高等数学完全归纳笔记(全)

高等数学完全归纳笔记(全)
高等数学完全归纳笔记(全)

一、函数与极限 (2)

1、集合的概念 (2)

2、常量与变量 (3)

2、函数 (4)

3、函数的简单性态 (4)

4、反函数 (5)

5、复合函数 (6)

6、初等函数 (6)

7、双曲函数及反双曲函数 (7)

8、数列的极限 (9)

9、函数的极限 (10)

10、函数极限的运算规则 (12)

一、函数与极限

1、集合的概念

一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a?A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N

⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。

⑶、全体整数组成的集合叫做整数集。记作Z。

⑷、全体有理数组成的集合叫做有理数集。记作Q。

⑸、全体实数组成的集合叫做实数集。记作R。

集合的表示方法

⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合

⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系

⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A?B(或B?A)。。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。

⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。记作?,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:

①、任何一个集合是它本身的子集。即A?A

②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。

③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。

集合的基本运算

⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。)

即A∪B={x|x∈A,或x∈B}。

⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。

即A∩B={x|x∈A,且x∈B}。

⑶、补集:

①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

②补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U 的补集。简称为集合A的补集,记作C U A。

即C U A={x|x∈U,且x A}。

集合中元素的个数

⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

⑵、用card来表示有限集中元素的个数。例如A={a,b,c},则card(A)=3。

⑶、一般地,对任意两个集合A、B,有

card(A)+card(B)=card(A∪B)+card(A∩B)

我的问题:

1、学校里开运动会,设A={x|x是参加一百米跑的同学},B={x|x是参加二百米跑的同学},C ={x|x是参加四百米跑的同学}。学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释以下集合运算的含义。⑴、A∪B;⑵、A∩B。

2、在平面直角坐标系中,集合C={(x,y)|y=x}表示直线y=x,从这个角度看,集合D={(x,y)|方程组:2x-y=1,x+4y=5}表示什么?集合C、D之间有什么关系?请分别用集合语言和几何语言说明这种关系。

3、已知集合A={x|1≤x≤3},B={x|(x-1)(x-a)=0}。试判断B是不是A的子集?是否存在实数a使A =B成立?

4、对于有限集合A、B、C,能不能找出这三个集合中元素个数与交集、并集元素个数之间的关系呢?

5、无限集合A={1,2,3,4,…,n,…},B={2,4,6,8,…,2n,…},你能设计一种比较这两个集合中元素个数多少的方法吗?

2、常量与变量

⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。

⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。在数轴上来说,区间是指介于某两点之间的线段上点的全体。

以上我们所述的都是有限区间,除此之外,还有无限区间:

[a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞;

(-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b;

(-∞,+∞):表示全体实数,也可记为:-∞<x<+∞

注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。

⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。

2、函数

⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。

⑵、函数相等

由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。

⑶、域函数的表示方法

a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2

b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。

c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为:

3、函数的简单性态

⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。

注:一个函数,如果在其整个定义域内有界,则称为有界函数

例题:函数cosx在(-∞,+∞)内是有界的.

⑵、函数的单调性:如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1

及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调增加的。如果函数

在区间(a,b)内随着x增大而减小,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调减小的。

例题:函数=x2在区间(-∞,0)上是单调减小的,在区间(0,+∞)上是单调增加的。

⑶、函数的奇偶性

如果函数对于定义域内的任意x都满足=,则叫做偶函数;如果函数

对于定义域内的任意x都满足=-,则叫做奇函数。

注:偶函数的图形关于y轴对称,奇函数的图形关于原点对称。

⑷、函数的周期性

对于函数,若存在一个不为零的数l,使得关系式对于定义域内任何x值都

成立,则叫做周期函数,l是的周期。

注:我们说的周期函数的周期是指最小正周期。

例题:函数是以2π为周期的周期函数;函数tgx是以π为周期的周期函数。

4、反函数

⑴、反函数的定义:设有函数,若变量y在函数的值域内任取一值y0时,变量x在函数的定义域内必有一值x0与之对应,即,那末变量x是变量y的函数.这个函数用来表示,称为函数的反函数.

注:由此定义可知,函数也是函数的反函数。

⑵、反函数的存在定理:若在(a,b)上严格增(减),其值域为R,则它的反函数必然在R 上确定,且严格增(减).

注:严格增(减)即是单调增(减)

例题:y=x2,其定义域为(-∞,+∞),值域为[0,+∞).对于y取定的非负值,可求得x=±.若我们不加条件,由y的值就不能唯一确定x的值,也就是在区间(-∞,+∞)上,函数不是严格增(减),故其没有反

函数。如果我们加上条件,要求x≥0,则对y≥0、x=就是y=x2在要求x≥0时的反函数。即是:函数在此要求下严格增(减).

⑶、反函数的性质:在同一坐标平面内,与的图形是关于直线y=x对称的。

例题:函数与函数互为反函数,则它们的图形在同一直角坐标系中是关于直线y=x对称的。如右图所示:

5、复合函数

复合函数的定义:若y是u 的函数:,而u又是x 的函数:,且的函数

值的全部或部分在的定义域内,那末,y通过u的联系也是x 的函数,我们称后一个函数是由函数

及复合而成的函数,简称复合函数,记作,其中u叫做中间变量。

注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。

例题:函数与函数是不能复合成一个函数的。

因为对于的定义域(-∞,+∞)中的任何x值所对应的u值(都大于或等于2

),使

都没有定义。

6、初等函数

⑴、基本初等函数:我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数。下面我们用表格来把它们总结一下:

a为任意实数

(正弦函数)

(反正弦函数)

⑵、初等函数:由基本初等函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一个解析式表出的函数称为初等函数.

例题:是初等函数。

7、双曲函数及反双曲函数

⑴、双曲函数:在应用中我们经常遇到的双曲函数是:(用表格来描述)

我们再来看一下双曲函数与三角函数的区别:

双曲函数也有和差公式:

⑵、反双曲函数:双曲函数的反函数称为反双曲函数. a):反双曲正弦函数 其定义域为:(-∞,+∞);

b):反双曲余弦函数其定义域为:[1,+∞);

c):反双曲正切函数其定义域为:(-1,+1);

8、数列的极限

我们先来回忆一下初等数学中学习的数列的概念。

⑴、数列:若按照一定的法则,有第一个数a1,第二个数a2,…,依次排列下去,使得任何一个正整数n对应着一个确定的数a n,那末,我们称这列有次序的数a1,a2,…,a n,…为数列.数列中的每一个数叫做数列的项。第n项a n叫做数列的一般项或通项.

注:我们也可以把数列a n看作自变量为正整数n的函数,即:a n=,它的定义域是全体正整数

⑵、极限:极限的概念是求实际问题的精确解答而产生的。

例:我们可通过作圆的内接正多边形,近似求出圆的面积。

设有一圆,首先作圆内接正六边形,把它的面积记为A1;再作圆的内接正十二边形,其面积记为A2;再作圆的内接正二十四边形,其面积记为A3;依次循下去(一般把内接正6×2n-1边形的面积记为A n)可得一系列内接正多边形的面积:A1,A2,A3,…,An,…,它们就构成一列有序数列。我们可以发现,当内接正多边形的边数无限增加时,An也无限接近某一确定的数值(圆的面积),这个确定的数值在数学上被称为数列A1,A2,A3,…,An,…当n→∞(读作n趋近于无穷大)的极限。

注:上面这个例子就是我国古代数学家刘徽(公元三世纪)的割圆术。

⑶、数列的极限:一般地,对于数列来说,若存在任意给定的正数ε(不论其多么小),总存在正整数N,使得对于n>N时的一切不等式都成立,那末就称常数a是数列

的极限,或者称数列收敛于a .

记作:或

注:此定义中的正数ε只有任意给定,不等式才能表达出与a无限接近的意思。且定义中的正整数N与任意给定的正数ε是有关的,它是随着ε的给定而选定的。

⑷、数列的极限的几何解释:在此我们可能不易理解这个概念,下面我们再给出它的一个几何解释,以使我们能理解它。数列极限为a的一个几何解释:将常数a及数列在数轴上用它们的对应点表示出来,再在数轴上作点a的ε邻域即开区间(a-ε,a+ε),如下图所示:

因不等式与不等式等价,故当n>N时,所有的点都落在开区间(a-ε,a+ε)内,而只有有限个(至多只有N个)在此区间以外。

注:至于如何求数列的极限,我们在以后会学习到,这里我们不作讨论。

⑸、数列的有界性:对于数列,若存在着正数M,使得一切都满足不等式││≤M,则称数列是有界的,若正数M不存在,则可说数列是无界的。

定理:若数列收敛,那末数列一定有界。

注:有界的数列不一定收敛,即:数列有界是数列收敛的必要条件,但不是充分条件。例:数列 1,-1,1,-1,…,(-1)n+1,…是有界的,但它是发散的。

9、函数的极限

前面我们学习了数列的极限,已经知道数列可看作一类特殊的函数,即自变量取1→∞内的正整数,若自变量不再限于正整数的顺序,而是连续变化的,就成了函数。下面我们来学习函数的极限.

函数的极值有两种情况:a):自变量无限增大;b):自变量无限接近某一定点x0,如果在这时,函数值无限接近于某一常数A,就叫做函数存在极值。我们已知道函数的极值的情况,那么函数的极限如何呢?

下面我们结合着数列的极限来学习一下函数极限的概念!

⑴、函数的极限(分两种情况)

a):自变量趋向无穷大时函数的极限

定义:设函数,若对于任意给定的正数ε(不论其多么小),总存在着正数X,使得对于适

合不等式的一切x,所对应的函数值都满足不等式

那末常数A就叫做函数当x→∞时的极限,记作:

下面我们用表格把函数的极限与数列的极限对比一下:

存在函数与常数存在数列与常数

对于适合的

的所有都满足

,都满足,函数<则称数列,当

从上表我们发现了什么??试思考之

b):自变量趋向有限值时函数的极限。我们先来看一个例子.

例:函数,当x→1时函数值的变化趋势如何?函数在x=1处无定义.我们知道对实数来讲,在数轴上任何一个有限的范围内,都有无穷多个点,为此我们把x→1时函数值的变化趋势用表列出,如下图:

从中我们可以看出x→1时,→2.而且只要x与1有多接近,就与2有多接近.或说:只

要与2只差一个微量ε,就一定可以找到一个δ,当<δ时满足<δ定义:设函数在某点x0的某个去心邻域内有定义,且存在数A,如果对任意给定的ε(不论其多么小),总存在正数δ,当0<<δ时,<ε则称函数当x→x0时存在极限,且极限为A,

记:。

注:在定义中为什么是在去心邻域内呢?这是因为我们只讨论x→x0的过程,与x=x0出的情况无关。此定义的核心问题是:对给出的ε,是否存在正数δ,使其在去心邻域内的x均满足不等式。

有些时候,我们要用此极限的定义来证明函数的极限为 A,其证明方法是怎样的呢?

a):先任取ε>0;

b):写出不等式<ε;

c):解不等式能否得出去心邻域0<<δ,若能;

d):则对于任给的ε>0,总能找出δ,当0<<δ时,<ε成立,因此

10、函数极限的运算规则

前面已经学习了数列极限的运算规则,我们知道数列可作为一类特殊的函数,故函数极限的运算规则与数列极限的运算规则相似。

⑴、函数极限的运算规则

若已知x→x0(或x→∞)时,.

则:

推论:

在求函数的极限时,利用上述规则就可把一个复杂的函数化为若干个简单的函数来求极限。

例题:求

解答:

例题:求

此题如果像上题那样求解,则会发现此函数的极限不存在.我们通过观察可以发现此分式的分子和分母都没有极限,像这种情况怎么办呢?下面我们把它解出来。

解答:

注:通过此例题我们可以发现:当分式的分子和分母都没有极限时就不能运用商的极限的运算规则了,应先把分式的分子分母转化为存在极限的情形,然后运用规则求之。

函数极限的存在准则

学习函数极限的存在准则之前,我们先来学习一下左、右的概念。

我们先来看一个例子:

例:符号函数为

对于这个分段函数,x从左趋于0和从右趋于0时函数极限是不相同的.为此我们定义了左、右极限的概念。

定义:如果x仅从左侧(x<x0)趋近x0时,函数与常量A无限接近,则称A为函数当

时的左极限.记:

如果x仅从右侧(x>x0)趋近x0时,函数与常量A无限接近,则称A为函数当时

的右极限.记:

注:只有当x→x0时,函数的左、右极限存在且相等,方称在x→x0时有极限

函数极限的存在准则

准则一:对于点x0的某一邻域内的一切x,x0点本身可以除外(或绝对值大于某一正数的一切x)有

≤≤,且,

那末存在,且等于A

注:此准则也就是夹逼准则.

准则二:单调有界的函数必有极限.

注:有极限的函数不一定单调有界

两个重要的极限

一:

注:其中e为无理数,它的值为:e=2.718281828459045...

二:

注:在此我们对这两个重要极限不加以证明.

注:我们要牢记这两个重要极限,在今后的解题中会经常用到它们.

例题:求

解答:令,则x=-2t,因为x→∞,故t→∞,

注:解此类型的题时,一定要注意代换后的变量的趋向情况,象x→∞时,若用t代换1/x,则t→0.

无穷大量和无穷小量

无穷大量

我们先来看一个例子:

已知函数,当x→0时,可知,我们把这种情况称为趋向无穷大。为

此我们可定义如下:设有函数y=,在x=x0的去心邻域内有定义,对于任意给定的正数N(一个任意大的数),总可找到正数δ,当

时,成立,则称函数当时为无穷大量。

记为:(表示为无穷大量,实际它是没有极限的)

同样我们可以给出当x→∞时,无限趋大的定义:设有函数y=,当x充分大时有定义,对于任意给定的正数N(一个任意大的数),总可以找到正数M,当时,成立,则称函

数当x→∞时是无穷大量,记为:

无穷小量

以零为极限的变量称为无穷小量。

定义:设有函数,对于任意给定的正数ε(不论它多么小),总存在正数δ(或正数M),使得对于适合不等式(或)的一切x,所对应的函数值满足不等式,则称函数当(或x→∞)时为无穷小量.

记作:(或)

注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有0可作为无穷小量的唯一常量。无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于0.无穷大量与无穷小量是互为倒数关系的.

关于无穷小量的两个定理

定理一:如果函数在(或x→∞)时有极限A,则差是当(或x→∞)时的无穷小量,反之亦成立。

定理二:无穷小量的有利运算定理

a):有限个无穷小量的代数和仍是无穷小量; b):有限个无穷小量的积仍是无穷小量;c):常数与无穷小量的积也是无穷小量.

无穷小量的比较

通过前面的学习我们已经知道,两个无穷小量的和、差及乘积仍旧是无穷小.那么两个无穷小量的商会是怎样的呢?好!接下来我们就来解决这个问题,这就是我们要学的两个无穷小量的比较。

定义:设α,β都是时的无穷小量,且β在x0的去心领域内不为零,

a):如果,则称α是β的高阶无穷小或β是α的低阶无穷小;

b):如果,则称α和β是同阶无穷小;

c):如果,则称α和β是等价无穷小,记作:α∽β(α与β等价)

例:因为,所以当x→0时,x与3x是同阶无穷小;

因为,所以当x→0时,x2是3x的高阶无穷小;

因为,所以当x→0时,sinx与x是等价无穷小。

等价无穷小的性质

设,且存在,则.

注:这个性质表明:求两个无穷小之比的极限时,分子及分母都可用等价无穷小来代替,因此我们可以利用这个性质来简化求极限问题。

例题:1.求

解答:当x→0时,sin ax∽ax,tan bx∽bx,故:

例题: 2.求

解答:

注:

注:从这个例题中我们可以发现,作无穷小变换时,要代换式中的某一项,不能只代换某个因子。

函数的一重要性质——连续性

在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的.这种现象在函数关系上的反映,就是函数的连续性

在定义函数的连续性之前我们先来学习一个概念——增量

设变量x从它的一个初值x1变到终值x2,终值与初值的差x2-x1就叫做变量x的增量,记为:△x即:△x=x2-x1增量△x可正可负.

我们再来看一个例子:函数在点x0的邻域内有定义,当自变量x在领域内从x0变到x0+△x 时,函数y相应地从变到,其对应的增量为:

这个关系式的几何解释如下图:

现在我们可对连续性的概念这样描述:如果当△x趋向于零时,函数y对应的增量△y也趋向于零,即:

,那末就称函数在点x0处连续。

函数连续性的定义:

设函数在点x0的某个邻域内有定义,如果有称函数在点

x0处连续,且称x0为函数的的连续点.

下面我们结合着函数左、右极限的概念再来学习一下函数左、右连续的概念:设函数在区间(a,b]内有定义,如果左极限存在且等于,即:=,那末我们就称函数

在点b左连续.设函数在区间[a,b)内有定义,如果右极限存在且等于,即:

=,那末我们就称函数在点a右连续.

一个函数在开区间(a,b)内每点连续,则为在(a,b)连续,若又在a点右连续,b点左连续,则在闭区间[a,b]连续,如果在整个定义域内连续,则称为连续函数。

注:一个函数若在定义域内某一点左、右都连续,则称函数在此点连续,否则在此点不连续.

注:连续函数图形是一条连续而不间断的曲线。

通过上面的学习我们已经知道函数的连续性了,同时我们可以想到若函数在某一点要是不连续会出现什么情形呢?接着我们就来学习这个问题:函数的间断点

函数的间断点

定义:我们把不满足函数连续性的点称之为间断点.

它包括三种情形:a):在x

0无定义;

b):在x→x0时无极限;

c):在x→x0时有极限但不等于;

下面我们通过例题来学习一下间断点的类型:

例1:正切函数在处没有定义,所以点是函数的间断点,因

,我们就称为函数的无穷间断点;

例2:函数在点x=0处没有定义;故当x→0时,函数值在-1与+1之间变动无限多次,我们就称点x=0叫做函数的振荡间断点;

例3:函数当x→0时,左极限,右极限,从这我们可以看出函数左、右极限虽然都存在,但不相等,故函数在点x=0是不存在极限。我们还可以发现在点x=0时,函数值产生跳跃现象,为此我们把这种间断点称为跳跃间断点;我们把上述三种间断点用几何图形表示出来如下:

间断点的分类

我们通常把间断点分成两类:如果x0是函数的间断点,且其左、右极限都存在,我们把x0称为

函数的第一类间断点;不是第一类间断点的任何间断点,称为第二类间断点.

可去间断点

若x0是函数的间断点,但极限存在,那末x0是函数的第一类间断点。此时函

数不连续原因是:不存在或者是存在但≠。我们令,则可使函数在点x0处连续,故这种间断点x0称为可去间断点。

连续函数的性质及初等函数的连续性

连续函数的性质

函数的和、积、商的连续性

我们通过函数在某点连续的定义和极限的四则运算法则,可得出以下结论:

a):有限个在某点连续的函数的和是一个在该点连续的函数;

b):有限个在某点连续的函数的乘积是一个在该点连续的函数;

c):两个在某点连续的函数的商是一个在该点连续的函数(分母在该点不为零);

反函数的连续性

若函数在某区间上单调增(或单调减)且连续,那末它的反函数也在对应的区间上单调增(单调减)且连续

例:函数在闭区间上单调增且连续,故它的反函数在闭区间[-1,1]

上也是单调增且连续的。

复合函数的连续性

设函数当x→x0时的极限存在且等于a,即:.而函数在点u=a 连续,那末复合函数当x→x0时的极限也存在且等于.即:

例题:求

解答:

注:函数可看作与复合而成,且函数在点u=e 连续,因此可得出上述结论。

设函数在点x=x0连续,且,而函数在点u=u0连续,那末复合函数

在点x=x0也是连续的

初等函数的连续性

通过前面我们所学的概念和性质,我们可得出以下结论:基本初等函数在它们的定义域内都是连续的;一切初等函数在其定义域内也都是连续的.

闭区间上连续函数的性质

闭区间上的连续函数则是在其连续区间的左端点右连续,右端点左连续.对于闭区间上的连续函数有几条重要的性质,下面我们来学习一下:

最大值最小值定理:在闭区间上连续的函数一定有最大值和最小值。(在此不作证明)

例:函数y=sinx在闭区间[0,2π]上连续,则在点x=π/2处,它的函数值为1,且大于闭区间[0,2π]上其它各点出的函数值;则在点x=3π/2处,它的函数值为-1,且小于闭区间[0,2π]上其它各点出的函数值。

介值定理在闭区间上连续的函数一定取得介于区间两端点的函数值间的任何值。即:

,μ在α、β之间,则在[a,b]间一定有一个ξ,使

推论:在闭区间连续的函数必取得介于最大值最小值之间的任何值。

二、导数与微分

导数的概念

在学习到数的概念之前,我们先来讨论一下物理学中变速直线运动的瞬时速度的问题。例:设一质点沿x轴运动时,其位置x是时间t的函数,,求质点在t0的瞬时速度?我们知道时间从t0有增

量△t时,质点的位置有增量,这就是质点在时间段△t的位移。因此,在此

段时间内质点的平均速度为:.若质点是匀速运动的则这就是在t0的瞬时速度,若质点是非匀速直线运动,则这还不是质点在t0时的瞬时速度。我们认为当时间段△t无限地接近于0时,此平均速度会无限地接近于质点t0时的瞬时速度,即:质点在t0时的瞬时速度

=为此就产生了导数的定义,如下:

导数的定义:设函数在点x0的某一邻域内有定义,当自变量x在x0处有增量△x(x+△x也

在该邻域内)时,相应地函数有增量,若△y与△x之比当△x→0时极限存在,则称这个极限值为在x0处的导数。记为:还可记为:,函数在点x0处存在导数简称函数在点x0处可导,否则不可导。若函数在区间(a,b)

内每一点都可导,就称函数在区间(a,b)内可导。这时函数对于区间(a,b)内的每一个确

定的x值,都对应着一个确定的导数,这就构成一个新的函数,我们就称这个函数为原来函数的导函数。

注:导数也就是差商的极限

左、右导数

前面我们有了左、右极限的概念,导数是差商的极限,因此我们可以给出左、右导数的概念。若极限

存在,我们就称它为函数在x=x0处的左导数。若极限存在,我们就称它为

函数在x=x0处的右导数。

注:函数在x0处的左右导数存在且相等是函数在x0处的可导的充分必要条件函数的和、差求导法则

函数的和差求导法则

法则:两个可导函数的和(差)的导数等于这两个函数的导数的和(差).用公式可写为:

。其中u、v为可导函数。

高等数学学习心得体会_高等数学学习总结

高等数学学习心得体会_高等数学学习总结 ----WORD文档,下载后可编辑修改---- 下面是小编收集整理的范本,欢迎您借鉴参考阅读和下载,侵删。您的努力学习是为了更美好的未来! 高等数学学习心得体会篇 1 高等数学是大学工科课程里的一门重要基础课。它的重要性,我相信大家都了解。高等数学是许多课程的基础,特别是与以后的许多专业课都紧密相连。因此,学好高等数学对于一名工科学生来说,至关重要。 然而,对于许多同学来说,高等数学是一门头疼的学科。如何学好高等数学呢?下面是我个人在学习过程中的一些心得体会。 首先,我觉得高等数学与以前我们高中所学的数学有一点不同。高等数学注重的是一种数学的思想,比如说微积分思想,极限的思想。强调的数学的逻辑性与分析性。不像高中数学那样注重技巧性。因此,在学习的过程中,课本的知识至关重要。对于课本上面每一个概念、定理、公式、例题,都要理解清楚。特别是对于定理、公式的推导过程,不仅要弄懂每一步的推导过程如何来,而且还要学会自己推导。因为学会自己推导,更有助于我们的记忆和应用。我的经验是,在理解的基础上去记忆公式,而不是一味的死记硬背。 第二,学习数学是不能缺少训练的。一定量的课后习题训练,不但可以让我们巩固我们学到的知识点,学会如何在实际中应用我们学到的公式定理,还有助于我们熟悉考试的各种题型。还有,题目并不是越多越好,题海战术不仅浪费大量的时间与精力,而且效果也不好。我的经验是,每做完一道题都要总结一下,特别是做错的题目,这道题的知识点是哪些?应用了哪些公式定理?错在哪里?为什么会做错?学会思考,学会总结,这样做题才能达到事半功倍的效果。 最后,学好数学是一个坚持的过程。高等数学的内容环环相扣,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一节一节,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。这样,对于后面的学习会造成很大的影响。 高等数学学习心得体会篇 2 随着科技日新月异的发展和电脑无孔不入

高等数学笔记

第1章函数 §1 函数的概念 一、区间、邻域 自然数集N整数集Z有理数集Q实数集R 建立数轴后: 建立某一实数集A与数轴上某一区间对应 区间:设有数a,b,a0),则称实数集{x|a?δ

a称为N(a,δ)的中心,δ>0称为邻域N(a,δ)的半径。 去心邻域:把N(a,δ)的中心点a去掉,称为点a的去心邻域,记为N(a^,δ)={x|0<|x?a|<δ}=N(a,δ)?{a} 注:其中,?{a}表示去掉由a这一个数组成的数集。 二、函数概念 例1. 设圆的半径为x(x>0),它的面积A=πx2,当x在(0,+∞)内任取一个数值(记为?x∈(0,+∞))时,由关系式A=πx2就可以确定A的对应数值。 文章来源:https://www.360docs.net/doc/e49625899.html,/ 例2. 设有半径为r的圆,作圆的内接正n边形,每一边对应的圆心角α=2πn,周长S n=n?2r sinπn,当边数n在自然数 集N(n≥3)任取一个数,通过关系式S n=2nr sinπn就有一个S n对应确定数值。 函数定义:设有数集X,Y,f是一个确定的对应法则,对?x∈X,通过对应法则f都有唯一的y∈Y与x对应,记为x→f y,或f(x)=y,则称f为定义在X上的函数。 其中X称为f的定义域,常记为D f。 X——自变量,Y——因变量。 当X遍取X中的一切数时,那么与之对应的y值构成一个数集V f={y|y=f(x),x∈X},称V f为函数f的值域。 文章来源:https://www.360docs.net/doc/e49625899.html,/ 注意: (1)一个函数是由x,y的对应法则f与x的取值范围X所确定的。把“对应法则f”、“定义域”称为函数定义的两个要素。 例如,y=arcsin(x2+2)这个式子,由于x2+2>2,而只有当|x2+2|≤1时,arcsin才有意义,因此这个式子不构成函数关系。又例如,y=ln x2与y=2ln x不是同一个函数,因为定义域不同。而y=ln x2与y=2ln|x|是同一个函数,因为定义域相同。(2)函数的值域是定义域和对应法则共同确定的。 (3)确定函数定义域时,注意:若函数有实际意义,需依据实际问题是否有意义来确定。 若函数不表示某实际问题,则定义域为自变量所能取得的使函数y=f(x)成立的一切实数所组成的数值。 函数的几何意义:设函数y=f(x)定义域为D f,?x∈D f,对应函数值y=f(x)在XOY平面上得到点(x,y),当x遍取D f中一切实数时,就得到点集P={(x,y)|y=f(x),x∈D f}。点集P称为函数y=f(x)的图形。 文章来源:https://www.360docs.net/doc/e49625899.html,/ 三、函数的几个简单性质 1. 函数的有界性 若?M>0,s.t.|f(x)|≤M,x∈I,则称y=f(x)在区间I上有界。否则称f(x)在I上无界。 注:s.t.是“使得,满足于”的意思,I表示某个区间。

高等数学重点总结

高等数学 主要内容有:二重积分、三重积分、曲线积分和曲面积分、无穷级数、常微分方程等。 第十章重积分 教学目标:理解二重积分、三重积分的概念,了解重积分的性质。掌握二重积分的计算方法(直角坐标、极坐标),了解三重积分的计算方法(直角坐标、柱面坐标、球面坐标)。会用重积分求解一些几何量(如体积、曲面面积等)。 重点:二重积分、三重积分的概念和思想,二重积分的计算方法(直角坐标、极坐标),三重积分的计算。 难点:二重积分的计算方法,三重积分的计算方法, CH10重积分 10.1二重积分概念及性质 10.2二重积分计算方法 10.3三重积分的概念及计算 10.4重积分应用 第十一章曲线积分与曲面积分 理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。会计算两类曲线积分。掌握格林(Green)公式,会使用平面曲线积分与路径无关的条件。了解两类曲面积分的概念及高斯(Guass)、斯托克斯(Stokes)公式并会计算两类曲面积分。 重点:两类曲线和曲面积分的概念及计算,格林公式,高斯公式。 难点:格林公式,高斯公式。 CH11曲线积分与曲面积分 11.1对弧长的曲线积分

11.2对坐标的曲线积分 11.3格林公式及其应用 11.4对面积的曲面积分 11.5对坐标的曲面积分 11.6高斯公式 11.7斯托克斯公式(*) 第十二章 无穷级数 教学目标:理解无穷级数收敛、发散以及和的概念,了解无穷级数基本性质及收敛的必要条件。掌握几何级数和p -级数的收敛性。了解正项级数的比较审敛法,掌握正项级数的比值审敛法。了解交错级数的莱布尼兹定理,会估计交错级数的截断误差。了解无穷级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系。了解函数项级数的收敛域及和函数的概念。掌握比较简单的幂级数收敛区间的求法(区间端点的收敛性可不作要求)。了解幂级数在其收敛区间内的一些基本性质。了解函数展开为泰勒级数的充分必要条件。会利用,sin ,cos ,ln(1)x e x x x +和()1x μ+的马克劳林(Maclaurin)展开式将一些简单的函数间接展开成幂级数。了解幂级数在近似计算上的简单应用。了解函数展开为傅里叶(Fourier)级数的狄利克雷(Dirichlet)条件,会将定义在(,)ππ-和(,)l l -上的函数展开为傅里叶级数,并会将定义在(0,)l 上的函数展开为正弦或余弦级数。 重点:无穷级数收敛、发散以及和的概念,几何级数和p -级数的收敛性,正项级数的比值审敛法,莱布尼兹判别法,比较简单的幂级数的收敛域和和函数的求法,用间接法展开函数为幂级数。 难点:正项级数的比较审敛法,交错级数的莱布尼兹定理,求幂级数的收敛域及和函数,函数展开为泰勒级数,函数展开为

高等数学学习笔记

第一章 代数运算与自然数 主要内容: 1、集合与映射的概念 2、映射及其运算 3、代数系统 4、自然数及其他相关定义 5、归纳法原理与反归纳法的运用 重点掌握 1、由A →B 的单映射σ的定义为:设2121,,,:a a A a A a B A ≠∈∈→若由σ,就推出)()21a a σσ≠(,则称σ为从A 到B 的单映射。 2、由A →B 的满映射σ的定义为:设B ran B A =→)(,:σσ若,则称σ为从A 到B 的满映射。 3、给出一个由整数集合Z 到自然数集合N 的双射:可考虑分段映射,即将定义域分为小于0、等于0、大于0的整数三部分分别给出其象 4、若集合|A|=n ,则集合A →A 的映射共有n n 种。 5、皮阿罗公理中没有前元的元素为1。 6、自然数a 与b 加法的定义中两个条件为①:'1a a =+②:)'('b a b a +=+. 7、自然数a 与b 相乘的定义中两个条件为: ①:a a =?1;②:a b a b a +?=?' 8、自然数a>b 的定义为:如果给定的两个自然数a 与b 存在一个数k,使得a=b+k ,则称a 大于b,b 小于a,记为a>b 或b

12、若A 是有限集合,则A →A 的不同映射个数为:||||A A 。 13、从整数集合Z 到自然数集合N 存在一个单映射。 14、若A 是有限集合,则不存在A 到其真子集合的单映射。 15、若A 为无限集合,则存在A 的真子集合B 使其与A 等价。 16、存在从自然数集合N 到整数集合Z 的一个满映射,但不是单映射。 可考虑将定义域分成奇数、偶数两部分,定义一个与n )1(-有关的映射 17、存在从自然数N 到整数集合Z 的双射。 可考虑分段映射 18、代数系统(+R ,?)与代数系统(R,+)是同构的,其中+R 表示正实数集合,R 表示实数集合,?与+就是通常的实数乘法与加法。 根据同构定义,只需找到一个从(+R ,?)到(R,+)的一一映射,例如lgx 就可以证明上述论述。 19、令+Q 为正有理数集合,若规定 2 b a b a +=⊕,ab b a =? 则: (1){+Q ,⊕}构成代数体系,但不满足结合律。 (2){+Q ,?}不构成代数体系,但满足结合律。 根据代数体系和结合律的定义可得上述论述成立。 20、若在实数集合中规定b a ⊕=a+b-a ×b ,其中+与×是通常的加法与乘法,则⊕满足结合律。 只需证明等式(b a ⊕)⊕c=)(c b a ⊕⊕成立 21、分别利用归纳法与反归纳法可以证明n 个数的算术平均值大于等于这n 个数的几何平均值。 归纳法根据定义易证,在运用反归纳法证明时可先证n=2,4,…,n 2都成立,假设命题对n=k 成立,令,...21k a a a S k k +++= 1 ...1211-+++=--k a a a S k k ,利用12111...---≥k k k a a a S 证之成立

高等数学极限总结

【摘要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘。本文立足教材的基本概念阐述,着重介绍极限运算过程中极具技巧的解决思路。希望以此文能对学习者有所帮助。 【关键词】高等数学极限技巧 《高等数学》极限运算技巧 《高等数学》的极限与连续是前几章的内容,对于刚入高校的学生而言是入门部分的重要环节。是“初等数学”向“高等数学”的起步阶段。 一,极限的概念 从概念上来讲的话,我们首先要掌握逼近的思想,所谓极限就是当函数的变量具有某种变化趋势(这种变化趋势是具有唯一性),那么函数的应变量同时具有一种趋势,而且这种趋势是与自变量的变化具有对应性。通俗的来讲,函数值因为函数变量的变化而无限逼近某一定值,我们就将这一定值称为该函数在变量产生这种变化时的极限! 从数学式子上来讲,逼近是指函数的变化,表示为。这个问题不再赘述,大家可以参考教科书上的介绍。 二,极限的运算技巧 我在上课时,为了让学生好好参照我的结论,我夸过这样一个海口,我说,只要你认真的记住这些内容,高数部分所要求的极限内容基本可以全部解决。现在想来这不是什么海口,数学再难也是基本的内容,基本的方法,关键是技巧性。我记得blog中我做过一道极限题,当时有网友惊呼说太讨巧了!其实不是讨巧,是有规律可循的!今天我写的内容希望可以对大家的学习有帮助! 我们看到一道数学题的时候,首先是审题,做极限题,首先是看它的基本形式,是属于什么形式采用什么方法。这基本上时可以直接套用的。

1,连续函数的极限 这个我不细说,两句话,首先看是不是连续函数,是连续函数的直接带入自变量。 2,不定型 我相信所有学习者都很清楚不定型的重要性,确实。那么下面详细说明一些注意点以及技巧。 第一,所有的含有无穷小的,首先要想到等价无穷小代换,因为这是最能简化运算的。等价代换的公式主要有六个: 需要注意的是等价物穷小代换是有适用条件的,即:在含有加减运算的式子中不能直接代换,在部分式子的乘除因子也不能直接代换,那么如果一般方法解决不了问题的话,必须要等价代换的时候,必须拆项运算,不过,需要说明,拆项的时候要小心,必须要保证拆开的每一项极限都存在。 此外等价无穷小代换的使用,可以变通一些其他形式,比如: 等等。特别强调在运算的之前,检验形式,是无穷小的形式才能等价代换。 当然在一些无穷大的式子中也可以去转化代换,即无穷大的倒数是无穷小。这需要变通的看问题。 在无穷小的运算中,洛必答法则也是一种很重要的方法,但是洛必答法则适用条件比较单一,就是无穷小比无穷小。比较常见的采用洛必答法则的是无穷小乘无穷大的情况。(特别说明无穷小乘无穷大可以改写为无穷小比无穷小或者无穷大比无穷大的形式,这根据做题的需要来进行)。

《高等数学》读书笔记

类型课程学习名称:高等数学 1 时间:2006.7.7 体裁:说明文 知识内容与结构备注一.课程目录 1函数 2极限和连续 3一元函数的导数和微分 4微分中值定理和导数的应用 5一元函数积分学 6多元函数微积分 二.知识层次分解2.3说明: 函数 1.预备知识 1)集合及其运算 1>概念 集合: 元素 2>绝对值及其基本性质

>区间和邻域 2.函数 3.基本特性 4.反函数 5.复合函数 6.初等数学 7.简单函数关系的建立 极限和连续 1数列极限 2数列级数的基本概念 3函数的极限 4极限的运算法则 5无穷小(量)和无穷大(量)6两个重要的极限 7函数的连续性和连续函数 8函数的间断点 一元函数的导数和微分 1导数的概念 2求导法则

基本求导公式 4高阶导数 5函数的微分 6导数和微分在经济学中的简单应用 微分中值定理和导数的应用 1微分中值定理 2洛必达法则 3 函数的单调性 4 曲线的凹凸性和拐点 5函数的极值与最值 一元函数积分学 1原函数和不定积分的概念 2基本积分公式 3换元积分法 4分部积分法 5微分方程初步 6定积分的概念及其基本性质 7 微积分基本公式 8 定积分的换元积分法和分部积分法 9 无穷限反常积分 10 定积分的应用

1空间解析几何 2多元函数的基本概念 3偏导数 4全微分 5多元复合函数的求导法则 6隐函数及其求导法则 7二元函数的极值 8二重积分 注: 1标识符:红色已领会理解橙色已弄懂粉色已记住绿色已会用蓝色已掌握 黑色增删修内容 2 说明:凡属课程都属说明文。要掌握其整体结构和层次内容和最后一层次 的说明内容的意思 3 步骤:1 填写结构 2 对照课程阅读,理解弄懂

大一高数学习心得

大一高数学习心得 大一高等数学学习心得转眼之间大一已经过去了一半,高数的学习也有了一学期,仔 细一想,高数也不是传说中的那么可怕,当然也没有那么容易,前提是的自己真的用心了。 记得刚开学的时候,我对高数还是很害怕的,我虽然上课认真听讲,但我还是不大明白,当然那是由于刚开始的课程确实是很抽象的,很难以高中时的解题思维理解,但后来 学的就不是那么的吃力了,再加上我的勤奋看书。 对于高数的学习大多数人都认为应该课前预习、上课认真听讲、课后复习。但那只能 是理想的状态下,事实是不允许我们那样做的。由于我的数学还算有点功底,一直以来, 我只做到了其中的一点半,而且成绩还算过得去,因此,我认为对于高数的学习,我们应 该上课认真听讲,时课后复习。我们主要应该在课堂上认真听讲,理解解题方法,我们现 在所需要的是方法,是思维,而不仅仅是例题本身的答案,我们学习高数不是为了将来能 计算算术,而是为了获得一种思想,为了提高我们的思维能力,为了能够用于解决现实问题。 在课后复习时,再根据例题好好体会解体的方法,一定要琢磨透。至于您的方法我觉 得还不错,容易的快速过,困难的花点时间耐心讲解。只是我们每学期都要放弃后边的一 部分内容,是否可以考虑相对放弃一些前面简单的,而加快进度讲完后面的一些内容。 回顾大一的高数学习历程,感慨颇多。高数在整个大学的学习课程中占据这着非常重 要的地位。其一,高数的学分是所有科目中最高的。第一学期5学分,第二学期6学分。 其二,高数在考研数学中将近80%的比例。而考研数学的成绩会很大程度上决定考研的最 终成绩。其三,高数是学习其他的课程的基础。比如我们大二上学期学的大学物理,还有 其他学院的线性代数等等。对于大一同学来说,高数就是一道必须迈过坎。作为一个过来人,今天我就说说关于高数的点滴想法。谨以此与大家分享。 学习任何东西都需要工具,学习数学更是要多种工具并进。首先,你要有足够的课外 参考书来供自己参考。没有参考书,只有课本是根本不行的。你可以去学校的图书馆借阅 相应的书籍。网络是所谓的公开式大学,有电脑的同学可以从网上查阅相关的资料,不会 就找“度娘”。既可以提高自己搜索信息的能力,又节省了时间。 概念定理永远是数学的灵魂。我在学习高数过程中非常重视概念的理解,定理的推导,知识点间的联系。例如:极限的概念及其证明,导数与极限的关系,连续与可微的关系函 数极限连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、无 穷级数、常微分方程。很多同学会说“我也知道概念很重要,可我就是理解不了啊!”类 似这种情况的同学不在少数。我给的建议是:逐字逐句阅读。不会不懂就要借助以上所说 的工具来学习。概念理解了,很多东西就迎刃而解了。当时我对概念理解很是郁闷,没得 办法,只能一字一句的解析,一点一点的抠。慢工出细活嘛,时间长了就理解了。相信: 功到自然成。

考研高等数学145分高手整理完整经典笔记(考研必备免费下载)

最新下载(https://www.360docs.net/doc/e49625899.html,) 中国最大、最专业的学习资料下载站转载请保留本信息 数学重点、难点归纳辅导 第一部分 第一章集合与映射 §1.集合 §2.映射与函数 本章教学要求:理解集合的概念与映射的概念,掌握实数集合的表示法,函数的表示法与函数的一些基本性质。 第二章数列极限 §1.实数系的连续性 §2.数列极限 §3.无穷大量 §4.收敛准则 本章教学要求:掌握数列极限的概念与定义,掌握并会应用数列的收敛准则,理解实数系具有连续性的分析意义,并掌握实数系的一系列基本定理。 第三章函数极限与连续函数 §1.函数极限 §2.连续函数 §3.无穷小量与无穷大量的阶 §4.闭区间上的连续函数 本章教学要求:掌握函数极限的概念,函数极限与数列极限的关系,无穷小量与无穷大量阶的估计,闭区间上连续函数的基本性质。 第四章微分 §1.微分和导数 §2.导数的意义和性质 §3.导数四则运算和反函数求导法则 §4.复合函数求导法则及其应用 §5.高阶导数和高阶微分 本章教学要求:理解微分,导数,高阶微分与高阶导数的概念,性质及相互关系,熟练掌握求导与求微分的方法。 第五章微分中值定理及其应用 §1.微分中值定理 §2.L'Hospital法则 §3.插值多项式和Taylor公式 §4.函数的Taylor公式及其应用 §5.应用举例

§6.函数方程的近似求解 本章教学要求:掌握微分中值定理与函数的Taylor公式,并应用于函数性质的研究,熟练运用L'Hospital法则计算极限,熟练应用微分于求解函数的极值问题与函数作图问题。 第六章不定积分 §1.不定积分的概念和运算法则 §2.换元积分法和分部积分法 §3.有理函数的不定积分及其应用 本章教学要求:掌握不定积分的概念与运算法则,熟练应用换元法和分部积分法求解不定积分,掌握求有理函数与部分无理函数不定积分的方法。 第七章定积分(§1 —§3) §1.定积分的概念和可积条件 §2.定积分的基本性质 §3.微积分基本定理 第七章定积分(§4 —§6) §4.定积分在几何中的应用 §5.微积分实际应用举例 §6.定积分的数值计算 本章教学要求:理解定积分的概念,牢固掌握微积分基本定理:牛顿—莱布尼兹公式,熟练定积分的计算,熟练运用微元法解决几何,物理与实际应用中的问题,初步掌握定积分的数值计算。 第八章反常积分 §1.反常积分的概念和计算 §2.反常积分的收敛判别法 本章教学要求:掌握反常积分的概念,熟练掌握反常积分的收敛判别法与反常积分的计算。 第九章数项级数 §1.数项级数的收敛性 §2.上级限与下极限 §3.正项级数 §4.任意项级数 §5.无穷乘积 本章教学要求:掌握数项级数敛散性的概念,理解数列上级限与下极限的概念,熟练运用各种判别法判别正项级数,任意项级数与无穷乘积的敛散性。 第十章函数项级数 §1.函数项级数的一致收敛性 §2.一致收敛级数的判别与性质 §3.幂级数

高数心得体会

高数心得体会 篇一:高数心得 学习高数的心得体会有人戏称高数是一棵高树,很多人就挂在了上面。但是,只要努力,就能爬上那棵高树,凭借它的高度,便能看到更远的风景。 很多人害怕高数,高数学习起来确实是不太轻松。其实,只要有心,高数并不像想象中的那么难。经过将近一年的学习,我们对高数进行了系统性的学习,不仅在知识方面得到了充实,在思想方面也得到了提高,就我个人而言,我认为高等数学有以下几个显著特点:1)识记的知识相对减少,理解的知识点相对增加;2)不仅要求会运用所学的知识解题,还要明白其来龙去脉;3)联系实际多,对专业学习帮助大;4)教师授课速度快,课下复习与预习必不可少。 在大学之前的学习时,都是老师在黑板上写满各种公式和结论,我便一边在书上勾画,一边在笔记本上记录。然后像背单词一样,把一堆公式与结论死记硬背下来。哪种类型的题目用哪个公式、哪条结论,老师都已一一总结出来,我只需要将其对号入座,便可将问题解答出来。而现在,我不再有那么多需要识记的结论。唯一需要记住的只是数目不多的一些定义、定理和推论。老师也不会给出固定的解题套路。因为高等数学与中学数学不同,它更要求理解。只要充分理解了各个知识点,遇到题目可以自己分析出正确的解题思路。所以,学习高等数学,记忆的负担轻了,但对思维的要求却提高了。

每一次高数课,都是一次大脑的思维训练,都是一一次提升理解力的好机会。 首先,不能有畏难情绪。一进大学,就听到很多师兄师姐甚至是老师说高数非常难学,有很多人挂科了,这基本上是事实,但是或多或少有些夸张了吧。让我们知道高数难,虽然会让我们对它更加重视,但是这无疑也增加了大家对它的畏惧感,觉得自己很可能学不好它,从而失去了信心,有些人甚至把难学当做自己不去学好它的借口。事实上,当我们抛掉那些畏难的情绪,心无旁骛地去学习高数时,它并不是那么难,至少不是那种难到学不下去的。所以,我觉得要学好高数,一定不能有畏难的情绪。当我们有信心去学好它时,就走好了第一步。 坚持做好习题。做题是必要的,但像高中那样搞题海战术就不必要了。就我的体会而言,如果只是想考试考好,不想去深入研究它的话,做好教材上的课后题和习题册就足够了,当然,前提是认真地做好了。对于每一道题,有疑问的地方就要解决,不能不求甚解,尽量把每一个细节都理解好,这样的话做好一道题 就能解决很多同类型的题了。同时,做题不能只是自己一个人冥思苦想,有时候自己的思维走进了死胡同是很难走出来的,当自己做不出来的时候,不妨问问老师或者同学,也许就能豁然开朗了。对于做完的题目,觉得很有价值的,最好是把它摘抄到笔记本上,然后记录一下解题的要点,分析一下题目所体现的思维方式等等,平时有时间就翻看一下,加深一下记忆。

高数读书笔记

高等数学读书笔记

——定积分与不定积分 马燕妮 四川农业大学 经济学院 经济学 中国成都 611130 【摘要】本文首先介绍了不定积分与定积分的基本定义,而后主要探究几种比较重要的积分法。定积分是微积分学中的主要概念之一,它是从各种各样的积累中抽象出来的数学概念,它是函数的一种特定结构和式的极限。不定积分又与定积分进行对比记忆,对不定积分的计算进行系统整理。 【关键字】定积分;不定积分;面积;凑微分法;分部积分法;换元积分法;有理函数不定积分 【Abstract 】 This paper first introduces the basic definition of indefinite integral and defin ite integral, and then explores several of the more important integral method. D efinite integral is one of the major concepts of calculus, it comes from the a ccumulation of various of abstracting mathematical concept, it is the function of the limit of a particular structure with type. Comparing the indefinite integra l and definite integral memory, calculation of indefinite integral system. 【Key words 】Definite integral ;Indefinite integral ;Area ;differentiation division integral method ;Integral method in yuan ;The indefinite integral rational function 一、不定积分与定积分的定义 (一)、定积分的定义: 设f 是定义在[a,b]上的一个函数,对于[a,b]的一个分割T={ 1,? 2?……n ?},任

高数学习心得体会

高数学习心得体会 篇一:学习高等数学体会论文 Hefei University 大一高等数学论文 院系:电子信息与电气自动化学生姓名:孙野学号: 31 专业:自动化 班级:一班 年级:一年级 指导老师:刘国旗 完成时期: 十二月十三号 摘要:高等数学是大学工科里的一门基础学科。在我学的自动化专业中更显得格外重要。经历了快一个学期的高等数学学习对这门课程有一定认识的同时,在学习的过程中遇到了各式各样的难题与困惑,因此,特对在学习中的遇到困难与将来如何更好的努力,不断提高学习这门课的能力进行了总结,希望在以后的时间里可以有所进步。 Abstract:Higher mathematics is an important basic engineering inside the university. The more I learn in automation specialty in very important. Experienced higher mathematics almost a semester has certain

understanding at the same time on the course, in the learning process encountered problems and confusion, so to every kind of, in the study of the difficulties and strive in the future how to better, continuously improve the ability of learning this course are summarized, in the hope that time can make progress. 关键词:高等数学、总结方法、极限 一:对高中数学的回顾 高中学习数学我经历过两个数学老师。先说说第一个数学老师吧,这是一个年轻的小伙老师,他以前是教初中的后来通过考试,升就教了高中,我们是他教的第一届的高中学生。对于这个我第一个高中数学老师我认为他和第二个老师最大的区别就是他上课从来不用ppt,他喜欢写板书,所以每节课后我们都记下满满几页的笔记。这样的教学方式单单就我来说我是不能适应的,因为我喜欢上课跟 着老师教学的思路去学习,但是他要我们上课记下他在黑板上学习的板书,这样就导致我们光顾着去做笔记,却没有跟着他上课的思路去思考问题,不能去理解他讲的是什么,课下对着笔记我们又不记得他上课是怎么讲的。所以高中前部分我的数学一直都不好。后来因为一些原因我们换了一个数学老师,这是一个我估计快要退休的了老师,这个老师因

高等数学(张宇)_-_笔记_PDF

目录 第一讲极限 一极限定义 (3) 二极限性质 (4) 三函数极限基本计算 (8) 四综合计算 (11) 五数列极限计算 (14) 六函数连续与间断 (16) 第二讲一元函数微积分 一概念 (17) 1. 导数 (18) 2. 微分 (20) 3. 不定积分 (21) 4. 定积分 (23) 5. 变限积分 (28) 6. 反常积分 (29) 二计算 (29) 1. 求导 (29) 2. 求积 (33) 三应用 (40) 1. 微分应用 (40) 2. 积分应用 (43) 四逻辑推理 (43) 1. 中值定理 (49) 2. 等式证明 (50) 3. 不等式证明 (51) 第三讲多元函数的微分学(公共部分) 一概念 (51) 1. 极限的存在性 (51) 2. 极限的连续性 (52) 3. 偏导数的存在性 (52) 4. 可微性 (53) 5. 偏导数的连续性 (54) 二计算 (54) 三应用 (56) 第四讲二重积分(公共部分)

一概念与性质 (59) 二计算 (60) 1. 基础题 (60) 2. 技术题 (61) 三综合计算 (62) 第五讲微分方程 一概念及其应用 (63) 二一阶方程的求解 (64) 三高阶方程的求解 (66) 第六讲无穷级数 一数项级数的判敛 (67) 二幂级数求收敛域 (69) 三展开与求和 (69) 四傅里叶级数 (71) 第七讲多元函数微分学 一基础知识 (73) 二应用 (75) 第八讲多元函数积分学 一三重积分 (76) 二第一型曲线、曲面积分 (78) 1. 一线 (78) 2. 一面 (79) 三第二型曲线、曲面积分 (80) 1. 二线 (81) 2. 二面 (83)

高等数学学习心得体会

高等数学学习心得体会 随着科技日新月异的发展和电脑无孔不入的应用.高等数学课程作为一种数学工具的功能正在逐步缩减.但作为一种思维方法的载体的功能(例如训练学生辩证思维、逻辑推理、发现同题及分析同题的能力)却愈显风采,在此分享学习心得。下面是学习啦小编为大家收集整理的高等数学学习心得体会,欢迎大家阅读。 高等数学学习心得体会篇1 高等数学是大学工科课程里的一门重要基础课。它的重要性,我相信大家都了解。高等数学是许多课程的基础,特别是与以后的许多专业课都紧密相连。因此,学好高等数学对于一名工科学生来说,至关重要。 然而,对于许多同学来说,高等数学是一门头疼的学科。如何学好高等数学呢下面是我个人在学习过程中的一些心得体会。 首先,我觉得高等数学与以前我们高中所学的数学有一点不同。高等数学注重的是一种数学的思想,比如说微积分思想,极限的思想。强调的数学的逻辑性与分析性。不像高中数学那样注重技巧性。因此,在学习的过程中,课本的知识至关重要。对于课本上面每一个概念、定理、公式、例题,都要理解清楚。特别是对于定理、公式的推导过程,不仅要

弄懂每一步的推导过程如何来,而且还要学会自己推导。因为学会自己推导,更有助于我们的记忆和应用。我的经验是,在理解的基础上去记忆公式,而不是一味的死记硬背。 第二,学习数学是不能缺少训练的。一定量的课后习题训练,不但可以让我们巩固我们学到的知识点,学会如何在实际中应用我们学到的公式定理,还有助于我们熟悉考试的各种题型。还有,题目并不是越多越好,题海战术不仅浪费大量的时间与精力,而且效果也不好。我的经验是,每做完一道题都要总结一下,特别是做错的题目,这道题的知识点是哪些应用了哪些公式定理错在哪里为什么会做错学会思考,学会总结,这样做题才能达到事半功倍的效果。 最后,学好数学是一个坚持的过程。高等数学的内容环环相扣,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一节一节,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。这样,对于后面的学习会造成很大的影响。 高等数学学习心得体会篇2 随着科技日新月异的发展和电脑无孔不入的应用.高等数学课程作为一种数学工具的功能正在逐步缩减.但作为一种思维方法的载体的功能(例如训练学生辩证思维、逻辑推理、发现同题及分析同题的能力)却愈显风采。一个多元线性方程组如何去解我们可以交给电脑去完成,只要会正确使用数学软件。但一个实际问题如

高数笔记大全

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=2 1) ()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1 (y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1 (x), D(f -1 )=Y, Z(f -1 )=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2), 则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x

大学高数教学工作总结

大学高数教学工作总结 英语向来都是学生们的弱势之一,直到大学也是这样,因此大学的老师们为此格外担心,是时候对这半个学期的教学工作做一个总结了。以下是由为大家整理的“大学英语期中教学检查总结”,仅供参 2019-04-30 英语向来都是学生们的弱势之一,直到大学也是这样,因此大学的老师们为此格外担心,是时候对这半个学期的教学工作做一个总结了。以下是由为大家整理的“大学英语期中教学检查总结”,仅供参 2019-04-30 英语向来都是学生们的弱势之一,直到大学也是这样,因此大学的老师们为此格外担心,是时候对这半个学期的教学工作做一个总结了。以下是由为大家整理的“大学英语期中教学检查总结”,仅供参

2019-04-30 (二)存在问题 由于我是一名年轻教师,对教材的熟悉程度以及在教学经验上还很欠缺。因此在教学过程中有时会出现一些问题。除此之外,现在注重考察的是学生应用知识的能力,但由于以前的教学模式,学生的这种能力培养还很弱,以后还需加强这方面的培养。 (三)今后努力的方向 1、加强学习,学习新的教学思想。 2、挖掘教材,进一步把握知识点和考点。 3、多听课,学习同科目教师先进的教学方法的教学理念。

4、加强转差培优力度。 5、让学生具有良好的数学思维。 一份耕耘,一份收获,教学工作苦乐相伴。在以后的教学工作中,我要不断总结经验,力求提高自己的教学水平,还要多下功夫加强对个别差生的辅导,相信一切问题都会迎刃而解,我也相信有耕耘总会有收获! 英语向来都是学生们的弱势之一,直到大学也是这样,因此大学的老师们为此格外担心,是时候对这半个学期的教学工作做一个总结了。以下是由为大家整理的“大学英语期中教学检查总结”,仅供参 2019-04-30 1.3.1教材处理上比较适度

大一高数笔记

导数与极限 (一)极限 1. 概念 (1)自变量趋向于有限值的函数极限定义(δε-定义) A x f a x =→)(lim ?0>?ε,0>?δ,当δ<-<||0a x 时,有ε<-|)(|A x f 。 (2)单侧极限 左极限: =-)0(a f A x f a x =-→)(lim ?0>?ε,0>?δ,当δ<-?ε,0>?δ,当δ<-?>?X ε,当 X x >,成立()ε<-A x f ,则称常数A 为函数()x f 在x 趋于无穷时的 极限,记为()A x f x =∞ →lim 。 A y =为曲线()x f y =的水平渐近线。 定义2:00>?>?X ,ε,当X x >时,成立()ε<-A x f ,则有()A x f x =+∞→lim 。 定义3:00>?>?X ,ε,当X x -<时,成立()ε<-A x f ,则有()A x f x =-∞→lim 。 运算法则: 1) 1)若()A x f =lim ,()∞=x g lim ,则()()[]∞=+x g x f lim 。 2) 2)若()()∞≠=但可为,0lim A x f ,()∞=x g lim ,则()()∞=?x g x f lim 。 3) 3)若()∞=x f lim ,则 ()01 lim =x f 。 注:上述记号lim 是指同一变化过程。 (4)无穷小的定义 ~ 0>?ε,0>?δ,当δ<-<||0a x 时,有ε<|)(|x f ,则称函数)(x f 在a x →时的无穷小(量),即 0 )(lim =→x f a x 。 (5)无穷大的定义 0>?M ,0>?δ,当δ<-<||0a x 时,有M x f >|)(|,则称函数)(x f 在a x →时的无穷大(量),记为 ∞ =→)(lim x f a x 。 直线a x =为曲线()x f y =的垂直渐近线。 2.无穷小的性质 定理1 有限多个无穷小的和仍是无穷小。 定理2 有界函数与无穷小的乘积仍是无穷小。 推论1 常数与无穷小的乘积是无穷小。 推论2 有限个无穷小的乘积是无穷小。 ! 无穷小与无穷大的关系 若∞=→)(lim x f a x ,且)(x f 不取零值,则)(1 x f 是a x →时的无穷小。 3.极限存在的判别法 (1)A x f a x =→)(lim ?A a f a f =+=-)0()0(。

高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法 1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(! 2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! ))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα )(1 2)1(...53arctan 121 2153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则

相关文档
最新文档