车辆直接横摆力矩控制方法研究

重庆大学

硕士学位论文

车辆直接横摆力矩控制方法研究

姓名:张立双

申请学位级别:硕士

专业:车辆工程

指导教师:罗虹

20090602

拧紧力矩的计算方法

拧紧力矩的计算方法 1. 螺栓和螺母组成的螺纹副在紧固时,紧固力是通过旋转螺母或螺栓(通常是螺母)而获得的,紧固力与旋转螺母所用的扭矩(拧紧扭矩)成正比,为了保证达到设计所需的紧固力,就要在工艺文件中规定拧紧扭矩,并在实际施工中贯彻实施。 2. 机械设计中拧紧扭矩计算方法 M = KPD 式中: M — 拧紧扭矩,Nm K — 扭矩系数 P — 设计期望达到的紧固力,KN D — 螺栓公称螺纹直径,mm K 值表(参考) 3. 紧固力P 一般在设计上选取螺栓屈服强度σs 的60~80%,安全系数约为以上。 4. 扭矩系数K 是由内外螺纹之间的摩擦系数和螺栓或螺母支撑面与被紧固零件与紧固件接触的承压面的摩擦系数综合而成。它与紧固件的表面处理、强度、形位公差、螺纹精度、被紧固零件承压面粗糙度、刚度的许多因素有关,其中表面处理是一个关键的因素。不同的表面处理,其扭矩系数相差很大,有时相差近一倍。例如:同螺纹规格,同强度的螺纹副,表面处理为磷化时,扭矩系数约为~,而表面处理为发黑时,扭矩系数可达~。 5. 对于M10~M68的粗牙钢螺栓,当螺纹无润滑时,拧紧力矩粗略计算公式: 0.2M PD = 6.VDI 2230中的拧紧力矩计算方法 22(0.160.58)2 : :::::Km A M G K M G Km K D M F P d F P d D μμμμ=?+??+式中: 装配预紧力螺距 外螺纹基本中径 螺栓螺纹摩擦系数螺栓头部下面的摩擦直径 螺栓头支承面摩擦系数 ()()0s 2s 23310 :/4 :=+/2 /6 :=0.50.7 :s s s s s s P A A A d d d d d d d H H σπσσσ=?=?=-?也可以由下表查出 螺纹部分危险剖面的计算直径螺纹牙的公称工作高度 ~螺栓材料的屈服极限

螺栓拧紧力矩标准_全

螺栓拧紧力矩标准 未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩)

公制螺栓扭紧力矩 Q/STB 范围:本标准适用于机械性能级,规格从M6-M39的螺栓的扭紧力矩,对于使用尼龙垫圈、密封垫圈、其 ★对于设计图纸有明确力矩要求的,应按图纸要求执行。 套管螺母紧固力矩 Q/STB B07833-1998 材料 HPb63-3Y2 直通式压注油杯 Q/STB B07020-1998(螺纹M6、M8*1、M10*1) 紧固力矩:。

安全阀 Q/STB B07029-1998( 螺纹R1/8) 紧固力矩:。 通气塞 Q/STB B07030-1998 (螺纹R1/4) 紧固力矩:。 螺塞 Q/STB B07040-1998(公称直径08-10螺距,12-36螺距) 螺栓(排气) Q/STB B07060-1998(M12*) 紧固力矩:。 软管(锥形密封)Q/STB B07100-1998 软管(锥形密封) Q/STB B07123-1998 (接头部螺母拧紧力矩)

螺母(球头式管接头用) Q/STB B07201-1998 拧紧力矩:材料:(Q235) 管接头螺母 Q/STB B07202-1998 拧紧力矩(Q235 / HPb 59-1)

铰接螺栓 Q/STB B07206-1998 拧紧力矩(Q235) 球头式端直通接头 Q/STB B07211-1998拧紧力矩(Q235 HPb 60-1 ) 表中拧紧力矩适用于钢制接头

管接头 Q/STB B07212-1998 紧固力矩(区分代号为5、7的件材料Q235) 套管螺母 Q/STB B07221-1998 拧紧力矩(材料Q235) 管接头 Q/STB B07230-1998 拧入紧固力矩(Q235) 弯头(带座) Q/STB B07235-1998 、 B07236-1998拧紧力矩

QC T 649汽车转向传动轴总成性能要求及试验方法

中华人民共和国汽车行业标准 汽车转向传动轴总成性能要求及试验方法QC/T 649-2000 1 范围 本标准规定了汽车转向传动轴总成的性能要求及试验方法。 本标准适用于汽车转向传动轴总成。 2 试验项目 2.1 总成间隙试验 2.2 转动力矩试验 2.3 滑动花键的滑动起动力试验 2.4 静扭强度试验 2.5 扭转疲劳寿命试验 3 试验样品 试验样品应按照规定程序批准的图样和技术文件制造,其材料、尺寸、热处理及装配状态应符合图样和技术文件规定。每项试验样品数量不少于3件。 4 损坏的判定 4.1 总成的零件表面出现可见裂纹。 4.2 总成运动不灵活,不能继续使用。 5 性能要求 5.1 总成间隙试验 5.1.1 对于滑动花键结构,总成包含1个万向节,总成的扭转角度不大于45'。 5.1.2 对于滑动花键结构,总成包含2个万向节,总成的扭转角度不大于1°。 5.1.3 对于无滑动花键结构,总成包含1个万向节,总成的扭转角度不大于15'。 5.2 转动力矩试验 转动力矩应符合设计要求。 5.3 滑动花键的滑动起动力试验 滑动起动力应符合设计要求。 5.4 静扭强度试验 施加转矩Mj进行静扭强度试验后,总成不允许损坏。 5.5 扭转疲劳寿命试验 施加正反方向的疲劳寿命试验转矩M,经3×105次循环试验后,总成不允许损坏。 6 试验条件 在各项试验项目中,应满足以下条件: 总成应按实际装车状态安装与固定。 7 试验方法 7.1 总成间隙试验 7.1.1 将总成与转向器联接的一端固定,从转向盘一端施加±3Nm的转矩,所施加的转矩也可以按设计要求确定。 7.1.2 测定总成的扭转角度。 7.1.3 测量误差不大于2%。 7.2 转动力矩试验 7.2.1 将转向柱管固定,从转向盘一侧驱动。 7.2.2 测出总成的转动力矩。 7.2.3 测量误差不大于2%。 7.3 滑动花键的滑动起动力试验

力矩控制通用技术标准(1)

力矩控制通用技术标准

前言 本标准根据环保动力公司的实际情况,结合国家及技术中心的产品技术要求,明确了力矩控制过程中的技术要求,工装、设备的使用规范 本标准由制造部工艺科提出、归口 本标准起草单位:制造部工艺科 本标准主要起草人:周陵 本标准所代替标准的历次版本的发布情况为:无

力矩控制通用技术标准 1 范围 本标准规定了发动机用螺纹直径4mm-20mm紧固件的力矩控制。 本标准适用于符合以下条件,以控制扭矩方式进行的紧固: —外螺纹件的机械性能符合GB/T 3098.1规定的8.8、10.9级; —内螺纹件的机械性能符合GB/T 3098.2或GB/T 3098.4,且具有充分发挥螺纹连接副承载能力的强度; —螺纹符合GB/T 196,螺纹精度不低于GB/T 197规定的6级; —内、外螺纹件的六角对边尺寸符合GB/T 3104规定的标准系列; —内、外螺纹件的表面为汽车工业通常采用的状态; —外螺纹件在紧固中受轴向拉伸载荷。 本标准不适用于外螺纹件在紧固中承受压缩力的紧定螺钉、由外螺纹件攻出螺纹的自攻螺钉及木螺钉。 当表面状态不同、支承面尺寸及形态与标准条件差异较大,以致预紧力不能满足要求以及对预紧力有特别要求时,应对紧固扭矩进行调整。 当产品对紧固扭矩有特殊要求时,根据产品要求调整控制要求。 2 引用标准 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的应用文件,其最新版本适用于本标准。 GB/T 196 普通螺纹基本尺寸(直径1mm-600mm) GB/T 197 普通螺纹公差与配合(直径1mm-355mm) GB/T 3098.1 紧固件机械性能螺栓、螺钉和螺柱 GB/T 3098.2 紧固件机械性能螺母 GB/T 3098.4 紧固件机械性能细牙螺母 GB/T 3104 紧固件机械性能六角产品的对边宽度 GB/T 16823.2 螺纹紧固件紧固通则

螺栓拧紧力矩标准

M6~M24螺钉或螺母的拧紧力矩(操作者参考) 未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩) 未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩)

公制螺栓扭紧力矩Q/STB 12.521.5-2000 范围:本标准适用于机械性能10.9级,规格从M6-M39的螺栓的扭紧力矩,对于使用尼龙垫圈、密封垫圈、其它非金属垫圈的螺栓,本标准不适用。 ★对于设计图纸有明确力矩要求的,应按图纸要求执行。

套管螺母紧固力矩Q/STB B07833-1998 材料HPb63-3Y2 直通式压注油杯Q/STB B07020-1998(螺纹M6、M8*1、M10*1)紧固力矩:0.3-0.5Kg.m。 安全阀Q/STB B07029-1998(螺纹R1/8) 紧固力矩:2.9-4.9Nm。 通气塞Q/STB B07030-1998 (螺纹R1/4) 紧固力矩:2.94-5.88Nm。 螺塞Q/STB B07040-1998(公称直径08-10螺距1.25,12-36螺距1.5) 螺栓(排气)Q/STB B07060-1998(M12*1.5) 紧固力矩:58.8-78.4N.m。 软管(锥形密封)Q/STB B07100-1998

软管(锥形密封)Q/STB B07123-1998 (接头部螺母拧紧力矩) 螺母(球头式管接头用)Q/STB B07201-1998 拧紧力矩:N.m 材料:(Q235) 管接头螺母Q/STB B07202-1998 拧紧力矩(Q235 / HPb 59-1)

铰接螺栓Q/STB B07206-1998 拧紧力矩(Q235) 球头式端直通接头Q/STB B07211-1998 拧紧力矩(Q235 HPb 60-1 ) 表中拧紧力矩适用于钢制接头 管接头Q/STB B07212-1998 紧固力矩(区分代号为5、7的件材料Q235)

螺栓拧紧力矩标准

螺栓拧紧力矩标准 篇一:螺栓拧紧力矩标准-全 螺栓拧紧力矩标准 未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩) 公制螺栓扭紧力矩 Q/STB 12.521.5-2000 范围:本标准适用于机械性能10.9级,规格从M6-M39的螺栓的 扭紧力矩,对于使用尼龙垫圈、密封垫圈、其它非金属垫圈的螺栓,本标准不适用。 ★对于图纸有明确力矩要求的,应按图纸要求执行。套管螺母紧固力矩Q/STBB07833-1998 材料 HPb63-3Y2 直通式压注油杯 Q/STB B07020-1998(螺纹M6、M8*1、 M10*1) 紧固力矩:0.3-0.5Kg.m。 安全阀Q/STBB07029-1998(螺纹R1/8) 紧固力矩:2.9-4.9Nm。 通气塞 Q/STBB07030-1998 (螺纹R1/4)紧固力矩:2.94-5.88Nm。 螺塞 Q/STB B07040-1998(公称直径08-10螺距1.25,12-36螺距1.5)

螺栓(排气) Q/STB B07060-1998(M12*1.5)紧固力矩:58.8-78.4N.m。软管(锥形密封)Q/STB B07100-1998 软管(锥形密封) Q/STB B07123-1998(接头部螺母拧紧力矩) 螺母(球头式管接头用) Q/STBB07201-1998 拧紧力矩:N.m 材料:(Q235) 管接头螺母 Q/STBB07202-1998 拧紧力矩(Q235 / HPb 59-1) 铰接螺栓 Q/STB B07206-1998 拧紧力矩(Q235) 球头式端直通接头 Q/STB B07211-1998 拧紧力矩(Q235 HPb 60-1 ) 表中拧紧力矩适用于钢制接头 管接头 Q/STB B07212-1998 篇二:螺栓拧紧力矩标准及计算详解 螺栓拧紧力矩标准及计算详解 螺栓拧紧力矩是选定螺栓类型、式样的重要依据。对于标准的螺栓,有固定的螺栓拧紧力矩范围的,可以根据此范围来选定螺栓。下面,世界泵阀网为大家汇总螺栓拧紧力矩标准及计算详解,以供学习参考。 一般来说,螺钉的抗拉、抗剪强度是一定的,实际使用时应根据具体连接应力推算拧紧力,然后选择合适规格的螺钉螺栓。螺栓拧紧力矩计算T=KFd

位置 速度 转矩3种控制方式介绍

1从原理上理解3种控制方式 一般伺服都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式。之所以有这三中控制方式,是因为伺服一般为三个环控制。所谓三环就是3个闭环负反馈PID调节系统。由伺服系统的三个控制回路来实现。 第1环是电流环,它是最内环。此环完全在伺服驱动器内部进行,通过霍尔装置检测驱动器给电机的各相的输出电流,负反馈给电流的设定进行PID调节,从而达到输出电流尽量接近等于设定电流,电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。 第2环是速度环,它是次外环,通过检测的电机编码器的信号来进行负反馈PID调节,它的环内PID输出直接就是电流环的设定,所以速度环控制时就包含了速度环和电流环,换句话说任何模式都必须使用电流环,电流环是控制的根本,在速度和位置控制的同时系统实际也在进行电流(转矩)的控制以达到对速度和位置的相应控制。 第3环是位置环,它是最外环,可以在驱动器和电机编码器间构建也可以在外部控制器和电机编码器或最终负载间构建,要根据实际情况来定。由于位置控制环内部输出就是速度环的设定,位置控制模式下系统进行了所有3个环的运算,此时的系统运算量最大,动态响应速度也最慢。 2从使用上理解3种控制方式 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定 电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部 模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正 转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力 负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小, 也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有 严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要

拧紧力矩的计算方法

拧紧力矩的计算方法-CAL-FENGHAI.-(YICAI)-Company One1

拧紧力矩的计算方法 1. 螺栓和螺母组成的螺纹副在紧固时,紧固力是通过旋转螺母或螺栓(通常是螺母)而获得的,紧固力与旋转螺母所用的扭矩(拧紧扭矩)成正比,为了保证达到设计所需的紧固力,就要在工艺文件中规定拧紧扭矩,并在实际施工中贯彻实施。 2. 机械设计中拧紧扭矩计算方法 M = KPD 式中: M — 拧紧扭矩,Nm K — 扭矩系数 P — 设计期望达到的紧固力,KN D — 螺栓公称螺纹直径,mm 3. 紧固力P 一般在设计上选取螺栓屈服强度σs 的60~80%,安全系数约为以上。 4. 扭矩系数K 是由内外螺纹之间的摩擦系数和螺栓或螺母支撑面与被紧固零件与紧固件接触的承压面的摩擦系数综合而成。它与紧固件的表面处理、强度、形位公差、螺纹精度、被紧固零件承压面粗糙度、刚度的许多因素有关,其中表面处理是一个关键的因素。不同的表面处理,其扭矩系数相差很大,有时相差近一倍。例如:同螺纹规格,同强度的螺纹副,表面处理为磷化时,扭矩系数约为~,而表面处理为发黑时,扭矩系数可达~。 5. 对于M10~M68的粗牙钢螺栓,当螺纹无润滑时,拧紧力矩粗略计算公式: 0.2M PD = 6.VDI 2230中的拧紧力矩计算方法 22(0.160.58)2 : :::::Km A M G K M G Km K D M F P d F P d D μμμμ=?+??+式中: 装配预紧力螺距 外螺纹基本中径 螺栓螺纹摩擦系数螺栓头部下面的摩擦直径 螺栓头支承面摩擦系数 ()()0s 2s 23310 :/4 :=+/2 /6 :=0.50.7 :s s s s s s P A A A d d d d d d d H H σπσσσ=?=?=-?也可以由下表查出 螺纹部分危险剖面的计算直径螺纹牙的公称工作高度 ~螺栓材料的屈服极限

螺栓拧紧力矩及标准

创作编号:BG7531400019813488897SX 创作者:别如克* 螺栓拧紧力矩标准 M6~M24螺钉或螺母的拧紧力矩(操作者参考) 未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩)

未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩) 公制螺栓扭紧力矩Q/STB 12.521.5-2000 范围:本标准适用于机械性能10.9级,规格从M6-M39的螺栓的扭紧力矩,对于使用尼龙垫圈、密封垫圈、其它非金属垫圈的螺栓,本标准不适用。

★对于设计图纸有明确力矩要求的,应按图纸要求执行。 套管螺母紧固力矩Q/STB B07833-1998 材料HPb63-3Y2 直通式压注油杯Q/STB B07020-1998(螺纹M6、M8*1、M10*1) 紧固力矩:0.3-0.5Kg.m。 安全阀Q/STB B07029-1998(螺纹R1/8)

紧固力矩:2.9-4.9Nm。 通气塞Q/STB B07030-1998 (螺纹R1/4) 紧固力矩:2.94-5.88Nm。 螺塞Q/STB B07040-1998(公称直径08-10螺距1.25,12-36螺距1.5) 螺栓(排气)Q/STB B07060-1998(M12*1.5) 紧固力矩:58.8-78.4N.m。 软管(锥形密封)Q/STB B07100-1998 软管(锥形密封)Q/STB B07123-1998 (接头部螺母拧紧力矩)

螺母(球头式管接头用)Q/STB B07201-1998 拧紧力矩:N.m 材料:(Q235) 管接头螺母Q/STB B07202-1998 拧紧力矩(Q235 / HPb 59-1)

转矩控制、矢量控制

转矩控制、矢量控制和VF 控制解析 1. 变转矩就是负载转矩随电机转速增大而增大,是非线性变化的,如风机水泵 恒转矩就是负载转矩不随电机转速增大而增大,一般是相对于恒功率控制而言。如皮带运输机提升机等机械负载 2. VF 控制就是变频器输出频率与输出电压比值为恒定值或正比。例 如:50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制;转矩不可控,系统只是一个以转速物理量做闭环的单闭环控制系统,他只能控制电机的转速 根据电机原理可知,三相异步电机定子每相电动势的有效 值:E仁4.44f1N1①m 式中:E1--定子每相由气隙磁通感应的电动势的有效值,V ;f1 --定子频率,Hz;N 1 ——定子每相绕组有效匝数;①m-每极磁通量由式中可以看出,①m的值由E1/f1决定,但由于E1 难以直接控制,所以在电动势较高时,可忽略定子漏阻抗压降,而用定子相电压U1代替。那么要保证①m不变,只要U1/f1 始终为一定值即可。这是基频以下调时速的基本情况,为恒压频比(恒磁通)控制方式,属于恒转矩调速。 基准频率为恒转矩调速区的最高频率,基准频率所对应的电压为即为基准电压,是恒转矩调速区的最高电压,在基频以下调速时,电压会随频率而变化,但两者的比值不变。在基频以上调速时,频率从基频向上可以

调至上限频率值,但是由于电机定子不能超过电机额定电压,因此电压不再随频率变化,而保持基准电压值不变,这时电机主磁通必须随频率升高而减弱,转矩相应减小,功率基本保持不变,属于恒功率调速区。 3. 矢量控制,把输出电流分励磁和转矩电流并分别控制,转矩可控,系统是一个以转矩做内环,转速做外环的双闭环控制系统。它既可以控制电机的转速,也可以控制电机的扭矩。 矢量控制时的速度控制(ASR )通过操作转矩指令,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。带PG 的V/f 控制时的速度控制通过操作输出频率,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。 矢量控制原理是模仿直流电动机的控制原理, 根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制,在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。 具体做法是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 矢量控制分有速度传感器矢量控制和无速度传感器矢量控制两种, 前者精度高后者精度低。矢量控制系统的无速度传感器运行方式,首先必须解决电机转速和转子磁链位置角的在线辨识问题。常用的方法有基于检测定子

螺钉的拧紧力矩和检验方法

螺钉的拧紧力矩和检验方法 一颗螺钉仅几分钱,但使用不当,会使装配的机器零部件松动、脱落,从而导致功能失常。本文讨论如下几个问题:不同的螺钉拧紧力矩参考值;怎样检验螺钉拧紧力矩是否合适;螺钉拧紧力矩大小的调整方法和影响螺钉连接质量的因素。 一、不同的螺钉拧紧力矩参考值 表1摘录和整理于机械设计手册,它是依螺纹连接拧紧力矩计算方法而得,它的计算主要考虑了螺钉螺纹的承受力,即在没有滑牙和拧断螺钉的情况下,从螺钉螺纹的强度考虑,对于电子装配中的静载荷,拧紧力矩要取破坏力矩的0.8:1 以下。 表1:用于金属的普通螺钉拧紧力矩参考值 注:8.8/10.9/12.0 是螺钉的机械性能等级,未标注的螺钉按低等级取。 表2摘录和整理于原上海仪表局组织的自攻螺钉攻关组数据和《Mechnical Fastening Plastics》Brayton Lincola 著的书中数据,以及经验值,需要特别说明塑料的自攻螺钉拧紧力矩与塑料的材料和螺纹底孔有很大关系,拧紧力矩更要通过试验来确定。自攻螺钉连接主要考虑的螺母材料的塑料不能滑牙,而且要保证足够的拧紧力矩和破坏力矩之比,大于1:2.5 。

表2:用于塑料的自攻螺钉拧紧力矩参考值 注:表中的螺母材料是塑料 ABS 。 二、装配时螺钉拧紧力矩的确定 螺钉拧紧力矩仅依靠理论计算是不够的,在实际应用中螺钉连接拧紧力矩主要是满足产品在工作、运输中的紧固和防松动。螺钉的紧固和防松动的检验常用振动试验来验证。振动试验可以根据不同的产品,依据国家相关的可靠性、环境试验标准来确定。综上所述,合适的螺钉拧紧力矩的确定,应该是依据表中“螺钉拧紧力矩参考值”,装配一批产品,然后实际观察螺钉是否拧到位,有无螺纹滑牙和损伤,以及拧断螺钉的现象;同时按产品标准做振动试验,螺钉连接不能发生松动现象。 三、怎样知道和调整装配时螺钉拧紧力矩的大小 首先,应该用一个力矩测试仪去校验用来装配的电动起子。具体方法是确定螺钉拧紧力矩后,电动起子手工调整大致位置,再用力矩测试仪去校验。 对于一些带负载能力不好的便携式电动起子,充电电池电力不足,引起的力矩变化,开始可以用力矩测试仪去校验,后续可以由有经验的工艺技术人员进行手工调整。这样做的主要目的是提高生产的便利性。 四、影响螺钉连接质量的相关因素 ①螺钉拧紧力矩; ②防松措施; ③螺钉的大小; ④螺钉螺距的大小; ⑤螺钉的材质,性能等级;

螺栓拧紧力矩和标准

螺栓拧紧力矩标准 M6~M24螺钉或螺母的拧紧力矩(操作者参考) 未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩) 未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩)

公制螺栓扭紧力矩 Q/STB 范围:本标准适用于机械性能级,规格从M6-M39的螺栓的扭紧力矩,对于使用尼龙垫圈、密封垫圈、其它非金属垫圈的螺栓,本标准不适用。

★对于设计图纸有明确力矩要求的,应按图纸要求执行。 套管螺母紧固力矩 Q/STB B07833-1998 材料 HPb63-3Y2 直通式压注油杯 Q/STB B07020-1998(螺纹M6、M8*1、M10*1)紧固力矩:-0.5Kg。 安全阀 Q/STB B07029-1998(螺纹R1/8) 紧固力矩:。 通气塞 Q/STB B07030-1998 (螺纹R1/4) 紧固力矩:。 螺塞 Q/STB B07040-1998(公称直径08-10螺距,12-36螺距)

螺栓(排气) Q/STB B07060-1998(M12*)紧固力矩:。 软管(锥形密封)Q/STB B07100-1998 软管(锥形密封) Q/STB B07123-1998 (接头部螺母拧紧力矩) 螺母(球头式管接头用) Q/STB B07201-1998 拧紧力矩:材料:(Q235)

管接头螺母 Q/STB B07202-1998 拧紧力矩(Q235 / HPb 59-1) 铰接螺栓 Q/STB B07206-1998 拧紧力矩(Q235) 球头式端直通接头 Q/STB B07211-1998拧紧力矩(Q235 HPb 60-1 )

力矩控制器原理与接线

力矩控制器 一.概述 力矩控制器为代替三相自耦变压器,而专门设计的一种先进的全电子化控制装置,能工作在电阻、电感性负载。此控制器广泛应用于五金机械塑料、电线、电缆、绳网、印刷、造纸、纺织、印染、化疑纤、橡绞、电影胶皮等各种机械、机电行业。 与三相自藕调压器相比较,本控制器由于采用了电子调节,无触点磨损,电压调节平衡,起动性能好,本控制器具有体积小、重量轻、效率高、发热小、节约能源(经测定平均节能17%以上),使用寿命长、安装、维修方便。 二.技术参数 1.输入电压:三相交流电压 380V±10% 2.输出电压:三相交流电压 0-380V 3.额定电流:标称电流(面板上标称的电流) 4.输出电压可以无极调节,从而使电机实现无极调速 5、频率50~60HZ。 三.工作环境 1、环境温度:-25℃~+55℃。 2、空气相对湿度:≤85%(20℃±5℃)。 3、无显著冲击震动。 四.工作原理 三相调压器调速控制器主回路采用进口双向可控硅,改变可控硅的开放角大小,就能使电机或其它负载的工作电压从0至380V连续可调,也就实现了平衡地调压调速过程,以满足不同生产的工艺要求。 在可控硅控制电路中采用了先进的集成电路,加入了电

流回馈, 构成一个循环控制系统。既提高了力矩电机的机械性硬度,又改善性能,同时还提高了力矩电机的超载能力,扩大了力矩电机的使用范围。为了使调速过程尽快进入稳定状态,在控制回路中还加入了电压回馈以提高控制器的技术性能。 五.使用方法 1. 接线说明:请严格按以下接线示意图接线:D1、D2、D3三点为 控制器的输出端,接力矩电机;A 、B 、C 、为输入端接三相380V 电源。 N 为零线接口,接零线。 2.旋钮旋至零位。 3.总电源。(指示灯亮) 4.控制开关,调节调速电位器旋钮,使电机达到你所需的速度。 5. 电位器为精密长寿电位器。 六.注意事项 1.严禁输出短路。 2.严禁使用中,负载电流超过过面板标称电流值。 3、严禁零线N 接入电机星点. 4、若控制器出现问题务必请专业人员检修,以免使故障范围扩大. 六.接线图 A B C D1D2D3A B C 输入 380V 输出 0~380V V 1 U1 W1 W2V 2U2力矩电机 A B C D1D2D3 A B C 输入 380V 输出 0~380V V 1 U1 W1 W2V 2U2力矩电机 N

拧紧力矩的计算方法

拧紧力矩的计算方法 1.螺栓和螺母组成的螺纹副在紧固时,紧固力是通过旋转螺母或螺栓(通常是螺母)而获得的,紧 固力与旋转螺母所用的 扭矩(拧紧扭矩)成正比,为了保证达到设计所需的紧固力,就要在工艺文 件中规定拧紧扭矩,并在实际施工中贯彻实施。 2. 机械设计中拧紧扭矩计算方法 M = KPD 式中: M —拧紧扭矩,Nm K —扭矩系数 P —设计期望达到的紧固力, KN D —螺栓公称螺纹直径, mm 代:也可以由下表查岀 d s :螺纹部分危险剖面的计算直径 d 3 =d i -H /6 H :螺纹牙的公称工作高度 0 ?:螺栓材料的屈服极限 3. 紧固力P —般在设计上选取螺栓屈服强度 (T s 的60?80%,安全系数约为 1.2以上。 4. 扭矩系数K 是由内外螺纹之间的摩擦系数和螺栓或螺母支撑面与被紧固零件与紧固件接触的承压 面的摩擦系数综合而成。它与紧固件的表面处理、强度、形位公差、螺纹精度、被紧固零件承压面 粗糙度、刚度的许多因素有关,其中表面处理是一个关键的因素。不同的表面处理,其扭矩系数相 差很大,有时相差近一倍。例如:同螺纹规格,同强度的螺纹副,表面处理为磷化时,扭矩系数约 为0.13?0.18,而表面处理为发黑时,扭矩系数可达 0.26? 0.3。 5. 对于M10~M68的粗牙钢螺栓,当螺纹无润滑时,拧紧力矩粗略计算公式: M =0.2 PD 6. VDI 2230中的拧紧力矩计算方法 M A =F M (0.16 卩 +0.58 d 2 '甩 + P = A s A s =兀 Xd ;/4 d s = (d 2+d 3 y 2 G 0 = (0.5?0.7 ¥ b s 式中: F M :装配预紧力 d 2:外螺纹基本中 径 D Km :螺栓头部下面的摩擦直径 P:螺距 巴:螺栓螺纹摩擦系数 比:螺栓头支承面摩擦系数

转向力计算

(1)助力转矩的计算 汽车的转向阻力矩为: P G T w 3 13μ= (1) 式中1G ----前轴载荷; μ----轮胎和路面的摩擦因数,一般取0.7; P ----轮胎气压。 此时,需要转向盘提供的转矩为: +=ηω0i T T w h (2) 式中0ωi ——为转向系角传动比; +η——转向系正效率,对齿轮齿条式转向器,+η一般在70%~85%[27],这 里取+η=0.8。 根据推荐值,转向盘操纵力不应大于30~50N,在10N 以下则转向很轻便,因此作用在转向盘上的转矩为 2 00h h h D F T ?= (3) 式中0h F ——作用在转向盘上的力,这里取0h F =30N ; h D ——转向盘直径; 所以作用在转向轴上的最大助力转矩max a T 为: 0max h h a T T T -==00h w T i T -+ηω (2)电动机参数的选择和计算 这里采用永磁直流电动机,转向轴驱动的结构形式,考虑到电动机的转速过大,需要减速增矩,故电动机的输出转矩经减速机构后再驱动转向轴。因此电动机的额定输出转矩为 G T T a e max = (4)

式中G 为减速机构的减速比。 转向盘(即转向轴)的转动速度一般取h n =1.2r/s=72r/min,为了使电动机在转向盘转速较快的时候能够跟得上,所需电动机的最大额定转速为 G n n h e ?= (5) 由式(4)和(5)可得到电动机的额定功率 9549 e e e n T P ?= 计算得到LC 车型的电机额定功率为117.7W<125W ,EK 车型115.7W<125W 。

螺纹拧紧力矩计算

螺纹联接的拧紧力矩计算 M t=K×P0×d×10-3 N.m K:拧紧力系数d:螺纹公称直径 P0:预紧力 P0=σ0×A s A s也可由下面表查出 A s=π×d s2/4 d s:螺纹部分危险剖面的计算直径 d s=(d2+d3)/2 d3= d1-H/6 H:螺纹牙的公称工作高度 σ0=(0.5~0.7)σs σs――――螺栓材料的屈服极限N/mm2(与强度等级相关,材质决定)K值查表:(K值计算公式略) K值 摩擦表面状况 有润滑无润滑 精加工表面0.10 0.12 一般加工表面0.13~0.15 0.18~0.21 表面氧化0.20 0.24 镀锌0.18 0.22 干燥的粗加工表面 0.26~0.3 σs查表: 螺纹性能等级 3.6 4.6 4.8 5.6 5.8 6.88.89.810.912.9 σs 或σ0.2N/mm21802403203004004806407209001080 As查表: 螺纹公称直径d/mm3 3.545678101214161820222427303336公称应力截面积As/mm2 5.036.788.7814.220.128.936.65884.3115157192245303353459561694817通过计算得到螺栓联接拧紧力矩如下表所示:

表面被氧化(无润滑)的螺纹联接的拧紧力矩值(单位:N.m) 性能 等级 3.6 4.6 4.8 5.6 5.8 6.88.89.810.912.9 螺纹 直径 d/mm min max min max min max min max min max min max min max min max min max min max 30.330.460.430.610.580.810.540.760.72 1.010.87 1.22 1.16 1.62 1.30 1.83 1.63 2.28 1.96 2.74 3.50.510.720.680.960.91 1.280.85 1.20 1.14 1.59 1.37 1.91 1.82 2.55 2.05 2.87 2.56 3.59 3.08 4.31 40.76 1.06 1.01 1.42 1.35 1.89 1.26 1.77 1.69 2.36 2.02 2.83 2.70 3.78 3.03 4.25 3.79 5.31 4.55 6.37 5 1.53 2.15 2.04 2.8 6 2.73 3.82 2.56 3.58 3.41 4.7 7 4.09 5.73 5.457.63 6.138.597.6710.749.2012.88 6 2.60 3.65 3.4 7 4.86 4.63 6.4 8 4.34 6.08 5.798.10 6.959.739.2612.9710.4214.5913.0218.2315.6321.88 7 4.37 6.12 5.838.167.7710.887.2810.209.7113.5911.6516.3115.5421.7517.4824.4721.8530.5926.2236.71 8 6.328.858.4311.8111.2415.7410.5414.7614.0519.6816.8723.6122.4931.4825.3035.4231.6244.2737.9553.13 1012.5317.5416.7023.3922.2731.1820.8829.2327.8438.9833.4146.7744.5462.3650.1170.1662.6487.7075.17105.24 1221.8530.5929.1340.7938.8554.3836.4250.9848.5667.9858.2781.5877.69108.7787.40122.36109.25152.95131.10183.54 1434.7848.6946.3764.9261.8286.5557.9681.1477.28108.1992.74129.83123.65173.11139.10194.75173.88243.43208.66292.12 1654.2675.9672.35101.2896.46135.0590.43126.60120.58168.81144.69202.57192.92270.09217.04303.85271.30379.81325.56455.78 1874.65104.5199.53139.35132.71185.79124.42174.18165.89232.24199.07278.69265.42371.59298.60418.04373.25522.55447.90627.06 20105.84148.18141.12197.57188.16263.42176.40246.96235.20329.28282.24395.14376.32526.85423.36592.70529.20740.88635.04889.06 22143.99201.58191.98268.77255.97358.36239.98335.97319.97447.96383.96537.55511.95716.73575.94806.32719.931007.90863.911209.48 24183.00256.19243.99341.59325.32455.45304.99426.99406.66569.32487.99683.18650.65910.91731.981024.77914.981280.971097.971537.16 27267.69374.76356.92499.69475.89666.25446.15624.61594.86832.81713.84999.37951.781332.501070.761499.061338.441873.821606.132248.59 30363.53508.94484.70678.59646.27904.78605.88848.23807.841130.98969.411357.171292.541809.561454.112035.761817.642544.702181.173053.64 33494.68692.56659.58923.41879.441231.21824.471154.261099.301539.011319.161846.821758.872462.421978.732770.232473.423462.782968.104155.34 36635.30889.42847.071185.891129.421581.191058.831482.361411.781976.491694.132371.782258.843162.382541.203557.683176.504447.093811.805336.51

扭矩控制方法

扭矩控制方法 旋转螺栓后,螺杆受力伸长了,螺杆伸长产生夹紧力把连接件夹紧了。 施加的扭矩并不象夹紧力那么简单 在通用公式中:力(F)*力矩(L)=扭矩M 也就是说螺栓旋转的越多,得到的扭矩越大。但是90%扭矩被摩擦力消耗掉了,只有10%转化为了夹紧力。 打个比方,当你上紧一颗工艺要求为10N·m力矩的螺栓时,我们真正需要的是那1N·m 轴向力矩,大多数力矩都被摩擦力消耗掉了。摩擦力和夹紧力是什么关系呢? 通常情况下,遵循50-40-10原则,就是50%的螺栓头下摩擦力,40%的螺纹副中摩擦力,10%的夹紧力。但是在一些条件下夹紧力的比例是可以变化的。 比如说当工人师傅拿起一颗螺栓发现其螺纹有碰伤或者有杂质,您一旦将其装入螺孔内,这样的螺栓产生怎样的夹紧力呢?一般认为螺纹副中有缺陷(杂质、磕碰等)按照装配力矩装配后,存在50%的螺栓头下的摩擦力,45%螺纹副中的摩擦力,只有5%我们想要的夹紧力。这时候这颗螺栓的装配力矩是达到了,但是远不符合我们所需要的夹紧力。如果这里螺栓在飞轮,曲轴等这样的运动件上就非常容易发生脱落,这就造成了我们经常说的“假紧”。还有弹性材料变软会使夹紧力衰减,也是通常我们说软连接的扭矩衰减。比如汽缸盖垫材料较软我们采用二次拧紧的方法来减少夹紧力的衰减,还有机油盘螺栓经常发生夹紧力衰减,就是因为螺栓下面有机油盘垫片(软质材料的原因)。 试想我们需要螺杆伸长而产生夹紧力,扭矩越大螺杆可以伸的越长,是不是扭力越大越好呢?我们施加的扭矩越大会使螺栓过度伸长,螺栓超过屈服强度极限就会发生应力断裂。从而失去了螺栓的链接作用。 拧紧螺栓的几种方法

1、扭矩控制法(T) 扭矩控制法是最初始也是最简单的控制法,它是基于螺纹连接时,轴向夹紧力F拧紧时与拧紧扭矩T成正比关系,可用一个公式T=K·F来表示,这个K则是扭矩系数。当一个螺钉设计出来时候他的轴向夹紧力F就是可知的,拧紧扭矩T通过工艺设定我们的拧紧扭矩也被工艺部门规范下来。但是总装车间经常出现拧紧扭矩达到但是装配的螺栓依然不合格,这是为什么呢? 关键就在这个扭矩系数,扭矩系数K的变化主要波动因素是综合摩擦系数u,也就是说螺栓,螺孔的精度,杂质,是否磕碰都会影响这个综合摩擦系数u。而且这个K值和温度也有关系,经过日本住友公司通过实验证明环境温度每增加1℃,扭矩系数K就下降0.31%。扭矩控制法到底能不能精确呢?给大家加深下影响,根据德国工程师协会的拧紧实验报告称当拧紧力矩T的误差为±0时(即无误差的施加扭矩)。螺栓轴向夹紧力误差可以达到±27.2%。 所以扭矩控制法的优点是:成本低,可以使用简易的拧紧工具扭矩扳手来检查拧紧质量。其缺点就是:拧紧精度不够,不能充分发挥材料潜力,环境影响大(温度,螺栓螺纹,杂质、磕碰等) 2 扭矩-转角控制法(TA)又称超弹性控制法。 扭矩-转角控制法是先将螺栓拧到一个不大的扭矩,一般会是拧紧力矩的40%-60%(由工艺验证后制定),再从此点开始,拧一个规定的转角的控制方法。 这种方法它是基于一定的转角,是螺栓产生一定的轴向伸长及连接件被压缩了。这样做的目的是将螺栓拧到紧密接触面上,并克服了一些表面凹凸不平等不均匀因素,而后面所需求的轴向夹紧力由转角产生。在计算转角之后,摩擦阻力对轴向夹紧力的影响不复存在,所以其精度比单纯的扭矩控制法要高,扭矩控制法的要点就是测量转角的起点,一旦这个转角确

螺栓拧紧力矩标准_全

螺栓拧紧力矩标准 未注明拧紧力矩要求时,参考下表(普通螺栓拧紧力矩) 公制螺栓扭紧力矩Q/STB 12、521.5-2000 范围:本标准适用于机械性能10.9级,规格从M6-M39得螺栓得扭紧力矩,对于使用尼龙垫圈、密封垫圈、其它非金属垫圈得螺栓,本标准不适用、

★对于设计图纸有明确力矩要求得,应按图纸要求执行。套管螺母紧固力矩Q/STB B07833-1998 材料HPb63-3Y2

直通式压注油杯Q/STB B07020-1998(螺纹M6、M8*1、M10*1) 紧固力矩:0。3—0。5Kg.m、 安全阀Q/STB B07029—1998( 螺纹R1/8) 紧固力矩:2、9—4.9Nm、 通气塞Q/STB B07030—1998(螺纹R1/4) 紧固力矩:2.94-5。88Nm。 螺塞Q/STBB07040-1998(公称直径08-10螺距1.25,12—36螺距1。5) 螺栓(排气) Q/STBB07060—1998(M12*1、5) 紧固力矩:58。8-78、4N、m、

软管(锥形密封)Q/STB B07100—1998 软管(锥形密封) Q/STB B07123-1998 (接头部螺母拧紧力矩)

螺母(球头式管接头用) Q/STBB07201—1998 拧紧力矩:N.m 材料:(Q235) 管接头螺母Q/STB B07202—1998 拧紧力矩(Q235/ HPb 59-1) 铰接螺栓Q/STBB07206-1998 拧紧力矩(Q235)

球头式端直通接头Q/STB B07211-1998 拧紧力矩(Q235 HPb60—1 ) 表中拧紧力矩适用于钢制接头 管接头Q/STB B07212—1998 紧固力矩(区分代号为5、7得件材料Q23 5) 拧紧力矩(材料Q235)

螺栓紧固力矩确认

工业装配中使用最多的就是紧固件,譬如螺母螺帽、螺丝等。通常之前的方法是工人靠自己的感觉,认为紧到不能紧时就可以结束。这个不同的人拧紧同一个工位,往往会造成紧固力度不统一。小的方面就是产品品质无法统一标准,大点将可能因此出现事故。 过紧,会导致螺栓张力过大,造成螺栓屈服,一种会螺栓断裂或者滑丝,失去紧固效果。过松,实际没有起到紧固的作用。 那么一般怎么确定螺栓的紧固扭矩呢,下面转述一篇关于机螺丝的确认方法。 关于如何紧固螺栓和螺母的文章已经有很多,但如何恰当地紧固机螺丝(Machine Screws)的文章较少。与如何确保螺栓和螺母的安全连接一样,在紧固机螺丝时,恰当地选择合适的拧紧力矩十分重要。恰当的、安全的连接直接关系到装配后产品的质量好坏。因此在紧固机螺丝时,我们应该计算一下合理的拧紧力矩。紧固机螺丝的这些力矩与紧固螺栓、螺母的力矩相比起来要小得多。 1、机螺丝拧紧力矩的计算 常用的计算螺纹紧固件拧紧力矩的公式为: T=D×K×P 其中: T:力矩(牛顿?米/英寸?磅1Nm=9 in.1b) D:螺纹的外径(1mm=0.03937 in) K:螺母的摩擦系数 (光杆螺栓 K=0.20 镀锌螺栓 K=0.22 上蜡或带润滑螺栓 K=0.10) P:夹紧力(一般是屈服点抗拉强度值的75%) 以下扭矩表格首先要参考摩擦系数,此点为造成各扭矩表格不一致的主要原因。所以使用表格,请确定好摩擦系数螺纹外径螺距等等。 1.1米制机螺丝 米制机螺丝(Metric Machine Screws)有不同的强度等级,每个等级都有相应合适的拧紧力矩。在ISO国际标准中来制机螺丝 (Metric Machine Screws)有两个主要的强度等级:4.8级(类似 SAE 60M)和8.8级(类似SAE 120M)。强度等级4.8表示最小的抗拉强度是480MPa,这约等于每英寸70,000磅(即70,000 Psi)。强度等级8.8 表示最小的抗拉强度是880MPa,约等于每英寸127,000磅(127,000Psi)。米制电镀锌机螺丝拧紧力矩见表1。

相关文档
最新文档