一半为零位误差。根据表1要求,进行合格与否的判断。 图2 如果零位误差超过表1许可范围,则需调整水平仪零位调整机构(调整螺钉或螺母),使零位误差减小至允许范围以内。不得随意拧动非规定调整的螺钉、螺母。校准、调整前水平仪工作面与平板等校准台面必须擦拭干净。调整后螺钉或螺母等件必须固紧。 三、水平仪零位误差调整方法 水平仪零位调整以零位调整装置数量及所在部位分类,大致归为以下两类: 1.一侧可调式 两侧均有两个固定螺钉,一端起固定作用,另一端作为调整机构,如图3所示。可用专

自校准方法编写规定

1 目的 对检测设备自校准方法的编制进行控制,保证自校准方法正确实用、满足自校准工作要求。 2 范围 适用于本实验室检测工作使用中或修理后的、目前尚无计量检定规程需要并且有可能进行自校准的检测设备自校准方法的编审。 3 职责 3.1质控室负责组织编制自校准方法,并监督执行; 3.2相关室主任负责组织对自校准方法进行实验验证; 3.3技术负责人批准自校准方法。 4 要求 4.1每种自校准设备编写一个自校准方法。 4.2自校准方法编写格式要求。 4.2.1自校准方法的编号如下: 顺序号 4.2.2自校准方法的文件名称为:□□□自校准方法,其中□□□为检测设备名称。 4.3自校准方法内容要求。 4.3.1目的 编制自校准方法的目的。 4.3.2适用范围 说明自校准方法适用的检测设备种类和型号。 4.3.3职责 规定相关责任人的责任。 4.3.4概述 对检测设备的结构、原理及主要用途作简单介绍。

4.3.5技术要求 4.3. 5.1设备外观要求,包括对设备标志、成套完整性、各种开关、电源线等的要求。4.3.5.2技术指标的要求全面、详细。 4.3.6校准条件 包括设备外观及环境条件、仪器安装要求、校准设备、校准标准物质。根据实验室程序文件《实现测量可溯源性程序》(HSJC-PF-223-2009)要求,自校准应有经检定合格的计量器具或可港源标准物质作为依据。 4.3.7自校准项目和自校准方法 应包括设备一般检查和各项性能检查。 4.3.8自校准周期 规定设备自校准周期。 4.3.9支持性文件 列出自校准方法中直接引用和必须配合使用的文件名称和编号。 4.4自校准方法实验验证 操作人员对设备进行自校准,出具自校准报告,主任审核自校准报告。 5 相关文件 5.1 HSJC-PF-203-2009《管理体系文件控制和维护程序》 5.2 HSJC-PF-223-2009《实现测量可溯源程序》 5.3 HSJC-PF-222-2009《仪器设备的控制与管理程序》 5.4 HSJC-PF-217-2009《检测方法及方法确认程序》 6 运行记录 6.1《检测设备自校准方法文稿》 6.2《检测设备自校准实验原始记录和实验报告》 6.3《检测设备自校准不确定度分析(必要时)》 6.4记录表HSJC-ZK-307-2009/01《检测设备自校准方法审批表》

动力工程测试技术及仪表复习模拟题答案

《动力工程测试技术及仪表》复习模拟试题标准答案 一、填空题 1、某待测水头约为90米,现有0.5级0~2.94?106Pa 和1.0级0~0.98?106Pa 的两块压力表,问用哪一块压力表测量较好?答: 后者。 2、对某一物理量x进行N次测量,测量值x i与其出现的次数N i满足一定的规律,误差分布呈对称性、单峰性、有界性的特点。 3、任意两种均质导体A、B,分别与均质材料C连接组成热电偶回路,若热电势分别为 E AC(T,T0)和E CB(T,T0),则导体A、B组成的热电偶的热电势为:E AC(T,T0)+ E CB(T,T0)。 4、用铜和康铜分别与铂相配构成热电偶,热电势E铜-康铜(100,0)=1.10mV,E铜-铂(100,0)=0.75mV,E康铜-铂(100,0)=-0.35mV 。 7、弹簧管压力计中游丝的作用是:恢复、导电、径向间隙小。 9、标准节流装置由节流元件、取压设备、后面的直管段三部分组成,孔板取压有角接取压;法兰取压和径距取压三种方式。 10、气体的体积流量q v 。 11、系统的绝对误差传递公式为 12、根据统计学原理,随机误差服从_统计规律__,因而可采用_统计法则__对含有随机误差的测量结果加以表达。 15、某种铜热敏电阻30℃时的电阻值R1=1.812kΩ,35℃时的电阻值R2=1.510kΩ,那么热敏电阻在32℃时的电阻值为:1.683 kΩ。 16、氧化锆氧量计安装方式分为抽出式和___直插式__。 20、红外气体分析仪工作原理是:被测气体对红外线的吸收程度,来对多组分混合气体进行定量分析。 22、请指出下列误差属于哪类误差(系统误差、随机误差、粗大误差)。 (1)用一块万用表测量同一电压,重复测量15次后所得的结果误差。 (2)观测者抄写记录时错写了数据造成的误差。 (3)在流量测量中,流体温度、压力偏离设计值造成的流量误差。 23、常用的压力传感器有:应变式、压电式、压阻式、电感式和电容式等型式。 24、某压力表的量程是20MPa,测量值的误差不允许超过0.05 MPa,则仪表的精度为0.25级。 25、标准误差、平均误差、或然误差、极限误差落在所属范围内的概率大小顺序依次为(用“>”或“<”排列)极限误差>标准误差>平均误差>或然误差。 26、热电偶是基于塞贝克效应原理发展起来的一种测温传感器,两种不同导体A、B组成的闭合回路,当A、B两接点的温度不同时,回路中会产生热电势,研究表明热电势是由温差电势和接触电势两种电势组成。 32、热电阻测温常采用“三线制”接法,其目的在于消除连接导线电阻造成的附加误差。 34、激光多普勒效应是指:一定频率的激光照射到具有一定速度的运动粒子上,粒子对光有散射作用,散射光的频率与直射光的频率有一定的偏差,其频移量与运动粒子的速度成正比,只要测得频移,就可算出流速。

相关文档
最新文档