(完整版)专题02因动点产生的等腰三角形问题-2018届突破中考数学压轴题讲义(解析版)

【类型综述】

数学因运动而充满活力,数学因变化而精彩纷呈,动态几何问题是近年来中考的热点问题,以运动的观点来探究几何图形的变化规律问题,动态问题的解答,一般要将动态问题转化为静态问题,抓住运动过程中的不变量,利用不变的关系和几何性质建立关于方程(组)、函数关系问题,将几何问题转化为代数问题。

在动态问题中,动点形成的等腰三角形问题是常见的一类题型,可以与旋转、平移、对称等几何变化相结合,也可以与一次函数、反比例函数、二次函数的图象相结合,从而产生数与形的完美结合.解决动点产生的等腰三角形问题的重点和难点在于应用分类讨论思想和数形结合思想进行准确的分类.

【方法揭秘】

我们先回顾两个画图问题:

1.已知线段AB=5厘米,以线段AB为腰的等腰三角形ABC有多少个?顶点C的轨迹是什么?

2.已知线段AB=6厘米,以线段AB为底边的等腰三角形ABC有多少个?顶点C的轨迹是什么?

已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C.

已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外.

在讨论等腰三角形的存在性问题时,一般都要先分类.

如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.

解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?

如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.

①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么1

cos

2

AC AB A

=∠;③如图3,

如果CA=CB,那么1

cos

2

AB AC A

=∠.

代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.

如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.

图1 图2 图3

【典例分析】

例1 如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC 于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)求ED、EC的长;

(2)若BP=2,求CQ的长;

(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.

图1 备用图

思路点拨

1.第(2)题BP=2分两种情况.

2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.

3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ.

满分解答

图2 图3 图4 ①如图3,当BP=2,P在BM上时,PM=1.

此时

33

44

QN PM

==.所以

319

4

44

CQ CN QN

=+=+=.

②如图4,当BP=2,P在MB的延长线上时,PM=5.

此时

315

44

QN PM

==.所以

1531

4

44

CQ CN QN

=+=+=.

②如图6,当QC=QD时,由cos

CH

C

CQ

=,可得

5425

258

CQ=÷=.

所以QN=CN-CQ=

257

4

88

-=(如图2所示).

此时

47

36

PM QN

==.所以

725

3

66

BP BM PM

=+=+=.

③不存在DP=DF的情况.这是因为∠DFP≥∠DQP>∠DPQ(如图5,图6所示).

图5 图6

考点伸展

如图6,当△CDQ是等腰三角形时,根据等角的余角相等,可以得到△BDP也是等腰三角形,PB=PD.在

△BDP中可以直接求解

25

6

BP=.学科@网

例2如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;

(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标;

(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.

图1

思路点拨

1.第(2)题是典型的“牛喝水”问题,点P在线段BC上时△P AC的周长最小.

2.第(3)题分三种情况列方程讨论等腰三角形的存在性.

满分解答

所以点P的坐标为(1, 2).

图2

(3)点M的坐标为(1, 1)、(1,6)、(1,6

-)或(1,0).

考点伸展

第(3)题的解题过程是这样的:

设点M的坐标为(1,m).

在△MAC中,AC2=10,MC2=1+(m-3)2,MA2=4+m2.

①如图3,当MA=MC时,MA2=MC2.解方程4+m2=1+(m-3)2,得m=1.

此时点M的坐标为(1, 1).

②如图4,当AM=AC时,AM2=AC2.解方程4+m2=10,得6

m=±.

此时点M的坐标为(1,6)或(1,6

-).

③如图5,当CM=CA时,CM2=CA2.解方程1+(m-3)2=10,得m=0或6.

当M(1, 6)时,M、A、C三点共线,所以此时符合条件的点M的坐标为(1,0).

图3 图4 图5

例3 如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.

(1)求点B的坐标;

(2)求经过A、O、B的抛物线的解析式;

(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存

在,求点P的坐标;若不存在,请说明理由.

图1

思路点拨

1.用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验.

2.本题中等腰三角形的角度特殊,三种情况的点P重合在一起.

满分解答

(3)抛物线的对称轴是直线x=2,设点P的坐标为(2, y).

①当OP=OB=4时,OP2=16.所以4+y2=16.解得23

y=±.

当P在(2,3)时,B、O、P三点共线(如图2).

②当BP=BO=4时,BP2=16.所以22

4(23)16

y

++=.解得

1223

y y

==-③当PB=PO时,PB2=PO2.所以2222

4(23)2

y y

++=+.解得23

y=-

综合①、②、③,点P的坐标为(2,23)

-,如图2所示.

图2 图3

考点伸展

如图3,在本题中,设抛物线的顶点为D ,那么△DOA 与△OAB 是两个相似的等腰三角形. 由23323(4)(2)y x x x =-

-=--+,得抛物线的顶点为23

(2,)D .

因此23

tan DOA ∠=

.所以∠DOA =30°,∠ODA =120°. 例4 如图1,已知一次函数y =-x +7与正比例函数4

3

y x =的图象交于点A ,且与x 轴交于点B .

(1)求点A 和点B 的坐标;

(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.

①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?

②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.

思路点拨

1.把图1复制若干个,在每一个图形中解决一个问题.

2.求△APR 的面积等于8,按照点P 的位置分两种情况讨论.事实上,P 在CA 上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.

3.讨论等腰三角形APQ,按照点P的位置分两种情况讨论,点P的每一种位置又要讨论三种情况.满分解答

图2 图3 图4

②我们先讨论P在OC上运动时的情形,0≤t<4.

如图1,在△AOB中,∠B=45°,∠AOB>45°,OB=7,42

AB=OB>AB.因此∠OAB>∠AOB>∠B.

如图4,点P由O向C运动的过程中,OP=BR=RQ,所以PQ//x轴.

因此∠AQP=45°保持不变,∠P AQ越来越大,所以只存在∠APQ=∠AQP的情况.

此时点A在PQ的垂直平分线上,OR=2CA=6.所以BR=1,t=1.

我们再来讨论P在CA上运动时的情形,4≤t<7.

在△APQ中,

3

cos

5

A

∠=为定值,7

AP t

=-,

5520

333

AQ OA OQ OA OR t

=-=-=-.

如图5,当AP=AQ时,解方程

520

7

33

t t

-=-,得

41

8

t=.

如图6,当QP=QA时,点Q在P A的垂直平分线上,AP=2(OR-OP).解方程72[(7)(4)]

t t t

-=---,得5

t=.

图5 图6 图7

考点伸展

当P在CA上,QP=QA时,也可以用2cos

=?∠来求解.学科@网

AP AQ A

例5 如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E是∠BAC的平分线上一点,过点E作AE 的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.

(1)如图1,若点H是AC的中点,AC=23,求AB、BD的长;

(2)如图1,求证:HF=EF.

(3)如图2,连接CF、CE,猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由.

图1 图2

思路点拨

1.把图形中所有30°的角都标注出来,便于寻找等角和等边.

2.中点F有哪些用处呢?联想到斜边上的中线和中位线就有思路构造辅助线了.

满分解答

图3 图4 图5 (3)如图5,作FM⊥AB于M,联结CM.

由FM//DA,F是DB的中点,得M是AB的中点.

因此FM=1

2

AD,△ACM是等边三角形.

又因为AE=1

2

AD,所以FM=EA.

又因为CM=CA,∠CMF=∠CAE=30°,所以△CMF≌△CAE.所以∠MCF=∠ACE,CF=CE.

所以∠ECF=∠ACM=60°.所以△CEF是等边三角形.

考点伸展

我们再看几个特殊位置时的效果图,看看有没有熟悉的感觉.

如图6,如图7,当点F落在BC边上时,点H与点C重合.

图6 图7

如图8,图9,点E 落在BC 边上.如图10,图11,等腰梯形ABEC .

图8 图9 图10 图11

例6如图1,已知Rt △ABC 中,∠C =90°,AC =8,BC =6,点P 以每秒1个单位的速度从A 向C 运动,同时点Q 以每秒2个单位的速度从A →B →C 方向运动,它们到C 点后都停止运动,设点P 、Q 运动的时间为t 秒.

(1)在运动过程中,求P 、Q 两点间距离的最大值;

(2)经过t 秒的运动,求△ABC 被直线PQ 扫过的面积S 与时间t 的函数关系式;

(3)P ,Q 两点在运动过程中,是否存在时间t ,使得△PQC 为等腰三角形.若存在,求出此时的t 值,若不存在,请说明理由.(24.25 ,结果保留一位小数)

图1

思路点拨

1.过点B 作QP 的平行线交AC 于D ,那么BD 的长就是PQ 的最大值. 2.线段PQ 扫过的面积S 要分两种情况讨论,点Q 分别在AB 、BC 上.

3.等腰三角形PQC 分三种情况讨论,先罗列三边长.

满分解答

图2 图3 图4 (2)①如图2,当点Q 在AB 上时,0<t ≤5,S △ABD =15. 由△AQP ∽△ABD ,得

2

(

)AQP ABD

S AP S AD

=△△.所以S =S △AQP =215()5t ?=235t .

②如图3,当点Q 在BC 上时,5<t ≤8,S △ABC =24. 因为S △CQP =1

2CQ CP ?=1(162)(8)2

t t --=2(8)t -, 所以S =S △ABC -S △CQP =24-(t -8)2=-t 2+16t -40.

(3)如图3,当点Q 在BC 上时,CQ =2CP ,∠C =90°,所以△PQC 不可能成为等腰三角形. 当点Q 在AB 上时,我们先用t 表示△PQC 的三边长:易知CP =8-t . 如图2,由QP //BD ,得

QP AP BD AD =535

t

=.所以355QP =

. 如图4,作QH ⊥AC 于H .在Rt △AQH 中,QH =AQ sin ∠A =65t ,AH =85

t .

在Rt △CQH 中,由勾股定理,得CQ 22QH CH +2268()(8)55

t t +-

图5 图6 图7

考点伸展

第(1)题求P 、Q 两点间距离的最大值,可以用代数计算说理的方法: ①如图8,当点Q 在AB 上时,PQ 22QH PH +2268()()55t t t +-35

. 当Q 与B 重合时,PQ 最大,此时t =5,PQ 的最大值为35

②如图9,当点Q 在BC 上时,PQ 22CQ CP +22(2)CP CP +5(8)t -. 当Q 与B 重合时,PQ 最大,此时t =5,PQ 的最大值为35 综上所述,PQ 的最大值为35

图8 图9

【变式训练】

1.

(2017四川省达州市)已知函数()()12

030x x

y x x

?->??=??

y 轴的垂线交图象于A ,B 两点,连接OA 、OB .下列结论: ①若点M 1(x 1,y 1),M 2(x 2,y 2)在图象上,且x 1<x 2<0,则y 1<y 2; ②当点P 坐标为(0,﹣3)时,△AOB 是等腰三角形; ③无论点P 在什么位置,始终有S △AOB =7.5,AP =4BP ;

④当点P 移动到使∠AOB =90°时,点A 的坐标为(26,6-). 其中正确的结论个数为( )

A .1

B .2

C .3

D .4 【答案】C .

③正确.设P (0,m ),则B (

3m ,m ),A (﹣12m ,m ),∴PB =﹣3m

,P A =﹣12m ,∴P A =4PB ,∵S AOB =S △OPB +S

△OP A

=

312

22

+=7.5,故③正确. ④正确.设P (0,m ),则B (3m ,m ),A (﹣12m ,m ),∴PB =﹣3

m

,P A =﹣12m ,OP =﹣m ,∵∠AOB =90°,

∠OPB =∠OP A =90°,∴∠BOP +∠AOP =90°,∠AOP +∠OP A =90°,∴∠BOP =∠OAP ,∴△OPB ∽△APO ,∴

OP PB AP OP =

,∴OP 2=PB ?P A ,∴m 2=﹣3

m

?(﹣12m ),∴m 4=36,∵m <0,∴m =﹣6,∴A (26,﹣6),故④正确,∴②③④正确,故选C .

考点:1.反比例函数综合题;2.综合题.学科@网

2.(2017浙江省绍兴市)如图,∠AOB =45°,点M 、N 在边OA 上,OM =x ,ON =x +4,点P 是边OB 上的点.若使点P 、M 、N 构成等腰三角形的点P 恰好有三个,则x 的值是 .

【答案】x =0或x =424- 或442x << .

②当0<x <4时,如下图,圆N 与OB 相切时,NP 2=MN =4,且NP 2⊥OB ,此时MP 3=4,则OM =ON -MN =

2NP 2-4= 424.

当MD =MN =4时,圆M 与OB 只有一个交点,此时OM =2MD =42,故4≤x <42.

与OB 有两个交点P 2和P 3,故答案为:x =0或x =424或4≤x <42. 考点:1.相交两圆的性质;2.分类讨论;3.综合题.

3.(2017四川省南充市)如图1,已知二次函数2

y ax bx c =++(a 、b 、c 为常数,a ≠0)的图象过点O

(0,0)和点A (4,0),函数图象最低点M 的纵坐标为3

8

-

,直线l 的解析式为y =x .

(1)求二次函数的解析式;

(2)直线l 沿x 轴向右平移,得直线l ′,l ′与线段OA 相交于点B ,与x 轴下方的抛物线相交于点C ,过点C 作CE ⊥x 轴于点E ,把△BCE 沿直线l ′折叠,当点E 恰好落在抛物线上点E ′时(图2),求直线l ′的解析式;

(3)在(2)的条件下,l ′与y 轴交于点N ,把△BON 绕点O 逆时针旋转135°得到△B ′ON ′,P 为l ′上的动点,当△PB ′N ′为等腰三角形时,求符合条件的点P 的坐标. 【答案】(1)228

33

y x x =

-;

(2)y =x ﹣3;(3)P 坐标为(0,﹣3)或(323332+-,323332--)或(

323332++,32333

2

-+).

(3)分两种情形求解即可①当P 1与N 重合时,△P 1B ′N ′是等腰三角形,此时P 1(0,﹣3).②当N ′=N ′B ′时,设P (m ,m ﹣3),列出方程解方程即可; 试题解析:(1)由题意抛物线的顶点坐标为(2,38-

),设抛物线的解析式为2

(2)3

y a x 8=--,把(0,0)

代入得到a

=2

3

,∴抛物线的解析式为2

2

(2)

3

3

y x

8

=--,即2

28

33

y x x

=-.

(2)如图1中,设E(m,0),则C(m,2

28

33

m m

-),B(2

211

33

m m

-+,0),

∵E′在抛物线上,∴E、B关于对称轴对称,∴

2

211

()

33

2

m m m

+-+

=2,解得m=1或6(舍弃),∴B(3,0),C(1,﹣2),∴直线l′的解析式为y=x﹣3.

考点:1.二次函数综合题;2.几何变换综合题;3.分类讨论;4.压轴题.学科@网

4.(2017四川省广安市)如图,已知抛物线2

y x bx c =-++与y 轴相交于点A (0,3),与x 正半轴相交于点B ,对称轴是直线x =1.

(1)求此抛物线的解析式以及点B 的坐标.

(2)动点M 从点O 出发,以每秒2个单位长度的速度沿x 轴正方向运动,同时动点N 从点O 出发,以每秒3个单位长度的速度沿y 轴正方向运动,当N 点到达A 点时,M 、N 同时停止运动.过动点M 作x 轴的垂线交线段AB 于点Q ,交抛物线于点P ,设运动的时间为t 秒. ①当t 为何值时,四边形OMPN 为矩形.

②当t >0时,△BOQ 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由.

【答案】(1)2

23y x x =-++,B 点坐标为(3,0);(2)①;②. 【解析】

试题分析:(1)由对称轴公式可求得b ,由A 点坐标可求得c ,则可求得抛物线解析式;再令y =0可求得B 点坐标;

(2)①用t 可表示出ON 和OM ,则可表示出P 点坐标,即可表示出PM 的长,由矩形的性质可得ON =PM ,可得到关于t 的方程,可求得t 的值;②由题意可知OB =OA ,故当△BOQ 为等腰三角形时,只能有OB =BQ 或OQ =BQ ,用t 可表示出Q 点的坐标,则可表示出OQ 和BQ 的长,分别得到关于t 的方程,可求得t 的值.

②∵A (0,3),B (3,0),∴OA =OB =3,且可求得直线AB 解析式为y =﹣x +3,∴当t >0时,OQ ≠OB ,∴当△BOQ 为等腰三角形时,有OB =QB 或OQ =BQ 两种情况,由题意可知OM =2t ,∴Q (2t ,﹣2t +3),∴

OQ 22(2)(23)t t +-+28129t t -+,BQ 22

(23)(23)t t -++-+2|2t ﹣3|,又由题意可知0<

t <1,当OB =QB 2|2t ﹣3|=3,解得t =

624+(舍去)或t =632

4

-; 当OQ =BQ 28129t t -+22t ﹣3|,解得t =

3

4

; 综上可知当t 632-或3

4

时,△BOQ 为等腰三角形. 考点:1.二次函数综合题;2.动点型;3.分类讨论;4.压轴题.

5. (2017四川省眉山市)如图,抛物线2

2y ax bx =+-与x 轴交于A 、B 两点,与y 轴交于C 点,已知A (3,0),且M (1,83

-)是抛物线上另一点. (1)求a 、b 的值;

(2)连结AC ,设点P 是y 轴上任一点,若以P 、A 、C 三点为顶点的三角形是等腰三角形,求P 点的坐标; (3)若点N 是x 轴正半轴上且在抛物线内的一动点(不与O 、A 重合),过点N 作NH ∥AC 交抛物线的对称轴于H 点.设ON =t ,△ONH 的面积为S ,求S 与t 之间的函数关系式.

(完整版)中考数学动点问题专题讲解

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.

中考数学动点问题专题练习(含答案)

动点专题 一、应用勾股定理建立函数解析式 例1(2000年2上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 二、应用比例式建立函数解析式 例2(2006年2山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式; (2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由. A E D C B 图2 H M N G P O A B 图1 x y

C 三、应用求图形面积的方法建立函数关系式 例4(2004年2上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y . (1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积. 一、以动态几何为主线的压轴题 (一)点动问题. 1.(09年徐汇区)如图,ABC ?中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长; (2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时, 求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. A B C O 图8 H

中考数学专题突破几何综合

2016年北京中考专题突破几何综合 在北京中考试卷中,几何综合题通常出现在后两题,分值为8分或7分.几何综合题主要包含三角形(全等、相似)、四边形、锐角三角函数、圆等知识,主要研究图形中的数量关系、位置关系、几何计算以及图形的运动、变换等规律. 求解几何综合题时,关键是抓住“基本图形”,能在复杂的几何图形中辨认、分解出基本图形,或通过添加辅助线补全、构造基本图形,或运用图形变换的思想将分散的条件集中起来,从而产生基本图形,再根据基本图形的性质,合理运用方程、三角函数的运算等进行推理与计算. 1.[2015·北京] 在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C,D 不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH,PH. (1)若点P在线段CD上,如图Z9-1(a). ①依题意补全图(a); ②判断AH与PH的数量关系与位置关系,并加以证明. (2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果 .........) 图Z9-1 2.[2014·北京] 在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F. (1)依题意补全图Z9-2①; (2)若∠PAB=20°,求∠ADF的度数; (3)如图②,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.

图Z9-2 3.[2013·北京] 在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B 逆时针旋转60°得到线段B D. (1)如图Z9-3①,直接写出∠ABD的大小(用含α的式子表示); (2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明; (3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值. 图Z9-3 4.[2012·北京] 在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ. (1)若α=60°且点P与点M重合(如图Z9-4①),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数; (2)在图②中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB 的大小(用含α的代数式表示),并加以证明; (3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,请直接写出α的范围. 图Z9-4

中考数学动点问题十大题型

1、如图,已知ABC ==厘米,8 BC=厘米,点D为AB的中 AB AC △中,10 点. (1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △ 与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速 度为多少时,能够使BPD △全等? △与CQP (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P与点Q第一次在ABC △的哪条边上相遇?

2、直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段 运动,364y x =-+A B 、P Q 、O A Q OA

速度为每秒1个单位长度,点沿路线→→运动. (1)直接写出两点的坐标; (2)设点的运动时间为秒,的面积为,求出与之间的函数关系式; (3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标. P O B A A B 、Q t OPQ △S S t 485S P O P Q 、、M

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?

4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

2018年中考数学总复习专题突破训练第12讲二次函数的图象与性质试题

第12讲二次函数的图象与性质 (时间60分钟满分110分) A卷 一、选择题(每小题3分,共21分) 1.(20172长沙)抛物线y=2(x-3)2+4顶点坐标是( A ) A.(3,4) B.(-3,4) C.(3,-4) D.(2,4) 2.(20172陕西)已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为( C ) A.(1,-5) B.(3,-13) C.(2,-8) D.(4,-20) 3.(20172玉林)对于函数y=-2(x-m)2的图象,下列说法不正确的是( D ) A.开口向下B.对称轴是x=m C.最大值为0 D.与y轴不相交 4.(20172连云港)已知抛物线y=ax2(a>0)过A(-2,y1)、B(1,y2)两点,则下列关系式一定正确的是( C ) A.y1>0>y2B.y2>0>y1 C.y1>y2>0 D.y2>y1>0 5.(20172乐山)已知二次函数y=x2-2mx(m为常数),当-1≤x≤2时,函数值y的最小值为-2,则m的值是( D ) A.3 2 B. 2 C.3 2 或 2 D.- 3 2 或 2 6.(20162毕节)一次函数y=ax+c(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是( D ) 7.(20172烟台) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论: ①ab<0; ②b2>4ac; ③a+b+2c<0; ④3a+c<0. 其中正确的是( C )

A .①④ B .②④ C .①②③ D .①②③④ 二、填空题(每小题3分,共21分) 8.(20172上海)已知一个二次函数的图象开口向上,顶点坐标为(0,-1),那么这个 二次函数的解析式可以是_y =2x 2 -1_.(只需写一个) 9.(20172兰州)如图,若抛物线y =ax 2 +bx +c 上的P(4,0),Q 两点关于它的对称轴x =1对称,则Q 点的坐标为_(-2,0)_. 第9题图 第10题图 10.(20172牡丹江)若将图中的抛物线y =x 2 -2x +c 向上平移,使它经过点(2,0),则此时的抛物线位于x 轴下方的图象对应x 的取值范围是_0<x <2_. 11.某超市销售某种玩具,进货价为20元.根据市场调查:在一段时间内,销售单价是30元时,销售量是400件,而销售单价每上涨1元,就会少售出10件玩具,超市要完成不少于300件的销售任务,又要获得最大利润,则销售单价应定为_40_元. 12.(20172武汉)已知关于x 的二次函数y =ax 2+(a 2 -1)x -a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是_13<a <1 2 或-3<a <-2_. 13.(20172咸宁)如图,直线y =mx +n 与抛物线y =ax 2 +bx +c 交于A(-1,p),B(4, q)两点,则关于x 的不等式mx +n >ax 2 +bx +c 的解集是_x <-1或x >4_. 第13题图 第14题图 14.(20172贺州)二次函数y =ax 2 +bx +c(a ,b ,c 为常数,a ≠0)的图象如图所示, 下列结论:①abc<0;②2a +b <0;③b 2 -4ac =0;④8a+c <0;⑤a∶b∶c=-1∶2∶3,其中正确的结论有_①④⑤_. (导学号 58824141) 三、解答题(本大题3小题,共31分)

中考数学动点问题(含答案)

中考数学之 动点问题 一、选择题: 1. 如图,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是( ) 9 4x y O P D A 、10 B 、16 C 、18 D 、20 二、填空题: 1. 如上右图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE 、AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ.以下五个结论:①AD=BE ;②PQ ∥AE ;③AP=BQ ;④DE=DP ;⑤∠AOB=60°. 恒成立的结论有_______________________(把你认为正确的序号都填上)。 三、解答题: 1.(2008年大连)如图12,直角梯形ABCD 中,AB ∥CD ,∠A = 90°,CD = 3,AD = 4,tan B = 2,过点C 作CH ⊥AB ,垂足为H .点P 为线段AD 上一动点,直线PM ∥AB ,交BC 、C H 于点M 、Q .以PM 为斜边向右作等腰Rt △PMN ,直线MN 交直线AB 于点E ,直线PN 交直线A B 于点F .设PD 的长为x , EF 的长为y . ⑴求PM 的长(用x 表示); ⑵求y 与x 的函数关系式及自变量x 的取值范围(图13为备用图); ⑶当点E 在线段AH 上时,求x 的取值范围(图14为备用图). Q P O B E D C A

图 13 图 14 图 12 A H B C D A H B C D H M Q P D C B A 2.(2008年福建宁德)如图1,在Rt △ABC 中,∠C =90°,BC =8厘米,点D 在AC 上,CD =3厘米.点P 、Q 分别由A 、C 两点同时出发,点P 沿AC 方向向点C 匀速移动,速度为每秒k 厘米,行完AC 全 程用时8秒;点Q 沿CB 方向向点B 匀速移动,速度为每秒1厘米.设运动的时间为x 秒()80 <x<,△DCQ 的面积为y 1平方厘米,△PCQ 的面积为y 2平方厘米. ⑴求y 1与x 的函数关系,并在图2中画出y 1的图象; ⑵如图2,y 2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P 的速度及AC 的长; ⑶在图2中,点G 是x 轴正半轴上一点(0<OG <6=,过G 作EF 垂直于x 轴,分别交y 1、y 2于点E 、F . ①说出线段EF 的长在图1中所表示的实际意义; ②当0<x <6时,求线段EF 长的最大值.

初三数学动点问题

数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。 动态几何形成的面积问题是动态几何中的基本类型,包括单动点形成的面积问题,双(多)动点形成的面积问题,线动形成的面积问题,面动形成的面积问题。本专题原创编写单动点形成的面积问题模拟题。 在中考压轴题中,单动点形成的面积问题的重点和难点在于应用数形结合的思想准确地进行分类。 原创模拟预测题1.某数学兴趣小组对线段上的动点问题进行探究,已知AB=8. 问题思考: 如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE. (1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值. (2)分别连接AD、DF、AF, AF交DP于点A,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由. 问题拓展: (3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中, PQ 的中点O所经过的路径的长。

中考数学(人教版)总复习 热点专题突破训练:专题一 图表信息

专题一 图表信息 专题提升演练 1.如图,根据程序计算函数值,若输入的x值为,则输出的函数值为( ) A. B. C. D. 2.如图,AB为半圆的直径,点P为AB上一动点,动点P从点A出发,沿AB匀速运动到点B,运动时间为t,分别以AP和PB为直径作半圆,则图中阴影部分的面积S与时间t之间的函数图象大致为( ) 3.如图是小明设计的用手电筒来测量某古城墙高度的示意图.在点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=1.2 m, BP=1.8 m,PD=12 m,则该古城墙的高度是( ) B.8 m C.18 m D.24 m 4.某种蓄电池的电压为定值,使用此电源时,电流I(单位:A)与可变电阻R(单位:Ω)之间的函数关系如图,当用电器的电流为10 A时,用电器的可变电阻阻值为 Ω. .6 5.为鼓励居民节约用电,某省试行阶梯电价收费制,具体执行方案如下: 档次每户每月用电数/度执行电价/(元/度) 第一档小于等于2000.55 第二档大于200小于4000.6

第三档大于等于4000.85 例如:一户居民七月用电420度,则需缴电费420×0.85=357(元). 某户居民五月、六月共用电500度,缴电费290.5元.已知该用户六月用电量大于五月,且五月、六月的用电量均小于400度.问该户居民五月、六月各用电多少度? 500度,所以每个月用电量不可能都在第一档. 假设该用户五月、六月每月用电均超过200度, 此时的电费共计:500×0.6=300(元), 而300>290.5,不符合题意. 又因为六月用电量大于五月,所以五月用电量在第一档,六月用电量在第二档. 设五月用电x度,六月用电y度, 根据题意,得 故该户居民五月、六月各用电190度、310度. 6.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图 ①和图②.请根据相关信息,解答下列问题: 图① 图② (1)图①中a的值为 ; . (2)∵ =1.61, ∴这组数据的平均数是1.61. ∵在这组数据中,1.65出现了6次,出现的次数最多, ∴这组数据的众数为1.65. ∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.60,又=1.60, ∴这组数据的中位数为1.60.

2018吉林中考数学总复习动点问题练习

2018吉林中考数学总复习动点问题练习 学校_________ 班级__________ 姓名__________ 学号__________ 一、解答题 1. 在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上一动点,点Q为边AC上一动点,且∠PDQ=90°. (1)求ED、EC的长; (2)若BP=2,求CQ的长; (3)记线段PQ与线段DE的交点为点F,若△PDF为等腰三角形,求BP的长. 2. 已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴. (1)求抛物线的函数关系式; (2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标; (3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由. 3. 如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置. (1)求点B的坐标; (2)求经过点A.O、B的抛物线的解析式; (3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角

形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由. 4. 如图,已知一次函数y=-x+7与正比例函数y=x的图像交于点A,且与x 轴交于点B. (1)求点A和点B的坐标; (2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B 出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA 或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒. ①当t为何值时,以A、P、R为顶点的三角形的面积为8? ②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理 由. 5. 如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y. (1)求y关于x的函数关系式; (2)若m=8,求x为何值时,y的值最大,最大值是多少?

2018年中考数学专题训练试卷及答案

2018年中考数学专题训练试卷及答案

目录 实数专题训练 (4) 实数专题训练答案 (8) 代数式、整式及因式分解专题训练 (9) 代数式、整式及因式分解专题训练答案 (12) 分式和二次根式专题训练 (13) 分式和二次根式专题训练答案 (16) 一次方程及方程组专题训练 (17) 一次方程及方程组专题训练答案 (21) 一元二次方程及分式方程专题训练 (22) 一元二次方程及分式方程专题训练答案 (26) 一元一次不等式及不等式组专题训练 (27) 一元一次不等式及不等式组专题训练答案 (30) 一次函数及反比例函数专题训练 (31) 一次函数及反比例函数专题训练答案 (35) 二次函数及其应用专题训练 (36) 二次函数及其应用专题训练答案 (40) 立体图形的认识及角、相交线与平行线专题训练 (41) 立体图形的认识及角、相交线与平行线专题训练答案 (45) 三角形专题训练 (46) 三角形专题训练答案 (50) 多边形及四边形专题训练 (51) 多边形及四边形专题训练答案 (54) 圆及尺规作图专题训练 (55)

圆及尺规作图专题训练答案 (59) 轴对称专题训练 (60) 轴对称专题训练答案 (64) 平移与旋转专题训练 (65) 平移与旋转专题训练答案 (70) 相似图形专题训练 (71) 相似图形专题训练答案 (75) 图形与坐标专题训练 (76) 图形与坐标专题训练答案 (81) 图形与证明专题训练 (82) 图形与证明专题训练答案 (85) 概率专题训练 (86) 概率专题训练答案 (90) 统计专题训练 (91) 统计专题训练答案 (95)

2018年吉林中考数学总复习动点问题练习含答案

2018吉林中考数学总复习动点问题 因动点产生的等腰三角形问题练习 年 班 姓名 成绩: 1?如图1,在Rt A ABC 中,/ A = 90 ° , AB = 6, AC = 8,点D 为边BC 的中点,DE 丄BC 交边AC 于点E, 点 P 为射线AB 上的一动点,点 Q 为边AC 上的一动点,且/ PDQ = 90°. (1) (2) (3) tan“PD=^ =空」 (3)如图 5,如图 2,在 Rt A PDQ 中, PD DM 4 tan" = ^」 在 Rt A ABC 中, CA 4 .所以/ QPD =/ C. 由/ PDQ = 90°,/ CDE = 90°,可得/ PDF =Z CDQ. 因此△ PDF ^A CDQ. 当厶PDF 是等腰三角形时,△ ①如图5,当CQ = CD = 5时, CDQ 也是等腰三角形. QN = CQ — CN = 5 — 4 = 1 (如图 3 所示). 图1 解:(1 )在 Rt A ABC 中, 求ED EC 的长; 若BP = 2,求CQ 的长; 记线段PQ 与线段DE 的交点为巳若厶PDF 为等腰三角形,求 BP 的长. 备用图 AB = 6, AC = 8,所以 BC = 10 . PM =4QN 上 此时 3 3 ?所以 BP = BM - PM ②如图6,当QC = QD 时,由 cosC CH CQ 可得 CQ 号丰詈 3 15 25 ED=CD tan= " EC 在 Rt A CDE 中,CD = 5,所以 4 4 , 4 4』 所以QN = CN- CQ = 8 8 (如图2所示). (2)如图2,过点 D 作DM 丄AB , DN 丄AC ,垂足分别为 M 、N ,那么 DM 、DN 是 △ ABC 的两条中位线, DM = 4, DN = 3. 由/ PDQ = 90°,/ MDN = 90°,可得/ 因此△ PDM s^ QDN . PDM = Z QDN . PM 此时 = 4 QN 3 6 ?所以 7 25 BP 二 BM PM = 3 - 6 6 DFP >Z DQP >Z DPQ (如图 5,图 6 所示). PM 所以QN DM 4 DN _3 3 QN PM .所 以 4 PM = 4QN 3 图2 ①如图3,当BP = 2, 图3 P 在BM 上时,PM = 1. DP = DF 的情况.这是因为/ ③不存在 3 3 QN PM - 此时 4 4 .所以 3 19 CQ 二CN QN =4 ■ 4 4 图5 2?如图1,抛物线y = ax2+ bx + c 经过A(— 1,0)、B(3, 0)、C(0 ,3)三点,直线l 是抛物线的对称轴. (1) 求抛物线的函数关系式; (2) 设点P 是直线I 上的一个动点,当△ PAC 的周长最小时,求点 P 的坐标; (3) 在直线I 上是否存在点M ,使△ MAC 为等腰三角形,若存在,直接写出所有符合条件的点 坐标;若不存在,请说明理由. ②如图4,当BP = 2, P 在MB 的延长线上时, PM = 5. 3 15 15 31 QN =3PM 亠 CQ 二CN QN =4 15 二 31 此时 4 4 ?所 以 4 4

中考数学复习检测第2部分专题突破专题二特色题型突破

精品文档
2019-2020 年中考数学复习检测第 2 部分专题突破专题二特色题型突 破
类型一 求阴影部分的面积 【例 1】 将△ABC 绕点 B 逆时针旋转到△A′BC′,使 A,B,C′在同一直 线上,若∠BCA=90°,∠BAC=30°,AB=2 cm,则图 1 中阴影部分的面积为 ____________.
图1
方法点拨 如图 2 所示,运用旋转,把左边的深色阴影部分绕点 B 顺时针旋 转 120°就会转到右边的深色阴影部分,刚好构成一个圆心角为 120°的圆环面 积.此题运用图形的变换将不规则的图形变为规则的可求面积的图形.
图2 【例 2】 如图 3,正六边形 ABCDEF 内接于⊙O,若⊙O 的半径为 4,则阴影部分的面积 等于____________.
图3 方法点拨 连接 OD,根据正多边形的对称性可得 S△BDO=S△FDO=S△BCD,弓形 DE 的面积=
实用文档

精品文档
弓形 BC 的面积,则不规则的阴影部分的面积刚好拼成扇形 BOD 的面积.此题运用图象的面 积相等替换求不规则图象的面积.
【例 3】 (xx·滨州)如图 4,△ABC 是等边三角形,AB=2,分别以 A,B,C 为圆心, 以 2 为半径作弧,则图中阴影部分的面积是____________.
图4 方法点拨 此题运用面积的差求阴影部分的面积.
1.(xx·赤峰)如图 5,⊙O 的半径为 1,分别以⊙O 的直径 AB 上的两个四等分点 O1,O2
为圆心,12为半径作圆,则图中阴影部分的面积为(
)
A.π
B.12π
C.14π
D.2π
图5 2.(xx·淄博)如图 6,△ABC 的面积为 16,点 D 是 BC 边上一点,且 BD=14BC,点 G 是 AB 上一点,点 H 在△ABC 内部,且四边形 BDHG 是平行四边形,则图中阴影部分的面积是( )
图6
A.3
B.4
C.5
D.6
3.(xx·临沂)如图 7,AB 是⊙O 的切线,B 为切点,AC 经过点 O,与⊙O 分别相交于点
D,C.若∠ACB=30°,AB= 3,则阴影部分的面积是( )
图7
实用文档

中考数学压轴题专题:动点问题

2012年全国中考数学(续61套)压轴题分类解析 汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以cm/s 的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示). (2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN 上以2.5cm/s的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况:

①如图(2)a,当点N与点D重合时,此时点P在DE 上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=。 综上所述,当点N落在AB边上时,t=4或t=。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况: ①当2<t<4时,如图(3)a所示。 DP=t-2,PQ=2,∴CQ=PE=DE-DP=4-(t-2)=6-t,AQ=AC-CQ=2+t,AM=AQ-MQ=t。 ∵MN∥BC,∴△AFM∽△ABC。∴FM:BC = AM:AC=1:2,即FM:AM=BC:AC=1:2。 ∴FM=AM=t.

中考数学常见题型几何动点问题

中考数学压轴题型研究(一)——动点几何问题 例1:在△ABC 中,∠B=60°,BA=24CM,BC=16CM, (1)求△ABC 的面积; (2)现有动点P 从A 点出发,沿射线AB 向点B 方向运动,动点Q 从C 点出发,沿射线CB 也向点B 方向运动。如果点P 的速度是4CM/秒,点Q 的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ 的面积是△ABC 的面积的一半? (3)在第(2)问题前提下,P,Q 两点之间的距离是多少? 例2: ()已知正方形ABCD 的边长是1,E 为CD 边的中点, P 为正方形ABCD 边上的一个动点,动点P 从 A 点出发,沿 A → B → C →E 运动,到达点E.若点P 经过的路程为自变量x ,△APE 的面积为函数y , (1)写出y 与x 的关系式 (2)求当y = 1 3 时,x 的值等于多少? 例3:如图1 ,在直角梯形ABCD 中,∠B=90°,DC ∥AB ,动点P 从B 点出发,沿梯形的边由B →C → D → A 运动,设点P 运动的路程为x ,△ABP 的面积为y , 如果关于x 的函数y 的图象如图2所示 ,那么△ABC 的面积为( ) A .32 B .18 C .16 D .10 例4:直线3 64 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当48 5 S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 例5:已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒. (1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积; (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围. A C Q

最新中考数学复习专题《几何图形中的动点问题》

运动型问题 第17课时 几何图形中的动点问题 (58分) 一、选择题(每题6分,共18分) 1.[·安徽]如图6-1-1,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △ PAB =S 矩形ABCD ,则点P 到A ,B 两点距离之和PA +PB 的最小值为( D )13A. B. C.5 D. 2934241 图6-1-1 第1题答图 【解析】 令点P 到AB 的距离为h ,由S △PAB =S 矩形ABCD ,得×5h =×5131213 ×3,解得h =2,动点P 在EF 上运动,如答图,作点B 关于EF 的对称点B ′,BB ′=4,连结AB ′交EF 于点P ,此时PA +PB 最小,根据勾股定理求得最小值为=,选D. 52+42412.如图6-1-2,在矩形ABCD 中,AB =2a ,AD =a ,矩 形边上一动点P 沿A →B →C →D 的路径移动.设点P 经 过的路径长为x ,PD 2=y ,则下列能大致反映y 与x 的 函数关系的图象是 ( D )【解析】 ①当0≤x ≤2a 时,∵PD 2=AD 2+AP 2,AP = x ,∴y =x 2+a 2;② 图6-1-2

当2a <x ≤3a 时,CP =2a +a -x =3a -x ,∵PD 2=CD 2+CP 2,∴y =(3a -x )2+(2a )2=x 2-6ax +13a 2;③当3a <x ≤5a 时,PD =2a +a +2a -x =5a -x , ∴PD 2=y =(5a -x )2,y =∴能大致反映y {x 2+a 2(0≤x ≤2a ),x 2-6ax +13a 2(2a

历年中考数学动点问题题型方法归纳

x A O Q P B y 动点问题题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 64 y x =- +与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。

图(3) A B C O E F A B C O D 图(1) A B O E F C 图(2) y M C D 2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

2018年中考数学正方形专题练习(含解析)

2018中考数学正方形课时练 一.选择题 1.(2018?无锡)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值() A.等于B.等于 C.等于D.随点E位置的变化而变化 二.填空题 2.(2018?武汉)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是. 3.(2018?呼和浩特)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM; ②无论点M运动到何处,都有DM=HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为.

4.(2018?青岛)如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC 上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为. 5.(2018?咸宁)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为. 6.(2018?江西)在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为. 7.(2018?潍坊)如图,正方形ABCD的边长为1,点A与原点重合,点B在y 轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.

8.(2018?台州)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为. 三.解答题 9.(2018?盐城)在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示. (1)求证:△ABE≌△ADF; (2)试判断四边形AECF的形状,并说明理由. 10.(2018?白银)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点. (1)求证:△BGF≌△FHC; (2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.

相关文档
最新文档